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Abstract

We tackle the ill-posed inverse rendering problem in 3D

reconstruction with a Neural Radiance Field (NeRF) ap-

proach informed by Physics-Based Rendering (PBR) the-

ory, named PBR-NeRF. Our method addresses a key limita-

tion in most NeRF and 3D Gaussian Splatting approaches:

they estimate view-dependent appearance without model-

ing scene materials and illumination. To address this

limitation, we present an inverse rendering (IR) model

capable of jointly estimating scene geometry, materials,

and illumination. Our model builds upon recent NeRF-

based IR approaches, but crucially introduces two novel

physics-based priors that better constrain the IR estima-

tion. Our priors are rigorously formulated as intuitive

loss terms and achieve state-of-the-art material estimation

without compromising novel view synthesis quality. Our

method is easily adaptable to other inverse rendering and

3D reconstruction frameworks that require material esti-

mation. We demonstrate the importance of extending cur-

rent neural rendering approaches to fully model scene prop-

erties beyond geometry and view-dependent appearance.

Code is publicly available at: https://github.com/

s3anwu/pbrnerf.

1. Introduction

Recent advances in neural rendering and 3D reconstruction

using Neural Radiance Fields (NeRF) [23] and 3D Gaus-

sian Splatting (3DGS) [18] have driven massive research

interest. However, reconstructing accurate scene properties

from posed multi-view images remains a challenging, open

problem due to inherent ambiguities. The material-lighting

ambiguity makes the inverse rendering problem fundamen-

tally ill-posed, with identical images being explainable by

infinitely many tuples of scene materials, illumination, and

geometry. Addressing this ill-posed inverse problem re-

quires strong priors to narrow the possible solution space.

To overcome this issue, we leverage Physics-Based Ren-

dering (PBR) theory [17, 26] from computer graphics. PBR

Figure 1. Improving inverse rendering with physics-based

priors. The proposed PBR-NeRF significantly outperforms the

NeILF++ [51] baseline simply by using our novel Conservation of

Energy and NDF-weighted Specular Losses. Our physics-based

losses correct “baked-in” specular highlights misrepresented in the

diffuse lobe (highlighted areas) by (1) enforcing energy conserva-

tion and (2) accurately separating specular and diffuse reflections.

The result is a more realistic, physically consistent material and

lighting estimation.

provides a framework for generating physically accurate

images given known scene materials, illumination, and ge-

ometry. By reversing this process, we derive physics-based

priors to better constrain neural forward and inverse ren-

dering and enhance estimation robustness. More specifi-

cally, while NeRF, 3DGS, and their neural field derivatives

achieve state-of-the-art performance in modeling scene ge-

ometry and view-dependent appearance, they do so by treat-

ing scenes as “black boxes” that ignore the underlying

physics of light transport. These methods represent light

by volume-rendering millions of translucent particles, con-

ditioning each particle’s emitted radiance on its position and

viewing direction. This formulation significantly improves

expressiveness over traditional methods [1, 32], but it does

not guarantee physically accurate results. For example, re-

flective surfaces may be improperly modeled, causing arti-

facts such as “baked-in” specular highlights, where particles

emit more light in outgoing directions than physically pos-

sible. Ultimately, the performance of NeRF and 3DGS in

3D reconstruction is inherently limited by their inability to

accurately and consistently model diverse light interactions.

In this paper, we solve the complete inverse render-

ing problem by jointly estimating the geometry, illumina-



tion, and materials to accurately model view-dependent ap-

pearance. We extend the NeILF/NeILF++ [44, 51] neu-

ral fields framework, combining the expressiveness of deep

neural networks with the theoretical guarantees of PBR

theory. Specifically, our PBR-NeRF approach improves

NeILF/NeILF++’s reflection model by leveraging its under-

lying Disney Bidirectional Reflectance Distribution Func-

tion (BRDF) model [11]. Our method enforces energy con-

servation and promotes the disentanglement of the diffuse

and specular lobes of the BRDF, mitigating issues such as

highlights “baked in” the diffuse albedo that are commonly

observed in NeRF and 3DGS reconstructions.

In particular, we achieve these goals through two novel

physics-based losses applied directly to the Disney BRDF.

Our first loss enforces energy conservation by penalizing

physically invalid BRDFs that reflect more energy than re-

ceived. Our second loss promotes the separation of specu-

lar and diffuse BRDF lobes, which is crucial for accurately

modeling highly specular surfaces. Without constraints, the

diffuse lobe (which defines the albedo) tends to overcom-

pensate near symmetric reflection angles, where both lobes

contribute to the aggregate BRDF. By penalizing the dif-

fuse lobe’s magnitude, weighted by the normal distribution

function to target specular angles, this loss indirectly en-

courages the specular lobe to expand and fully “explain”

specular highlights effectively.

We thoroughly validate PBR-NeRF on two major bench-

marks for inverse rendering and novel view synthesis: the

NeILF++ [51] and DTU [15] datasets. Our experiments

show that PBR-NeRF sets the new state of the art for ma-

terial estimation in inverse rendering, while maintaining

or surpassing the competitive novel view synthesis perfor-

mance of its baseline. Crucially, our model delivers faithful

albedo estimates that remain consistent for a given scene

across diverse illuminations, thanks to its effective diffuse-

specular decomposition. This decomposition also improves

metallicness and roughness estimates as an additional ben-

efit, further highlighting the effectiveness of our approach.

2. Related Work

Neural fields for novel view synthesis have achieved im-

pressive progress by representing 3D scenes as continuous

volumetric fields [23]. This family of methods achieves

photorealistic synthesis from unseen viewpoints through

differentiable volume rendering, which estimates outgoing

radiance by alpha-compositing color over sampled points

along each camera ray. We concisely review representa-

tive works here and refer the reader to [41] for a compre-

hensive overview of the associated literature. Scene ge-

ometry is commonly represented using density fields [4–

6, 23, 24, 28, 42, 52], 3D Gaussians [12, 18, 39], or signed

distance fields (SDFs) [36, 45, 46, 49, 50] for images and

other optical modalities [7, 14, 30]. While the density fields

in NeRF and 3D Gaussians can model arbitrary complex

scene geometries, they fundamentally lack well-defined sur-

faces and normals. These particle-centric representations

result in ambiguous surface definitions, which hinders their

applicability to PBR. In contrast, SDFs explicitly define

surfaces as the zero-level set of a neural network, provid-

ing accurate surface and normal estimation. This surface-

centric representation makes SDFs inherently more com-

patible with inverse rendering tasks which rely on PBR and

require precise surface definitions.

Neural inverse rendering predates neural fields [19, 22,

31, 33, 37, 48] and learns to predict 3D geometry, materi-

als, and illumination from 2D images. Decomposed neural

fields [27, 35, 38, 47] similarly extend conventional neu-

ral fields with inverse rendering or intrinsic decomposition

to estimate physical scene properties such as materials and

illumination. Compared to NeRF and 3DGS, the above

additional material and lighting estimation enables com-

plex downstream tasks such as relighting [21, 29, 43], ma-

terial editing, and appearance manipulation. The decom-

position of reflected radiance into materials and illumina-

tion can also address issues such as “baked-in” highlights

in predicted colors by properly modeling view-dependent

effects. However, inverse rendering introduces significant

complexity due to the material-lighting-geometry ambigu-

ity, which is harder to lift than the geometry-radiance am-

biguity of standard novel view synthesis. Many approaches

simplify this task by assuming known lighting, environment

map lighting [8, 9, 25, 53, 54], known geometry [44], or

basic Lambertian material models. State-of-the-art inverse

rendering approaches jointly model (1) direct and indirect

lighting from near and far sources [40, 44, 51], and (2)

spatially-varying microfacet BRDFs [34, 44, 51]. For com-

putational efficiency, techniques such as light caching [3,

16, 20, 44, 51, 55] and incident light sampling [3, 44, 51]

are crucial to avoid costly recursive light tracing.

NeILF [44] proposed joint incident light and BRDF

fields, improving on environment-map-based approaches

such as NeRV [34] by handling near-field lights and mixed

lighting settings in addition to indirect lighting and occlu-

sions. Building on this, NeILF++ [51] introduced inter-

reflectable light fields, combining the NeILF and BRDF

fields with an SDF for geometry estimation. This approach

uses the SDF’s volume-rendered outgoing radiance to su-

pervise the incident radiance predicted by the NeILF. The

reflection loss of [51] harnesses the SDF’s strong novel view

synthesis performance to steer the ill-posed inverse render-

ing, achieving state-of-the-art material estimation among

neural inverse rendering works. While largely effective,

current material estimation methods including [44, 51]

lack informative material priors for disambiguating specu-

lar from diffuse properties of scene surfaces. This typically

results in incorrectly attributing specular highlights to al-



Figure 2. Overview of our PBR-NeRF architecture for neural inverse rendering. Our two novel physics-based material losses, i.e. Lcons

for conservation of energy and Lspec for disentangling the diffuse and specular BRDF components, are derived in Sec. 3.2. The complete

PBR-NeRF model comprises multiple neural fields, which are optimized in a stage-wise fashion: a standard NeRF+SDF modeling radiance

and geometry, a neural incident light field (NeILF) modeling spatially-varying illumination, and a BRDF field modeling materials via the

Disney BRDF [11]. Our physics-based losses provide the BRDF field with valuable inductive biases for improved material estimation,

which help resolve to a large extent the inherent material-lighting ambiguity in inverse rendering and thus benefit the incident light field as

well. Consequently, novel scene views synthesized with our model enjoy state-of-the-art quality.

leged changes in diffuse albedo, even though such errors do

not affect view synthesis results.

Material priors for inverse rendering are crucial for con-

straining material estimation and reducing material-lighting

ambiguities. BRDF smoothness priors [3, 16, 44, 51] can

discourage abrupt spatial changes in material properties.

NeILF [44] and NeILF++ [51] use a Lambertian prior to

regularize the Disney BRDF’s metallicness and roughness

parameters. However, the Lambertian prior induces a strong

assumption of perfectly rough, non-metallic materials that

limits BRDF expressiveness. For instance, specular effects

often appear in the predicted BRDF’s diffuse lobe due to

the Lambertian prior suppressing the specular lobe. We

address these limitations by proposing two novel physics-

based losses that enhance the physical validity and accuracy

of estimated BRDFs without sacrificing expressiveness.

3. Method

We present an overview of our PBR-NeRF method with our

novel Conservation of Energy and NDF-weighted Specular

losses in Fig. 2.

3.1. Background

We build upon the NeILF++ [51] implicit differential ren-

derer (IDR) as the foundation for our physics-based contri-

butions. The IDR estimates outgoing radiance Lo(x,ωo)

by solving the Rendering Equation [17]:

Lo(x,ωo) =

∫

Ω

fr(x,ωi,ωo)Li(x,ωi)(ωi · n)dωi, (1)

where Lo(x,ωo) is the outgoing radiance from a surface

point x in direction ωo, fr(x,ωi,ωo) is the BRDF, and

integration is performed over incident directions ωi in the

positive hemisphere Ω.

To approximate the BRDF in (1), we use the simpli-

fied Disney BRDF model [11] with three spatially varying

parameters: albedo (base color) b ∈ [0, 1]3, metallicness

m ∈ [0, 1], and roughness r ∈ [0, 1]. The Disney BRDF is

decomposed into a diffuse lobe fd(x) and a specular lobe

fs(x,ωi,ωo):

fr(x,ωi,ωo) = fd(x) + fs(x,ωi,ωo). (2)

The diffuse lobe fd models the view-independent appear-

ance based on the albedo b and metallicness m as

fd(x) =
1−m(x)

π
b(x). (3)

The specular lobe fs models light Lo reflected in direction

ωo due to incident radiance Li from direction ωi being re-

flected across the halfway vector ωh = ωo+ωi

||ωo+ωi||
. The Dis-

ney BRDF approximates rough surface effects in the specu-



lar lobe using the microfacet BRDF model [11]. This spec-

ular lobe of the BRDF is expressed as

fs(x,ωo,ωi) =
D(ωh)F (ωo,ωh)G(ωi,ωo,n)

4(n · ωi)(n · ωo)
, (4)

where the normal distribution function (NDF) D models

the distribution of microfacet orientations, the Fresnel term

F models Fresnel reflections, and G models geometric oc-

clusion. We adopt the Spherical Gaussian approximation

from [44, 51, 53], in which roughness r controls the sharp-

ness of the NDF through

D(ωh) =
1

πr4
exp

(

2

r4
(ωh · n− 1)

)

. (5)

Following NeILF++ [51], our IDR framework uses three

implicit networks (cf. Fig. 2):

1. BRDF MLP: predicts the Disney BRDF parameters b,

r, and m to compute the BRDF fr(x,ωo,ωi).
2. NeILF MLP: predicts incident radiance Li(x,ωi).
3. NeRF SDF: predicts density σ (geometry) and color c,

where c estimates the outgoing radiance Lo(x,ωo).
We approximate the rendering integral in (1) according to

NeILF/NeILF++ [44, 51] using a fixed set SL of incident

directions ωi generated by Fibonacci sampling:

Lo(x,ωo) =
2π

|SL|

∑

ωi∈SL

fr(x,ωi,ωo)Li(x,ωi)(ωi · n).

(6)

To simplify notation in the following sections, we omit the

arguments x, ωi, and ωo from fr, fd, fs, and Li.

3.2. Physics­Based Losses

Since inverse rendering is ill-posed, we propose two novel

losses inspired by physical priors to constrain both material

and lighting estimation, which are illustrated in Fig. 3.

Conservation of Energy Loss. Our first contribution ad-

dresses the non-energy-conserving behavior inherent in the

Disney BRDF [11] and other microfacet models. Despite

their widespread use, these models fail to conserve energy,

as demonstrated in previous works [10, 13]. This limitation

poses a critical challenge for inverse rendering, as it permits

a material to create energy (reflect more light than received)

or destroy energy (reflect too little light). Such inaccura-

cies skew material estimates and disrupt lighting estimation,

causing the estimated illumination to overcompensate and

hence appear too bright or dark. These effects cascade to

downstream tasks, such as relighting and object insertion,

and pose a risk for them.

To mitigate energy creation issues, we enforce the en-

ergy conservation property for the BRDF by requiring
∫

Ω
fr(ωi · n)dωi ≤ 1. This constraint, derived from the

rendering equation (1), requires that the sum of reflected

Figure 3. Illustration of our physics-based losses. We con-

strain our Disney BRDF [11] material and NeILF [44, 51] incident

light estimation with two novel physics-based losses: (1) the Con-

servation of Energy Loss Lcons to supervise the complete BRDF

fr = fs + fd denoted by the dotted envelope, and (2) the NDF-

weighted Specular Loss Lspec to adjust the relative magnitudes of

the specular fs (red) and diffuse fd (blue) BRDF lobes.

radiance weights fr(ωi ·n) across all incident directions in

the hemisphere Ω must not exceed unity. By enforcing this

intrinsic physical property, independent of incident lighting,

we ensure physically correct materials.

We reformulate this constraint in our discretized setting

as the Conservation of Energy Loss:

Lcons = max

{(

2π

|SL|

∑

ωi∈SL

fr(ωi · n)

)

− 1, 0

}

. (7)

This ReLU-style formulation prevents overestimation of re-

flected light, allowing reflected irradiance to vary but with-

out exceeding the incident irradiance. We only penalize the

model when the sum of weights fr(ωi · n) exceeds 1, but

any value below can freely vary. As seen in Fig. 3, the Con-

servation of Energy Loss affects both specular and diffuse

lobes, ensuring that the overall BRDF fr conserves energy.

NDF-weighted Specular Loss. Our second physics-based

loss targets the imbalance between the diffuse and specu-

lar lobes frequently observed in inverse rendering methods,

such as NeILF++ [51], which often assume Lambertian re-

flection. Real-world materials, however, often violate ideal-

ized Lambertian behavior, resulting in “baked-in” specular

highlights where the predicted diffuse lobe fd overcompen-

sates for insufficient specular reflection. For these “baked-

in” specular highlights, the aggregate BRDF value fr may

be accurate for specular directions, but the imbalance be-

tween fd and fs causes incorrect diffuse behavior at non-

specular angles, degrading material estimation quality.

To correct this imbalance, we propose the NDF-weighted

Specular Loss to penalize excessive diffuse reflection in



specular regions and we define our loss as

Lspec =

1

|SL|

∑

ωi∈SL

softmax





detach
(

D
(

ωo+ωi

||ωo+ωi||

))

Tspec



 fd,

(8)

where D is the NDF evaluated using the halfway vector
ωo+ωi

||ωo+ωi||
= ωh. By using a softmax-weighted NDF with

temperature Tspec, we selectively penalize diffuse reflections

in regions where specular effects dominate. We detach the

NDF term from the computation graph to prevent gradient

flow through D(ωh) during backpropagation, ensuring that

only diffuse contributions to Lspec result in weight updates.

Our NDF-weighted Specular Loss complements the

standard RGB rendering loss by pushing the specular lobe

fs to compensate for the penalized diffuse lobe fd, creating

a stronger separation between diffuse and specular reflec-

tions. A proper weighting of the opposing RGB rendering

loss and other regularization terms ensures that the diffuse

lobe is not arbitrarily suppressed by our specular loss. As

with Lcons, the specular loss also benefits lighting estima-

tion. An oversized diffuse lobe can lead to underestimated

light intensities, and excessive diffuse reflection can also

force the estimated incident light to incorrectly reproduce

complex, view-dependent specular effects. Together, our

two losses Lcons and Lspec significantly improve the accu-

racy of material and lighting estimation, resulting in more

realistic scene reconstructions, as we detail in Sec. 4.

3.3. Joint Optimization

Following NeILF++ [51], we optimize the scene recon-

struction in three phases. We briefly summarize the three

phases here (full details are provided in the supplement):

1. Geometry: only train NeRF SDF to initialize estimated

geometry using a geometry-based loss Lgeo.

2. Material: train NeILF and BRDF MLPs while freezing

the NeRF SDF to initialize estimated illumination and

materials with a material-based loss Lmat.

3. Joint Optimization: train all fields (NeRF SDF, NeILF,

BRDF) with all losses L = Lgeo + Lmat.

Each phase uses different losses that encode specific priors

or constraints relevant to that phase. The full material-based

loss including our complete physics-based loss Lmat,physics is

Lmat = λpbrLpbr + λrefLref + λsmthLsmth + Lmat,physics, (9)

where Lmat,physics = λconsLcons + λspecLspec includes

our Conservation of Energy Loss and our NDF-weighted

Specular Loss, Lpbr is a standard RGB rendering loss

supervising the estimated outgoing radiance from (6),

Lref is the NeILF++ reflection loss [51], Lsmth is the

NeILF/NeILF++ BRDF smoothness loss [44, 51], and

λpbr, λref, λsmth, λcons, λspec are positive weights.

4. Experiments

4.1. Experimental Setup

Implementation Details. We implement PBR-NeRF on

top of NeILF++ [51] using PyTorch [2] and keep all hy-

perparameters from NeILF++ the same, except for |SL| =
256 and a training batch size of 8192 rays. The geome-

try, material, and joint phases last 5K, 1K, and 30K itera-

tions, respectively. We train with a learning rate of 0.002,

which is fixed for the geometry and material phase, but de-

creases by a factor of 5 every 10K iterations during the joint

phase. Training runs on a single NVIDIA A6000, with run-

times ranging from 3 to 7.5 hours. Using grid search, we

identify two sets of weights for our physics-based losses:

λcons = 0.01 and λspec = 0.5 for the NeILF++ dataset, and

λcons = 0.01 and λspec = 0.01 for DTU. We weigh λspec

lower than the RGB loss, λpbr = 1, so that Lspec has a small

yet meaningful weighting. More hyperparameter details are

provided in the supplement.

Datasets. We evaluate our method on the NeILF++ [51]

and DTU [15] datasets. We use the NeILF++ synthetic

dataset to evaluate our material-illumination estimation, as-

suming known geometry. This dataset provides ground-

truth geometry, RGB, albedo, metallicness, and rough-

ness for a scene rendered under 6 static illumination pat-

terns, including three environment maps (Env) and three

mixed-lighting scenarios with additional point and area

light sources (Mix). Each pattern includes 96 RGB HDR

1600 × 1200 images, split into 87 training and 9 valida-

tion images. Ground-truth geometry and poses are used in

training, while ground-truth color, albedo, metallicness, and

roughness are only used for evaluation. DTU captures 15

real-world objects in a controlled lab setting. Each scene

includes 49 RGB LDR 1600 × 1200 images, split into 44

training and 5 validation images. We evaluate the predicted

geometry by computing the Chamfer Distance with the pro-

vided reference point cloud generated by structured light

scanners. We only qualitatively evaluate material estima-

tion on DTU because it uses LDR images and does not pro-

vide ground-truth materials. We do not evaluate lighting

because the DTU dataset is unsuitable for evaluating pre-

dicted lighting without HDR images and ground-truth envi-

ronment maps. Furthermore, the predicting lighting is not

meaningful because lighting cannot be reliably estimated

from the LDR DTU images due to clipping and unknown

tone mapping.

4.2. Comparison with The State of The Art

Quantitative Results. Table 1 shows that PBR-

NeRF achieves state-of-the-art material estimation on the

NeILF++ dataset, outperforming previous methods by 1–3

PSNR on average across albedo, metallicness, and rough-

ness. We outperform all baselines in roughness and metal-



Table 1. Comparison against state-of-the-art methods on the NeILF++ dataset [51]. Material estimation and novel view synthesis are

compared across different scenes (City, Studio, and Castel) and types of illumination (Env: global environment map, Mix: mixed lighting

with environment map, point, and area light sources) using PSNR and SSIM. †: our reproduced results. N/A: no official reported results.

Predicted
Quantity Method

Env-City Env-Studio Env-Castel Mix-City Mix-Studio Mix-Castel Mean

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

RGB
PhySG [53] 24.82 N/A 25.65 N/A 27.24 N/A 24.38 N/A 24.04 N/A 25.81 N/A 25.32 N/A

SG-ENV [53] 31.01 N/A 29.46 N/A 32.34 N/A 27.20 N/A 25.88 N/A 27.70 N/A 28.93 N/A

NeILF [44] † 33.23 92.29 31.12 83.55 36.21 94.13 30.00 86.95 27.56 74.20 30.91 89.83 31.50 86.83

NeILF++ [51]† 31.53 91.51 29.77 80.15 33.87 93.26 29.64 88.83 27.50 74.70 30.74 91.07 30.51 86.59

PBR-NeRF (ours) 32.60 92.33 30.96 80.77 34.88 93.66 30.03 89.17 27.84 75.01 31.34 91.39 31.27 87.05

Roughness
PhySG [53] 6.62 N/A 11.29 N/A 6.22 N/A 6.27 N/A 6.83 N/A 6.14 N/A 7.23 N/A

SG-ENV [53] 9.61 N/A 17.64 N/A 9.74 N/A 8.77 N/A 12.58 N/A 9.14 N/A 11.25 N/A

NeILF [44]† 16.71 86.77 17.72 86.48 18.05 89.56 15.11 81.42 14.54 78.53 15.04 81.28 16.19 84.01

NeILF++ [51]† 21.22 91.27 22.01 91.89 19.91 90.63 22.19 91.57 23.43 92.37 22.20 91.61 21.83 91.56

PBR-NeRF (ours) 22.19 92.32 23.45 92.74 22.23 92.07 22.15 92.04 22.63 92.57 22.18 92.10 22.47 92.31

Metallicness
PhySG [53] 8.72 N/A 7.97 N/A 8.35 N/A 8.67 N/A 8.95 N/A 8.76 N/A 8.57 N/A

SG-ENV [53] 17.01 N/A 16.40 N/A 16.39 N/A 15.44 N/A 14.25 N/A 14.49 N/A 15.66 N/A

NeILF [44]† 19.48 64.43 18.75 92.56 18.21 92.58 21.03 65.53 19.45 89.85 19.60 76.44 19.42 80.23

NeILF++ [51]† 19.49 86.50 18.17 92.99 17.41 91.92 20.80 80.48 19.18 68.74 17.98 80.14 18.84 83.46

PBR-NeRF (ours) 21.73 72.66 22.26 73.26 20.88 88.65 22.45 68.40 19.24 63.25 23.15 78.28 21.62 74.08

Albedo
PhySG [53] 15.01 N/A 16.96 N/A 16.13 N/A 14.16 N/A 12.43 N/A 14.29 N/A 14.83 N/A

SG-ENV [53] 22.38 N/A 20.74 N/A 22.21 N/A 16.92 N/A 13.16 N/A 16.69 N/A 18.68 N/A

NeILF [44]† 17.73 90.32 21.11 90.21 18.24 90.18 17.01 77.14 18.52 81.01 16.32 78.33 18.15 84.53

NeILF++ [51]† 18.21 82.62 19.50 79.21 17.73 82.48 16.37 70.13 14.48 64.61 17.43 76.20 17.29 75.87

PBR-NeRF (ours) 19.59 90.60 20.24 88.33 19.88 91.45 20.18 85.53 19.44 77.86 21.14 87.13 20.08 86.82

Table 2. Comparison for novel view synthesis against state-of-the-art methods on DTU [15]. Performance is compared across different

scenes using the RGB PSNR and Chamfer Distance metrics. †: our reproduced results. ‡: mean result over 3 runs. *: only 1 of either RGB

PSNR or Chamfer Distance results is publicly available.

Method \ DTU scan 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean±σ

RGB

PSNR

NeRFactor [54]* 23.24 21.91 23.33 26.86 22.70 24.71 27.59 22.56 20.45 25.08 26.30 25.14 21.35 26.44 26.53 24.28

PhySG [53]* 17.38 15.11 20.65 18.71 18.89 18.47 18.08 21.98 17.31 20.67 18.75 17.55 21.20 18.78 23.16 19.11

NeILF++ [51]†‡ 25.85 21.93 25.42 27.99 29.76 27.45 26.54 28.37 23.73 28.28 31.56 30.45 26.86 31.32 32.19 27.85±1.04

PBR-NeRF (ours)‡ 26.11 24.49 27.56 28.30 30.13 27.57 27.07 29.89 24.76 28.71 31.83 30.68 27.24 31.64 33.48 28.63 ± 0.29

Chamfer

Distance

[mm]

VolSDF [46]* 0.810 1.140 0.490 1.250 0.700 0.720 1.290 1.180 1.260 0.700 0.660 1.080 0.420 0.610 0.550 0.857

NeuS [36]* 0.930 1.000 0.430 1.100 0.650 0.570 1.480 1.090 1.370 0.830 0.520 1.200 0.350 0.490 0.540 0.837

NeILF++ [51]†‡ 0.748 3.028 1.285 0.448 1.627 0.640 1.287 1.649 2.697 1.008 0.604 0.745 0.397 0.513 0.824 1.167±0.68

PBR-NeRF (ours)‡ 0.816 1.343 0.486 0.511 1.665 0.688 0.647 1.174 1.416 1.038 0.590 0.676 0.398 0.502 0.468 0.828±0.09

licness PSNR in most scenes across all illuminations. For

albedo, we observe substantial gains in PSNR and SSIM

over all competitors both on overall average and in Mix

lighting scenarios, which are generally more complex due

to their combined lighting setups. Our closest competi-

tor for albedo estimation is SG-Env, which combines the

PhySG [53] Spherical Gaussian (SG) lighting representa-

tion with a spatially-varying microfacet BRDF. SG-Env es-

timates albedo better on the Env scenes since its explicit

SG lighting models environment lighting better than PBR-

NeRF’s under-constrained implicit lighting MLP. However,

PBR-NeRF performs over 3 albedo PSNR better than SG-

Env on the more challenging Mix scenes, as SGs cannot

model spatially varying illumination such as mixed light

sources, indirect lighting, and occlusions. While SG-Env

struggles with mixed, SV lighting, PBR-NeRF estimates

albedo equally well across environment and mixed light-

ing. Despite performing slightly worse than NeILF [44]

and NeILF++ [51] in metallicness SSIM, we outperform all

competitors in all other material estimation metrics.

Among inverse rendering methods, PBR-NeRF achieves

state-of-the-art results in novel view synthesis and geom-

etry estimation on DTU, as shown in Table 2. We report

the average results and standard deviation over three train-

ing runs both for our approach and NeILF++ [51], mitigat-

ing the impact of training variability. Our method achieves

an improvement of 0.78 in mean PSNR and 0.339 mm

in Chamfer Distance over NeILF++ with lower variance,

showing that our proposed losses positively impact geom-

etry estimation too. Additionally, PBR-NeRF ranks first in

14 scenes for RGB PNSR, with PSNR gains ranging from

0.12 to 2.56 over NeILF++, demonstrating consistent im-

provements over our closest baseline, and it substantially

outperforms all other methods.

Qualitative Results. We further validate our material es-

timation performance qualitatively against NeILF++ on the

NeILF++ dataset in Fig. 4 (see supplement for additional

qualitative results). Over all three challenging Mix light-

ing conditions, our physics-based losses improve both light-

ing and material estimation. Our estimated lighting exhibits

lower entropy with more concentrated sources and fewer ar-

tifacts, especially in the upper halves of environment maps.

We also eliminate fringes and patches generated on the

sphere and cube by NeILF++ due to “baked-in” specular

highlights and achieve effective separation of diffuse and

specular BRDF components via our NDF-weighted Spec-
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Figure 4. Qualitative comparisons on the NeILF++ dataset [51]. †: no ground-truth environment maps are provided with the dataset.
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Figure 5. Qualitative comparisons on DTU [15]. Best viewed on a screen at full zoom.

ular Loss. Most importantly, we consistently outperform

NeILF++ on albedo estimation, which is a critical challenge

in inverse rendering. In particular, our albedo estimation in

Studio Mix properly recovers the helmet and visor whereas

NeILF++ fails to recover any helmet details and incorrectly

predicts a black albedo. In general, our predicted albedo

is—correctly—less bright than for NeILF++, with the floor,

cube, and sphere all free from incorrect specular highlights

and artifacts.

We compare our DTU material and geometry estima-

tion in Fig. 5. On scan 37, we improve metallicness and

roughness, accurately predicting the scissor and clamp as

metal, unlike NeILF++, which creates artifacts near the

scissor handle in its predicted normals, metallicness, and

roughness. On scan 63, we successfully recover fine de-

tails like the green apple stem, which NeILF++ misses in

its predicted normals and materials. On scan 105, we cor-

rectly reproduce the brick’s top surface, whereas NeILF++

has RGB, normals, and albedo artifacts. Our roughness and

metallicness on the orange toy fur are also more consistent

than NeILF++ for the homogeneous furry material.

4.3. Ablation Study

We perform an ablation study of the proposed physically-

based losses in Tab. 3 to individually evaluate each loss’s

contribution. A qualitative analysis is provided in the sup-

plement. The baseline (ID 1) is NeILF++ [51] without the

Lambertian loss. Adding only the Conservation of Energy

Loss Lcons (ID 2) improves material estimation, with albedo

PSNR increasing by 2.34 and roughness PSNR by 0.28, re-

spectively. Adding only the specular loss Lspec (ID 3) also

improves material estimation over ID 1, with albedo PSNR

increasing by 2.35, roughness PSNR by 0.25, and metal-

licness PSNR by 0.26, respectively. In our final method

Table 3. Ablation of our physics-based losses. Performance of

ablated versions of PBR-NeRF and of its full version is compared

on the mean PSNR and SSIM of all 6 scenes of the NeILF++

dataset [51] for Disney BRDF parameters and novel views.

ID Lcons Lspec
RGB Roughness Metallicness Albedo

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1 ✗ ✗ 31.26 87.05 22.12 92.20 21.35 74.98 16.80 74.04

2 ✓ ✗ 31.29 87.09 22.40 92.31 21.30 72.42 19.14 84.30

3 ✗ ✓ 31.27 87.05 22.37 92.32 21.61 73.58 19.15 84.98

4 ✓ ✓ 31.27 87.05 22.47 92.31 21.62 74.08 20.08 86.82

(ID 4), adding both Lcons and Lspec achieves the highest

albedo, roughness, and metallicness PSNR. Specifically,

albedo PSNR and SSIM increase by an additional 0.93

PSNR and 1.84% over ID 3, respectively. Although metal-

licness SSIM is lower for ID 2–4 compared to ID 1, metal-

licness PSNR is improved. Overall, our complete method

(ID 4) with both physics-based losses improves roughness

by 0.35 PSNR, metallicness by 0.27 PSNR, and albedo by

3.28 PSNR over the baseline (ID 1), while maintaining on-

par performance in RGB.

5. Conclusion

We present PBR-NeRF, a novel inverse rendering method

leveraging neural fields optimized with PBR-inspired

losses. These losses provide physically valid inductive bi-

ases, enabling our neural fields to better disambiguate mate-

rials from lighting—addressing a major challenge in inverse

rendering. Thorough experiments across various bench-

marks demonstrate the effectiveness of PBR-NeRF not only

in material estimation and inverse rendering, but also in

novel view synthesis. In particular, we qualitatively show

a compelling disentanglement of the diffuse and specular

components in our estimated BRDFs. We believe that our

physics-based approach will inspire further work on PBR-

driven, decomposed neural fields.
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