
Disentangled Wasserstein Autoencoder for T-Cell
Receptor Engineering

Tianxiao Li1,2∗, Hongyu Guo3, Filippo Grazioli4, Mark Gerstein2†, Martin Renqiang Min1†∗
1 NEC Laboratories America, 2 Yale University

3 National Research Council Canada, 4 NEC Laboratories Europe
tianxiao.li@yale.edu, hongyu.guo@uottawa.ca, flpgrz@outlook.com

mark.gerstein@yale.edu, renqiang@nec-labs.com

Abstract

In protein biophysics, the separation between the functionally important residues
(forming the active site or binding surface) and those that create the overall structure
(the fold) is a well-established and fundamental concept. Identifying and modifying
those functional sites is critical for protein engineering but computationally non-
trivial, and requires significant domain knowledge. To automate this process from
a data-driven perspective, we propose a disentangled Wasserstein autoencoder
with an auxiliary classifier, which isolates the function-related patterns from the
rest with theoretical guarantees. This enables one-pass protein sequence editing
and improves the understanding of the resulting sequences and editing actions
involved. To demonstrate its effectiveness, we apply it to T-cell receptors (TCRs), a
well-studied structure-function case. We show that our method can be used to alter
the function of TCRs without changing the structural backbone, outperforming
several competing methods in generation quality and efficiency, and requiring only
10% of the running time needed by baseline models. To our knowledge, this is the
first approach that utilizes disentangled representations for TCR engineering.

1 Introduction

Decades of work in protein biology have shown the separation of the overall structure and the
smaller “functional” site, such as the generic structure versus the active site in enzymes [1], and the
characteristic immunoglobulin fold versus the antigen-binding complementarity-determining region
(CDR) in immunoproteins [2, 3]. The latter usually defines the protein’s key function, but cannot
work on its own without the stabilizing effect of the former. This dichotomy is similar to the content-
style separation in computer vision [4] and natural language processing [5]. For efficient protein
engineering, it is often desired that the overall structure is preserved while only the functionally
relevant sites are modified. Traditional methods for this task require significant domain knowledge
and are usually limited to specific scenarios. Several recent studies make use of deep generative
models [6] or reinforcement learning [7] to learn from large-scale data the implicit generation and
editing policies to alter proteins. Here, we tackle the problem by utilizing explicit functional features
through the disentangled representation learning (DRL), where the protein sequence is separately
embedded into a “functional” embedding and a “structural” embedding. This approach results in
a more interpretable latent space and enables more efficient conditional generation and property
manipulation for protein engineering.

DRL has been applied to the separation of “style” and “content” of images [8], or static and dynamic
parts of videos [9, 10] for tasks such as style transfer [11, 8] and conditional generation [12, 13].

∗Equal contribution. †Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Attaining the aforementioned disentangled embeddings in discrete sequences such as protein se-
quences, however, is challenging because the functional residues can vary greatly across different
proteins. To this end, several recent works on discrete sequences such as natural languages use
adversarial objectives to achieve disentangled embeddings [14, 15]. Cheng, et al. [16] improves the
disentanglement with a mutual information (MI) upper bound on the embedding space of a variational
autoencoder (VAE). However, this approach relies on a complicated implementation of multiple
losses that are approximated through various neural networks, and requires finding a dedicated
trade-off among them, making the model difficult to train. To address these challenges, we propose
a Wasserstein autoencoder (WAE) [17] framework that achieves disentangled embeddings with a
theoretical guarantee, using a simpler loss function. Also, WAE could be trained deterministically,
avoiding several practical challenges of VAE in general, especially on sequences [18, 19]. Our
approach is proven to simultaneously maximize the mutual information (MI) between the data and
the latent embedding space while minimizing the MI between the different parts of the embeddings,
through minimizing the Wasserstein loss.

To demonstrate the effectiveness and utility of our method, we apply it to the engineering of T cell
receptors (TCRs), which uses a similar structure fold as the immunoglobulin, one of the best-studied
protein structures and a good example of separation of structure and functions. TCRs play an
important role in the adaptive immune response [20] by specifically binding to peptide antigens
[21] (Fig. 1A). Designing TCRs with higher affinity to the target peptide is thus of high interest
in immunotherapy [22]. Various data-driven methods have been proposed to enhance the accuracy
of TCR binding prediction [23–25, 12, 13, 26, 27]. However, there has been limited research on
leveraging machine learning for TCR engineering. A related application is the motif scaffolding
problem [28–32] where a structural “scaffold” is generated supporting a fixed functional “motif”.
Here our goal is the opposite: to modify the functional parts of the sequence instead by directly
introducing mutations to it.

We focus on the CDR3β region of TCRs where there is sufficient data and a clearly defined functional
role (peptide binding). Using a large TCR-peptide binding dataset, we empirically demonstrate that
our method successfully separates key patterns related to binding (“functional” embedding) from
generic structural backbones (“structural” embedding). Due to the lack of 3D structural data, we
assume that similarity between the “structure-related” parts of the sequence indicates similarity in the
structure. Furthermore, by modifying only the functional embedding, our approach is able to generate
new TCRs with desired binding properties while preserving the structural backbone, requiring only
10% of the running time needed by baseline models in comparison. We also note from our TCR
engineering results that mutations can be introduced throughout the sequence, which implies that
the model learns higher-level functional and structural patterns that could span the whole sequence,
instead of looking for a universal clear cut between a “functional segment” and a “structural segment”.

We summarize our main contributions as follows:

• To our knowledge, we are the first to formulate computational protein design as a style
transfer problem and leverage disentangled embeddings for TCR engineering, resulting in
more interpretable and efficient conditional generation and property manipulation.

• We propose a disentangled Wasserstein autoencoder with an auxiliary classifier, which
effectively isolates the function-related patterns from the rest with theoretical guarantees.

• We show that by modifying only the functional embedding, we can edit TCR sequences into
desired properties while maintaining their backbones, running 10 times faster than baselines.

2 Methods

2.1 Problem Formulation

We define our problem of TCR engineering task as follows: given a TCR sequence and a peptide it
could not bind to, introduce a minimal number of mutations to the TCR so that it gains the ability to
bind to the peptide. In the meantime, the modified TCR should remain a valid TCR, with no major
changes in the structural backbone. Based on the assumption that only certain amino acids within
the TCR should be responsible for peptide interactions, we can define two kinds of patterns in the
TCR sequence: functional patterns and structural patterns. The former comprises the amino acids

2

!!

!"
!"#$%&'#()""

#

$!

*&+,,(&"

!"-+#.
,$/+$"'$

%

$"

&

'

%(

0$')",#%+'#$1.
,$/+$"'$

!!

2)1(3($1.!(" #

$!
4$5-6&#$
,$/+$"'$

% & %(

2)1(3($1.
,$/+$"'$

TCR

MHC

peptide

TCRα TCRβ

peptide

Viral infection or tumor
(B)(A)

(C)

Figure 1: (A) Top: The TCR recognizes antigenic peptides provided by the major histocompatibility
complex (MHC) with high specificity; bottom: the 3D structure of the TCR-peptide-MHC binding
interface (PDB: 5HHO); the CDRs are highlighted. (B) The disentangled autoencoder framework,
where the input x, i.e., the CDR3β, is embedded into a functional embedding zf (orange bar) and
structural embedding zs (green bar). (C) Method for sequence engineering with input x. zs of the
template sequence and a modified z′f , which represents the desired peptide binding property, are fed
to the decoder to generate engineered TCRs x′.

that define the peptide binding property. TCRs that bind to the same peptide should have similar
functional patterns. The latter refers to all other patterns that do not relate to the function but could
affect the validity. Following [23–25], we here limit our modeling to the CDR3β region since it
is the most active region for TCR binding. In the rest of the paper, we use “TCR” and “CDR3β”
interchangeably.

2.2 Disentangled Wasserstein Autoencoder

Our proposed framework, named TCR-dWAE, leverages a disentangled Wasserstein autoencoder that
learns embeddings corresponding to the functional and structural patterns. In this setting, the input
data sample for the model is a triplet {x,u, y}, where x is the TCR sequence, u is the peptide
sequence, and y is the binary label indicating the interaction.

In detail, given an input triplet {x,u, y}, the embedding space of x is separated into two parts:
z = concat(zf , zs), where zf is the functional embedding, and zs is the structural embedding. The
schematic of the model is shown in Fig. 1B.

2.2.1 Encoders and Auxiliary Classifier

We use two separate encoders for the embeddings, respectively:

ze = Θe(x),

where e ∈ {s, f} correspond to “structure” and “function”.

First, the functional embedding zf is encoded by the functional encoder Θf (x). In order to make
sure zf carries information about binding to the given peptide u, we introduce an auxiliary classifier
Ψ(zf ,u) that takes zf and the peptide u as input and predicts the probability of positive binding
label qΨ(y | zf ,u),

ŷ = qΨ(Y = 1 | zf ,u) = Ψ(zf ,u).

We define the binding prediction loss as binary cross entropy:

Lf_cls(ŷ, y) = −y log ŷ − (1− y) log(1− ŷ).

3

Second, the structural embedding zs is encoded by the structural encoder Θs(x). To enforce zs to
contain all the information other than the peptide binding-related patterns, we leverage a sequence
reconstruction loss, as will be discussed in detail in Section 2.2.3.

2.2.2 Disentanglement of the Embeddings

To attain disentanglement between zf and zs, we introduce a Wasserstein autoencoder regularization
term in our loss function following [17], by minimizing the maximum mean discrepancy (MMD)
between the distribution of the embeddings Z ∼ QZ where z = concat(zf , zs) and an isotropic
multivariate Gaussian prior Z0 ∼ PZ where PZ = N (0, Id):

LWass(Z) = MMD(PZ, QZ). (1)

The MMD is estimated as follows: given the embeddings {z1, z2, ..., zn} of an input batch of size n,
we randomly sample from the Gaussian prior {z̃1, z̃2, ..., z̃n} with the same sample size. We then
use the linear time unbiased estimator proposed by [33] to estimate the MMD:

MMD(PZ, QZ) =
1

⌊n/2⌋

⌊n/2⌋∑
i

h((z2i−1, z̃2i−1), (z2i, z̃2i)),

where h((zi, z̃i), (zj , z̃j)) = k(zi, zj)+k(z̃i, z̃j)−k(zi, z̃j)−k(zj , z̃i) and k is the kernel function.
Here we use a radial basis function (RBF) [34] with σ = 1 as the kernel.

By minimizing this loss, the joint distribution of the embeddings matches N (0, Id), so that zf and zs
are independent. Also, the Gaussian shape of the latent space facilitates generation [35, 17].

2.2.3 Decoder and Overall Training Objective

The decoder Γ takes zf , zs and peptide u as input and reconstructs the original sequence as x′. It
also acts as a regularizer to enforce the structural embedding zs to contain all the information other
than the peptide binding-related patterns. The reconstruction loss is the position-wise binary cross
entropy between x and x′ averaged across all positions of the sequence:

x′ = Γ(concat(zs, zf ,u))

Lrecon(x,x
′) =

1

l

l∑
i

−x(i) log(x′(i))− (1− x(i)) log(1− x′(i)),

where l is the length of the sequence and x(i) is the probability distribution over the amino acids at
the i-th position.

Combining all these losses with weights β1 and β2, we have the final objective function, which then
can be optimized through gradient descent in an end-to-end fashion:

L = Lrecon + β1Lf_cls + β2LWass.

2.3 Disentanglement Guarantee

To show how our method can guarantee the disentangled embeddings, we provide a novel perspective
on the latent space of Wasserstein autoencoders [17] utilizing the variation of information following
[16]. We introduce a measurement of disentanglement as follows:

D(Zf ,Zs;X | U) = V I(Zs;X | U) + V I(Zf ;X | U)− V I(Zf ;Zs | U),

where V I is the variation of information, V I(X;Y) = H(X) + H(Y) − 2I(X;Y), which is a
measure of independence between two random variables. For simplicity, we omit the condition U
(peptide) in the following parts.

This measurement reaches 0 when Zf and Zs are totally independent, i.e. disentangled. It could
further be simplified as:

V I(Zs;X) + V I(Zf ;X)− V I(Zf ;Zs)

=2H(X) + 2[I(Zf ;Zs)− I(X;Zs)− I(X;Zf)].

4

Note that H(X) is a constant. Also, according to data processing inequality, as zf → x → y forms a
Markov chain, we have I(x; zf) ≥ I(y; zf). Combining the results above, we have the upper bound
of the disentanglement objective:

I(Zf ;Zs)− I(X;Zs)− I(X;Zf) ≤ I(Zf ;Zs)− I(X;Zs)− I(Y ;Zf). (2)

Next, we show how our framework could minimize each part of the upper bound in (2).

Maximizing I(X;Zs) Similar to [10], we have the following theorem:

Theorem 2.1 Given the encoder Qθ(Z | X), decoder Pγ(X | Z), prior P (Z), and the data
distribution PD

DKL(Q(Z) ∥ P (Z)) = EpD
[DKL(Qθ(Z | X) ∥ P (Z))]− I(X;Z),

where Q(Z) is the marginal distribution of the encoder when X ∼ PD and Z ∼ Qθ(Z | X).

Theorem 2.1 shows that by minimizing the KL divergence between the marginal Q(Z) and the prior
P (Z), we jointly maximize the mutual information between the data X and the embedding Z, and
minimize the KL divergence between Qθ(Z | X) and the prior P (Z). Detailed proof of the theorem
can be found in the Appendix B.1. This also applies to the two separate parts of Z, Zf and Zs. In
practice, because the marginal cannot be measured directly, we minimize the aforementioned kernel
MMD (1) instead.

As a result, there is no need for additional constraints on the information content of Zs because
I(X;Zf) is automatically maximized by the objective. We also empirically verify in Section 3.2.3
that supervision on Zs does not improve the model performance.

Maximizing I(Y ;Zf) I(Y ;Zf) has an lower bound as follows:

I(Y ;Zf) ≥ H(Y) + Ep(Y,Zf) log qΨ(Y | Zf),

where qΨ(Y | Zf) is the predicted probability by the auxiliary classifier Ψ (note we omitted the
condition U here). Thus, maximizing the performance of classifier Ψ would maximize I(Y ;Zf).

Minimizing I(Zf ;Zs) Minimization of the Wasserstein loss (1) forces the distribution of the em-
bedding space Z to approach an isotropic multivariate Gaussian prior PZ = N (0, Id), where all the
dimensions are independent. Thus, the dimensions of Z will be independent, which also minimizes
the mutual information between the two parts of the embedding, Zf and Zs.

As a conclusion, our objective can jointly minimize I(Zf ;Zs) and maximize I(X;Zs) and I(Y ;Zf).
The former ensures independence between the embeddings, and the latter enforces them to learn
separate information, achieving disentanglement.

3 Experiments

3.1 Setup

Datasets Interacting TCR-peptide pairs are obtained from VDJDB [36], merged with experimentally-
validated negative pairs from NetTCR [26]. We then expended the negatives to 5x the size of
positives by adding randomly shuffled TCR-peptide pairs and only selected the peptides that could be
well-classified by ERGO[23], a state-of-the-art method for TCR-binding prediction (Appendix A.2).
The selected samples are then balanced resulting in 26262 positive and 26262 negative pairs with
2918 unique TCRs and 10 peptides. We also performed the same experiments on the McPAS-TCR
dataset [37] (Appendix A.1). For each peptide, we select from VDJDB an additional set of 5000
TCR sequences that do not overlap with the training set. This set is used for the TCR engineering
experiment.

Implementation Details The TCR-dWAE model uses two transformer encoders [38] for Θs,Θf and a
long short-term memory (LSTM) recurrent neural network decoder [39] for Γ. The auxiliary classifier
Ψ is a 2- layer perceptron. Hyperparameters are selected through grid search. All results are averaged
across five random seeds. See Appendix B.2 for more details.

5

r̄v r̄b %valid #mut/len %positive valid ↑
TCR-dWAE 1.36±0.03 0.45±0.09 0.61±0.06 0.49±0.05 0.23±0.02
TCR-dVAE 1.44±0.02 0.24±0.02 0.64±0.05 0.4±0.02 0.16±0.01
greedy 0.34±0.0 0.79±0.0 0.02±0.0 0.34±0.0 0.02±0.0
genetic 0.39±0.03 1.0±0.0 0.02±0.0 NA 0.02±0.0
naive rm 0.35±0.0 0.2±0.0 0.03±0.0 0.35±0.01 0.0±0.0
MCTS -0.1±0.0 0.95±0.0 0.0±0.0 NA 0.0±0.0
TCR-dWAE (null) 1.51±0.01 0.05±0.03 0.85±0.01 0.45±0.07 0.04±0.03
original 1.59 0.01 0.92 NA 0.01

Table 1: Performance comparison. original is the evaluation metrics on the template TCRs
without any modification. Only unique sequences are counted. Results are averaged across selected
peptides (i.e., SSYRRPVGI, TTPESANL, FRDYVDRFYKTLRAEQASQE, CTPYDINQM) and
then averaged across five random seeds.

3.2 TCR Engineering

3.2.1 Manipulating TCR Binding via Functional Embeddings

As shown in Fig. 1C, given any TCR sequence template x, we combine its original zs and a new
functional embedding z′f that is positive for the target peptide u which is then fed to the decoder to
generate a new TCR x′ that could potentially bind to u while maintaining the backbone of x. For
each generation, we obtain the z′f from a random positive sample in the dataset.

3.2.2 Metrics and Baselines

We use the following metrics to evaluate whether the engineered sequence x′ (1) is a valid TCR
sequence and (2) binds to the given peptide, which we denote as validity score and binding score,
respectively:

The validity score rv evaluates whether the generated TCR follows similar generic patterns as
naturally observed TCRs from TCRdb, an independent and much larger dataset [40]. We train another
LSTM-based autoencoder on TCRdb. If the generated sequence can be reconstructed successfully by
the autoencoder and has a high likelihood in the distribution of the latent space, we consider it as
a valid TCR from the same distribution as the known ones (Appendix D.2). We use the sum of the
reconstruction accuracy and the likelihood as the validity score and show that this metric separates
true TCRs from other protein segments and random sequences (Appendix D.3).

For the binding score, the engineered sequence x′ and the peptide u are fed into the pre-trained
ERGO classifier and binding probability rb = ERGO(x′,u) is calculated.

We compare TCR-dWAE with the following baselines (see Appendix C for more details):

Random mutation-based For each iteration, a new random mutation is added to the template.
The best mutated sequence (one with the highest ERGO score) is selected on either a sample-level
(greedy), population-level (genetic), or without any selection (naive rm), then goes into the next
round.

Generation-based This includes Monte Carlo tree search (MCTS), where random residues are itera-
tively added until the sequence reaches a maximum length. For each generation process, the leaf with
the highest ERGO score is added to the results.

TCR-dVAE We also include a VAE baseline inspired by the objectives of IDEL from [16], which
minimizes a MI upper bound to achieve disentanglement in the embedding space (Appendix C.3).

3.2.3 Main Results

We use peptides with AUROC > 0.8 by the classifier Ψ for the engineering task (SSYRRPVGI,
TTPESANL, FRDYVDRFYKTLRAEQASQE, CTPYDINQM). The results are listed in Table 1.
The cutoff for “valid” is rv ≥ 1.25, as it can successfully separate known TCRs from other protein
sequences. The cutoff for “positive” TCR is rb > 0.5 as the prediction scores by ERGO is rather
extreme, either 0 or 1. The vast majority of the generated valid sequences (ranging from 70% ∼

6

(A)

(C)

(B)

Figure 2: (A) Consensus motif of the first 4 and last 3 residues for the engineered TCRs and known
TCRs; the height of the alphabet indicates the frequency of the amino acid occurring at the position.
(B) (top) Average attention patterns of the functional encoder for the positive TCRs; (middle) average
attention patterns of the structural encoder for the positive TCRs;(bottom) mutation frequency of the
optimized TCRs compared to the templates; averaged across sequences of length 15. (C) Pairwise
Miyazawa-Jernigan energy for the positive optimized sequence and its template with respect to the
target peptide (left: SSYRRPVGI; right: CTPYDINQM).

100%) are unique and all are novel (Appendix Table 10). In general, TCR-dWAE-based methods
generate more valid and positive sequences compared to other methods. We also include the results
on McPAS-TCR in the Appendix Table 9, where the observations are similar.

One advantage of TCR-dWAE is that zs implicitly constrains the sequence backbone, ensuring validity.
Methods like genetic and MCTS, on the contrary, generate much fewer valid sequences without
explicit control on validity. As a result, they could produce high binding score sequences because
they are guided to do so, but most of them are invalid TCRs, or out-of-distribution samples that
ERGO cannot correctly predict. Also, they require calling of an external evaluation model during
generation at every iteration. Adding a regularizer to enforce validity could potentially improve these
baselines’ generation quality, but the two objectives would be difficult to balance and will further
increase the computational burden. TCR-dWAE, on the contrary, can perform sequence engineering
in one pass, requiring 10x less time (Appendix Table 10). Compared to VAE-based models like
TCR-dVAE, TCR-dWAE is a deterministic model with simpler objectives, circumventing some well-
known challenges in the training of VAE which we’ve found to be rather sensitive to hyperparameters
(see Appendix C.3 and E.5 for more comparisons between model architectures and generation
modes).

3.2.4 Analysis of Engineered TCRs

We define the first four and the last three residues as the conservative region and the rest as the
hypervariable region. On average, the sequences generated by TCR-dAE have a similar conservative
region motif as known TCR CDR3βs [41] (Fig. 2A). The average attention score of the functional
encoder concentrates on the hypervariable part (Fig. 2B, top), which has a similar distribution as the
mutation frequency of the engineered sequences compared to their templates (Fig. 2B, bottom). On
the other hand, we can also observe some, though less frequent, changes in the conservative regions
through modifying the zf , while some residues in the hypervariable region are maintained (Fig. 2C).
Furthermore, the attention patterns of the functional and structural encoders, despite having their
own preferences, overlap at some positions and do not have a clear-cut separation. Neither pattern

7

%positive valid

full 0.23±0.02
Wass- 0.21±0.02
L_s+ 0.18±0.01
L_i- 0.13±0.04

zf ↑ zs ↓
0.163±0.015 0.013±0.004
0.040±0.026 0.013±0.006
0.238±0.029 0.008±0.000
0.087±0.067 0.011±0.004

Table 2: Ablation study. Left: %positive valid for TCR engineering; Right: sample-based MMD
between the embeddings of positive and negative samples. All means and standard deviations are
calculated across five random seeds.

Embedding Average reconstruction accuracy

Original (zf , zs) 0.9044 ± 0.0020
Random zf 0.7535 ± 0.0085

Fully random 0.6016 ± 0.0030
Table 3: Reconstruction accuracy with altered embeddings (VDJDB).

aligns with the hypervariable/conservative separation (Fig. 2B top and middle). These results indicate
that both zf and zs learn to encode patterns from the entire sequence, and do not fit into the manual
separation of a “functional” hypervariable region and a “structural” conservative region.

We also show some examples where residues introduced by the positive zf to the engineered sequence
have the potential of forming lower-energy (i.e. more stable) interactions with the target peptide (Fig.
2C), using the classic Miyazawa-Jernigan contact energy [42], which is a knowledge-based pairwise
energy matrix for amino acid interactions. These results demonstrate that the positive patterns carried
by zf have learned some biologically relevant information such as the favored binding energy of the
TCR-pMHC complex, and are successfully introduced to the engineered TCRs.

3.3 Ablation Study
For a quantitative comparison of the disentanglement, we calculate a sample-based MMD between
the embeddings of positive and negative samples. Ideally, a disentangled latent space would make
zf of the positive and negative groups very different, and zs indistinguishable. As shown in Table
2, removing the Wasserstein loss (Wass−) or the auxiliary classifier (Ψ−) leads to both poorer
performance and poorer disentanglement.

We also attempt to explicitly control the information content of zs by adding another decoder using
only zs (Ls+). This in practice results in similar, even slightly better, disentanglement compared
to the original model, but not necessarily better performance. These observations agree with our
conclusions in Section 2.3.

3.4 Analysis of the Embedding Space

We select a balanced subset from the test set (332 positives and 332 negatives) and obtain their zf
and zs embeddings. T-SNE [43] visualization in Fig. 3A shows that for each peptide, the binding
and non-binding TCRs can be well separated by zf but not zs (more examples in Appendix Fig. 5).
Also, among the positive samples, zf show strong clustering patterns corresponding to their peptide
targets (Fig. 2B). As a result of the Wasserstein loss constraint, there is minimal correlation between
zf and zs (Fig. 3C).

Furthermore, as shown in Table 3, the reconstruction accuracy is the highest when both (zf , zs) are
provided, and significantly impaired when either embedding is missing. These results imply that the
embedding space is properly disentangled as intended: zf and zs each encodes separate parts of the
sequential patterns, and both are required for faithful reconstruction.

4 Conclusions and Outlook

In this work, we present TCR-dWAE, a disentangled Wasserstein autoencoder-based framework for
massive TCR engineering. The disentanglement constraints separate key patterns related to binding

8

(A) (B)

(C)

Figure 3: (A) T-SNE patterns of zf and zs for selected peptides, colored by ground-truth labels. (B)
t-SNE of the zf of the positive TCRs. Colors correspond to their binding peptide. (C) Correlation
between dimensions of zf and zs, where the orange color corresponds to zf and green to zs.

(“functional” embedding) from generic structural backbones (“structural” embedding). By modifying
only the functional embedding, we are able to generate new TCRs with desired binding properties
while preserving the backbone.

We are aware that our experiment is performed on a smaller subset selected by ERGO, whose
limitations would bias the results. Also, our model assumes there is some “natural”, yet unknown,
disentanglement between features within the data. Thus, it could potentially be applied to several
protein engineering tasks but would fail if the definition of functional terms is vague. With more high-
throughput experimental data on TCR-peptide interaction, we will be able to train more comprehensive
models on full TCR sequences. To our knowledge, ours is the first work that approaches protein
sequence engineering from a style transfer perspective. As our framework mimics a vast amount of
biological knowledge on function versus structure, we believe it can be further extended to a broader
definition of protein functions or other molecular contexts.

5 Related Works

TCR-peptide binding prediction Most human TCRs are heterodimers comprised of a TCRα chain
and a TCRβ chain [21]. Each chain contains three complementarity-determining regions (CDRs),
CDR1, 2 and 3, which are highly variable due to gene recombination. A large amount of literature
investigates the prediction of the highly specific interaction between TCRs and peptides. Early
methods use consensus motifs or simple structural patterns like k-mers as predictive features [44–
46, 24]. Other methods assess the binding energy for the TCR-peptide pair using physical or structural
modeling [47, 48]. In recent years, several deep neural network architectures have been applied to
this task [49, 26, 50, 23, 24, 51, 27], using both TCR and peptide sequences as input. Most studies

9

focus on the CDR3β sequence and some also include other information like the CDR3α, depending
on the availability of the data.

Computational biological sequence design Traditional methods of computational biological se-
quence design uses search algorithms, where random mutations are introduced and then selected
by specified criteria [52–54]. Deep generative models like variational autoencoder (VAE) [55] or
generative adversarial network (GAN) [6] have also been successfully applied to biological sequences
such as DNA. Other recent approaches include reinforcement learning (RL) [7], and iterative refine-
ment [56]. It is also possible to co-design sequences along with the 3D structure, such as in motif
scaffolding problems [28–32].

Disentangled representation learning The formulation of DRL tasks depends on its nature, such as
separating the “style” and the “content” of a piece of text [16] or a picture [8], or static (time-invariant)
and dynamic (time-variant) elements of a video [9, 10]. The disentangled representations can be used
for style transfer [11, 8, 16] and conditional generation [12, 13]. Several regularization methods have
been used to achieve disentanglement with or without a priori knowledge, including controls on the
latent space capacity [57, 58], adversarial loss [12], cyclic reconstruction [11], mutual information
constraints [59, 16, 9], and self-supervising auxiliary tasks [9].

References
[1] Peter K Robinson. Enzymes: principles and biotechnological applications. Essays in biochemistry, 59:1,

2015.

[2] P Bork, L Holm, and C Sander. The immunoglobulin fold: structural classification, sequence patterns and
common core. Journal of molecular biology, 242(4):309–320, 1994.

[3] Bissan Al-Lazikani, Arthur M Lesk, and Cyrus Chothia. Standard conformations for the canonical
structures of immunoglobulins. Journal of molecular biology, 273(4):927–948, 1997.

[4] Yongcheng Jing, Yezhou Yang, Zunlei Feng, Jingwen Ye, Yizhou Yu, and Mingli Song. Neural style
transfer: A review. IEEE transactions on visualization and computer graphics, 26(11):3365–3385, 2019.

[5] Martina Toshevska and Sonja Gievska. A review of text style transfer using deep learning. IEEE
Transactions on Artificial Intelligence, 2021.

[6] Anvita Gupta and James Zou. Feedback gan for dna optimizes protein functions. Nature Machine
Intelligence, 1(2):105–111, 2019.

[7] Christof Angermueller, David Dohan, David Belanger, Ramya Deshpande, Kevin Murphy, and Lucy
Colwell. Model-based reinforcement learning for biological sequence design. In International conference
on learning representations, 2019.

[8] Dmytro Kotovenko, Artsiom Sanakoyeu, Sabine Lang, and Bjorn Ommer. Content and style disentangle-
ment for artistic style transfer. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 4422–4431, 2019.

[9] Yizhe Zhu, Martin Renqiang Min, Asim Kadav, and Hans Peter Graf. S3vae: Self-supervised sequential
vae for representation disentanglement and data generation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6538–6547, 2020.

[10] Jun Han, Martin Renqiang Min, Ligong Han, Li Erran Li, and Xuan Zhang. Disentangled recurrent
wasserstein autoencoder. In International Conference on Learning Representations, 2021.

[11] Hsin-Ying Lee, Hung-Yu Tseng, Jia-Bin Huang, Maneesh Singh, and Ming-Hsuan Yang. Diverse image-
to-image translation via disentangled representations. In Proceedings of the European conference on
computer vision (ECCV), pages 35–51, 2018.

[12] Emily L Denton et al. Unsupervised learning of disentangled representations from video. Advances in
neural information processing systems, 30, 2017.

[13] Jun-Yan Zhu, Zhoutong Zhang, Chengkai Zhang, Jiajun Wu, Antonio Torralba, Josh Tenenbaum, and Bill
Freeman. Visual object networks: Image generation with disentangled 3d representations. Advances in
neural information processing systems, 31, 2018.

[14] Guillaume Lample, Sandeep Subramanian, Eric Smith, Ludovic Denoyer, Marc’Aurelio Ranzato, and
Y-Lan Boureau. Multiple-attribute text rewriting. In International Conference on Learning Representations,
2019.

10

[15] Vineet John, Lili Mou, Hareesh Bahuleyan, and Olga Vechtomova. Disentangled representation learning
for non-parallel text style transfer. arXiv preprint arXiv:1808.04339, 2018.

[16] Pengyu Cheng, Martin Renqiang Min, Dinghan Shen, Christopher Malon, Yizhe Zhang, Yitong Li, and
Lawrence Carin. Improving disentangled text representation learning with information-theoretic guidance.
arXiv preprint arXiv:2006.00693, 2020.

[17] Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. Wasserstein auto-encoders.
arXiv preprint arXiv:1711.01558, 2017.

[18] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy Bengio.
Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349, 2015.

[19] Partha Ghosh, Mehdi SM Sajjadi, Antonio Vergari, Michael Black, and Bernhard Schölkopf. From
variational to deterministic autoencoders. arXiv preprint arXiv:1903.12436, 2019.

[20] Balachandra K Gorentla and Xiao-Ping Zhong. T cell receptor signal transduction in t lymphocytes.
Journal of clinical & cellular immunology, 2012(Suppl 12):005, 2012.

[21] Kinjal Shah, Amr Al-Haidari, Jianmin Sun, and Julhash U Kazi. T cell receptor (tcr) signaling in health
and disease. Signal transduction and targeted therapy, 6(1):1–26, 2021.

[22] Nicholas P Restifo, Mark E Dudley, and Steven A Rosenberg. Adoptive immunotherapy for cancer:
harnessing the t cell response. Nature Reviews Immunology, 12(4):269–281, 2012.

[23] Ido Springer, Hanan Besser, Nili Tickotsky-Moskovitz, Shirit Dvorkin, and Yoram Louzoun. Prediction of
specific tcr-peptide binding from large dictionaries of tcr-peptide pairs. Frontiers in immunology, page
1803, 2020.

[24] Anna Weber, Jannis Born, and María Rodriguez Martínez. Titan: T-cell receptor specificity prediction with
bimodal attention networks. Bioinformatics, 37(Supplement_1):i237–i244, 2021.

[25] Yicheng Gao, Yuli Gao, Yuxiao Fan, Chengyu Zhu, Zhiting Wei, Chi Zhou, Guohui Chuai, Qinchang Chen,
He Zhang, and Qi Liu. Pan-peptide meta learning for t-cell receptor–antigen binding recognition. Nature
Machine Intelligence, pages 1–14, 2023.

[26] Alessandro Montemurro, Viktoria Schuster, Helle Rus Povlsen, Amalie Kai Bentzen, Vanessa Jurtz,
William D Chronister, Austin Crinklaw, Sine R Hadrup, Ole Winther, Bjoern Peters, et al. Nettcr-2.0 enables
accurate prediction of tcr-peptide binding by using paired tcrα and β sequence data. Communications
biology, 4(1):1–13, 2021.

[27] Filippo Grazioli, Pierre Machart, Anja Mösch, Kai Li, Leonardo V Castorina, Nico Pfeifer, and Mar-
tin Renqiang Min. Attentive variational information bottleneck for tcr–peptide interaction prediction.
Bioinformatics, 39(1):btac820, 2023.

[28] Erik Procko, Geoffrey Y Berguig, Betty W Shen, Yifan Song, Shani Frayo, Anthony J Convertine, Daciana
Margineantu, Garrett Booth, Bruno E Correia, Yuanhua Cheng, et al. A computationally designed inhibitor
of an epstein-barr viral bcl-2 protein induces apoptosis in infected cells. Cell, 157(7):1644–1656, 2014.

[29] Jue Wang, Sidney Lisanza, David Juergens, Doug Tischer, Joseph L Watson, Karla M Castro, Robert
Ragotte, Amijai Saragovi, Lukas F Milles, Minkyung Baek, et al. Scaffolding protein functional sites using
deep learning. Science, 377(6604):387–394, 2022.

[30] Brian L Trippe, Jason Yim, Doug Tischer, David Baker, Tamara Broderick, Regina Barzilay, and Tommi
Jaakkola. Diffusion probabilistic modeling of protein backbones in 3d for the motif-scaffolding problem.
arXiv preprint arXiv:2206.04119, 2022.

[31] Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eisenach,
Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. Broadly applicable and accurate
protein design by integrating structure prediction networks and diffusion generative models. BioRxiv,
pages 2022–12, 2022.

[32] Jin Sub Lee, Jisun Kim, and Philip M Kim. Score-based generative modeling for de novo protein design.
Nature Computational Science, pages 1–11, 2023.

[33] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A
kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773, 2012.

11

[34] Arthur Gretton, Dino Sejdinovic, Heiko Strathmann, Sivaraman Balakrishnan, Massimiliano Pontil, Kenji
Fukumizu, and Bharath K Sriperumbudur. Optimal kernel choice for large-scale two-sample tests. Advances
in neural information processing systems, 25, 2012.

[35] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[36] Dmitry V Bagaev, Renske MA Vroomans, Jerome Samir, Ulrik Stervbo, Cristina Rius, Garry Dolton,
Alexander Greenshields-Watson, Meriem Attaf, Evgeny S Egorov, Ivan V Zvyagin, et al. Vdjdb in 2019:
database extension, new analysis infrastructure and a t-cell receptor motif compendium. Nucleic Acids
Research, 48(D1):D1057–D1062, 2020.

[37] Nili Tickotsky, Tal Sagiv, Jaime Prilusky, Eric Shifrut, and Nir Friedman. Mcpas-tcr: a manually curated
catalogue of pathology-associated t cell receptor sequences. Bioinformatics, 33(18):2924–2929, 2017.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[39] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

[40] Si-Yi Chen, Tao Yue, Qian Lei, and An-Yuan Guo. Tcrdb: a comprehensive database for t-cell receptor
sequences with powerful search function. Nucleic Acids Research, 49(D1):D468–D474, 2021.

[41] J Douglas Freeman, René L Warren, John R Webb, Brad H Nelson, and Robert A Holt. Profiling the t-cell
receptor beta-chain repertoire by massively parallel sequencing. Genome research, 19(10):1817–1824,
2009.

[42] Sanzo Miyazawa and Robert L Jernigan. Estimation of effective interresidue contact energies from protein
crystal structures: quasi-chemical approximation. Macromolecules, 18(3):534–552, 1985.

[43] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning
research, 9(11), 2008.

[44] Pradyot Dash, Andrew J Fiore-Gartland, Tomer Hertz, George C Wang, Shalini Sharma, Aisha Souquette,
Jeremy Chase Crawford, E Bridie Clemens, Thi HO Nguyen, Katherine Kedzierska, et al. Quantifiable
predictive features define epitope-specific t cell receptor repertoires. Nature, 547(7661):89–93, 2017.

[45] Yao Tong, Jiayin Wang, Tian Zheng, Xuanping Zhang, Xiao Xiao, Xiaoyan Zhu, Xin Lai, and Xiang
Liu. Sete: Sequence-based ensemble learning approach for tcr epitope binding prediction. Computational
Biology and Chemistry, 87:107281, 2020.

[46] Nicolas De Neuter, Wout Bittremieux, Charlie Beirnaert, Bart Cuypers, Aida Mrzic, Pieter Moris, Arvid
Suls, Viggo Van Tendeloo, Benson Ogunjimi, Kris Laukens, et al. On the feasibility of mining cd8+ t cell
receptor patterns underlying immunogenic peptide recognition. Immunogenetics, 70(3):159–168, 2018.

[47] Kamilla Kjærgaard Jensen, Vasileios Rantos, Emma Christine Jappe, Tobias Hegelund Olsen, Mar-
tin Closter Jespersen, Vanessa Jurtz, Leon Eyrich Jessen, Esteban Lanzarotti, Swapnil Mahajan, Bjoern
Peters, et al. Tcrpmhcmodels: Structural modelling of tcr-pmhc class i complexes. Scientific reports, 9(1):
1–12, 2019.

[48] I-Hsin Liu, Yu-Shu Lo, and Jinn-Moon Yang. Genome-wide structural modelling of tcr-pmhc interactions.
BMC genomics, 14(5):1–13, 2013.

[49] David S Fischer, Yihan Wu, Benjamin Schubert, and Fabian J Theis. Predicting antigen specificity of
single t cells based on tcr cdr 3 regions. Molecular systems biology, 16(8):e9416, 2020.

[50] Pieter Moris, Joey De Pauw, Anna Postovskaya, Sofie Gielis, Nicolas De Neuter, Wout Bittremieux, Benson
Ogunjimi, Kris Laukens, and Pieter Meysman. Current challenges for unseen-epitope tcr interaction
prediction and a new perspective derived from image classification. Briefings in Bioinformatics, 22(4):
bbaa318, 2021.

[51] Yiren Jian, Erik Kruus, and Martin Renqiang Min. T-cell receptor-peptide interaction prediction with
physical model augmented pseudo-labeling. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 3090–3097, 2022.

[52] Frances H Arnold. Design by directed evolution. Accounts of chemical research, 31(3):125–131, 1998.

12

[53] Alexander J Hartemink, David K Gifford, and Julia Khodor. Automated constraint-based nucleotide
sequence selection for dna computation. Biosystems, 52(1-3):227–235, 1999.

[54] Soo-Yong Shin, In-Hee Lee, Dongmin Kim, and Byoung-Tak Zhang. Multiobjective evolutionary opti-
mization of dna sequences for reliable dna computing. IEEE transactions on evolutionary computation, 9
(2):143–158, 2005.

[55] Nathan Killoran, Leo J Lee, Andrew Delong, David Duvenaud, and Brendan J Frey. Generating and
designing dna with deep generative models. arXiv preprint arXiv:1712.06148, 2017.

[56] Wengong Jin, Jeremy Wohlwend, Regina Barzilay, and Tommi Jaakkola. Iterative refinement graph neural
network for antibody sequence-structure co-design. arXiv preprint arXiv:2110.04624, 2021.

[57] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir
Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained variational
framework. In International conference on learning representations, 2017.

[58] Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Desjardins, and
Alexander Lerchner. Understanding disentangling in β-vae. arXiv preprint arXiv:1804.03599, 2018.

[59] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. Advances in
neural information processing systems, 29, 2016.

[60] Steven Henikoff and Jorja G Henikoff. Amino acid substitution matrices from protein blocks. Proceedings
of the National Academy of Sciences, 89(22):10915–10919, 1992.

[61] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[62] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. Advances in neural information processing systems, 28, 2015.

[63] Uniprot: the universal protein knowledgebase in 2021. Nucleic acids research, 49(D1):D480–D489, 2021.

[64] Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure FP Dossou,
Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, et al. Biological sequence
design with gflownets. In International Conference on Machine Learning, pages 9786–9801. PMLR, 2022.

13

APPENDIX

A Data preparation

A.1 Combination of data sources

TCR-peptide interaction data are obtained from VDJDB [36] and MCPAS [37]. Only peptides with > 10
observed pairs are used for downstream filtering. Because VDJDB and MCPAS only report interacting pairs,
we first combine the dataset with the training set from NETTCR [26] which contains experimentally validated
non-interacting pairs. Conflicting records are removed.

A.2 Filtering by ERGO performance

Since ERGO [23] trains two separate models for VDJDB and MCPAS, the following filtering process is also
performed separately on the two datasets. For this and all subsequent ERGO-based predictions, we use the
pre-trained weights from https://github.com/louzounlab/ERGO.

Additional negative samples are generated as follows: a random TCR sequence is first selected from the dataset
and is paired with all existing peptides in the dataset. Any unobserved pair is treated as negative. We repeat this
process until the size of the negative set is 5x that of the positive set. The expanded dataset is then provided to
the respective ERGO model. Predictive performance is evaluated for each peptide. We keep the peptides with
AUROC and AUPR > 0.9 and select those among top 10 positive sample counts (Table 5).

To ensure the specificity of TCR recognition in the following study, we did a second round of filtering of both the
TCRs and the peptides. We pair all TCRs with at least one positive binding event and all peptides in the filtered
dataset. Any unobserved pair is treated as negative. This dataset is then provided to ERGO. Performance is
shown in Table 5. We discard peptides with AUPR < 0.7 and TCRs that have more than one positive prediction
or have at least one wrong prediction.

After that, we downsample all peptides to at most 400 positive TCRs. This number is chosen so that the resulting
dataset is more balanced across peptides. The final number of samples for each peptide can be found in Table
6. To make sure the model captures peptide-specific information, for every TCR in the positive set, we add its
unobserved pairings with other peptides to the negative set. We then split the TCRs into train/test/validation sets
with a ratio of 8:1:1, and put all pairings of each TCR to the respective subset, to ensure all TCRs in the test
and validation sets are not seen in the training. For the training set, the positive samples are up-sampled by the
negative/positive ratio of the original dataset.

B Model details

Notation Meaning

Θf functional encoder
Θs structural encoder
Γ decoder
Ψ auxiliary functional classifier

{x,u, y} a data point with TCR x, peptide u and binding label y
zf functional embedding
zs structural embedding
z concatenation of {zf , zs}
x′ reconstructed/generated sequence from the decoder
x(i) the probability distribution over amino acids at the i-th position in x

concat(x1, ...,xn) concatenation of vectors {x1, ...,xn}
Table 4: Notations used for this paper. Sequences are represented as l × |V | matrices where l is the
length |V | is the number of amino acids.

B.1 Proof of Theorem 1

We use density functions for simplicity. Let qθ(z | x) be the encoder and pγ(x | z) be the decoder. We have the
joint generative distribution:

p(x, z) = pγ(x | z)p(z),

14

https://github.com/louzounlab/ERGO

where p(z) is the prior. Also, we have the joint inference distribution:
q(x, z) = qθ(z | x)pD(x),

where pD(x) is the data distribution.

I(X;Z) = Eq(x,z) log
q(x, z)

pD(x)q(z)

= EpD

∑
z

pD(x)qθ(z | x) log qθ(z | x)pD(x)

pD(x)q(z)

= EpD

∑
z

qθ(z | x) log qθ(z | x)
q(z)

= EpD

∑
z

qθ(z | x) log qθ(z | x)
p(z)

− EpD

∑
z

qθ(z | x) log q(z)

p(z)

= EpD

∑
z

qθ(z | x) log qθ(z | x)
p(z)

−
∑
z

q(z) log
q(z)

p(z)

= EpD [DKL(Qθ(Z | X) ∥ P (Z))]− DKL(Q(Z) ∥ P (Z)).

Thus,
DKL(Q(Z) ∥ P (Z)) = EpD [DKL(Qθ(Z | X) ∥ P (Z))]− I(X;Z).

B.2 Implementation and training details

All input sequences are padded to the same length (25). The peptide u is represented as the average BLOSUM50
score [60] for all its amino acids. The model is trained from end to end using the Adam optimizer [61]. The first
layer of the model is an embedding layer that transforms the one-hot encoded sequence x into continuous-valued
vectors of 128 dimensions:

e = W embx.
Both zf and zs encoders are 1-layer transformer encoders with 8 attention heads and an intermediate size of
128. The transformer layer utilizes the multi-head self-attention mechanism. For each attention head i:

Qi = WQ
i e,Ki = WK

i e, Vi = WV
i e

Attni(e) = softmax(
QiK

T
i√

dk
)Vi,

where dk is the dimension of Qi and Ki. The outputs of the attention heads are then aggregated as follows:
Multihead(e) = concat(Attn1(e),Attn2(e), ...)W

O.

A 2-layer MLP with a 128-dimension hidden layer is then built on top of the transformer (which has the same
dimension as the input embeddings) to transform the output to the dimensions of zf and zs, respectively. The
functional classifier is a 2-layer MLP with a 32-dimension hidden layer. The decoder is a 2-layer LSTM with
256 hidden dimensions.

The hyperparameters are selected with grid search and models with the best generation results are reported.
Specifically, weights of all losses are selected from [1.0, 0.1]. The dimension of zf is fixed to 8 and zs to 32.
We train each model with 200 epochs and a learning rate of 1e − 4, and evaluate the checkpoint of every 50
epochs. We find the variance of the RBF kernel (for the calculation of the Wasserstein loss) does not have a
strong impact on the results significantly, so the value is fixed to 1.0.

The model is trained with five different random seeds (42, 123, 456, 789, 987). We report the hyperparameter
setting with the best average performance (i.e. one that generates the highest average number of qualified positive
sequences for the well-classified peptides).

The hyperparameter settings of the models for comparison and visualization are:
[β1 = 1.0, β2 = 0.1, epoch = 200]

where β’s are weights of the losses:
L = Lrecon + β1Lf_cls + β2LWass.

For the visualization and analysis of the model trained on VDJDB, we use random seed = 789.

We use the scheduled sampling technique [62] for the LSTM decoder during training, where for each position
in the input sequence, there is a 0.5 probability of using the previous predicted token, instead of the original
token, to calculate the hidden state for the next position. This is employed to avoid the discrepancy between the
training and the generation, as the former uses the original sequence to calculate the hidden states and the latter
uses predicted tokens.

The model is trained on 2 rtx3090 GPUs with a batch size of 256 (128 per GPU). Training with 200 epochs
typically takes ∼ 4 hours.

15

C Baseline methods

We compare our model with two types of methods for the generation of the optimized TCR x′: (1) mutation-
based, which iteratively adds random mutations to the template sequence; and (2) generation-based, which
generates novel sequences of the pre-determined length range. For both types of methods, the modified/generated
sequences are selected by peptide binding scores from the respective pre-trained ERGO. The experiments are
performed on each peptide in the dataset independently.

C.1 Mutation-based baselines

Random mutation (naive rm) The TCR is randomly mutated by one amino acid for 8 times progressively.
This process is repeated for 10 runs for each TCR and the resulting one with the highest ERGO prediction score
is reported.

Greedy mutation (greedy) For each TCR, 10 randomly mutated sequences are generated, each with one
amino acid difference from the original sequence. Among the 10 mutated sequences, we select the one that gives
the highest binding prediction with the given peptide as the template for the next run. This process is repeated 8
times.

Genetic algorithm (genetic) Let M be the sample size. For each TCR, 10 randomly mutated sequences
are generated, each with one amino acid difference from the original sequence. All mutated sequences along with
the original TCRs are then pooled together, and the top M sequences that give the highest binding prediction are
used as the input for the next run. This process is repeated 8 times.

C.2 Generation-based baselines

Monte Carlo tree search (MCTS) TCRs are generated by adding amino acids iteratively, resulting in a
search tree. When the TCR length reaches 10, the binding score is estimated by ERGO. For each iteration, a
random node is selected for expansion and then evaluated by ERGO, and the scores of all its parent nodes are
updated accordingly. The tree expansion ends when the length reaches 20. For every generation process, the
highest leaf node is added to the output TCR set.

C.3 TCR-dVAE

TCR-dVAE uses a similar objective as IDEL [16], which is a VAE with a mutual information constraint on the
latent space. For training, the loss comprises of the following components:

• The reconstruction loss: Lrecon(x,x
′)

• The KL divergence term for VAE: LKL = DKL(qθ(zs, zf |x) ∥ p(zs, zf)).

• The reconstruction loss given zs: Ls(x,Φ(zs)) where Φ is an auxiliary decoder.

• The classification loss given zf : Lf_cls(ŷ, y)

• The sample-based MI upper bound between the embeddings: LMI(zf , zs). This requires an approxi-
mation of the conditional distribution p(zf |zs), which is achieved by a separate neural network.

Here we use our own notations, not the ones used in the original paper, for better comparison.

For the hyperparameters, we use 10.0 weight for Lrecon, Ls and Lf_cls, 1.0 for the other terms, and a learning
rate of 1e− 4. In practice, we perform annealing [18] on LKL and LMI where their weights gradually increase
from 0 to 1 during the first 100 epochs and remain for the rest of the epochs, to make sure the embeddings are as
informative as possible. We observe that other hyperparameter settings would easily lead to severe posterior
collapse where the embedding is ignored for the reconstruction.

D Evaluation of the optimized sequences

D.1 Training of the autoencoder

We train an LSTM-based autoencoder, which we denote as TCR-AE0, on the 277 million TCR sequences from
TCRdb [40]. TCR-AE0 has a latent space of dimension 16 and is trained for 50,000 steps with a batch size of
256.

16

D.2 Validity score

The validity score combines two scores calculated from TCR-AE0:

• The reconstruction-based score is calculated as
rr(x

′) = 1− lev(x′,TCR-AE0(x′))/l(x′),

where lev(x′,TCR-AE0(x′)) is the Levenstein distance between the original sequence and the recon-
structed sequence, and l(x′) is the length of the reconstructed sequence. Higher rr means x′ is better
reconstructed from TCR-AE0 and is thus more likely to be a valid TCR sequence.

• The density-based score calculates whether the embedding of x′ follows the same distribution as
known TCRs. We learn a Gaussian mixture model from the latent embeddings of known TCRs from
TCR-AE0. The likelihood of the embedding e′ of x′ from TCR-AE0 falling in the same Gaussian
mixture distribution is denoted as P (e′). The density-based score is calculated as

rd(x
′) = exp(1 +

logP (e′)

τ
),

where τ = 10. Higher rd means the latent embedding of x′ from TCR-AE0 is more likely to follow
the same distribution as other valid TCR sequences.

We then define the validity score as rv = rr + rd.

D.3 Validation of the metrics

We compare the TCR-AE-derived evaluation metric scores of three different sources:

(1) all unique CDR3β sequences from VDJDB.

(2) random segments of length 8− 18 (which is the most frequent lengths of CDR3β sequences) from random
uniport [63] protein sequences of the same size as (1). The conservative ’C’ at the beginning and ’F’ at the end
are added to the segments.

(3) random shuffling of the sequences from (1), where the first ’C’ and the last ’F’ are kept

We show in Fig. 4 that for both two scores rd and rr , as well as their sum, CDR3β sequences score much higher
than random proteins or shuffled sequences. This shows these scores could be effectively used for the estimation
of TCR sequence validity. We choose rv > 1.25 as the criteria for valid sequences as it rejects most negatives.

E Extended Results

E.1 Comparison of TCR Engineering Performance

We find consistently improved performance of our method over the baselines in both VDJDB (Table 1) and
McPAS-TCR (Table 9). Also, the majority of generated sequences are unique (Table 10) and all are novel (not
observed in the original dataset; statistics not shown).

The relative performance between methods in comparison still holds when all peptides, including those that
are poorly classified, are taken into account (Table 7). However, when the results are separated by individual
peptides (Table 8), we observe that for the poorly classified peptides (AUC<0.8; see Methods), using a positive zf
(TCR-dWAE row) has little difference from using a random zf (TCR-dWAE (null) row). This further highlights
the importance of well-defined and well-classified functional labels. Otherwise, zf does not encode the proper
functional information, so it becomes uninformative and does not alter the sequence function better than a
random embedding.

E.2 Analysis of the Model

We show extended zf and zs T-SNE patterns in Fig. 5, colored by the ground truth label as well as the predicted
label. For the well-classified peptides, there is a clear separation of positives and negatives in the zf space but
not zs. There are cases where the true positives are not separable from the true negatives using zf , but the
predicted positives and the predicted negatives (by the function classifier Ψ) are still separated. We consider the
latter as a problem with data quality and classification accuracy, not embedding. Meanwhile, the classifier shows
consistent performance over the peptides across random seeds with (Fig. 6, left) and without (Fig. 6, right) the
Wasserstein loss.

As a result of the Wasserstein loss, the distribution of the embedding space is closer to a multivariate Gaussian
(Fig. 7A. It becomes less regularized without the Wasserstein loss (Fig. 7B). Contrary to zf (Fig. 3B in the main
text), the T-SNE of zs and first-layer embedding of the encoder for the positive samples cannot distinguish the
binding targets from each other (Fig. 8A).

17

E.3 Analysis of the Generated Sequences

In addition to the results presented in the main text, we also selected 500 random positive and negative sequences
from the training set and replaced their zf with the most positive/negative one in the subset. The generated
sequences using their original zs and the new zf have binding scores mostly related to the zf , regardless
of whether the zs source is positive or negative. This shows zf can be used to encode and transfer binding
information, which lays the foundation for the following TCR engineering experiments (Fig. 8B).

The generated sequences have a similar length distribution as their templates (Fig. 8C), meaning no drastic
changes are made. We further find that the zs of the modified TCRs show high cosine similarity with those of
their templates, while the zf are more similar to the zf used for their generation (Fig. 8D), but not with that of
the template. These show that the modified TCRs preserve the “structural” information from zs and incorporate
the new “functional” information from the modified zf .

As in Fig. 8E, there is no significant correlation between the sequence validity and the binding scores. Also, we
find that most binding scores predicted by ERGO are rather extreme (either 1 or 0).

E.4 Interpolation

For each peptide, we perform interpolation of zf between 100 random pairs for 10 steps with z
(r)
f = rz

(1)
f +

(1− r)z
(2)
f , r ∈ [0, 1], while zs remains the same. Fig. 8F shows that interpolating between positive zf pairs

preserves the positive binding score compared to negative pairs. Here we show one example of interpolation,
where the first column is the generated sequence and the second column is the predicted binding score:

Seq 1: CASTESDRRSQNTQYF
Seq 2: CASSLSTFTANTAQLFF
Peptide: CTPYDINQM

Interpolated zf , with zs of Seq 1
Sequence rb
CASTESDRRSQNTQYF 1.0 (original)
CASTESDRRSQNTQYF 1.0
CASTESDRRSQNTQYF 1.0
CASTESDRNSNQPQYF 1.0
CASTESDRNSNQPQYF 1.0
CASTESTKNSNQPQYF 1.0
CASTESTKNSNQPQYF 1.0
CASSESTMNSNQPQYF 1.0
CASSESTTNSNQPQYF 1.0
CASSESTTNSNQPQYF 1.0
CASSESTTANTAQLFF 1.0

Interpolated zf , with zs of Seq 2
Sequence rb
CASSLSTFTANTAQLFF 1.0 (original)
CASSLSTFTANTAQLFF 1.0
CASSLSTFTANTAQLFF 1.0
CASSLSTFTANTAQLFF 1.0
CASSLSTFTANTAQLFF 1.0
CASSLSTFTANTAQLFF 1.0
CASSLSTRTANTAQLFF 1.0
CASSLSTRTANNTQLFF 0.16
CASSLSTRTAKNTQLFF 0.97
CASSLSTRTSQNTQYF 1.0
CASSLSTRDSTNTQYF 1.0

These results further prove that zs could be used to transfer binding information independent of the zs, and that
the latent space is well-regularized. Also, throughout the interpolation, the hypervariable region only undergoes
minor changes. This shows zs could preserve the structural backbone information within both the conservative
and hypervariable regions.

18

E.5 Extended comparison between sampling methods and model architecture

We experiment with several different generation modes and model architecture. The results are shown in Table
11.

E.5.1 Source of positive embeddings

In addition to using a zf from a random positive sample (labeled as random pos), we also try two other means
of obtaining positive zf ’s: (1) best: we use the zf of the sample with the highest classification score from the
auxiliary classifier Ψ (2) avg: we use the average zf for all positive samples. In both cases, the same zf is
used for all generations. We perform the same experiments with TCR-dVAE, by using the mean of the zf of the
positive sample. We observe that all three methods have comparable performance for TCR-dWAE, indicating a
well-regularized latent space.

E.5.2 Stochastic generation

As TCR-dVAE is a probabilistic model, we also compared with a random sampling-based method. We use both
the predicted mean and variance of the positive source to generate 5 random zf ’s and take the average results of
all the generated samples (labeled TCR-dVAE-rand). In this scenario, only the random pos and best modes
are applicable. We observe a notable decrease in the performance as the quality of generation varies with the
random sampling, probably due to a less regularized latent space.

E.5.3 Transformer decoder

We further test a TCR-dWAE model with a transformer decoder (TCR-dWAE-attn) instead of a LSTM decoder.
The performance is comparable with those with LSTM (Table 11) while the autoregressive generation is notably
slower (Table 10)

E.5.4 Modeling the hypervariable region only

We train a model only using the hypervariable region and run the sequence modification pipeline as in full
CDR3beta (TCR-dWAE (trimmed)). After the hypervariable region is modified, we add back the conservative
region of the input template for each generated sequence.

As shown in Table 11, the performance is worse than modeling the full sequence. To our surprise, it seems that
the lower performance is caused by a massive drop in the number of positive sequences, while the sequence
validity is not affected much by the trimming, as can be seen from the number of valid sequences. This may
indicate some interactions between the two regions that are essential for positive binding. Thus, the modeling
and generation should be performed on the entire CDR3β region, instead of on manually defined segments.

E.6 Comparison between evaluation metrics

E.6.1 Binding prediction

Besides ERGO [23], NetTCR[26] is another sequence-based TCR-peptide binding model with competitive
performance. However, NetTCR is only trained on three peptides and shows the best performance when both the
α and β chain are provided, which is mostly not available in our dataset. Thus, ERGO provides a more efficient
evaluation method for single-chain data and a greater variety of peptides. For the comparison between model
architectures, we re-train a single-chain NetTCR on our own training set with more peptides. The evaluation
result on the generated sequences in Table 1 in the manuscript (reporting the %positive valid only) with the two
classifiers is as follows. We show in Table 12 that the conclusions are similar between the two models.

E.6.2 Uniqueness and novelty score

We calculate the novelty score following [64] for each individual sequence from the positive valid subset in
Table 1:

Nov(x) = min
si∈D0

d(x, si)

where D0 is the set of templates and the distance measure d is the Levenshtein distance relative to the length of
the longer sequence. This score can then be used to select the “novel” sequences. We also include a held-out
validation set as a reference. We find that around 1/3 ∼ 1/2 of the sequences remain at cutoff 0.2 and all are
excluded at cutoff 0.4 (Table 14). The same pattern is observed in the validation set, which indicates a similar
distribution of “novelty” between the generated sequences and the raw data.

We also report the same novelty and diversity metrics for the positive valid subset as in [64]. We would like to
point out that:

19

(1) These metrics evaluate the set of generated sequences as a whole, while we directly select the sequences that
meet the validity and binding score criterion, so they are not our primary objective.

(2) The comparisons are only meaningful within different generative models. For the random mutation-based
methods, one can always achieve high novelty and diversity by introducing a sufficient number of mutations.

We show that the results are not very different between TCR-dWAE and TCR-dVAE (Table 13). In addition, we
include the case of a VAE that suffers from posterior collapse (where the generation is always limited to the
same few patterns). The scores for the first two are at a similar level as the validation set, while the diversity
score for the collapsed VAE drops a lot. These suggest that the positive valid sequences presented in the paper
are sufficiently diverse and novel.

20

source #pos auroc aupr

AVFDRKSDAK vdjdb 1641 0.94 0.71
CTPYDINQM vdjdb 500 0.99 0.81
ELAGIGILTV vdjdb 1410 0.95 0.79
FRDYVDRFYKTLRAEQASQE vdjdb 367 0.98 0.85
GILGFVFTL vdjdb 3408 0.95 0.89
GLCTLVAML vdjdb 962 0.92 0.73
IVTDFSVIK vdjdb 548 0.94 0.62
KRWIILGLNK vdjdb 319 0.95 0.54
NLVPMVATV vdjdb 4421 0.94 0.85
RAKFKQLL vdjdb 830 0.94 0.75
SSLENFRAYV vdjdb 322 0.99 0.57
SSYRRPVGI vdjdb 337 0.99 0.81
STPESANL vdjdb 234 0.99 0.35
TTPESANL vdjdb 511 0.99 0.75
ASNENMETM mcpas 265 0.98 0.63
CRVLCCYVL mcpas 435 0.95 0.7
EAAGIGILTV mcpas 272 0.97 0.55
FRCPRRFCF mcpas 266 0.96 0.58
GILGFVFTL mcpas 1142 0.96 0.9
GLCTLVAML mcpas 828 0.95 0.85
LPRRSGAAGA mcpas 2142 0.96 0.88
NLVPMVATV mcpas 543 0.93 0.78
RFYKTLRAEQASQ mcpas 304 0.99 0.91
SSLENFRAYV mcpas 416 0.99 0.78
SSYRRPVGI mcpas 337 0.99 0.83
TPRVTGGGAM mcpas 274 0.95 0.52
VTEHDTLLY mcpas 273 0.95 0.45
WEDLFCDESLSSPEPPSSSE mcpas 364 0.98 0.93

Table 5: Statistics and ERGO prediction performance for the selected peptides from the first round.

VDJDB

#pos #all

NLVPMVATV 2880 5478
GLCTLVAML 2880 5478
RAKFKQLL 2880 5478
AVFDRKSDAK 2880 5478
SSYRRPVGI 2268 4934
GILGFVFTL 2880 5478
TTPESANL 2286 4950
FRDYVDRFYKTLRAEQASQE 2034 4726
ELAGIGILTV 2880 5478
CTPYDINQM 2394 5046

MCPAS

#pos #all

NLVPMVATV 1792 3810
RFYKTLRAEQASQ 1528 3579
WEDLFCDESLSSPEPPSSSE 1928 3929
GILGFVFTL 2560 4482
SSYRRPVGI 1504 3558
SSLENFRAYV 1824 3838
CRVLCCYVL 1680 3712
LPRRSGAAGA 2560 4482
GLCTLVAML 2560 4482

Table 6: Statistics of the training data by peptide.

21

VDJDB

r̄v r̄b %valid #mut/len %positive valid

TCR-dWAE 1.47±0.02 0.31±0.04 0.76±0.03 0.47±0.06 0.18±0.01
TCR-dVAE 1.51±0.01 0.2±0.01 0.73±0.02 0.38±0.02 0.15±0.01
greedy 0.31±0.0 0.88±0.0 0.02±0.0 0.32±0.0 0.02±0.0
genetic 0.36±0.02 1.0±0.0 0.02±0.0 1.0±0.0 0.02±0.0
naive rm 0.33±0.0 0.39±0.0 0.02±0.0 0.35±0.0 0.01±0.0
MCTS -0.1±0.0 0.95±0.0 0.0±0.0 0.0±0.0 0.0±0.0
TCR-dWAE (null) 1.51±0.01 0.08±0.02 0.86±0.01 0.45±0.06 0.07±0.02
original 1.59 0.03 0.92 0.0 0.03

Table 7: Performance comparison for VDJDB, averaged across all peptides (ELAGIGILTV, GLCTL-
VAML, AVFDRKSDAK, SSYRRPVGI, RAKFKQLL, CTPYDINQM, TTPESANL, NLVPMVATV,
FRDYVDRFYKTLRAEQASQE, GILGFVFTL)

22

r̄v r̄b %valid #mut/len %positive valid

SSYRRPVGI

TCR-dWAE 1.11±0.14 0.48±0.18 0.37±0.16 0.48±0.06 0.06±0.01
TCR-dVAE 1.35±0.06 0.25±0.07 0.68±0.05 0.38±0.02 0.06±0.02
TCR-dWAE (null) 1.5±0.01 0.03±0.05 0.85±0.01 0.43±0.05 0.02±0.04
original 1.59 0.02 0.92 0.0 0.01

TTPESANL

TCR-dWAE 1.41±0.06 0.64±0.11 0.56±0.06 0.52±0.04 0.34±0.06
TCR-dVAE 1.42±0.02 0.4±0.07 0.74±0.02 0.46±0.01 0.19±0.01
TCR-dWAE (null) 1.5±0.01 0.05±0.04 0.85±0.01 0.46±0.08 0.04±0.03
original 1.59 0.01 0.92 0.0 0.01

FRDYVDRFYKTLRAEQASQE

TCR-dWAE 1.59±0.03 0.28±0.06 0.86±0.03 0.47±0.07 0.22±0.04
TCR-dVAE 1.58±0.02 0.35±0.06 0.91±0.01 0.39±0.02 0.22±0.01
TCR-dWAE (null) 1.51±0.01 0.05±0.04 0.86±0.01 0.45±0.07 0.04±0.03
original 1.59 0.02 0.92 0.0 0.01

CTPYDINQM

TCR-dWAE 1.36±0.03 0.51±0.07 0.66±0.04 0.49±0.05 0.29±0.04
TCR-dVAE 1.41±0.02 0.36±0.06 0.76±0.03 0.43±0.02 0.18±0.02
TCR-dWAE (null) 1.5±0.01 0.08±0.02 0.85±0.01 0.45±0.07 0.06±0.02
original 1.59 0.02 0.92 0.0 0.01

ELAGIGILTV*

TCR-dWAE 1.56±0.03 0.1±0.01 0.9±0.02 0.44±0.06 0.09±0.01
TCR-dVAE 1.58±0.02 0.13±0.02 0.92±0.02 0.32±0.02 0.1±0.01
TCR-dWAE (null) 1.51±0.02 0.08±0.0 0.86±0.02 0.45±0.05 0.07±0.0
original 1.59 0.05 0.92 0.0 0.04

GLCTLVAML*

TCR-dWAE 1.56±0.02 0.11±0.01 0.89±0.02 0.47±0.06 0.1±0.01
TCR-dVAE 1.58±0.02 0.14±0.03 0.91±0.02 0.35±0.03 0.11±0.02
TCR-dWAE (null) 1.51±0.01 0.09±0.0 0.85±0.01 0.46±0.06 0.07±0.01
original 1.59 0.04 0.92 0.0 0.04

AVFDRKSDAK*

TCR-dWAE 1.58±0.03 0.15±0.01 0.9±0.02 0.45±0.06 0.13±0.01
TCR-dVAE 1.59±0.02 0.19±0.02 0.91±0.01 0.33±0.02 0.14±0.01
TCR-dWAE (null) 1.51±0.01 0.15±0.01 0.85±0.01 0.46±0.06 0.12±0.01
original 1.59 0.15 0.92 0.0 0.14

RAKFKQLL*

TCR-dWAE 1.58±0.03 0.08±0.0 0.91±0.02 0.43±0.07 0.08±0.0
TCR-dVAE 1.58±0.02 0.13±0.01 0.92±0.01 0.32±0.02 0.1±0.01
TCR-dWAE (null) 1.51±0.01 0.07±0.01 0.86±0.01 0.44±0.05 0.06±0.01
original 1.59 0.04 0.92 0.0 0.04

NLVPMVATV*

TCR-dWAE 1.57±0.02 0.2±0.0 0.9±0.02 0.45±0.07 0.17±0.01
TCR-dVAE 1.59±0.02 0.21±0.0 0.92±0.02 0.33±0.02 0.17±0.0
TCR-dWAE (null) 1.51±0.01 0.18±0.01 0.86±0.01 0.46±0.06 0.15±0.01
original 1.59 0.08 0.92 0.0 0.07

GILGFVFTL*

TCR-dWAE 1.56±0.02 0.19±0.05 0.89±0.02 0.46±0.06 0.17±0.04
TCR-dVAE 1.57±0.02 0.23±0.04 0.91±0.02 0.34±0.02 0.18±0.02
TCR-dWAE (null) 1.51±0.01 0.1±0.0 0.86±0.01 0.44±0.06 0.09±0.0
original 1.59 0.05 0.92 0.0 0.05

Table 8: Performance comparison for VDJDB, separated by peptides. Peptides with * have
classification AUC < 0.8.

23

MCPAS

r̄v r̄b %valid #mut/len %positive valid

TCR-dWAE 1.39±0.07 0.29±0.03 0.69±0.06 0.47±0.03 0.17±0.01
TCR-dVAE 1.45±0.01 0.31±0.04 0.47±0.04 0.4±0.02 0.1±0.01
greedy 0.33±0.0 0.92±0.0 0.02±0.0 0.33±0.0 0.02±0.0
genetic 0.34±0.03 1.0±0.0 0.02±0.0 NA 0.02±0.0
naive rm 0.31±0.0 0.43±0.0 0.02±0.0 0.35±0.01 0.01±0.0
MCTS -0.11±0.0 0.94±0.0 0.0±0.0 NA 0.0±0.0
TCR-dWAE (null) 1.45±0.06 0.08±0.0 0.79±0.05 0.41±0.03 0.06±0.01

Table 9: Performance comparison for MCPAS, averaged across selected peptides (SSYRRPVGI,
WEDLFCDESLSSPEPPSSSE, SSLENFRAYV, RFYKTLRAEQASQ, GLCTLVAML, CRVLC-
CYVL)

VDJDB

valid:all unique:valid running time

TCR-dWAE 0.79±0.02 0.95±0.01 56
TCR-dWAE-attn 0.77±0.06 0.97±0.01 5553
TCR-dWAE (null) 0.86±0.01 1.0±0.0 56
TCR-dVAE 0.84±0.01 0.65±0.02 58
greedy 0.02±0.0 1.0±0.0 832
genetic 0.02±0.0 0.73±0.04 1389
naive rm 0.02±0.0 1.0±0.0 106
MCTS 0.0±0.0 0.0±0.0 4559

MCPAS

valid:all unique:valid

0.72±0.07 0.95±0.01

0.8±0.05 0.99±0.0
0.8±0.01 0.81±0.06
0.02±0.0 1.0±0.0
0.03±0.0 0.71±0.08
0.02±0.0 1.0±0.0
0.0±0.0 0.04±0.08

Table 10: Additional performance comparison. This table shows the ratio of valid sequences and
unique valid sequences, as well as the running time per 5000 samples for CTPYDINQM.

r̄v r̄b %valid #mut/len %positive valid ↑
TCR-dWAE (best) 1.33±0.07 0.53±0.18 0.45±0.14 0.5±0.05 0.18±0.05
TCR-dWAE (avg) 1.37±0.13 0.51±0.21 0.53±0.18 0.46±0.09 0.2±0.06
TCR-dWAE (random pos) 1.36±0.03 0.48±0.09 0.61±0.06 0.49±0.05 0.23±0.02
TCR-dVAE-rand (best) 0.31±0.06 0.01±0.01 0.0±0.0 0.21±0.3 0.0±0.0
TCR-dVAE-rand (random pos) 1.44±0.02 0.35±0.05 0.45±0.04 0.4±0.01 0.1±0.01
TCR-dWAE-attn (random pos) 1.46±0.06 0.32±0.08 0.75±0.06 0.54±0.05 0.19±0.04
TCR-dWAE (trimmed) 1.35±0.08 0.19±0.07 0.68±0.08 0.78±0.0 0.11±0.02
TCR-dWAE (null) 1.51±0.01 0.05±0.03 0.85±0.01 0.45±0.07 0.04±0.03
original 1.59 0.01 0.92 0.0 0.01

Table 11: Comparison between model designs and modes of obtaining positive zf ’s.

24

ERGO NetTCR

TCR-dWAE 0.24±0.01 0.2±0.01
TCR-dVAE 0.16±0.01 0.15±0.01
greedy 0.02±0.0 0.01±0.0
genetic 0.02±0.0 0.0±0.0
naive rm 0.0±0.0 0.0±0.0
MCTS 0.0±0.0 0.0±0.0

Table 12: Performance using different evaluation metrics (ERGO and NetTCR)

diversity novelty

TCR-dWAE 0.20±0.0 0.20±0.0
TCR-dVAE 0.23±0.0 0.19±0.0
VAE (collapse) 0.14±0.01 0.17±0.01
Validation 0.26 0.18

Table 13: Diversity and novelty scores for the generated sequences.

0.05 0.1 0.2 0.4

TCR-dWAE 1174.6±38.7 1130.4±34.0 460.1±28.0 0.1±0.1
TCR-dVAE 809.6±49.5 774.6±49.8 290.9±25.6 0.0±0.0
Validation 621 551 191 0

Table 14: Number of “novel” sequences with different novelty score cutoffs.

25

Figure 4: Distribution of TCR-AE-based evaluation metrics on known CDR3β’s, randomly selected
protein segments and randomly shuffled CDR3β’s.

Figure 5: T-SNE of zf and zs embeddings for all peptides in VDJDB (left) and MCPAS (right).
Points are colored by the label. “True” means the ground truth label. “Pred” refers to label predcited
by the function classifier Ψ.

26

Figure 6: ROC of function classifier Ψ by peptide, with different hyperparameter settings and random
seeds.

27

(A)

(B)

Figure 7: Distribution of the latent embeddings with (A) and without (B) Wasserstein loss. Orange
lines correspond to dimensions of zf and green lines zf . The distribution is estimated using
gaussian_kde from the scipy package.

28

(A)

(B)

(D)

(C)

(E) (F)

Figure 8: (A) T-SNE of zs (left) and first layer embedding of the encoder (right) of positive TCRs,
colored by their binding peptides. (B) The average binding score of generated positive and negative
TCRs. (C) The length distribution of template and optimized TCRs (CDR3β region) from VDJDB.
(D) Cosine similarity between zs of the optimized sequences vs their templates (left), zf of the
optimized sequences vs their templates (middle), zf of the optimized sequences vs the modified zf
(right). (E) Scatter plot between the validity score and binding score of the engineered sequences
(for simplicity, only 500 out of 5000 points are shown). (F) Binding score of interpolated samples
between positive and negative pairs.

29

	Introduction
	Methods
	Problem Formulation
	Disentangled Wasserstein Autoencoder
	Encoders and Auxiliary Classifier
	Disentanglement of the Embeddings
	Decoder and Overall Training Objective

	Disentanglement Guarantee

	Experiments
	Setup
	TCR Engineering
	Manipulating TCR Binding via Functional Embeddings
	Metrics and Baselines
	Main Results
	Analysis of Engineered TCRs

	Ablation Study
	Analysis of the Embedding Space

	Conclusions and Outlook
	Related Works
	Data preparation
	Combination of data sources
	Filtering by ERGO performance

	Model details
	Proof of Theorem 1
	Implementation and training details

	Baseline methods
	Mutation-based baselines
	Generation-based baselines
	TCR-dVAE

	Evaluation of the optimized sequences
	Training of the autoencoder
	Validity score
	Validation of the metrics

	Extended Results
	Comparison of TCR Engineering Performance
	Analysis of the Model
	Analysis of the Generated Sequences
	Interpolation
	Extended comparison between sampling methods and model architecture
	Source of positive embeddings
	Stochastic generation
	Transformer decoder
	Modeling the hypervariable region only

	Comparison between evaluation metrics
	Binding prediction
	Uniqueness and novelty score

