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ABSTRACT

Positional encodings in Vision Transformers, relative (iRPE, ROPE) or other-
wise, help to reason about space but remain content-agnostic. We introduce a
lightweight, content-aware patch modulation that injects a quasi-positional prior
computed from pre-trained patch embeddings. We present two light weight, drop-
in pre-MHSA modules: RADAR (anchor-conditioned distance priors that modu-
late tokens) and PFIM (parameter-free importance scaling with no new trainable
parameters beyond the logit layer). Both keep the ViT backbone frozen, preserve
the attention kernel, and add negligible to no overhead.

On CIFAR-100 with absolute positional encoding, RADAR boosts Top-1 accu-
racy by +7.5 pp and Top-5 by +3.3 pp over vanilla ViT, and by +4.1 pp / +1.6
pp over a strong single-CPE baseline. PFIM improves vanilla ViT by +2.0 pp
(Top-1) and +1.1 pp (Top-5), performing on par with Single-PEG within a small
margin. Improvements are statistically significant across seeds (paired t-test, 95%
CI). RADAR contains 56 % and PFIM 88 % , fewer trainable params compared to
Single-PEG on CIFAR100. By turning latent patch geometry into content-aware
priors, our approach reallocates attention to semantically relevant regions, offer-
ing parameter-efficient gains ideal for low-budget training. Code for ablations &
experiments will be shared.

1 INTRODUCTION

Vision Transformers (ViTs)|Dosovitskiy et al.[(2020) use self-attention to capture long-range depen-
dencies but, being permutation-invariant, require explicit positional signals for robustness.

While order mechanisms such as ” Absolute Positional Embeddings” were introduced inDosovitskiy
et al. (2020) ; they’re considered less robust to methods that add "Relative Positional Embeddings”
e.g., Conditional Position Encoding (CPE) |(Chu & Tian| (2021) and iRPE Peng et al.| (2021). But
almost all (relative/absolute) methods requires MHSA ( Mulit-Headed Self Attention ) to learn at-
tention mapping on tokens from scratch and largely lack content-aware global structure.

We address this by inducing patch-space global guidance. We compute lightweight priors directly
from pre-trained patch embeddings and inject them pre-MHSA : (i) anchor-conditioned relative
distance priors (RADAR), and (ii) parameter-free importance scaling (PFIM). These global, content-
aligned cues shape attention before the first QK T, helping them in starting informed, improving
accuracy and stability under tight compute and memory budgets while leaving the ViT backbone
unchanged.

We introduce two complementary drop-in methods:

1. RADAR - Relational Anchor-Distance Attentional Re-weighting: We compute compact, content-
relevant global embeddings and modulate patch embeddings with them. MHSA no longer has to
infer long-range context from scratch; it is nudged towards salient structure from the outset. RADAR
is architecture-agnostic, adds only minimal overhead, and consistently outperforms strong ViT and
local PE baselines.

2. PFIM - Parameter-Free Importance Modulation A simple yet potent scheme that scales patch
embeddings by data-driven importance -with zero new trainable parameters beyond the final
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logit layer. PFIM exploits intrinsic patch statistics to amplify informative regions and dampen
distractors, delivering robust gains in low-resource and compute settings, outperforming Vanilla
ViT and being on-par with Single-PEG.

RADAR has two variants: (i) Single Soft Anchor (probability-weighted sum) distance injection,
and (ii) Leave-one-out Soft Anchor that excludes token j when computing the weighted sum of
remaining j — 1toN; in both methods, we compute polynomial features of their distances with
anchor and FiLM-modulate tokens before the encoder/self-attention: z; = (1+ax*s;)©x;+BOb;.

In PFIM, importance scores (based on entropy of patch embeddings) per sequence scale embeddings
via sign-aware powers and are residually mixed with originals: z; = (1 — miz%) * x; + miz% x*

_pow
;PO

Our contributions are as follows:

* Parameter-efficient attention guidance. We show that injecting patch-space priors before
encoder/MHSA yields better accuracy than learning everything end-to-end.

» Two practical, budget-friendly modules. (i) RADAR: global, relational Anchor-Distance
content priors, for token modulation with negligible extra parameters and runtime cost; (ii)
PFIM: a parameter-free importance scaler requiring no architectural changes and only the
standard logit layer.

* Backbone-agnostic, drop-in design. Both methods preserve the ViT encoder, integrate
with a single pre-MHSA step, and are well-suited to constrained training regimes.

Together, RADAR and PFIM show that strategic pre-MHSA guidance strengthens ViTs without
larger models, deeper stacks, or costly training. Injecting pre-encoder/MHSA is also train-time ro-
bust, tolerating smoothing of up to 50% of token-importance weights, aided by downstream encoder
layer norms.

2 RELATED WORK

2.1 TRANSFORMERS FOR VISION AND POSITIONAL INFORMATION

ViT showed that patch tokens with global self-attention can work well for images, which made
positional signals a central design choice in vision Transformers (Dosovitskiy et al., [2021). DeiT
made this approach data-efficient on ImageNet and introduced a distillation token (Touvron et al.,
2021a). A growing body of work designs position signals that enter attention directly rather than
through token addition. This includes relative position representations, TS’s bucketed relative bias,
ALIiBi’s distance-linear bias for length extrapolation, RoPE’s rotary embedding, and more which
have become popular in recent years (Shaw et al.| [2018} [Raffel et al., 2020 [Press et al., 2021 |Su
et al.,|2021)). In vision, Swin adds a 2D relative bias inside shifted windows and Swin V2 introduces
a log-spaced continuous bias for resolution transfer (Liu et al.| 20215 2022). A key issue is that
most of these position designs are fixed with respect to content or stay local. They bias attention by
distance or windows but do not tell the model which regions are salient in the current image.

2.2 CONTENT-CONDITIONED LOCALITY AND LIGHTWEIGHT BIAS

ConViT initializes attention with a soft convolutional prior that can relax towards global attention
(d”Ascoli et al.| 2021). LocalViT injects depthwise convolutions into the MLP to add locality (L1
et al} |2021). CPVT conditions positional encodings on nearby tokens with a tiny PEG (Chu et al.,
2023)). These works improve sample efficiency and stability by guiding where to look.

CPVT and Local ViT inject local cues into patch tokens, reducing reliance on static positional encod-
ings, but their 3x3 PEGs remain coarse and miss global context. RADAR supplies content-aware
global priors that guide attention across the whole image. For an apples-to-apples comparison under
APE (required by our method), we adopt CPVT’s recommended Single-PEG at the Oth layer with
a 27227 convolution—expanding the receptive field while retaining APE. This forms a strong local
baseline yet still lacks RADAR’s global context, underscoring our method’s robustness.
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Figure 1: RADAR Architecture

2.3 ANCHORS, LANDMARKS, AND LATENT BOTTLENECKS

Some models insert a small set of learned anchor or latent tokens that sit between all tokens and
pass information back and forth. Set Transformer uses inducing points for permutation-invariant
sets (Lee et al.| |2019). Perceiver alternates cross-attention through a fixed latent bottlenceck (Jaegle
et al., 2021)). Nystromformer uses landmark points to approximate attention in linear time (Xiong
et al.,|2021)). CaiT improves deep ViTs with class-attention layers that help the class token aggregate
information (Touvron et al.l |2021b). Other recent work routes or sparsifies attention, including
BiFormer and Star-Transformer (Zhu et al.| 2023 |Guo et al., |2019). These methods restructure
or approximate attention for efficiency. They typically change the attention rule or add routing.
RADAR keeps the backbone intact and uses anchors only to compute relational distances that guide
the existing attention.

RADAR, while inspired by FiLM, is distinct: in FiLM the (s_j, b_j vectors encode task-dependent
features for CNN activations, whereas in RADAR they are derived from relative distance features
in patch space. Moreoever, FILM was designed for CNNs, while RADAR adapts this modulation
principle to ViTs with global, content-aware anchors (Perez et al., [2018))..

2.4 PARAMETER-EFFICIENT ADAPTATION

Researchers have explored adapting vision Transformers cheaply by adding minimal new param-
eters. Their adapters add tiny bottlenecks between layers and train only those parameters. LoRA
injects low-rank updates into attention or MLP weights while freezing the backbone . Visual Prompt
Tuning learns a few prompt tokens. AdaptFormer tailors lightweight adapters for ViTs and videos .
These methods reduce per-task cost while preserving strong pretrained models.

3 METHODOLOGY

3.1 ANCHOR DISTANCE METHODS

We explored ways like: Arg max of sequences, arg min, norm - Soft max, Entropy etc to identify
important regions of patch embedding tokens. Anchor Methods, use this “important region’ and
aggregate patch embeddings with these scores, which are then used to calculate distances with patch
embeddings and subsequently inject these distances into them in a specific style.
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Algorithm 1 RADAR: Anchor Distance Method

1: Given X € NzD, compute aggregate vectors, vector_values € N, containing raw score per
token.
2: Compute Anchor Vectors:

a) Single Soft Anchor: ) (X % vector_values;) j € {1,..., N} (OR)
b) Leave-One-Out Soft Anchor: ) (X * vector_values;)j ¢ i.

3: Distance[Patch_Embeddings, Anchor_Vectors|. of fset=\/(X; — anchors)? + delta® —
delta.
4: Polynomial Feature Bank: ¢ =[sin(of fset), cos(of fset),log(of fset), of fset?, \/(of fset)]

bd

Projected Scale and Shift: s;,b; = M LP(¢) € (D)

6: FiLM-Modulate Patch Embeddings: z; = (1 + a x s;) © x; + 3O b;.

X_POW
t

Figure 2: PFIM Architecture

3.2 WHY ANCHOR DISTANCES

1.

vector_values produces scalar importance weights per token. These are unstructured
scores—they rank salience but don’t yield a representation that can interact geometrically
with other tokens.

. SSA or LOOSA alone cant’ represent global , relative information. Anchor vectors

(importance-weighted patch embeddings); exist in the same feature space as the patches,
but without of fset and ¢ they remain raw embeddings. They don’t yet encode relational
geometry—the pairwise or anchored distances that are essential for providing global con-
text of patch space; just “contextualized tokens,” not distance features.

. Features from of fset and ¢ provide global information between anchor vectors and patch

embeddings. This is where the method gains positional/structural awareness, turning scalar
importances + weighted embeddings into explicit geometric interactions usable by the
transformer.

”Algorithm 17 is robust to top-K weight smoothing, indicating the anchor pathway encodes a dis-
tributed signal rather than relying on a few peak weights. In contrast, randomization/permutation of
s;, b; significantly degrades accuracy, confirming specificity of the learned importance.

3.3 POWER GATE METHOD WITH RESIDUAL MIXING

We explored inducing global quasi-positional information prior using pre-trained ViTs, rather than
adding additional trainable params ( expect task-specific logit layer ) in this method.
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One simple , yet powerful way to think about global information priors is entropy on tokens; a lower
entropy of a token, should intuitively yield to amplified embedding value of token as uncertainity
is low and embeddings to shrinks when entropy is higher. This behaviour is achieved by flipping
entropy values , called confidence ¢; = 1 — Hj; sign of embedding values were also accounted for
in our algorithm.

Algorithm 2 PFIM: Power Gate Modulation Method

1: Given X € NzD, compute aggregate vectors, vector_values € N,containing raw score per
token.
2: Compute Entropy Score of Tokens:
@) H, = [~ 5 Pr(x;) * log(Pr(x;))] + log(D)
b) Flip the sign for confidence: ¢; =1 — H;
3: Compute Sign-Aware X Power
a) Bind X— > (0, 1), so that pow > 1 always shrinks: x;, = tanh(z;/7).
b) Map exponent, low_score = alpha > 1, high_score = alpha < 1: a = «a_low +
(ahigh — alo) * (1 — ¢;).
c) Sign-Safe Power: x_pow = sign(x_b) * (abs(z_b) + €)*.
4: Residual Mix: z_miz = (1 — miz%) * x; + mix% * x_pow

Interestingly, ”Algorithm 2” is robust to top-K weight smoothing and inverse effects on embedding
scaling (amplifying high-entropy tokens, damping low-entropy ones); where H; was directly used as
cj instead of ¢; = 1 — H;, we report this as a deliberate control called PFI M that probes direc-
tionality. PEFIM®" still outperformed vanilla ViT and was close to Single-PEG in both ablations
and full training.

Likely because: (i) Any structured pre-MHSA token reweighting reshapes the token geometry fed
to QKT yielding useful regularization. (ii) LayerNorm ensures uninformative scales are aptly
absorbed, preventing collapse.

4 EXPERIMENTAL SETUP

4.1 DATASETS

CIFAR 10, 100 data sets from [Krizhevsky|(2009) were used for all ablations and main experiments.
CIFAR’s train sets were split to 70 — 30 as train and validation for main experiment, and cifar test set
was taken as-is. For ablations, we used 50% stratified sample of main experiment’s training dataset:
train_ablations and split validation of main experiment into stratified 60 — 40 as: val_ablations
and test_ablations. All experiments and ablations were run with pre-computed tensor data sets
with Random Affine, Horizontal Flip and Normalization with data set mean and std.

4.2 ARCHITECTURE

Figure 1 shows RADAR block which produces single scale and shift vectors per token in € D,
CLS was not modulated and «, (3 are trainable parameters which start at 0.1. APFE injection post
modulation of patch embeddings worked best, than before. Similarly, in PFIM ( Figure 2) patch
embeddings are modulated with residual mixing followed by APFE injection. PFIM enures patch
embeddings x; are bounded and power operation is sign-aware; it contains no trainable params, in

computing 2"

4.3 BASELINES
google/vitbasebasepatchl16224 checkpoint from [Wu et al.| (2020) was used for Vanilla ViT base-

line, here as for Single-PEG , we used a 27227 kernel and trained it from scratch with a single
convolution layer in PEG.
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Table 1: Accuracy Metric Results: CIFAR10

MODEL_TYPE Num_ Seeds Hyper Parameters Test_Mean_STD
Vanilla ViT 4 NA 93.440 + 0.0006
Single PEG 4 K=27 95.276 4+ 0.00063
RADAR SSA V1 4 L2Norm, Soft max; Weighted Sum 97.472 4 0.00058
PFIM 4 Entropy; Power Gate; mix% of 0.3 95.001 £ 0.00085
PFIM 2 L2 Norm; Soft max 94.73 + 9.5¢ — 05
PEIMINV 3 Entropy; Power Gate; Rev 94.80 £+ 0.00064

Table 2: Accuracy Metric Results: CIFAR100

MODEL_TYPE Num Seeds Hyper Parameters Topl_Mean_Std TopS5_Mean_Std

Vanilla ViT 4 NA 79.01 £ 0.00232 94.26 £ 0.00059

Single PEG 4 K =27 82.38 £+ 0.00223 96.02 £ 0.000818

RADAR SSA V1 4 L2Norm, Soft max; Weighted Sum 86.53 + 0.0035 97.63 £+ 0.0017

PFIM 4 Entropy, Power Gate; mix% of 0.3 81.074 +0.0014 95.30 =+ 0.00080
4.4 SETUP

For all runs(main or ablation), we used AdamW optimizer, Cosine LR scheduler with warm-up
and chose best model based on smoothed validation set loss. In main experiment we employed early
stopping with patience of 10 epochs , based on smoothed validation loss ( average of last 3 validation
losses ), in ablations we used smaller patience ( 5) and fewer epochs 60 ( 20% of main ).

A single A100 GPU with capacity of 360 TFLOPs was used for all of our main experiments. For
ablations, PFIM methods were able to run on single L4 GPU.

5 RESULTS

Single-PEG converges quickly ( by 26th epoch ) and stops training earlier than RADAR methods
(stops around 31st epoch), as shown in Figure 3.Similarly, PFIM method also trains for slightly
longer time than Single-PEG and early stops around 40th epoch, as shown in Figure 4.

Statistically significance was achieved at 95% confidence interval comparing each of our methods
with baselines: Single-PEG and Vanilla ViT in Table 3. For TOST equivalence test, we used a small
delta. A simple PFIM operation is found to be statistically equivalent to Single-PEG within a small
d £ 0.01; inspite of having 98% fewer training parameters in comparison.

While PFIM’s Topl performance is statistically equivalent to Single-PEG on CIFARI1O, it suffers
slightly on CIFAR100’s Top! but attains equivalence on Top5 ( Table 2 ). This shows that PFIM is
robust across data sets and achieves on par performance even with simple linear injection of patch
features.

6 ABLATION STUDY

Datasets for ablation study was chosen as explained in “Experimental Setup” section. Ablation
study was conducted in a methodical three-stage process to systematically evaluate contributions of
various components of the model.

6.0.1 STAGE 1: FOUNDATIONAL ARCHITECTURE COMPARISON

This stage aimed to identify the optimal ensemble configuration of custom models without APE.
We compared the performance of various model combinations against a canonical, single-patch
embedding generator (PEG) baseline to establish a performance benchmark, Table 5.
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val_loss

— RADAR_SSAV1_108 = RADAR_SSAV1_580316
SinglePEG_APE_580316 = SinglePEG_APE_108

0.14
0.12
0.1
0.08
Step
5 10 15 20 25 30

Figure 3: RADAR vs Single PEG Early Stopping

val_loss

— PFIM_PowerGate_580316 =— PFIM_PowerGate_108
SinglePEG_APE_580316 = SinglePEG_APE_108

0.18

0.16

0.14

0.12 Step
10 20 30 40

Figure 4: PFIM vs Single PEG Early Stopping
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Table 3: Significance Results: CIFAR10

Competitor_vs_Baseline Num_Seeds Our_Mean_SD Baseline_Mean_SD Test_Type p-value
[RADARSSA| vs_[VanillaViT] 4 97.4 £0.0010 93.4 £ 0.00064 Paired T-Test. NH: VVit >= RADAR 1.411e-05
[RAD. 'S A vs_[SinglePEG] 4 97.4 £0.0010 95.3 £0.00072 Paired T-Test. NH: SPEG >= RADAR 5.87e-05
illaViT) 4 95.001 £ 0.00085 93.4 £ 0.00064 Paired T-Test. NH: VViT >= PFIM 0.000169

4 95.001 + 0.00085 95.3 + 0.00072 Non-Inferiority Paired T-Test. NH: y_d <= —6 0.00142

4 95.001 £ 0.00085 95.3 + 0.00072 TOST Paired Equivalence Test. NH: pug < =6 Vg > 6. 0.00142

Table 4: Significance Results: CIFAR100

Competitor_vs_Baseline Num_Seeds Our_Mean_ SD  Baseline_Mean_SD Test_Type p-value
[RADARSSA Topl|ws[VanillaViT Topl] 4 86.53 £0.0035 79.013+£0.0023  Paired T-Test. NH: VVit >= RADAR 1.847e-06
[RADARSSA_Topl]_vs_[SinglePEG Topl] 4 86.53 +0.0035 82.38 £0.00223  Paired T-Test. NH: SPEG >= RADAR 0.00017
[PFIM Topl]ws_[VanillaViT Topl] 4 81.07 £0.00146 79.013 + 0.0023 Paired T-Test. NH: VViT >= PFIM 1.55e-05
[PFIM _Top5] vs_[SinglePEG_Top5) 4 95.30 + 0.00083 96.02 + 0.00081  Non-Inferiority Paired T-Test. NH: 1-d <= —§ 0.0265
[PFIM Top5|ws_[SingleP EG_Top5) 4 95.30 £ 0.00083 96.02 & 0.00081  TOST Paired Equivalence Test. NH: y1g < =0 V pg > 0. 0.0265

Interestingly, Entropy and L2-Norm — > Soft max over patch tokens yielded similar performance
in RADAR-SSA variant, with former being slightly better. When APFE is turned off Single-PEG
emerges as strongest model, closely followed by RADAR Single Soft Anchor on CIFARI10 ( from
Table 5). Since LOOSA and SSA had comparable performance, SSA variant was chosen as best
performing variant in RADAR models as it uses fewer flops and has lower runtime complexity.

6.0.2 STAGE 2: ABSOLUTE POSITIONAL EMBEDDING (APE) INTEGRATION ANALYSIS

From best combination found in stage 1, we explore how model’s performance changes when APE
is injected, including single-PEG.

Similar to stage 1 ablations ( from Table 5 ) , SSA performs slightly better than LOOSA ; while
significantly outperforming PFIM and Single-PEG when pre-trained APF is injected ( from Table
6 ) on CIFAR10. Single-PEG benefits slightly from APE whereas our variants benefit drastically,
proving that our methods are complimentary, but not replacement, to APE and they’re better with
positional information. APE was turned on for main experiment for apples-to-apples comparison.

6.0.3 STAGE 3: COMPONENT ROBUSTNESS ANALYSIS

Stage 3 of our ablation work finds out robustness of our variants like Top-K weight smoothing,
necessity of signals etc.

Both RADAR and PFIM are robust to alignment-shuffle ablations (random permutation of token
features or importance scores), which leaves accuracy at baseline due to pre-norm LayerNorm can-
celing uncorrelated noise ( Table 7 ). However, turning off priors only at inference reveals their
necessity: RADAR drops by 47.3 pp (82.73 — 35.43) and PFIM by 0.95 pp (59.83 — 58.88),
confirming that gains arise specifically when priors remain content-aligned, as they reshape token
geometry fed into QK7 and attention weights.

Our modules are helpful when aligned and harmless when not: (i) necessity ablations confirm con-
tribution (as accuracy falls when removed); (ii) alignment-shuffle show that uninformative priors
are normalized away. Together with main results beating strong baselines, this demonstrates that
RADAR and PFIM inject meaningful, content-aware signal rather than exploiting capacity or regu-
larization artifacts. Similar ablations on CIFAR100 were tested and included in appendix.

7 CONCLUSION

We presented two lightweight, content-aware patch modulation modules for ViTs: RADAR (anchor-
based distance priors) and PFIM (parameter-free importance scaling). Both operate pre-MHSA,
keep the ViT backbone frozen, and add negligible overhead while reallocating attention toward
semantically relevant regions.

On CIFAR-100, RADAR improves Top-1 accuracy by +7.5 pp and Top-5 by +3.3 pp over vanilla
ViT, and by +4.1 pp / +1.6 pp over Single-PEG, while using 56 % fewer parameters. PFIM achieves
+2.0 pp (Top-1) and +1.1 pp (Top-5) gains over vanilla ViT with 88 % fewer parameters than Single-
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Table 5: Stage 1 Ablations Summary: CIFAR10

MODEL_TYPE APE_ON Num Seeds Agg-Type Seq_Select_Type Test_Acc_Stats
RADAR Single Soft Anchor V1 NO 2 L2Norm, Soft max Weighted Sum 82.73 £ 0.00058
RADAR Leave-One-Out Soft Anchor NO 2 L2Norm, Soft max LOO Weighted Sum 82.52 £ 0.00198
RADAR SSA V1 NO 2 Entropy Weighted Sum 81.72 £ 0.00290
RADAR LOO-SA NO 1 Entropy LOO Weighted Sum 82.052

PFIM NO 2 Entropy Power Gate 59.83 £ 0.00146
PFIM NO 1 L2Norm, Soft max Power Gate 61.812

Single PEG (27x27) NO 2 NA NA 91.36 £ 0.00366

Table 6: Stage 2 Ablations Summary: CIFAR10

MODEL_TYPE APE_ON Num Seeds Agg-Type Seq_Select_ Type  Test_Accuracy
RADAR SSA V1 YES 1 L2 Norm,Soft max Weighted Sum 97.775
RADAR LOO SA YES 1 L2 Norm, Soft max LOO Weighted Sum 97.405
PFIM YES 1 Entropy Power Gate 95.275
PFIM YES 1 L2 Norm; Soft max Power Gate 95.291
Single PEG (27x27) YES 1 NA NA 95.804

Table 7: Stage 3 Ablations Summary: CIFAR 10

MODEL_TYPE APE_ON Num_Seeds Agg-Type Seq_Select_Type Ablation_Type Params Test_Acc_Stats
RADAR SSA V1 NO 2 L2Norm, Soft max Weighted Sum  TopK Weight Smoothing Alpha = (0.8, 1.0); TopK Sequences =98 83.127 + 0.0017
RADAR SSA V1 NO 2 L2Norm, Soft max Weighted Sum Necessity Test Sj, Bj both set to 0 35.43 £ 0.00170
RADAR SSA V1 NO 1 L2Norm, Soft max Weighted Sum Random Permutation of Sj,Bj NA 82.07

PFIM NO 2 Entropy Power Gate TopK Weight Smoothing; Alpha = (0.8, 1.0) TopK Sequences = 98 60.56 = 0.00190
PFIM NO 2 Entropy Power Gate Necessity Test mix% =0 58.88 4 0.00217

PEG, matching its performance within a small delta(0.01). Additionally, on CIFAR-10 both modules
deliver consistent, statistically significant gains, confirming robustness across datasets.

While our methods show strong improvements under absolute positional encoding setting, Single-
PEG performs better when APE is turned off.Possibly because PEG learns transformations on patch
embeddings , while we learn distance-based features and only provide complementary modulations
to patch embeddings rather than projecting them directly. Nevertheless, the results demonstrate that
RADAR and PFIM provide parameter-efficient, low-budget improvements that outperform strong
baselines.

8 FUTURE WORK

We will extend the distance signal in three directions. First, we will add 2D patch coordinates to
features and test them with and without absolute positional encodings (APE), and we will check
whether coordinate-anchor distances give extra gains beyond patch—patch distances. Second, we
will replace a single anchor with a small grid of anchors to study grid—grid distance modulation.
Third, we will vary where we inject these signals (alternating versus sequential transformer blocks)
and examine the effect on attention maps, stability, and accuracy. In parallel, we will probe CNN
backbones by inserting the same patch-neighborhood priors at different depths to see which layers
benefit most. Finally, we will validate on larger datasets and explore compatibility with relative
positional schemes such as iRPE and RoPE, measuring accuracy—efficiency trade-offs and when
distance cues and relative positions are complementary versus redundant.
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Table 8: Ablations Summary: CIFAR 100

MODEL_TYPE APE_ON Num Seeds Ablation Type Params Topl_Stats Top5_Stats
RADAR SSA V1 NO 1 Necessity Test  s;,b; = 0,0 19.95 44.75
RADAR SSA V1 NO 1 Align Test Random Permutation of Sj,Bj 60.167 86.226
RADAR SSA V1 YES 1 Align Test Random Permutation of Sj,Bj 88.379 98.567
RADAR LOOSA NO 1 Align Test Random Permutation of Sj,Bj 60.321 87.138
RADAR LOOSA YES 1 Align Test Random Permutation of Sj,Bj 88.292 98.477
PFIM NO 1 Align Test Random Permutation of importance weights 35.027 63.703
PFIM YES 1 Align Test Random Permutation of importance weights 82.543 96.544

Table 9: FLOPs vs Params By Model
MODEL_TYPE Dataset Train FLOPS Num_Train_Params Train Params_ MB

RADAR SSA V1 CIFARI0 55,208,252,064 207,116 0.7900848388671875
RADAR SSA V1 CIFARI00 55,208,597,664 276,326 1.0541000366210938
PFIM CIFAR10 18,338,003,702 7,690 0.02933502197265625
PFIM CIFAR100 18,338,211,062 76,900 0.2933502197265625
Single-PEG CIFAR10 18,665,249,808 568,330 2.168006896972656
Single-PEG CIFAR100 18,665,457,168 637,540 2.4320220947265625
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A APPENDIX

Figure 5 shows the distribution of FLOPs per sample for each of custom models excluding Vanilla
ViT. RADAR-SSA needs more FLOPs ( +67% to be precise ) than Single-PEG while PFIM uses
fewer FLOPs ( 2% ) than Single-PEG with comparable performance ( from Table 9 ).

Figure 6 shows the distribution of trainable params needed for each model excluding Vanilla ViT.
It is interesting to note that even though single PEG ( k = 27 ) uses depth-wise kernels, it still
uses significantly more parameters ( +64% ) and memory than RADAR-SSA with lower test time
performance. Where as PFIM uses 98% fewer params with comparable performance to Single-PEG
within a small ¢ + 0.01.
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A.1 TRAINING TIME ROBUSTNESS

In addition to random permutation and necessity ablation tests, we also conducted training-time ab-
lation tests such as top-K importance weight smoothing ( from Table 7 ) i.e., top-K importance
weights,which contribute to creating s;,b; in RADAR and importance weights in PFIM, were
smoothed both during training and inference, this did not effect model performance on test abla-
tion set.

These observations are in-line with our hypothesis that when injecting such modulations pre-
encoder, first LayerNorm largely absorbs any affine transformations, making it robust to such shifts,
irrespective of type of modulation.

A.2 CODE BASE AND TIPS TO REPRODUCE

All hyper parameters and epoch details come from config yaml file ( configs_ablations.yaml and
configs_train.yaml ) and two separate .py files exist with ViT code, one for ablations and one for
main experiment ( ViT_ablations.py and Custom_VIT.py ).

These files are orchestrated from another set of .py files specific to ablations and main experiment
( run_benchmarks_ablations.py and run_benchmarks.py). We strongly recommend pre-computing
tensors before training with all transformations and saving them in respective folders, with specific
seeds ( 108 ) for exact reproducibility.

Suggested flow of operations are: Pre-Compute Tensors from specific seeds — > Choose the Config
to run from configs file ( pfim_normal, pfim_necessity etc ) — > run respective benchmark file,
with name from configs yaml. Users can choose to log metrics and model to Wandb optionally (
log_metrics = True, log_model = True ) in run_benchmarks file.

A.3 LLM USAGE

We employed LLMs strictly as productivity aids—to generate code skeletons, resolve minor bugs,
and paraphrase or shorten text for readability. Importantly, LLMs were not involved in the ideation
or methodological design stages. The conception and development of our two techniques, RADAR
and PFIM, are entirely our own original contributions.
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