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ABSTRACT

Retrosynthesis analysis aims to design reaction pathways and intermediates for a
target compound. Emerging works have been developed to automate this process
by machine learning (ML) approaches, which greatly accelerate the process of
synthesis pathway design. As data-driven approaches, ML models learn the syn-
thetic pathways from existing reaction data. Although there are multiple synthesis
pathways to synthesize one target product, one reaction product usually only has
one corresponding reactant set in the training dataset. Therefore, existing mod-
els were trained by considering all the other reaction pathways as negative labels,
which potentially includes a huge amount of false-negative data. In this work,
we generate virtually validated simulated reactions by enumerating local reac-
tion templates on the known reaction center and investigate the effect of training
retrosynthesis models with these simulated reactions. We found that not only pre-
diction accuracy but both prediction diversity and prediction confidence are also
largely increased when training retrosynthesis models with simulated reactions.
Specifically, the round-trip accuracy of top-5 prediction is increased from 86.2%
to 90.8%, and the round-trip accuracy of predictions having output scores greater
than 0.5 is increased from 93.5% to 96.4%. Moreover, the ratio of predictions
showing output scores greater than 0.5 is increased from 6.0% to 26.5%. We also
show that models trained with simulated reactions have a preference to predict
more diverse synthesis pathways, including the reactions that are rarely seen in
the training set.

1 INTRODUCTION

Retrosynthesis, referring to the process of decomposing a target molecule to its precursors, has
been studied for decades since the first formalization by Corey (1991). Along with the advances
of machine learning (ML)-based inverse molecular design, the number of ML-based retrosynthesis
models, including single-step and multi-step retrosynthesis, is increasing rapidly to bring the virtu-
ally designed molecules into the real world (Coley et al. (2018); de Almeida et al. (2019)). While
the total synthesis of most molecules requires multiple synthesis steps, the quality of the multi-step
retrosynthesis model is highly dependent on the quality of the single-step retrosynthesis model since
the multi-step model repeatedly applies single-step models to search the building blocks (Hassen
et al. (2022)).

In general, single-step retrosynthesis models can be categorized into template-based (Coley et al.
(2017); Segler & Waller (2017); Dai et al. (2019); Chen & Jung (2021); Seidl et al. (2022)) and
template-free models (Liu et al. (2017); Tetko et al. (2020); Tu & Coley (2022); Zhong et al. (2022))
depending on using reaction templates or not. Template-based models classify which of the pre-
defined reaction templates should be applied to a given product to obtain its precursors. For example,
Dai et al. (2019) proposed Graph Logic Network (GLN) to maximize the likelihood of predicting the
correct reaction template among a set of pre-defined reaction templates for a given product. Chen &
Jung (2021) trained LocalRetro to learn the potential reaction center and the local reaction template
to be applied to the given product. On the other hand, template-free models predict the precursors
without pre-defining reaction templates. Most of the template-free models are based on the sequence
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translation model, which ”translates” the SMILES string of the given product to SMILES strings of
its reactants (Liu et al. (2017); Tetko et al. (2020); Zhong et al. (2022)).

Although the existing models have shown promising results, most of the methods formulate the
retrosynthesis problem as a one-to-one classification problem, which trains the model to select one
of the pre-defined templates (template-based) or tokens (template-free). Given the fact that one
product has more than one potential synthesis pathway, retrosynthesis prediction is naturally a one-
to-many classification problem. As only one of the reactants is given for a single product in most
of the reactions in the dataset, training a retrosynthesis model by one-to-many classification is a
challenging task due to the lack of other existing synthesis pathways.

In this work, we generate virtually validated simulated reactions to fill the blank of potential ret-
rosynthesis pathways in the reaction dataset using local reaction templates (LRTs, Chen & Jung
(2021)) and the reaction outcome prediction model, and use these reactions to train the model to
learn multiple feasible reaction templates at the same reaction center. By training LocalRetro (Chen
& Jung (2021)) with simulated reactions, we show the potential direction of using simulated reac-
tions to improve the diversity as well as the predictive performance of retrosynthetic models.

2 METHODS

2.1 GENERATE SIMULATED REACTIONS

For a given reaction, we enumerate all applicable LRTs found in the LRT library, which includes
all the LRTs extracted from the reaction dataset, at the known reaction center to generate simulated
reactions. To ensure these reactions are chemically plausible, we use LocalTransform (Chen & Jung
(2022)) to filter out infeasible reactions if the predicted product is different from the original product.
Considering the synthesizability of reactants, we only generate reactions using similar LRT, which
yields at least one identical reactant in the original reaction.

For example, the C-C bond between two aromatic rings in Figure 1a is formed by Suzuki-coupling
using boronic acid and bromide in the reaction dataset. By searching the LRT library derived from
the reaction dataset, we found C-C bond between two aromatic rings can also be formed by similar
LRT, either by changing the halide to chloride or iodine, or changing the boronic acid to a magne-
sium ion (1+) or trimethylstannyl group. With these similar LRTs, four simulated reactions that can
potentially be used to synthesize the same product are generated.

2.2 LOCALRETRO VARIANTS

In this paper, we use the template-based retrosynthesis model LocalRetro (Chen & Jung (2021)) as a
baseline model and train two variant models using simulated reactions. Because the score generated
from the original LocalRetro is the probability of LRT applied on the predicted reaction center,
the score does not physically reflect the feasibility of the predicted synthesis pathway. Here, we
binarize the prediction score of each reactant set R of a given product O to a binary probability
p(R|O), which is the product of the probability of selecting a reaction center for a given product
p(o|O) and probability of local reaction template predicted at the reaction center p(T |o).

p(R|O) = p(T |o) ∗ p(o|O) (1)

The training loss of new LocalRetro is the average of the loss of predicting reaction center LossRC

and the loss of predicting local reaction template LossLRT , where LossRC is the binary cross
entropy between labeled reaction center yn and predicted probability of each atom or bond being
reaction center pn, and LossLRT is the binary cross entropy between labeled LRT yt and predicted
probability of each LRT pt applied at the known reaction center.

LossRC =

N∑
n=1

−(yn log(pn) + (1− yn) log(1− pn)) (2)

LossLRT =

T∑
t=1

−(yt log(pt) + (1− yt) log(1− pt)) (3)
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Figure 1: simulated reactions generation and the training loss of three different training settings. (a)
The simulated reactions are generated by enumerating similar LRTs at the known reaction center,
yielding at least one identical reactant with the original reaction. (b) Different training losses are
used to optimize the model prediction in different LocalRetro variants. The loss from the original
reaction is colored in red, the loss from the simulated reaction is colored in blue, and the loss from
the infeasible reaction is colored in black.

Since we fixed the reaction center while generating simulated reactions, introducing simulated re-
actions will only change the LRT Loss (LossLRT ). To investigate the effect of training LocalRetro
with simulated reactions by either masking losses or inverting labels of simulated reactions to train
the LocalRetro variants. When masking the losses from simulated reactions, the LossLRT from
simulated reactions are zeroed to reduce the penalties if the model predicts potentially feasible syn-
thesis pathways. When inverting the labels of simulated reactions, the model is trained to maximize
the prediction scores for both existing reactions and simulated reactions. In this work, we denote
the former variant model as LocalRetro- and the latter variant model as LocalRetro+ for reading
convenience. An example of different training losses for LocalRetro and its variants is shown in
Figure 1b.
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3 EXPERIMENTS

3.1 DATASET

We evaluate our methods on the USPTO-50K dataset (Schneider et al. (2016)) with the same train-
ing/validation/test splits described in Coley et al. (2017). We extracted 678 LRTs from the 45K
reactions in the training and validation set of the USPTO-50K dataset, including 92 atom templates
and 586 bond templates. Total 123,098 simulated reactions are generated from the training and
validation dataset.

3.2 EVALUATION METRIC

In this paper, we use round-trip accuracy (Schwaller et al. (2020)) to evaluate the feasibility of
predicted reactants. Predictions are considered as correct if the products predicted by the reaction
output prediction model match the original products. In this work, we use LocalTransform as the
reaction outcome prediction for round-trip accuracy evaluation. We also calculate the conventional
exact match accuracy of the proposed models in Supplementary B1.

3.3 MAIN RESULTS

We use the LocalRetro and its variants to predict 10 possible reactants for each product in the test
set, and the round-trip accuracy at top-k predictions and the different threshold scores is shown in
Table 1. For top-k predictions, the round-trip accuracy LocalRetro+ is improved by 0.6, 4.1, 4.6,
4.9% at k=1, 3, 5, 10 compared to the original LocalRetro. A smaller improvement is seen for
LocalRetro- (2.2, 2.3, 2.6% at k=3, 5, 10). Next, we compare the round-trip accuracy of predictions
having prediction scores over several threshold scores. Overall, the round-trip accuracy increases
with the threshold for every model, and both LocalRetro- and LocalRetro+ show higher round-trip
accuracy than the original LocalRetro at all the score threshold scores. Notably, the number of the
predictions from LocalRetro- and LocalRetro+ over threshold scores 0.1, 0.5, and 0.9 are double
and triple the number predicted from the original LocalRetro, respectively. These results support
the training of retrosynthetic models with simulated reactions giving great improvements in both
prediction accuracy and confidence.

Table 1: Round-trip accuracy on USPTO-50K dataset. The highest value is highlighted in bold font.

Model Round-trip accuracy (prediction ratio) %
Top-k k=1 3 5 10

LocalRetro 91.4 88.0 86.2 82.0
LocalRetro- 91.4 90.2 88.5 84.6
LocalRetro+ 92.0 92.1 90.8 86.9

Score >0.9 >0.5 >0.1 >0.01
LocalRetro 94.2 (1.0) 93.5 (6.0) 89.4 (20.4) 86.6 (53.8)
LocalRetro- 96.7 (2.4) 95.8 (12.3) 92.6 (35.6) 89.1 (71.8)
LocalRetro+ 98.6 (3.8) 96.4 (26.5) 92.1 (63.8) 89.1 (89.8)

To investigate the prediction diversity and confidence of proposed LocalRetro variants, we analyze
the scores and template popularity in the training set of the top-10 predictions from LocalRetro,
LocalRetro- and LocalRetro+ at Figure 2. Because templates showing low popularity in the training
set only appears a few times during the training process, original LocalRetro rarely predicts LRTs
having low popularity in the training set. Furthermore, due to a large number of negative labels in the
training set, nearly 80% of the predictions are predicted with output scores lower than 0.1. When
masking the false-negative loss from simulated reactions (LocalRetro-), predictions show overall
higher scores. When inverting the negative labels of simulated reactions (LocalRetro+), the output
scores of predictions are greatly boosted. More importantly, LocalRetro+ shows a higher preference
to predict diverse LRTs regardless of the template popularity in the training set.
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Figure 2: Scores and template popularity of predictions from LocalRetro variants.

3.4 PREDICTION EXAMPLES

In this section, we qualitatively understand the difference between LocalRetro and its variant by
showing an example of predicting the single-step retrosynthesis pathway of 2-methylbiphenyl in
Figure 3. All of the LocalRetro models successfully predict the existing reactant in the dataset
at top-1 prediction, and the remaining predictions are predicted to yield the same target product
validated by LocalTransform. The first 5 predictions of LocalRetro and LocalRetro- are identical,
while LocalRetro- gives a much higher prediction score for each prediction. Interestingly, while the
top-5 predictions from LocalRetro and LocalRetro- suggest synthesizing the C-C bond between aro-
matic rings by Suzuki cross-coupling, LocalRetro+ suggests the synthesis pathways through cross-
electrophile coupling, which is rarely seen in the USPTO-50K dataset.

Figure 3: Example of predicting the single-step retrosynthetic pathway of 2-methylbiphenyl. The
template popularity of the predicted LRT in the training set (Pop) and the prediction scores (Score)
are displayed below the predicted reactant structures.

4 CONCLUSION

In this paper, we present two LocalRetro variants, LocalRetro- and LocalRetro+, to learn one-step
retrosynthesis with simulated reactions by masking false-negative losses or inverting false-negative
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labels. We found that both models give higher round-trip accuracy and prediction scores than the
original LocalRetro. LocalRetro+, in particular, shows a higher preference to predict more diverse
LRTs regardless of the popularity in the training set. Although we generate simulated reactions by
applying all LRTs in the training set in this work, this method can be easily customized by selecting
a few important LRTs based on the chemists’ preferences. We suggest future retrosynthesis models
may consider non-existent but potentially feasible synthesis pathways to train their models without
extra actual experiments to prevent the model from learning false-negative reaction data.
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A MODEL DETAILS

A.1 LOCALRETRO

The LocalRetro model used in this paper is modified from the GitHub page of Chen & Jung (2021),
which is a graph-based model using message passing neural network (MPNN, Gilmer et al. (2017)
for local reactivity and attention mechanism (Vaswani et al. (2017)) for global reactivity.

First, all the ReLU activation functions (Nair & Hinton (2010)) are changed to GELU activation
functions (Hendrycks & Gimpel (2016)), where Φ(x) is the cumulative distribution function of
Gaussian distribution.

GELU(x) = xΦ(x) (4)

Second, the updated bond features are concatenated with their original bond features to avoid the
vanishing of bond feature over MPNN, where v′a and v′b is the updated atom features after MPNN,
eab is the original features of the chemical bond.

e′ab = MLP (v′a||v′b||eab) (5)
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Third, a binary classifier of classifying whether an atom or bond can be the reaction center o of a
given product molecule O, where v′′ is the atom or bond features after a global reactivity attention
block.

p(o|O) = MLP (v′′o ) (6)

B EXPERIMENTAL DETAILS

B.1 EXACT MATCH ACCURACY

The top-k exact match accuracy of LocalRetro and its variants tested on USPTO-50K is shown in
Table 2. LocalRetro- shows an 0.1, 0.7, 0.3% accuracy improvement compared to the original model
at top-5, 10, and 50 predictions. On the other hand, LocalRetro+ shows lower top-k accuracy across
all k values. As LocalRetro+ has a higher preference to predict LRTs with low template popularity,
LRTs with low template popularity in the training set are also not popular in the test set, leading to
the drop in exact match accuracy.

Table 2: Top-k exact match accuracy on USPTO-50K dataset. The highest accuracy is highlighted
in bold font.

Model Top-k accuracy %
k=1 3 5 10 50

LocalRetro 54.3 78.7 86.5 93.2 98.4
LocalRetro- 50.9 73.8 83.2 92.0 98.4
LocalRetro+ 36.4 57.9 69.6 82.9 97.8

B.2 IMPLEMENTATION

We use the open-source Python library RDKit (Landrum (2013)) for all the molecular pre- and
post-processing. The machine learning models are highly dependent on dgllife (Li et al. (2021))
and Pytorch (Paszke et al. (2019)) deep learning libraries. All experiments were conducted under
a machine equipped with an Intel Core i9-12900K @3.20 GHz, 128 GB of RAM, and NVIDIA
GeForce RTX 3090 GPU.

B.3 TRAINING CONDITIONS

We train our models for 30 epochs with a batch size of 16 by using the Adam optimizer (Kingma &
Ba (2014)) with a weight decay of 10−6 and set the initial learning rate to 10−4. The learning rate
is reduced by a factor of 0.1 after every 8 epochs and the training is terminated if the validation loss
does not decrease for three successive epochs. Model gradients are clipped at a maximum norm of
20.
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