
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REPAFORMER: FEROCIOUS AND SCALABLE ACCELER-
ATION OF METAFORMERS VIA STRUCTURAL REPARAM-
TERIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We reveal that feed-forward network (FFN) layers significantly contribute to the
latencies of Vision Transformers (ViTs). This effect scales up quickly as the
model size escalates, and hence presents a major opportunity in efficiency optimiza-
tion for ViTs via structural reparameterization on FFN layers. However, directly
reparameterizing the linear projection weights is difficult due to the non-linear
activation in between. In this work, we propose an innovative channel idle mecha-
nism that establishes a linear pathway through the activation function, facilitating
structural reparameterization on FFN layers during inference. Consequently, we
present a family of efficient ViTs embedded with the introduced mechanism called
ReParameterizable Vision TransFormers (RePaFormers). This technique brings
remarkable latency reductions with small sacrifices (sometimes gains) in accuracy
across various MetaFormer-structured architectures investigated in the experiments.
The benefits of this method scale consistently with model sizes, demonstrating
increasing efficiency improvements and narrowing performance gaps as model
sizes grow. Specifically, the RePaFormer variants for DeiT-Base and Swin-Base
achieve 67.5% and 49.7% throughput accelerations with minor changes in top-1
accuracy (-0.4% and -0.9%), respectively. Further improvements in speed and
accuracy are expected on even larger ViT models. In particular, the RePaFormer
variants for ViT-Large and ViT-Huge enjoy 66.8% and 68.7% inference speed-ups
with +1.7% and +1.1% higher top-1 accuracies, respectively. RePaFormer is the
first to employ structural reparameterization on FFN layers to expedite ViTs to
our best knowledge, and we believe that it represents an auspicious direction for
efficient ViTs. Codes are provided in the supplementary material.

1 INTRODUCTION

Vision Transformer (ViT) (Dosovitskiy et al., 2021) and its advanced variants (Touvron et al., 2021;
Liu et al., 2021; Tolstikhin et al., 2021; Ryoo et al., 2021; Yu et al., 2022; Liu et al., 2022; Dehghani
et al., 2023) have achieved remarkable performance on various computer vision tasks. However, the
high computational cost and memory demand of ViTs hinder their wide deployment in real-world
scenarios, especially in computing resource-constrained environments.

To improve efficiency for ViTs, several techniques have been proposed, such as token pruning (Rao
et al., 2021; Liang et al., 2021; Kong et al., 2022a;b; Fayyaz et al., 2022) and token merging (Bolya
et al., 2023; Zong et al., 2022; Marin et al., 2023; Xu et al., 2024; Kim et al., 2024) methods that
gradually reduce the number of image tokens as the layer goes deep; hierarchical architectures (Fan
et al., 2021; Pan et al., 2021; Liu et al., 2021; Dong et al., 2022; Ryali et al., 2023) that extract
feature information at multiple scales; hybrid architectures (Mehta & Rastegari, 2022a; Chen et al.,
2022a; Maaz et al., 2022; Li et al., 2022; Zhang et al., 2023) that embed efficient convolutional neural
networks (CNNs) into ViTs. Meanwhile, knowledge distillation methods (Touvron et al., 2021; Hao
et al., 2022; Wu et al., 2022; Chen et al., 2022b) are introduced to further optimize and improve
efficient ViTs’ performance. However, these efficient ViT methods overlook a powerful network
simplification technique: structural reparameterization.

Structural reparameterization (Ding et al., 2019; 2021b; Zhu et al., 2023) is typically utilized in
CNNs to transform a network’s structure during different phases of training and testing. Specifically,
structural reparameterization merges multi-branch convolutions or adjacent linear projections via

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) MetaFormer 
Block

Token
Mixer

+

𝐍𝐍 ×

Vanilla 
FFN

LayerNorm

Linear 1

Activation

LayerNorm

Patch 
Embed.

Linear 2

+

(b) RePaFormer 
Block

Token
Mixer

+

𝐍𝐍 ×

Channel 
Idle FFN

BatchNorm

Linear 1

Act.

LayerNorm

Patch 
Embed.

Linear 2

+

BatchNorm

(c) Reparameterized 
RePaFormer Block

Token
Mixer

+

𝐍𝐍 ×

Rep.
FFN

Act.

LayerNorm

Patch 
Embed.

+

RePa
Linear 1

RePa
Linear 2

RePa
Linear 3

Figure 1: RePaFormer architecture. (a) rep-
resents the vanilla MetaFormer block, which is
a general architecture for various models. For
example, (a) becomes a standard ViT with self-
attention as the token mixer. (b) illustrates our
channel idle mechanism, where only a subset of
channels are activated while the rest channels
form a linear pathway. (c) shows the reparam-
eterized RePaFormer block during testing, where
the number of parameters and computational com-
plexity are significantly reduced.

linear algebra operations (e.g., aggregating par-
allel convolutional kernels into a single equiv-
alent kernel). As a result, a complicated archi-
tecture during training can be compressed into
a simplified structure for testing, drastically im-
proving the model efficiency without sacrificing
accuracy. Some recent research (Vasu et al.,
2023; Guo et al., 2024) has explored leveraging
structural reparameterization for ViTs by inte-
grating elements from CNNs into ViTs and sub-
sequently reparameterizing these components.
However, these approaches barely reparameter-
ize the vanilla structure of ViTs, especially the
feed-forward network (FFN) layers.

Despite being less investigated, structural repa-
rameterization holds significant potential in sim-
plifying FFN layers for ViT and its variants.
As Figure 1(a) illustrates, the FFN layer is a
straightforward component, incorporating two
linear transformations and an activation func-
tion in between. Although the structure is sim-
ple, the FFN layer plays an essential role in not
only ViT-based models but also MetaFormer-
based models (Yu et al., 2022). In these models,
while the multi-head self-attention module can
be replaced by other efficient token mixers like
average pooling, the FFN layer remains indis-
pensable. Moreover, some studies point out that
FFN layers contribute to more than 60% total
computational complexity of a ViT model (Li
et al., 2022; Mehta & Rastegari, 2022b). We
also observe a large portion of FFN layers in the
total latency of a MetaFormer-structured model,
which increases as the model size grows. These factors indicate the importance of exploring ap-
proaches to enhance the efficiency of FFN layers.

However, since structural reparameterization relies on linear algebra operations to simplify the
network structure, the non-linear activation function between the two linear transformations makes
reparameterization infeasible on FFN layers. In addition, the LayerNorm (Lei Ba et al., 2016) in the
FFN layer prevents further reparameterizing the normalization and shortcut into linear projection
weights due to the sample-specific nature of LayerNorm.

To address the aforementioned challenges, we introduce an innovative channel idle mechanism. In
particular, in each FFN layer, only a small subset of feature channels undergo the activation function
to provide necessary nonlinearity while the rest channels remain idle, as shown in Figure 1(b).
Consequently, these idle channels bridge a linear pathway through the activation function, facilitating
structural reparameterization during inference. Moreover, inspired by Yao et al. (2021), we substitute
the LayerNorm with BatchNorm (Ioffe & Szegedy, 2015) and add another BatchNorm before the
second linear projection. These BatchNorms can be reparameterized into their corresponding linear
projection weights, which further allows reparameterization of the shortcut.

With the proposed channel idle mechanism, a family of ReParameterizable Vision Transformers
(RePaFormers) are developed, whose FFN layers can be reparameterized to condensed structures
during inference as Figure 1(c) shows. RePaFormers achieve ferocious real-time accelerations of
up to 133.4% post-reparameterization. Extensive experiments on various MetaFormer-structured
backbones have validated the effectiveness of our method, demonstrating its potential to enhance the
practical utility of MetaFormer-structured models in resource-constrained environments. Moreover, as
Figure 2 illustrates, the experimental results further indicate that our method delivers more significant
acceleration and narrower performance disparity as the model complexity increases, highlighting the
potential of applying our method on large foundation models.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

150.0 200.0 300.0 500.0 1000.0 1500.0 2000.0
Throughput (images/second)

70

72

74

76

78

80

82

84

86

T
op

-1
 A

cc
ur

ac
y 

(%
) DeiT-Base

(17.6 GMACs, 81.8% Acc.) RePa-DeiT-Base
(10.6 GMACs, 81.4% Acc.)

DeiT-Small
(4.6 GMACs, 79.8% Acc.)

RePa-DeiT-Small
(2.9 GMACs, 77.1% Acc.)

Swin-Base
(8.7 GMACs, 83.0% Acc.)

RePa-Swin-Base
(9.0 GMACs, 82.6% Acc.)

LV-ViT-S
(6.1 GMACs, 81.4% Acc.)

RePa-LV-ViT-S
(4.7 GMACs, 81.6% Acc.)

LV-ViT-M
(11.9 GMACs, 83.6% Acc.)

RePa-LV-ViT-M
(8.8 GMACs, 83.5% Acc.)

PoolFormer-s24
(3.4 GMACs, 80.3% Acc.)

RePa-PoolFormer-s24
(1.4 GMACs, 75.4% Acc.)

PoolFormer-s36
(5.0 GMACs, 81.4% Acc.)

RePa-PoolFormer-s36
(5.0 GMACs, 76.8% Acc.)MLPMixer-l16

(44.6 GMACs, 72.3% Acc.)

RePa-MLPMixer-l16
(20.0 GMACs, 72.6% Acc.)

Model Size 20M 50M 100M

Figure 2: Performance comparison of RePaFormers and their vanilla backbones. RePaFormers
consistently achieves more significant model accelerations and smaller accuracy gaps when the model
sizes increase, highlighting its potential effectiveness in expediting large foundation models.

In conclusion, the contributions of our work are threefold: 1) We discover that FFN layers dominate
in the total latency of various MetaFormer-structured models. The proportion of FFN layers in
the computation significantly increases as the model size grows. 2) We propose a novel channel
idle mechanism to construct a linear pathway in the FFN layer during training, which enables
reparameterizing the linear projection weights during testing without accuracy loss. 3) With the
proposed mechanism, we develop highly efficient RePaFormer models based on existing MetaFormer-
structured architectures. Our approach achieves greater efficiency and a narrower accuracy gap when
the model size escalates. To our best knowledge, RePaFormer is the first method that successfully
applies structural reparameterization on FFN layers for efficient ViTs, and achieves significant
acceleration (∼68%) while having positive gains in accuracy (1∼2%) instead of accuracy drops, on
large and huge ViTs.

2 RELATED WORK

2.1 EFFICIENT VISION TRANSFORMER METHODS

Vision Transformer (ViT) (Dosovitskiy et al., 2021) adapts the Transformer (Vaswani et al., 2017)
architecture for computer vision, achieving success on various computer vision tasks. However,
ViT suffers a substantial computational complexity. To alleviate the computational burden, several
techniques that focus on structural design for efficient ViTs have been proposed. Spatial-wise token
reduction methods are developed to identify less important tokens and subsequently prune (Rao
et al., 2021; Liang et al., 2021; Kong et al., 2022a; Fayyaz et al., 2022; Xu et al., 2022; Meng et al.,
2022; Tang et al., 2022; Xu et al., 2023) or merge (Bolya et al., 2023; Zong et al., 2022; Marin
et al., 2023; Xu et al., 2024; Kim et al., 2024) them during inference. As a result, the number of
tokens participating in the self-attention computation is reduced. Meanwhile, hybrid architectures
that combine self-attentions with computationally efficient convolutions (Graham et al., 2021; Mehta
& Rastegari, 2022a; Chen et al., 2022a; Li et al., 2022; Cai et al., 2023; Vasu et al., 2023; Zhang
et al., 2023; Shaker et al., 2023) are introduced to reduce the computationally expensive self-attention
operations while introducing regional biases into ViTs. In addition to hybrid ViTs, MetaFormer
(Yu et al., 2022) figures out that ViTs benefit from their architectural design, which consists of one
token mixer layer and one multi-layer perception layer, and the token mixer can be replaced by more
efficient operations, such as average pooling (Yu et al., 2022) or linear projection (Tolstikhin et al.,
2021). However, these approaches overlook the structural reparameterization method, which can
effectively compress a network that contains many consecutive linear transformations, such as FFN
layers in ViTs. Our work is the first to apply structural reparameterization on FFN layers for ViTs.

2.2 STRUCTURAL REPARAMETERIZATION

Structural reparameterization is an effective network simplification technique that is typically em-
ployed in multi-branch CNNs (Ding et al., 2019; Guo et al., 2020; Ding et al., 2021a;b). It converts

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

an over-parameterized network block into a compressed structure during testing, thereby reducing
the model complexity and increasing the speed for the inference stage. For instance, after reparame-
terizing its multi-branch convolutions and shortcuts into a single branch, RepVGG-B0 (Ding et al.,
2021b) achieves 71% speed-up with no accuracy loss. Although some recent studies claim to adopt
structural reparameterization for enhancing ViTs’ efficiency (Vasu et al., 2023; Wang et al., 2024;
Tan et al., 2024), they primarily construct a hybrid architecture consisting of both convolutions and
self-attentions and only perform reparameterization on the convolutional part. A recent state-of-the-
art method, SLAB (Guo et al., 2024), proposes to progressively substitute LayerNorms in ViTs with
BatchNorms and subsequently reparameterize BatchNorms into linear projection weights. Unlike
these methods, we are the first to apply structural reparameterization on FFN layers.

3 METAFORMER STRUCTURE AND LATENCY ANALYSIS

3.1 METAFORMER-STRUCTURED MODELS

We start by revisiting the MetaFormer (Yu et al., 2022) architecture, which can be regarded as
a general architecture for a variety of ViT models. Specifically, given an input X ∈ RN×C to a
MetaFormer block, where N represents the number of tokens and C denotes the number of feature
channels, the input X is sequentially processed by a token mixer (TokenMixer) layer and a feed-
forward network (FFN) layer, with a pre-layer Layer Normalization (LN) (Lei Ba et al., 2016) and a
shortcut (He et al., 2016) for each layer as

Y = TokenMixer(LN(X)) + X,
Z = FFN(LN(Y)) + Y,

(1)

where Y is the token mixer output and Z is the FFN output as well as the input to the next block. The
token mixer is utilized to aggregate image tokens, which can be multi-head self-attention (Dosovitskiy
et al., 2021), average pooling (Yu et al., 2022), convolution (Li et al., 2023), etc.

In each FFN layer, the LN normalized feature Y is processed by two linear projections with a
non-linear activation function in between as

Z = FFN(LN(Y)) + Y = Act(LN(Y)WIn)WOut + Y, (2)

where WIn ∈ RC×ρC ,WOut ∈ RρC×C are the linear projection weights, and Act(·) is usually the
GELU (Hendrycks & Gimpel, 2016) activation function. ρ is the FFN expansion ratio, which is
typically set to 4. The biases are omitted for simplicity since they are inherently linear and do not
interfere with the reparameterization process.

Figure 1(a) illustrates the MetaFormer block. We classify all the models that adhere to this specific
framework as MetaFormer-structured models and use this term throughout this paper.

3.2 LATENCY ANALYSIS

To understand the significance of improving efficiency for FFN layers, we profile the latencies of
major components in four representative MetaFormer-structured models and visualize the results in
Figure 3. The four models include a plain-structured ViT (DeiT (Touvron et al., 2021)), a hierarchical-
structured ViT (Swin Transformer (Liu et al., 2021)), a pooling-based MetaFormer (Poolformer
(Yu et al., 2022)) and a spatial MLP-based MetaFormer (MLPMixer (Tolstikhin et al., 2021)). The
running times of patch embedding, token mixer and FFN layers are recorded when processing a
single input image. The latency profiling draws several interesting observations:

Observation 1: The proportion of time taken by FFN layers in the total inference time escalates
quickly as the model size increases.

Figure 3 illustrates that FFN layers constitute a substantial portion of the total processing time, which
rises as the model size increases. For instance, in the DeiT-Small model, FFN layers contribute to
approximately 32.8% of the inference time, while in the DeiT-Base model, this proportion increases
to 43.1%. This trend is consistent across various models. For example, in the MLPMixer-b16 model,
FFN layers account for about 52.7% of the total time, which rises to 66.4% in the much larger
MLPMixer-l16 model.

This phenomenon arises because scaling up ViTs typically involves increasing the number of channels,
whereas the number of tokens tends to remain constant. Meanwhile, the computational complexity of

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7
Latency (ms)

RePa-MLPMixer-l16
MLPMixer-l16

RePa-MLPMixer-b16
MLPMixer-b16

RePa-PoolFormer-s36
PoolFormer-s36

RePa-PoolFormer-s24
PoolFormer-s24

RePa-Swin-Base
Swin-Base

RePa-Swin-Small
Swin-Small

RePa-DeiT-Base
DeiT-Base

RePa-DeiT-Small
DeiT-Small

Patch Embedding

Token Mixer

FFN

Repameterized FFN

Figure 3: Latency analysis. Visualization of the runtime latencies of patch embedding, token mixer
and FFN layers across different sizes and architectures of MetaFormer-structured models on a single
GPU. Notably, as the model size increases, the proportion of latency attributed to the FFN layers also
rises. Moreover, the proportion also increases with simpler token mixers. Our RePaFormer method
effectively reduces the latency of FFN layers and obtains increasingly better performance on larger
models, demonstrating a scalable acceleration of FFN layers.

an FFN layer, quantified as O(2ρNC2), is quadratic to the number of feature channels. Consequently,
as the model expands, the FFN layers become significantly more computationally expensive.

Observation 2: The proportion of time taken by FFN layers in the total inference time signifies
as the token mixer becomes simpler.

Figure 3 also implies that the proportion of processing time allocated to FFN layers is affected by the
simplicity of the token mixer. For instance, while the Swin-Small and Poolformer-s36 models have
comparable total times for processing a single image, their FFN layers’ proportions differ significantly.
On the one hand, Swin-Small, which utilizes the complex self-attention mechanism as its token mixer,
allocates approximately 33.6% processing time to FFN layers. On the other hand, Poolformer-s36,
which employs a simpler pooling strategy for token mixing, attributes around 73.7% of its processing
time to FFN layers. This contrast indicates that a simpler token mixer in a MetaFormer-structured
model results in a larger portion of FFN layers in the computation.

Remark: Observations 1 and 2 underscore the growing demand for optimizing FFN layers as
MetaFormer-structured models scale up rapidly nowadays, noting that the inference time of FFN
layers predominates in the total inference time. This increasing dominance further signifies the
crucial role FFN layers play in overall model performance and efficiency. Moreover, for strategies
that concentrate on reducing the complexity of token mixers, enhancing the efficiency of FFN layers
can lead to further acceleration. In conclusion, prioritizing the optimization of the FFN layer is of
considerable importance for minimizing the overall computational costs associated with various
MetaFormer-structured architectures.

4 METHOD

4.1 CHANNEL IDLE MECHANISM FOR FFN

As shown in Equation 2, due to the non-linear activation function, the structural reparameterization
cannot directly merge the two linear projection weights WIn and WOut via linear algebra operations.

Inspired by ShuffleNetv2 (Ma et al., 2018) which keeps a group of channels idle in grouped convolu-
tions and shuffles channels for information exchange, we propose a simple yet effective channel idle
mechanism to enable reparameterization in FFN layers. In particular, this mechanism maintains a
large subset of feature channels inactivated in an FFN layer as Figure 4(a) illustrates, which subse-
quently bridges a linear pathway through the non-linear activation function in the corresponding FFN
layer. Given that the second linear projection fuses the feature information from both activated and

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

…

…
…
…
…

Linear 1

𝑾𝑾𝐈𝐈𝐈𝐈 ∈ ℝ𝑪𝑪×𝝆𝝆𝑪𝑪

𝒀𝒀𝒊𝒊𝐁𝐁𝐍𝐍 ∈ ℝ𝑪𝑪 𝒀𝒀𝒊𝒊𝐈𝐈𝐈𝐈 ∈ ℝ𝝆𝝆𝑪𝑪

Activation

Split …
𝒀𝒀𝒊𝒊𝐀𝐀𝐀𝐀𝐀𝐀 ∈ ℝ𝝆𝝆𝑪𝑪

…………

Linear 2

𝑾𝑾𝐎𝐎𝐎𝐎𝐀𝐀 ∈ ℝ𝝆𝝆𝑪𝑪×𝑪𝑪

𝒀𝒀𝒊𝒊𝐎𝐎𝐎𝐎𝐀𝐀 ∈ ℝ𝑪𝑪

𝒀𝒀𝒊𝒊 ∈ ℝ𝑪𝑪

B
at

ch
N

or
m

+

…
ℝ(𝝆𝝆−𝝁𝝁)𝑪𝑪

ℝ𝝁𝝁𝑪𝑪

Concat.

BatchNorm
…

𝒀𝒀𝒊𝒊
𝐀𝐀𝐀𝐀𝐀𝐀_𝐁𝐁𝐍𝐍 ∈ ℝ𝝆𝝆𝑪𝑪

Output 𝒁𝒁𝒊𝒊 ∈ ℝ𝑪𝑪

Channel Idle Mechanism
ℝ𝝁𝝁𝑪𝑪

Shortcut

(a) The FFN layer with channel idle mechanism (training stage).

Rep. Linear 1

�𝑾𝑾𝐈𝐈𝐈𝐈 ∈ ℝ𝑪𝑪×𝝁𝝁𝑪𝑪

ℝ𝑪𝑪

Activation Rep. Linear 2

�𝑾𝑾𝐎𝐎𝐎𝐎𝐎𝐎 ∈ ℝ𝝁𝝁𝑪𝑪×𝑪𝑪

𝒀𝒀𝒊𝒊 ∈ ℝ𝑪𝑪
+

ℝ𝝁𝝁𝑪𝑪

Output 𝒁𝒁𝒊𝒊 ∈ ℝ𝑪𝑪Rep. Linear 3

�𝑾𝑾 ∈ ℝ𝑪𝑪×𝑪𝑪

ℝ𝝁𝝁𝑪𝑪 ℝ𝑪𝑪

(b) The reparameterized FFN layer (testing stage).

Figure 4: RePaFormer FFN architecture. (a) illustrates the FFN layer with our proposed channel
idle mechanism during training. Only a small subset of feature channels are activated while the rest
keep idling. (b) shows the reparameterized FFN layer during the testing stage. Consequently, the
two large linear projection weights in the training stage are reparameterized into three smaller linear
projection weights, subsequently reducing the model size and computational complexity.

idling channels, there is no need to "shuffle" the channels as ShuffleNetv2 does. Our channel idle
mechanism can be formulated as follows:

YIn = BN(Y)WIn,

YAct = Concat(Act(YIn
[:, 1:µC]),YIn

[:, µC+1:ρC]),

Z = BN(YAct)WOut + Y,

(3)

where the activation function is only applied on µC (µ < ρ) feature channels. The (ρ− µ)C idling
feature channels construct a linear route in the FFN layer. We further define the channel idle ratio as
θ = 1− µ

ρ , which represents the percentage of feature channels keeping idle in the activation. µ is set
to 1 by default in the following experiments unless otherwise noted, leading to the default θ = 1− 1

ρ

(e.g., θ = 0.75 when ρ = 4, indicating 75% channels are idling when the expansion ratio is 4).

4.2 STRUCTURAL REPARAMETERIZATION FOR FFN

With the channel idle mechanism defined in Equation 3, we are able to simplify the FFN layer by
structural reparameterization during the testing stage. Firstly, we reparameterize BatchNorms into
their corresponding linear projection weights as

W̃In =
γY√

σ2
Y + ϵY

WIn,

W̃Out =
γYAct√

σ2
YAct + ϵYAct

WOut,
(4)

where γs, σ2s and ϵs are the empirical means, empirical variances and constants from the frozen
BatchNorm layers, respectively. With the reparameterized projection weights W̃In and W̃Out, the

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

output Z in Equation 3 can now be derived by

Z = Act(YW̃In
[:, 1:µC])W̃Out

[1:µC, :] + YW̃In
[:, µC+1:ρC]W̃Out

[µC+1:ρC, :] + Y. (5)

Then, we further reparameterize the weights as

W̃ = W̃In
[:, µC+1:ρC]W̃Out

[µC+1:ρC, :] + I. (6)

By substituting Equation 6 into Equation 5, we obtain the updating function for the FFN layer during
the testing stage with three reparameterized weights as

Z = Act(YW̃In
[:, 1:µC])W̃Out

[1:µC, :] + YW̃. (7)

As Figure 4(b) shows, after reparameterization, the two massive linear projections are converted
into three more efficient linear transformations with fewer parameters and all the normalizations are
merged into linear projection weights.

4.3 COMPUTATIONAL COMPLEXITY ANALYSIS

Number of parameters: The vanilla FFN layer’s parameters are mainly derived from the two
linear projection weights WIn ∈ RC×ρC and WOut ∈ RρC×C , totalling 2ρC2. In contrast, with the
implementation of our channel idle mechanism, the weights are reparameterized into three terms:
an input weight W̃In

[:, 1:µC] ∈ RC×µC , an output weight W̃Out
[1:µC, :] ∈ RµC×C and a reparameterized

weight W̃ ∈ RC×C . The total number of parameters is effectively reduced from 2ρC2 to (2µ+1)C2.

Consequently, in the reparameterized FFN layer, the parameter count is diminished to 1− θ + 1
2ρ of

the original parameter count, where θ is the aforementioned idle ratio. For instance, when ρ = 4 and
θ = 0.75, the number of parameters in an FFN layer declines to 37.5% post-parameterization. This
reduction significantly simplifies the model, diminishing its memory consumption.

Computational complexity: The computational complexity of the vanilla FFN layer is O(2ρNC2)
while the computational complexity is significantly reduced to O((2µ+ 1)NC2) in our reparameter-
ized FFN layer. The computational complexity reduction ratio for an FFN layer is also 1− θ + 1

2ρ .

5 EXPERIMENTS

In this section, we aim to evaluate our method from the following aspects: firstly, the pre- and
post-reparameterization performance of RePaFormers on the image classification task to illustrate
the efficiency improvement our method brings; secondly, a competitive study of RePaFormers with
their vanilla backbones to demonstrate the scalable accelerations achieved through our approach;
thirdly, the comparison against a recent state-of-the-art efficient ViT method via reparameterization
to demonstrate the competitive edge of our method; next, a sensitivity study on the idle ratio to
emphasize the critical balance between performance and efficiency; and finally, a validation of the
generalizability of RePaFormers on a self-supervised learning task and dense prediction tasks.

5.1 DATASETS, TRAINING AND EVALUATION SETTINGS

We mainly train and test RePaFormers for the image classification task on the widely recognized
ImageNet-1k (Deng et al., 2009) dataset, following the data augmentations and training recipes
proposed by Touvron et al. (2021) as the standard practice. In line with Yao et al. (2021), the
maximum learning rate is set to 5× 10−3 with 20 epochs of warmup from 1× 10−6. The default
batch size and total training epochs are 4096 and 300, respectively. Additionally, the Lamb optimizer
(You et al., 2020) is utilized for stable training with a large batch size. For dense prediction tasks, we
follow the configurations from MMDetection (Chen et al., 2019) and MMSegmentation (Contributors,
2020) to finetune RePaFormers on MSCOCO (Lin et al., 2014) and ADE20K (Zhou et al., 2017)
datasets for object detection and segmentation tasks, respectively. All the models are trained from
scratch on NVIDIA H100 GPUs. To ensure fair comparisons, we measure the throughput of all the
models on the same NVIDIA A6000 GPU with the same environments and a fixed batch size of 128.
More implementation details on the training settings are provided in the appendix.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Main results of RePaFormers pre- and post-reparameterization. We employ our
channel idle mechanism on various MetaFormer-structured backbones and report their accuracy,
number of parameters, computational complexities and throughputs before (× for "Rep.") and after
(
√

for "Rep.") reparameterization. All the models become ferociously more efficient after being
reparameterized without accuracy loss.

Model Rep. Embed. dim. Depth #Heads #MParam. Complexity
(GMACs)

Throughput
(img/s)

Top-1
acc.

RePa-DeiT-Tiny × 192 12 3 5.7 1.1 2333.6 64.3%√
3.5 (−38.6%) 0.6 (−45.5%) 4295.0 (+84.1%)

RePa-DeiT-Small × 384 12 6 22.1 4.3 1037.1 77.1%√
13.2 (−40.3%) 2.5 (−41.9%) 1975.5 (+90.5%)

RePa-DeiT-Base × 768 12 12 86.6 16.9 336.6 81.4%√
51.1 (−41.0%) 10.6 (−37.3%) 659.5 (+95.9%)

RePa-ViT-Large × 1024 24 16 304.5 59.8 102.7 82.0%√
178.4 (−41.4%) 34.9 (−41.6%) 207.2 (+101.8%)

RePa-ViT-Huge × 1280 32 16 632.5 124.4 53.0 81.4%√
369.9 (−41.5%) 72.6 (−41.6%) 103.8 (+95.8%)

RePa-Swin-Tiny × [96, 192, 384, 768] [2, 2, 6, 2] [3, 6, 12, 24] 28.3 4.4 611.8 78.5%√
17.5 (−38.2%) 2.6 (−40.9%) 1026.5 (+59.6%)

RePa-Swin-Small × [96, 192, 384, 768] [2, 2, 18, 2] [3, 6, 12, 24] 49.7 8.6 367.6 81.6%√
29.9 (−39.8%) 5.1 (−40.7%) 624.0 (+69.7%)

RePa-Swin-Base × [128, 256, 512, 1024] [2, 2, 18, 2] [4, 8, 16, 32] 87.9 15.2 250.1 82.6%√
52.8 (−39.9%) 9.0 (−40.8%) 456.0 (+82.3%)

RePa-LV-ViT-S × 384 16 6 26.2 6.1 725.4 81.6%√
19.1 (−27.1%) 4.7 (−23.0%) 1110.9 (+53.1%)

RePa-LV-ViT-M × 512 20 8 55.9 11.9 396.6 83.6%√
40.1 (−28.3%) 8.8 (−26.1%) 640.6 (+61.5%)

RePa-PoolFormer-s12 × [64, 128, 320, 512] [2, 2, 6, 2] n/a 11.9 1.8 1882.2 70.5%√
6.0 (−49.6%) 0.8 (−55.6%) 3973.9 (+111.1%)

RePa-PoolFormer-s24 × [64, 128, 320, 512] [4, 4, 12, 4] n/a 21.4 3.4 957.6 75.4%√
9.6 (−55.1%) 1.4 (−58.8%) 2078.4 (+117.0%)

RePa-PoolFormer-s36 × [64, 128, 320, 512] [6, 6, 18, 6] n/a 30.9 5.1 642.1 76.8%√
13.1 (−57.6%) 2.0 (−60.8%) 1401.6 (+119.1%)

RePa-MLPMixer-b16 × 768 12 n/a 59.9 12.7 420.9 72.1%√
24.4 (−59.2%) 5.7 (−55.1%) 968.4 (+130.1%)

RePa-MLPMixer-l16 × 1024 24 n/a 208.4 44.7 129.7 72.6%√
82.2 (−60.6%) 20.0 (−55.3%) 302.7 (+133.4%)

5.2 CLASSIFICATION RESULTS

We choose five different MetaFormer-structured backbones, including a plain-structured ViT (ViT
(Dosovitskiy et al., 2021) and DeiT (Touvron et al., 2021)), a hierarchical-structured ViT (Swin
Transformer (Liu et al., 2021)), a plain ViT trained with token labelling (LV-ViT (Jiang et al., 2021)),
a pooling-based MetaFormer (PoolFormer (Yu et al., 2022)) and a spatial MLP-based MetaFormer
(MLPMixer (Tolstikhin et al., 2021)). The FFN layers in these models are embedded with the channel
idle mechanism and are all trained from scratch solely on the ImageNet-1k dataset.

5.2.1 REPARAMETERIZATION RESULTS

Table 1 presents the image classification performance of RePaFormers before and after reparameteri-
zation. Our innovative channel idle mechanism remarkably enhances these models’ computational
efficiency and throughput while preserving their accuracy. Specifically, when employing the standard
ViT as the backbone, RePa-ViT-Large achieves a substantial speed-up of 101.8% with an accuracy
of 82.0% post-reparameterization during the testing phase. In the hierarchical ViT architecture,
RePa-Swin-Base achieves an 82.3% increase in speed after reparameterization, with an accuracy of
82.6%. For models utilizing simpler token mixers, RePaPoolformer-s36 and RePa-MLPMixer-l16
realize remarkable accelerations of 119.1% and 133.4%, respectively.

It is worth highlighting that as the model size increases, our method yields more substantial
accelerations and more significant reductions in parameters after reparameterization. Such
efficiency improvement is also illustrated in Figure 3, where the same backbone architecture obtains
more speed-up when its model size escalates. This characteristic is increasingly vital as the trend
towards larger foundation models in the current research community continues to grow.

5.2.2 COMPARISON WITH VANILLA BACKBONES

Table 2 compares the performance of RePaFormers and their original backbones. We report the
accuracies that are directly trained from scratch on the ImageNet-1k training set. Overall, our method
demonstrates greater acceleration on these backbones. Moreover, we point out that with the same

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Performance comparisons among
RePaFormers and their vanilla backbones.
When the token mixer architecture fixes, our
method consistently achieves more accelerations
and complexity reductions while narrowing the ac-
curacy gap as the model size grows.

Model #MParam. Complexity
(GMACs)

Throughput
(img/s)

Top-1
acc.

DeiT-Tiny 5.7 1.3 3239.4 72.1%
RePa-DeiT-Tiny 3.5 (−38.6%) 0.8 (−38.5%) 4295.0 (+32.6%) 64.2%
DeiT-Small 22.1 4.6 1279.1 79.8%
RePa-DeiT-Small 13.2 (−40.3%) 2.9 (−37.0%) 1975.5 (+54.4%) 77.1%
DeiT-Base 86.6 17.6 393.8 81.8%
RePa-DeiT-Base 51.1 (−41.0%) 10.6 (−39.8%) 659.5 (+67.5%) 81.4%

ViT-Large 304.3 59.7 124.2 80.3%
RePa-ViT-Large 178.4 (−41.4%) 34.9 (−41.5%) 207.2 (+66.8%) 82.0%
ViT-Huge 632.2 124.3 61.5 80.3%
RePa-ViT-Huge 369.9 (−41.5%) 72.6 (−41.6%) 103.8 (+68.7%) 81.4%

Swin-Tiny 28.3 4.5 751.9 81.2%
RePa-Swin-Tiny 17.5 (−38.2%) 2.6 (−42.2%) 1026.5 (+36.5%) 78.5%
Swin-Small 49.6 8.7 441.8 83.0%
RePa-Swin-Small 29.9 (−39.7%) 5.1 (−41.4%) 624.0 (+41.2%) 81.6%
Swin-Base 87.8 15.2 304.9 83.5%
RePa-Swin-Base 52.8 (−39.9%) 9.0 (−40.8%) 456.0 (+49.6%) 82.6%

LV-ViT-S 26.2 6.1 866.6 81.4%
RePa-LV-ViT-S 19.1 (−27.1%) 4.7 (−23.0%) 1110.9 (+28.2%) 81.6%
LV-ViT-M 55.8 11.9 457.6 83.6%
RePa-LV-ViT-M 40.1 (−28.1%) 8.8 (−26.1%) 640.6 (+40.0%) 83.5%

PoolFormer-s12 12.0 1.9 2531.5 77.2%
RePa-PoolFormer-s12 6.0 (−50.0%) 0.8 (−57.9%) 3973.9 (+57.0%) 70.5%
PoolFormer-s24 21.4 3.4 1240.6 80.3%
RePa-PoolFormer-s24 9.6 (−55.1%) 1.4 (−58.8%) 2078.4 (+67.5%) 75.4%
PoolFormer-s36 30.9 5.0 785.3 81.4%
RePa-PoolFormer-s36 13.1 (−57.6%) 2.0 (−60.0%) 1401.6 (+78.5%) 76.8%

MLPMixer-b16 59.9 12.6 554.1 76.6%
RePa-MLPMixer-b16 24.4 (−59.2%) 5.7 (−54.8%) 968.4 (+74.8%) 72.1%
MLPMixer-l16 208.2 44.6 160.0 72.3%
RePa-MLPMixer-l16 82.2 (−60.5%) 20.0 (−55.2%) 302.7 (+89.2%) 72.6%

Table 3: Comparison against the state-of-the-
art reparameterization method for ViTs. With
a similar number of parameters, RePaFormers
obtains both faster inference speeds and higher
accuracies than SLAB.

Model #MParam. Compl.
(GMACs)

Speed
(img/s)

Top-1
acc.

SLAB-DeiT-Base 86.6 17.1 387.0 78.9%
RePa-DeiT-Base (25%) 79.5 15.5 452.2 81.1%
SLAB-Swin-Base 87.7 15.4 299.9 83.6%
RePa-Swin-Base (25%) 80.8 14.0 356.3 83.7%

Table 4: Sensitivity of channel idle ratio. We
report the performance of two RePaFormers with
different channel idle ratios (θ). *vanilla repre-
sents the vanilla backbone with no channel idling
in FFN layers. The results show a significant ac-
curacy drop when θ surpasses 75%.

Model θ #MParam. Compl.
(GMACs)

Speed
(img/s) Top-1 acc.

RePa-DeiT-Base

100% 37.0 7.1 858.2 73.7%
75% 51.1 10.6 657.0 81.4%
50% 65.3 12.7 544.4 81.4%
25% 79.5 15.5 452.2 81.1%

*vanilla 86.6 17.6 408.8 81.8%

RePa-Swin-Base

100% 38.8 6.5 539.0 75.5%
75% 52.8 9.0 467.6 82.6%
50% 66.8 11.5 404.5 83.4%
25% 80.8 14.0 356.3 83.7%

*vanilla 87.8 15.2 324.9 83.5%

backbone architecture, the accuracy gap between a RePaFormer and its vanilla backbone significantly
narrows as the model size increases. For example, employing DeiT as the backbone, the smaller
DeiT-Tiny model witnesses a 32.6% speed-up at the cost of a 7.9% accuracy loss. However, when
scaled up to the DeiT-Base model, our approach delivers a 67.5% throughput improvement, with only
a marginal 0.4% drop in accuracy. This pattern is consistent across various models. In cases where
the backbones include additional regularizations during training, our method not only accelerates
performance but also preserves accuracy to a remarkable extent. In particular, on the LV-ViT model,
we facilitate a 40.0% increase in the inference speed with a negligible 0.1% decrease in accuracy.

It is also worth emphasizing that our method yields ~68% speed-up and even 1~2% higher
accuracy on large and huge ViT models, indicating its potential on large-scale foundation models.

5.2.3 PERFORMANCE COMPARISON AGAINST STATE-OF-THE-ART

Table 3 compares our RePaFormer approach against SLAB (Guo et al., 2024), a recent state-of-the-art
method introducing progressive reparameterized BatchNorms for ViTs. For fair comparisons with
similar model sizes, the performance of RePaFormers with a 25% idle ratio is used. The results
indicate that our reparameterization strategy offers a better trade-off between efficiency and accuracy.
For example, when utilizing DeiT-Base as the backbone, our method not only achieves a higher speed
and fewer parameters but also surpasses SLAB by a 2.2% higher accuracy.

5.3 SENSITIVITY OF CHANNEL IDLE RATIO

In Section 4.1, we have defined the channel idle ratio θ as the percentage of feature channels keeping
idle in the activation. Table 4 illustrates the influence of θ on the performance of RePaFormers. In
general, a larger θ represents more channels idling in the FFN layer, leading to a smaller number of
parameters, a lower computational complexity, and a higher inference speed post-reparameterization.

Remarkably, when θ exceeds 75% which is the default idle ratio for RePaFormers, there is an obvious
decline in the top-1 accuracy of both RePa-DeiT-Base and RePa-Swin-Base. For instance, when
setting θ to 100% (i.e., no channels being activated), the RePa-DeiT-Base’s accuracy drops from
81.8% to 73.7%. Similarly, the RePa-Swin-Base model witnesses its accuracy decline from 83.5% to

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

75.5% with θ = 100%. This outcome demonstrates that while reducing the proportion of non-linear
components can significantly enhance the model’s efficiency, preserving sufficient non-linearities is
also crucial for maintaining performance. It highlights the delicate balance between optimizing for
speed and ensuring the robustness and accuracy of the model. In addition, we provide the results of
different channel idle ratios on tiny-size models in Appendix C.

5.4 SELF-SUPERVISED LEARNING RESULTS

To demonstrate the generalizability of our method, we apply the channel idle mechanism to ViTs
trained with self-supervised learning methods and report their performance in Table 5. Specifically,
two RePaFormers based on ViT-Small and ViT-Base (Dosovitskiy et al., 2021) are trained following
the self-supervised learning strategies outlined in DINO (Caron et al., 2021). Even with self-
supervised learning, RePaFormers still exhibit substantial efficiency enhancement.

Table 5: Self-supervised learning results.

Model #MParam. Compl.
(GMACs)

Speed
(img/s)

k-NN
top-1 acc.

Linear
top-1 acc.

ViT-Small 21.7 4.3 1277.0 72.8% 77.0%
RePa-ViT-Small 12.8 2.5 1779.6 69.6% 74.4%
ViT-Base 85.8 16.9 396.2 76.1% 78.2%
RePa-ViT-Base 50.4 9.9 623.0 74.1% 77.0%

Notably, there is a consistent trend as observed in
Section 5.2.2 that when the model size increases,
our method yields greater speed improvements and a
smaller accuracy gap. For example, RePa-ViT-Small
achieves a 39.4% increase in speed with a 2.6% drop
in accuracy when using a linear classifier. In the case
of employing a larger backbone model, RePa-ViT-
Base realizes a more significant acceleration of 57.2% with a smaller accuracy loss of 1.2%. These
results indicate a high adaptability of our RePaFormer using different learning paradigms.

5.5 DENSE PREDICTIONS

Table 6 presents the results of two downstream tasks. Firstly, the ImageNet-1k pre-trained RePa-Swin
models are integrated with a one-stage detector RetinaNet (Lin et al., 2017) and a two-stage detector
Mask R-CNN (He et al., 2017) for the object detection task on the MSCOCO dataset with 1× training
schedule (i.e., 12 epochs). Remarkably, our RePa-Swin-Base model achieves up to 18.7% latency
reduction at even a higher average precision (AP) with RetinaNet when compared to its vanilla
backbone. RePA-Swin-Base also obtains a similar performance with 16.0% less latency with Mask
R-CNN. Secondly, UperNet (Xiao et al., 2018) is leveraged for the semantic segmentation task on the
ADE20K dataset with RePa-Swin models as backbones. Similarly, RePa-Swin-Base achieves 15.4%
latency reduction with merely 1.2% mIoU loss.

Overall, the experimental results on downstream tasks reflect a consistent trend that the performance
disparities are narrowing and the acceleration gains are escalating as the backbone model sizes grow.
This trend on dense prediction tasks aligns with the observations in Section 5.2.2 well, which further
proves the scalable acceleration capability of our channel idle mechanism.

Table 6: Performance on dense prediction tasks. Results on the 1× training schedule are presented.
The latencies (ms) per image are reported for throughput comparisons.
Backbone RetinaNet Mask R-CNN UperNet

Latency (ms) AP AP50 AP75 APS APM APL Latency (ms) AP AP50 AP75 APS APM APL Latency (ms) mIoU
Swin-Small 61.7 37.2 56.9 39.6 22.4 40.5 49.4 62.5 45.5 67.8 49.9 28.6 49.2 60.4 36.3 47.6
RePa-Swin-Small 53.8 (−12.8%) 38.3 57.9 40.7 21.8 42.0 51.6 53.8 (−13.9%) 43.6 65.8 47.8 27.1 47.0 57.3 32.1 (−11.6%) 45.7
Swin-Base 82.0 38.9 59.5 41.3 24.3 43.6 54.4 82.6 45.8 67.6 50.3 28.7 48.9 61.7 45.6 48.1
RePa-Swin-Base 66.7 (−18.7%) 39.8 60.0 42.1 25.3 43.7 53.8 69.4 (−16.0%) 44.8 67.0 49.4 29.0 48.5 58.4 38.6 (−15.4%) 46.9

6 CONCLUSION

In this paper, we investigate the latency compositions of various MetaFormer-structured models and
observe that FFN layers significantly contribute to the overall latency. The observations highlight the
critical need for accelerating FFN layers to enhance the efficiency of ViTs, where structural reparam-
eterization emerges as a potential solution. We introduce a novel channel idle mechanism to facilitate
the reparameterization of FFN layers during inference. The proposed mechanism is employed
on various MetaFormer-structured models, resulting in a family of RePaFormers. RePaFormers
demonstrate consistent scalability with more accelerations and narrower accuracy disparities as the
backbone model size escalates. Importantly, RePaFormer achieves accuracy gains while improving
the inference speed on large-scale ViT backbone. We believe that RePaFormer presents a promising
direction for expediting ViTs and we invite the community to further explore its effectiveness on even
larger MetaFormer-structured foundation models.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
Hoffman. Token merging: Your vit but faster. In ICLR, 2023.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In NeurIPS, 2020.

Han Cai, Junyan Li, Muyan Hu, Chuang Gan, and Song Han. Efficientvit: Multi-scale linear attention
for high-resolution dense prediction. In ICCV, 2023.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In ICCV, 2021.

Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen
Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tianheng Cheng, Qijie
Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
Chen Change Loy, and Dahua Lin. MMDetection: Open mmlab detection toolbox and benchmark.
arXiv preprint arXiv:1906.07155, 2019.

Yinpeng Chen, Xiyang Dai, Dongdong Chen, Mengchen Liu, Xiaoyi Dong, Lu Yuan, and Zicheng
Liu. Mobile-former: Bridging mobilenet and transformer. In CVPR, 2022a.

Yudong Chen, Sen Wang, Jiajun Liu, Xuwei Xu, Frank de Hoog, and Zi Huang. Improved feature
distillation via projector ensemble. In NeurIPS, 2022b.

MMSegmentation Contributors. MMSegmentation: Openmmlab semantic segmentation toolbox and
benchmark. https://github.com/open-mmlab/mmsegmentation, 2020.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In ICML, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

Xiaohan Ding, Yuchen Guo, Guiguang Ding, and Jungong Han. Acnet: Strengthening the kernel
skeletons for powerful cnn via asymmetric convolution blocks. In ICCV, 2019.

Xiaohan Ding, Xiangyu Zhang, Jungong Han, and Guiguang Ding. Diverse branch block: Building a
convolution as an inception-like unit. In CVPR, 2021a.

Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han, Guiguang Ding, and Jian Sun. Repvgg:
Making vgg-style convnets great again. In CVPR, 2021b.

Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming Zhang, Nenghai Yu, Lu Yuan, Dong Chen,
and Baining Guo. Cswin transformer: A general vision transformer backbone with cross-shaped
windows. In CVPR, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In ICLR, 2021.

Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra Malik, and
Christoph Feichtenhofer. Multiscale vision transformers. In ICCV, 2021.

Mohsen Fayyaz, Soroush Abbasi Koohpayegani, Farnoush Rezaei Jafari, Sunando Sengupta, Hamid
Reza Vaezi Joze, Eric Sommerlade, Hamed Pirsiavash, and Jürgen Gall. Adaptive token sampling
for efficient vision transformers. In ECCV, 2022.

Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou,
and Matthijs Douze. Levit: a vision transformer in convnet’s clothing for faster inference. In ICCV,
2021.

11

https://github.com/open-mmlab/mmsegmentation


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jialong Guo, Xinghao Chen, Yehui Tang, and Yunhe Wang. Slab: Efficient transformers with
simplified linear attention and progressive re-parameterized batch normalization. In ICML, 2024.

Shuxuan Guo, Jose M Alvarez, and Mathieu Salzmann. Expandnets: Linear over-parameterization to
train compact convolutional networks. In NeurIPS, 2020.

Zhiwei Hao, Jianyuan Guo, Ding Jia, Kai Han, Yehui Tang, Chao Zhang, Han Hu, and Yunhe Wang.
Learning efficient vision transformers via fine-grained manifold distillation. In NeurIPS, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In ICCV, 2017.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML, 2015.

Zi-Hang Jiang, Qibin Hou, Li Yuan, Daquan Zhou, Yujun Shi, Xiaojie Jin, Anran Wang, and Jiashi
Feng. All tokens matter: Token labeling for training better vision transformers. In NeurIPS, 2021.

Minchul Kim, Shangqian Gao, Yen-Chang Hsu, Yilin Shen, and Hongxia Jin. Token fusion: Bridging
the gap between token pruning and token merging. In WACV, 2024.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In ICCV,
2023.

Zhenglun Kong, Peiyan Dong, Xiaolong Ma, Xin Meng, Wei Niu, Mengshu Sun, Xuan Shen, Geng
Yuan, Bin Ren, Hao Tang, et al. Spvit: Enabling faster vision transformers via latency-aware soft
token pruning. In ECCV, 2022a.

Zhenglun Kong, Haoyu Ma, Geng Yuan, Mengshu Sun, Yanyue Xie, Peiyan Dong, Xin Meng, Xuan
Shen, Hao Tang, Minghai Qin, et al. Peeling the onion: Hierarchical reduction of data redundancy
for efficient vision transformer training. In AAAI, 2022b.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, and
Jian Ren. Efficientformer: Vision transformers at mobilenet speed. In NeurIPS, 2022.

Yanyu Li, Ju Hu, Yang Wen, Georgios Evangelidis, Kamyar Salahi, Yanzhi Wang, Sergey Tulyakov,
and Jian Ren. Rethinking vision transformers for mobilenet size and speed. In ICCV, 2023.

Youwei Liang, GE Chongjian, Zhan Tong, Yibing Song, Jue Wang, and Pengtao Xie. Evit: Expediting
vision transformers via token reorganizations. In ICLR, 2021.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
detection. In ICCV, 2017.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In ICCV, 2021.

Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In CVPR, 2022.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In ICLR,
2017.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In ECCV, 2018.

Muhammad Maaz, Abdelrahman Shaker, Hisham Cholakkal, Salman Khan, Syed Waqas Zamir,
Rao Muhammad Anwer, and Fahad Shahbaz Khan. Edgenext: efficiently amalgamated cnn-
transformer architecture for mobile vision applications. In ECCV, 2022.

Dmitrii Marin, Jen-Hao Rick Chang, Anurag Ranjan, Anish Prabhu, Mohammad Rastegari, and
Oncel Tuzel. Token pooling in vision transformers for image classification. In WACV, 2023.

Sachin Mehta and Mohammad Rastegari. Mobilevit: light-weight, general-purpose, and mobile-
friendly vision transformer. In ICLR, 2022a.

Sachin Mehta and Mohammad Rastegari. Separable self-attention for mobile vision transformers.
arXiv preprint arXiv:2206.02680, 2022b.

Lingchen Meng, Hengduo Li, Bor-Chun Chen, Shiyi Lan, Zuxuan Wu, Yu-Gang Jiang, and Ser-Nam
Lim. Adavit: Adaptive vision transformers for efficient image recognition. In CVPR, 2022.

Zizheng Pan, Bohan Zhuang, Jing Liu, Haoyu He, and Jianfei Cai. Scalable vision transformers with
hierarchical pooling. In ICCV, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 2019.

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamicvit:
Efficient vision transformers with dynamic token sparsification. In NeurIPS, 2021.

Chaitanya Ryali, Yuan-Ting Hu, Daniel Bolya, Chen Wei, Haoqi Fan, Po-Yao Huang, Vaibhav
Aggarwal, Arkabandhu Chowdhury, Omid Poursaeed, Judy Hoffman, et al. Hiera: A hierarchical
vision transformer without the bells-and-whistles. In ICML, 2023.

Michael Ryoo, AJ Piergiovanni, Anurag Arnab, Mostafa Dehghani, and Anelia Angelova. Token-
learner: Adaptive space-time tokenization for videos. In NeurIPS, 2021.

Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, and
Fahad Shahbaz Khan. Swiftformer: Efficient additive attention for transformer-based real-time
mobile vision applications. In ICCV, 2023.

Zhentao Tan, Xiaodan Li, Yue Wu, Qi Chu, Le Lu, Nenghai Yu, and Jieping Ye. Boosting vanilla
lightweight vision transformers via re-parameterization. In ICLR, 2024.

Yehui Tang, Kai Han, Yunhe Wang, Chang Xu, Jianyuan Guo, Chao Xu, and Dacheng Tao. Patch
slimming for efficient vision transformers. In CVPR, 2022.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
all-mlp architecture for vision. In NeurIPS, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In ICML, 2021.

Pavan Kumar Anasosalu Vasu, James Gabriel, Jeff Zhu, Oncel Tuzel, and Anurag Ranjan. Fastvit: A
fast hybrid vision transformer using structural reparameterization. In ICCV, 2023.

Ashish Vaswani et al. Attention is all you need. In NeurIPS, 2017.

Ao Wang, Hui Chen, Zijia Lin, Jungong Han, and Guiguang Ding. Repvit: Revisiting mobile cnn
from vit perspective. In CVPR, 2024.

Kan Wu, Jinnian Zhang, Houwen Peng, Mengchen Liu, Bin Xiao, Jianlong Fu, and Lu Yuan. Tinyvit:
Fast pretraining distillation for small vision transformers. In ECCV, 2022.

Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing for
scene understanding. In ECCV, 2018.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Xuwei Xu, Changlin Li, Yudong Chen, Xiaojun Chang, Jiajun Liu, and Sen Wang. No token left
behind: Efficient vision transformer via dynamic token idling. In AJCAI, 2023.

Xuwei Xu, Sen Wang, Yudong Chen, Yanping Zheng, Zhewei Wei, and Jiajun Liu. Gtp-vit: Efficient
vision transformers via graph-based token propagation. In WACV, 2024.

Yifan Xu, Zhijie Zhang, Mengdan Zhang, Kekai Sheng, Ke Li, Weiming Dong, Liqing Zhang,
Changsheng Xu, and Xing Sun. Evo-vit: Slow-fast token evolution for dynamic vision transformer.
In AAAI, 2022.

Zhuliang Yao, Yue Cao, Yutong Lin, Ze Liu, Zheng Zhang, and Han Hu. Leveraging batch normal-
ization for vision transformers. In ICCV, 2021.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. In ICLR, 2020.

Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng, and
Shuicheng Yan. Metaformer is actually what you need for vision. In CVPR, 2022.

Jiangning Zhang, Xiangtai Li, Jian Li, Liang Liu, Zhucun Xue, Boshen Zhang, Zhengkai Jiang,
Tianxin Huang, Yabiao Wang, and Chengjie Wang. Rethinking mobile block for efficient attention-
based models. In ICCV, 2023.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
parsing through ade20k dataset. In CVPR, 2017.

Anlei Zhu, Yinghui Wang, Wei Li, and Pengjiang Qian. Structural reparameterization lightweight
network for video action recognition. In ICASSP, 2023.

Zhuofan Zong, Kunchang Li, Guanglu Song, Yali Wang, Yu Qiao, Biao Leng, and Yu Liu. Self-
slimmed vision transformer. In ECCV, 2022.

A TRAINING SETTINGS

All RePaFormers are rigorously trained on the ImageNet-1k dataset (Deng et al., 2009), following
the same data augmentations proposed by DeiT (Touvron et al., 2021). Consistently, the total number
of training epochs is standardized at 300. In an effort to accommodate the substitution of LayerNorm
with BatchNorm, we have increased the batch size to 4096. Additionally, the Lamb optimizer You
et al. (2020) has been selected to ensure stable training with a large batch size. Learning rates are
dedicatedly tuned for different backbone architectures, and a cosine scheduler Loshchilov & Hutter
(2017) is utilized for learning rate adjustment throughout the training period. Detailed training
settings are provided in Table 7.

Table 7: Training settings of RePaFormers for the image classification task.

Model Epochs Batch
size Optimizer Base

learning rate
Min

learning rate
Warmup

learning rate Scheduler Weight
decay

Drop path
rate

RePa-DeiT-Tiny

300
4096

Lamb

2.5× 10−3 1× 10−6

1× 10−6 Cosine
scheduler

0.02 0.02
RePa-DeiT-Small 3× 10−3 4× 10−5 0.05 0.04
RePa-DeiT-Base 4× 10−3 4× 10−5 0.07 0.10
RePa-Swin-Tiny 5× 10−3 5× 10−5 0.20 0.10
RePa-Swin-Small 6× 10−3 5× 10−5 0.15 0.09
RePa-Swin-Base 4× 10−3 2× 10−5 0.10 0.08
RePa-PoolFormer-s12 2.5× 10−3 6× 10−6 0.16 0.02
RePa-PoolFormer-s24 3.5× 10−3 1.5× 10−6 0.08 0.01
RePa-PoolFormer-s36 5.5× 10−3 3× 10−6 0.01 0.03
RePa-MLPMixer-b16 5× 10−3 5× 10−6 0.13 0.04
RePa-MLPMixer-l16 4× 10−3 1× 10−5 0.16 0.05
RePa-LV-ViT-S 1024 1× 10−3 1× 10−5 0.05 0.10
RePa-LV-ViT-M 1× 10−3 1× 10−5 0.05 0.10

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 8: Sensitivity of channel idle ratio. We report the performance of two RePaFormers with
different channel idle ratios (θ). *vanilla represents the vanilla backbone with no channel idling in
FFN layers. The results show a significant accuracy drop when θ surpasses 75%.

Model θ #MParam. Compl.
(GMACs)

Speed
(img/s) Top-1 acc.

RePa-DeiT-Tiny

75% 3.5 0.8 4323.8 64.2%
50% 4.4 1.0 3904.2 69.2%
25% 5.3 1.2 3555.1 71.9%

*vanilla 5.7 1.3 3372.2 72.1%

RePa-Swin-Tiny

75% 17.5 2.6 1016.3 78.5%
50% 21.8 3.3 927.8 80.5%
25% 26.1 4.0 864.9 81.4%

*vanilla 28.3 4.5 789.8 81.2%

RePa-PoolFormer-s12

75% 6.0 0.8 4000.2 70.5%
50% 8.4 1.2 3345.4 74.3%
25% 10.7 1.6 2910.1 76.8%

*vanilla 12.0 1.9 2450.0 77.2%

B LIMITATIONS

Despite the exceptional performance of RePaFormers on large backbone models, there is a notable
decrease in accuracy as the model size shrinks. For example, as demonstrated in Table 2, the accuracy
of RePa-DeiT-Tiny decreases significantly from 72.1% to 64.2%. This performance drop is primarily
attributed to the reduced nonlinearity in the backbone, which is a consequence of keeping channels
idle. In smaller models, both the number of layers and the number of feature channels are limited,
resulting in substantially fewer activated channels compared to larger models. After applying the
channel idle mechanism with a high idle ratio (e.g., 75%), tiny models would lack sufficient non-linear
transformations. However, as the model size increases, both the number of layers and feature channels
expand, enhancing the model’s robustness and mitigating the impact of reduced nonlinearity.

In conclusion, while our method may not be optimally suited for tiny models, it significantly enhances
the performance of large MetaFormer-structured models. We sincerely invite the research community
to further investigate and validate the effectiveness of our approach on large foundational models, such
as SAM (Kirillov et al., 2023) or GPT (Radford et al., 2019; Brown et al., 2020). This exploration
could provide valuable insights into the scalability and adaptability of our method across various
advanced computational frameworks.

C SENSITIVITY OF CHANNEL IDLE RATIO ON TINY MODELS

As explained in Appendix B, tiny-size models are less robust and rely on sufficient nonlinearities
for a decent feature extraction capability. To validate this, we further present the performance of
tiny-size ViT models with various idle ratios. As Table 8 shows, our RePaFormers demonstrate
narrow performance gaps on smaller models when the idle ratio is less rigorous (i.e., θ = 25%).
While scaling to small or tiny-sized models is not the primary focus of this work, our method still
shows effectiveness in these cases.

D COMPARISON AGAINST REPVGG-STYLE REPARAMETERIZATION

The differences between our structural reparameterization method and RepVGG-style (Ding et al.,
2021b) structural reparameterization are threefold:

1. Different reparameterization solutions: The key difference is that RepVGG reparameter-
izes horizontally across parallel convolutional kernels, while RePaFormer reparameterizes
vertically on consecutive linear projection weights.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

For instance, RepVGG reparameterizes two parallel convolutional branches with kernels
WConv

1 and WConv
2 by summing them:

WConv
Rep = WConv

1 +WConv
2 . (8)

On the contrary, as demonstrated in Equation 6, RePaFormer reparameterizes two consecu-
tive projection weights W FFN

1 and W FFN
2 by multiplying them:

W FFN
Rep = W FFN

1 ·W FFN
2 . (9)

(In the above example, we omit the BatchNorm and suppose WConv
1 and WConv

2 have been
padded to the same shape.)

2. Different target components: RepVGG and RepVGG-style methods apply reparameteri-
zation to multi-branch convolutional layers in CNNs, while our RePaFormer targets FFN
layers in ViTs. Their application targets are distinct.

3. Different scopes: Although some previous works (Vasu et al., 2023; Wang et al., 2024) have
attempted to adapt RepVGG-style reparameterization on ViTs by incorporating multi-branch
convolutions into the ViT backbone, they only reparameterize the convolutional parts. The
main scope of these works is to construct novel mobile-friendly architectures. In contrast,
our method is the first to apply structural reparameterization to FFN layers and accelerate
existing ViTs/MetaFormers of all sizes.

Moreover, our channel idle mechanism cannot be regarded as a special case of a dual-branch structure
in RepVGG. In RepVGG, all branches must be linear so that they can be reparameterized, whereas in
our approach, one branch is linear while the other one is nonlinear.

16


	Introduction
	Related Work
	Efficient Vision Transformer Methods
	Structural Reparameterization

	MetaFormer Structure and Latency Analysis
	MetaFormer-structured Models
	Latency Analysis

	Method
	Channel Idle Mechanism for FFN
	Structural Reparameterization for FFN
	Computational Complexity Analysis

	Experiments
	Datasets, Training and Evaluation Settings
	Classification Results
	Reparameterization Results
	Comparison with Vanilla Backbones
	Performance Comparison Against State-of-the-art

	Sensitivity of channel idle ratio
	Self-supervised learning results
	Dense Predictions

	Conclusion
	Training Settings
	Limitations
	Sensitivity of channel idle ratio on tiny models
	Comparison against RepVGG-style reparameterization

