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ABSTRACT

Text-to-image (T2I) models are remarkable at generating realistic images based on
textual descriptions. However, textual prompts are inherently underspecified: they
do not specify all possible attributes of the required image. This raises two key
questions: Do T2I models generate diverse outputs from underspecified prompts?
How can we automatically measure diversity? We propose GRADE: Granular
Attribute Diversity Evaluation, an automatic method for quantifying sample diver-
sity. GRADE leverages the world knowledge embedded in large language models
and visual question-answering systems to identify relevant concept-specific axes
of diversity (e.g., “shape” and “color” for the concept “cookie”). It then estimates
frequency distributions of concepts and their attributes and quantifies diversity us-
ing (normalized) entropy. GRADE achieves over 90% human agreement while ex-
hibiting weak correlation to commonly used diversity metrics. We use GRADE to
measure the overall diversity of 12 T2 models using 405 concept-attribute pairs,
revealing that all models display limited variation. Further, we find that these mod-
els often exhibit default behaviors, a phenomenon where the model consistently
generates concepts with the same attributes (e.g., 98% of the cookies are round).
Finally, we demonstrate that a key reason for low diversity is due to underspeci-
fied captions in training data. Our work proposes a modern, semantically-driven
approach to measure sample diversity and highlights the stunning homogeneity in
outputs by T2I models.

1 INTRODUCTION

Text-to-image (T2I) models have the remarkable ability to generate realistic images based on textual
descriptions. However, prompts are inherently underspecified (Hutchinson et al., 2022; |Rassin et al.}
2022), meaning they do not fully describe all attributes that appear in the resulting image. Often, we
expect T2I models to produce diverse outputs that represent the full spectrum of possible attributes.
For example, when generating images of “a cookie in a bakery”, we expect to see cookies with
different shapes, colors, and textures, among other variations. But are current T2I models capable of
generating diverse outputs? Evaluating diversity is inherently challenging because the set of possible
attributes is virtually infinite. Existing metrics, such as Fréchet Inception Distance (FID) (Heusel
et al.,2017) and Precision-and-Recall (Sajjadi et al., 2018 |Kynkainniemi et al.,|2019) are supposed
to measure diversity, but they are limited in their ability to capture granular forms of diversity,
instead, they capture feature-level similarities. These metrics also rely on a set of reference images
that typically reflects the training data distribution, which might not be diverse. Furthermore, such
set is often hard to obtain, and does not specify attributes of interest. Our desiderata from a diversity
metric is to be reference-free, independent of the training data distribution, and human-interpretable.

We propose Granular Attribute Diversity Evaluation (GRADE), a method for measuring sample di-
versity in T2I models at a granular, concept-dependent manner, focusing on attributes of concepts,
such as the shape of a cookie or the state of an umbrella. Our approach (illustrated in Fig.[2) involves
using a large language model (LLM) to generate prompts that elicit diverse outputs from T2I mod-
els. These prompts are accompanied by questions that tailor common, specific attributes—relevant
axes of diversity—for each concept (e.g., “What is the shape of the cookie?” and “Is the umbrella
open or close?”’). We use a visual question-answering (VQA) model to extract attribute values from
images using the questions. We then use an LLM to approximate the support of the concept and
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Figure 1: A sample of four images per prompt. The model is not diverse: all soda cups contain
cola with ice, though the input prompt for “cup of soda” is underspecified. The rightmost column
demonstrates a set of diverse cups, not achievable without directly specifying in the prompt. All
images are outputs of FLUX.1-dev.

attribute, and map the VQA outputs to attribute values in the support. The result is a distribution
over a concept and an attribute. We compute its normalized entropy and use it as our diversity score.

Using GRADE, we determine that no model we test is particularly diverse, with the highest diversity
score being 0.64 on a scale from zero to one. For instance, the generated images of “cup of soda” by
FLUX.1-dev (shown in Fig. , the state-of-the-art T2I model, exhibit extremely low entropy (0.1
bits), and are round 96% of the time, a phenomenon we name default behavior. We explain such low

scores from non-diverse images in the training data, that often appear with underspecified captions,
which was previously explored in societal biases associations [Seshadri et al.| (2023).

Our contributions are threefold:

* A novel diversity evaluation method: We introduce GRADE, a fine-grained and inter-
pretable method for evaluating diversity in T2I models that does not rely on reference
images. We show GRADE captures forms of diversity FID and Recall do not, even with
the presence of reference images.

* Comparative diversity analysis: Using GRADE, we conduct an extensive study compar-
ing the diversity of 12 T2I models, revealing that even the most diverse ones achieve low
diversity and frequently exhibit default behaviors. Our analysis uncovers negative correla-
tion between model size and diversity.

* Insights into influence of training data: We demonstrate that underspecified captions in
the training data contribute to low diversity of underspecified prompts.

2 RELATED WORK

Most diversity measurements are distribution-based: a set of images generated by the evaluated
model is compared to a reference set that captures the desired diversity, typically in feature-space,
using a feature extractor such as Inception v3 (Szegedy et al 2014} [Salimans et al.l 2016) or CLIP

(Radford et al., [2021]).
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Perhaps most popular, Fréchet Inception Distance (FID) outputs a score representing both fidelity
and diversity and is the standard for evaluating image generating models. However, it has multiple
documented issues, like numerical sensitivity, data contamination, and biases (Parmar et al.| 2022;
Binkowski et al. 2018 (Chong & Forsythl [2020; [Kynkddnniemi et al.l 2022} Jayasumana et al.,
2024])). Precision-and-Recall (Sajjadi et al., [2018)) separated fidelity and diversity to two metrics.
Additional metrics were proposed Kynkidnniemi et al.[ (2019); Naeem et al.| (2020); |[Kim et al.
(2023);|Alaa et al.|(2022), which decouple between different properties and offer more interpretable
methods. Crucially, all these methods rely on a set of diverse reference images, by comparing the
distribution of generated images to the reference set with the desired level of diversity. This can be
the model’s training data, or an established dataset, like ImageNet (Deng et al.l 2009). However,
acquiring reference images that faithfully reflect diversity is not straightforward and often requires
using a feature extractor that was trained on similar data, to capture the similarities between the
distributions. These requirements make it difficult to reproduce the results of previous work and
maintain the integrity of the metrics as they are sensitive to data contamination, which could make
them favor models that produce patterns similar to those seen in their training set, regardless of
diversity (Kynkidnniemi et al.|[2022).

In addition to the significant requirement of obtaining a feature extractor and training data that match
the target domain, previous metrics do not use fine-grained feature extractors, which can evaluate
diversity over the semantics of images. Instead, they use ones that are trained over well-established
datasets. As a result, they lack the ability to distinguish between two similar concepts that are
different on a specific axis, like a color. For example, if we compare two nearly-identical images of
a bottle, with only the color of the bottle as the difference, they would consider them very similar.
However, our metric would capture such difference, as we show in Appendix

Similar to GRADE, Vendi Score (VS) (Friedman & Dieng| 2022} [Pasarkar & Dieng, 2023 is a ref-
erence-free metric, defined as the entropy of the eigenvalues of a user-provided similarity metric.
However, VS is sensitive to the choice of similarity function and like previous approaches, it is not
fine-grained and interpretable in natural text.

3 GRADE: MEASURING DIVERSITY IN TEXT-TO-IMAGE MODELS

3.1 APPROACH

Our goal is to quantify the diversity of generated images over attributes of some concept while its
attributes are underspecified in the prompt.

Let C' be a random variable representing concepts, taking values ¢ (e.g., “cookie”). Let A be a

random variable representing attributes, taking values a (e.g., “shape”). The set of possible attribute
values that attribute a can take for a concept ¢ is denoted by V* (e.g., V¥ might include “round”,
“square”, “rectangular”, etc.). We define V' as a random variable representing the attribute values

for attribute A = a and concept C' = ¢, taking values v from the set V<.

We define the concept distribution Py, .(v) as the probability that a generated image of concept c
exhibits the attribute value v for attribute a:

Pylac(v) =PV =v|A=0a,C=c) (D

Ideally, to obtain Py, .(v), one would consider all generatable images of ¢ and count the occur-
rences of each attribute value v. However, this is infeasible due to the vast nature of attribute spaces
and the variety of images with concept c. Furthermore, the relevant attributes are concept-dependent
and rely on world knowledge (e.g., “open or closed” is a relevant distinction for a parachute, but
not for a cookie). Thus, we instantiate the attribute values set V¢ with an approximation V¢, which
serves as the support of our approximated distribution and relies on the world knowledge of LLM:s.
We also define a set of prompts P = {p1, ps, . .., pn } that mention the concept ¢ but not V¢.

We then estimate the multi-prompt distribution, as an approximation of the concept distribution
Py q,c(v) by generating images using the prompts in 7 and counting the occurrences of each at-

tribute value v € f}g:
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Figure 2: Workflow of GRADE with “cookie” as input concept c and distributions Py, . as output:
(a) generating prompts that mention ¢, but are underspecified with respect to attributes, and using
them to generate images; (b) generating questions pertaining to attributes A and extracting answers
from images using a VQA; (c) generating attribute values V¢ and mapping answers to them; (d)
measuring diversity using entropy.

n

~ 1
Pyiac(v) ==Y P(V=v|A=a,C=cp) )

i=1

We compute the normalized entropy H (Pv\a,c) of the multi-prompt distribution:

o H(Py|4.)

H(Py,.) = < 3
(Pvia,e) log, Ve 3)

where H (Pv‘a)c) is the entropy of the estimated distribution 13\/|a,c, and |f)f| is the size of the

support (the number of attribute values in f}é’“). The normalized entropy ranges from O to 1 where
high values indicate high diversity (a uniform distribution), and low values indicate low diversity
(the model consistently generates the same attribute value).

While we primarily focus on multi-prompt distributions, we also report results on single prompt
distributions, which models the relation between ¢ and v for a specific prompt p € P.

By measuring the normalized entropy (henceforth referred to as entropy) across various concepts
and attributes, we obtain a representative measure of the overall diversity of the T2I model. We
compute the mean normalized entropy over all evaluated distributions to summarize the model’s
diversity performance.

3.2 METHOD

GRADE measures model diversity in four steps, as shown in Fig. First, an LLM generates
prompts, attributes (as questions), and attribute values. Then, it estimates the distribution over con-
cepts and attributes by generating images with the evaluated T2I model and answering questions via
a VQA model. Finally, we quantify the diversity of the distribution using entropy. We now describe
each of these steps, and then evaluate each one individually (Section ).

(a) Generating images of the concept c. To thoroughly assess the diversity of attribute values
that T2I models associate with a concept ¢, GRADE generates two types of prompts. Common
prompts depict the concept in familiar and frequently encountered settings (e.g., “a cookie dur-
ing Christmas festivities”). They are likely to produce images reflecting common attribute asso-
ciations learned from the training data (e.g., a tree-shaped cookie). Uncommon prompts place the
concept in rare contexts (e.g., “a cookie in a volcano crater”). Such prompts are designed to push
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the model beyond typical scenarios, potentially revealing attribute associations that are not solely
driven by common context cues. By analyzing the attribute values generated from both common and
uncommon prompts, we can identify which attributes are consistently associated with the concept
across different contexts. This consistency indicates that certain attributes are inherently linked to
the concept in the model’s internal representation, rather than being influenced mainly by the content
of the prompts. For instance, if the model frequently generates round cookies in both common and
uncommon contexts, it suggests that “roundness” is a fundamental attribute of “cookie” within the
model’s learned knowledge.

(b) Generating attributes and their values. After generating prompts and images, we look for
attributes relevant for a concept c. GRADE uses an LLM to first outline the concept’s attributes and
then generate questions that probe for their values. For example, upon receiving the input “cookie”,
the LLM noted that cookies can be made in different shapes, and proposed the question “what is
the shape of the cookie?”. Next, we generate attribute values (a support), which we use in the next
step to map VQA outputs to attribute values. We pair prompts with questions, and for each pair, we
instruct an LLM to propose attribute values based on the prompt (e.g., what could be the answer to
“what is the shape of the cookie?” for an image generated by the prompt “a cookie in a bakery”?).
We then use an LLM to unify the attribute values to a set without semantic repetitions (e.g., “round”
and “circle” will be unified to a single value in the set Vj;’flgee Tableshows a sample of concepts,
questions, and attribute values.

(c) Counting occurrences of attribute values in images. We pair all images and questions associ-
ated with the same concept and feed it to a VQA model, which outputs answers in natural language.
Then, we provide an LLM the answers and the attribute values ¢, and instruct it to match the an-
swer to the closest matching attribute value (e.g., “The cake is round” will be mapped to the “round”
value). To address edge cases, where the T2I model fails to depict the concept in the image or that
the answer is not covered by the support, we add “none of the above” as an additional attribute value
and discard all answers that are matched to it. This step results with frequency distributions which
we normalize to cumulatively sum to 1.

(d) Quantifying distributions. =~ GRADE outputs probability distributions. Every concept and
attribute pair results in a multi-prompt distribution, and every prompt and attribute pair results in
a single prompt distribution. We quantify the diversity of these distributions using entropy as our
score. While not a direct focus in this work, a diversity score spanning multiple attributes of a
concept can be achieved simply by averaging the entropy values from the multi-prompt (or single
prompt) distributions of a concept.

Implementation details. In step (a) we generate three prompts from each type (six in total) and 100
images per prompt. In step (b) we generate an average of four questions (which represent attributes)
per concept. We use GPT-40 (OpenAl et al.|[2024) (gpt-40-2024-08-06) in all steps, with max
tokens set to 1, 000, and temperature set to 0. While we present the question answering and attribute
value mapping as separate steps, we perform them in one step, using the Structured Outputs feature
(OpenAlL 2024). All prompts are detailed in Appendix [H]

The cost of estimating a multi-prompt distribution is approximately $0.75, and a single prompt
distribution is $0.12, achieved through batch inference. In our experience, wait time is several
minutes. The Images were generated using a single A100-80GB.

4 VALIDATING GRADE

We evaluate each step in GRADE—except step(d), which only involves applying the normalized
entropy formula—and find that all steps are highly accurate. We manually validate the quality of
all generated prompts, questions, and attribute values and use human annotators to evaluate 2,800
images sampled from the generations of the 12 models. This validation is performed to establish the
reliability of GRADE and is not required every time the method is used.

(a) Prompt validity. We manually review all 600 generated prompts and verify that they mention
their underspecified concept i.e., the prompt mentions the concept but no attributes. To determine
their commonness, we extract the nouns from each prompt and assess their co-occurrence in LAION-
5B (Schuhmann et all 2022) using WIMBD (Elazar et al.| 2024)), a tool designed for efficiently
counting and searching large datasets. We find that all prompts mention their respective underspec-



Under review as a conference paper at ICLR 2025

Table 1: Sample of concepts, attributes, and attribute values. Each concept-attribute pair is a multi-
prompt distribution. For brevity, we only show one attribute per concept with more examples in

Appendix B}

Concept Question (Attribute) Attribute Values

L . mesh, cardboard, carbon fiber, rubber, wood,
. What material is the bin . . . .
Bin 9 bamboo, wicker, plastic, ceramic, stainless steel,
made from? . .
fiberglass, metal, aluminum, steel, fabric, glass

Does the person appear to

Person . lon ith other
erso be alone or with others? alone, with others
Suitcase Is this a vintage suitcase? yes, no

. tiramisu, cheesecake, carrot, chocolate
Cake What flavor is the cake? i . ’ ? ’

strawberry, vanilla
Is the pool indoor or .

Pool P indoor pool, outdoor pool

outdoor?

ified concept and that the average co-occurrence for common prompts is 30,655, compared to 956
for uncommon prompts, which confirms they match their categories. We do not evaluate the quality
of the generated images, as they depend on the T2I model, not GRADE.

(b) Attribute and attribute values validity. We manually validate that each of the 405 questions
are about an attribute that can be measured by viewing an image that depicts the concept. Next,
we manually validate that the support does not have duplicate attribute values (e.g., “round” and
“circle” in the same support, if they both pertain to cookie shapes). After that, we verify that the
support aptly covers the attribute values extracted from the images: we examine all “none of the
above” selections from the crowdsourcing evaluation in the next step. Out of the 1,000 examples
used for the first evaluation, only 115 were mapped to it. Out of these, only three (2.6%) are because
the answer is not reflected in one of the attribute values. 92 times (9.2%), the T2I model did not
include the concept mentioned in the prompt—the model did not adhere to the prompt, and in the
other 20 (0.2%), the VQA or workers did not answer the question correctly.

(c) Answerability of the questions. We validate the ability of GPT-40 to answer the questions
generated in step (b) using Amazon Mechanical Turk (AMT) crowdsourcing platform—once to gauge
the agreement over all images, and a second time to gauge the robustness of the agreement on a
specific concept. Each example includes a question, an image, and the generated support (including
the “none of the above” option). The workers are requested to answer the question by selecting the
attribute value in the support that best matches the question and image. Each example is provided to
three workers, we take the majority decision. First, we run it on a sample of 1,000 examples from
12 T2I models and find that the answers by GPT-40 match the answers by the majority decision
for 90.2% of the cases. Then, we run this step a second time with all 600 images of the “what is
the shape of the cake?” multi-prompt distribution computed from each of the three models: SD-1.4
(Rombach et al.} [2022), SDXL-Turbo (Sauer et al., [2023)), and FLUX.1-dev. We take the majority
decision for each example and find that GPT-40 aligns with the majority decision 92.8 % of the time:
SD-1.4 88% of the time, FLUX.1-dev (Labsl 2024) 91.2%, and SDXL-Turbo 99.5%. In both of our
human evaluation experiments, GPT-40 agrees with human evaluation in over 90% of the cases,
across multiple images. This confirms that it is a reliable underlying VQA model.

We provide further details on human evaluation in Appendix [G]

4.1 COMPARING GRADE TO PREVIOUS METRICS

After establishing the validity of GRADE, we now turn to compare it to FID and Recall and find
that they are weakly correlated, which coupled with the high accuracy of GRADE, shows FID and
Recall measures do not accurately capture semantic-level diversity.

To facilitate an apples-to-apples comparison, we modify GRADE to use references. By doing so, the
score relies on the same reference set the baseline metrics use to compute their diversity score. We
thus swap entropy in favor of Total Variation Distance (TVD). This modification does not fundamen-
tally change GRADE, as the underlying estimated distributions are the same. We use LAION data
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Table 2: PCC between GRADE and traditional metrics, using CLIP. FID has zero or low cor-
relation with TVDg, while Recall (R) exhibits negative correlation. This indicates the distributions
estimated by GRADE capture a notion of diversity that existing metrics do not.

Model Dataset FID-TVDg R-TVDg

SD-1.1 LAION-2B 0.12 -0.15
SD-1.4 LAION-2B 0 -0.20
SD-2.1 LAION-5B 0 -0.19

(Schuhmann et al.,[2022) as a reference set and Pearson Correlation Coefficient (PCC) to determine
whether GRADE correlates with FID and Recall.

Table [2| shows weak correlation with GRADE, which implies that FID and Recall do not accurately
capture semantic-level diversity. Further detail, including experiments with Inception v3 (Szegedy
et al.| [2014), corroborating our results are presented in Appendix [C|

5 COMPARING DIVERSITY OF TEXT-TO-IMAGE MODELS

We use GRADE to estimate the diversity of popular T2I models. We begin with an overview of our
setup and then we present the results.

Data and distributions overview. For each model, we estimate distributions over 100 common
concepts such as “cookie” and “suitcase” and attributes such as “shape” and “color”. Each concept
is linked to four questions on average. In total, there are 405 multi-prompt distributions and 2,430
single prompt distributions, consisting a total of 60,000 images per model.

T2I models. We use 12 models from three different families shown in Table 3] All models were
used with their default hyperparameters as in the Di ffusers library (von Platen et al., 2023)).

Table 3: The 12 T2I Models grouped by family.

Family Model
IF-DeepFloyd DeepFloyd-M, DeepFloyd-L, DeepFloyd-XL (at StabilityAlL|2023)
Stable Diffusion SD-1.1, SD-1.4, SD-2.1 (Rombach et al.;|2022), SDXL (Podell et al.}[2023), SDXL-Turbo (Sauer
et al.}2023), SDXL-LCM (Luo et al.,[2023), SD-3 (2B) (Esser et al.,[2024)
FLUX FLUX.1-schnell (Black Forest Labs|[2024b), FLUX.1-dev (Black Forest Labs||2024a)

5.1 RESULTS

All models have low diversity scores. Table | presents the mean entropy of models across both
multi- and single-prompt distributions, with with permutation tests showing the results are statisti-
cally significant in Appendix On average, multi-prompt distributions across all models have a
mean entropy of 0.57, while single prompt distributions exhibit lower diversity with a mean entropy
of approximately 0.44. Fig. [3]illustrates the differences in diversity between models, and additional
examples are provided in Appendix [A]

Relation of diversity to model size. The relationship between model size and diversity suggests
that diversity decreases as model size increases, as illustrated in Fig. fa] This trend indicates an
inverse-scaling law (McKenzie et al., 2023), supported by Pearson » = —0.7 (p = 0.011) and
Spearman p = —0.84 (p = 0.001) correlations between diversity and model size. However, given
the small sample size of 12 models, and potential confounding factors, such as different data and
architectures, we do not make any causal claims and these findings should be interpreted with cau-
tion. Furthermore, in addition to our claims in Section [6] (that underspecified captions cause low
diversity), Fig. @ shows that the more a model generates images that cannot be answere (.e.,
prompt adherence decreases), the more diverse it is. Pearson r = 0.8 (p = 0.02) and Spearman
p = 0.94 (p < 0.001) correlations reinforce this, suggesting the possibility that improving the abil-
ity of models to generate images that match the prompt is at the cost of sample diversity, similar to
fidelity-diversity tradeoffs shown before (Dhariwal & Nichol, 2021; Kynkaanniemi et al., 2019).

'In Sectionwe show that 80% of unanswerable images do not depict the concept mentioned in the prompt.
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Figure 3: Difference in diversity between models. Images generated using the prompt “a princess
at a children’s party”. Each row corresponds to a model, top-down: SD-1.4 (most diverse), SDXL,
and FLUX.1-dev (least diverse). While no model exhibits high diversity, there is a marked difference
between SD-1.4 and FLUX.1-dev, with SDXL between them. Specifically, diversity is reduced in
attributes such as the ethnicities of depicted people, colors of dresses, and overall backgrounds.

Table 4: Entropy in multi- and single-prompt distributions. The mean entropy, standard devia-
tion, and standard error of the mean (SEM) over all distributions for each model over multi-prompt
and single-prompt distributions. Values are presented as mean = SD (SEM). Values close to 1 indi-
cate highly diverse behavior (uniform) while values close to 0 indicate highly repetitive categories.
The most diverse models are in bold.

Mean Entropy 1

Model Multi-prompt Single-prompt

DeepFloyd-M  0.64 +0.30 (0.01)  0.49 + 0.34 (0.00)
DeepFloyd-L 0.62 +0.29 (0.01)  0.47 = 0.34 (0.00)
DeepFloyd-XL  0.61 4+ 0.30 (0.01)  0.46 = 0.34 (0.00)

SD-1.1 0.64+0.30 (0.01) 0.54 + 0.33 (0.00)
SD-1.4 0.6440.29 (0.01)  0.53 % 0.33 (0.00)
SD-2.1 0.63 +0.30 (0.02)  0.51 = 0.34 (0.00)
SDXL 0.59 +0.31 (0.02)  0.46 = 0.34 (0.00)
SDXL-Turbo 0.52+0.33 (0.02)  0.36 = 0.33 (0.00)
SDXL-LCM 0.58 +0.32 (0.02)  0.45 + 0.34 (0.00)
SD-3 (2B) 0.47 +0.33 (0.02)  0.34 = 0.33 (0.00)
FLUX.I-schnell  0.48 +0.33 (0.02)  0.36 = 0.33 (0.00)
FLUX.1-dev 0.47 +0.33 (0.02)  0.32 + 0.32 (0.00)

Default behaviors. We define default behavior as a phenomenon where a model has a heavily
skewed distribution toward a specific attribute 7 > 80% of the time. We observe that default behav-
iors are highly frequent and maintain the trends in Fig. @ indicating strong correlation to entropy.
All models exhibit at least one default behavior from 76% to 90% of the multi-level distributions
and from 87% to 97 % of the single prompt distributions. Similarly, the range of total default be-
haviors exhibited in multi-prompt distributions is between 39% to 56% and between 49% to 70 %
for single prompt distributions. Complete results with further analyses are provided in Appendix [E]

6 IS Low DIVERSITY ROOTED IN THE TRAINING DATA?

In the previous section we showed T2I models exhibit low diversity. We believe the origin of this
behavior is from the training data: images for a given concept where the prompt does not specify
an attribute value, are not diverse with respect to its attribute values. Specifically, each example in
the training set of a T2I model consists of a caption-image pair. Captions mentioning a concept
can leave it unspecified (“banana”) or specify an attribute value (“yellow banana”). We assume the
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Figure 4: Comparison of mean concept entropy across different models: (a) relative to the denoiser’s
parameter size and (b) in relation to prompt adherence.

model learns a different text-image distribution for each case. Since our prompts are underspecified,
we focus on the first kind. We hypothesize that the training image distributions in such cases (where
the attribute is unspecified) are relatively not diverse, and that the model learns to replicate this
behavior. Indeed, we see this anecdotally in 100 samples in LAION. This behavior can be attributed
to the linguistic phenomenon of reporting bias (Gordon & Van Durme} 2013).

To test this hypothesis, we use GRADE to measure diversity of multi-prompt distributions of train-
ing data images in LAION, for images whose captions mention the concept without specifying an
attribute. We then compare these distributions with the distribution of generated images from a given
model, also computed with GRADE.

Our analysis consists of two steps: first, we test if the models replicate the multi-prompt distributions
based on underspecified caption-image pairs in the training data, by comparing them to multi-
prompt distributions based on generated images with the same captions; second, we test if this
replication extends to images generated with underspecified prompts not found in the training set.

Replicating training data diversity. We aim to assess whether models reproduce the underspec-
ified diversity of their training data. For each model, we sample 50 triplets of concepts (e.g.,
“cookie”), attributes (e.g., “shape”), and attribute values, and measure their diversity distribution
using GRADE. Then, using the same concepts and attributes we sample captions from the corre-
sponding LAION dataset that explicitly mention the concept but not the attribute. To ensure the
captions meet our criteria, we apply two filtering conditions: (1) the concept must be mentioned as
an object and not as a modifier (e.g., “cookie” but not “cookie cutter”), and (2) the caption must not
mention or imply the attribute of interest (e.g., “a classic chocolate chip cookie” implies the cookie
is round). After filtering, we remain with 150 captions per concept and compute their distributions
(full details are presented in Appendix [F). We generate 20 images per caption, resulting in 3,000
images per concept and then estimate their distribution. Finally, we compute the TVD between
these distributions and evaluate how closely the models’ outputs mirror the diversity present in their
corresponding, underspecified training data.

Generalizing to underspecified prompts. We examine whether the model’s ability to replicate
the diversity in the training data extends to new, similarly underspecified prompts. To achieve this,
we compare the multi-prompt distributions from LAION images with those derived from prompts
and images generated by GRADE, each consisting of 600 images, as discussed in Section[5] These
prompts, like the filtered captions, mention the concept without specifying the attribute (e.g., “a
cookie in a bakery”). By calculating the TVD between these distributions, we assess whether models
have generalize the learned concept-attribute associations to new, underspecified prompts.
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Table 5: Similarities between model outputs and its training set. The entropy values, PCC, and
TVD all indicate models have comparable diversity to the training set.

Model Dataset Source of Prompts Model Entropy Dataset Entropy PCC TVD

LAION-2B 0.62 086 011
SD-1.1 LAION-2B - 5 o rated 0.58 0.64 071 018
LAION-2B 0.62 088  0.10
SD-1.4 LAION-2B 5 rated 0.60 0.64 072 017
LAION-5B 0.68 073 013
SD-2.1 LAION-3B 5 rated 0.68 065 061 0.8

6.1 RESULTS

The diversity in the generated images closely corresponds to the diversity in the training data (see
Table [5). LAION exhibits moderate diversity, with dataset entropy values of 0.64 for LAION-2B
and 0.65 for LAION-5B. The models’ entropy values when using LAION captions as prompts are
comparable, ranging from 0.62 to 0.68. High PCC, ranging from 0.73 to 0.88, indicate a strong
correlation between the multi-prompt distributions of the generated images and those in the training
data. The low TVD values (0.10 to 0.13) further suggest that the distributions are similar.

When using the generated prompts instead of LAION captions, we observe a slight decrease in PCC
(ranging from 0.61 to 0.72) and a modest increase in TVD (ranging from 0.17 to 0.18), but the
overall trend remains consistent. This indicates that the models continue to reflect the training data’s
multi-prompt distributions even when presented with new, underspecified prompts.

These findings support our hypothesis that the low diversity observed in the generated images is
rooted in the underspecified training captions. Models learn to associate concepts with their most
common attribute values since those are unspecified in captions but are present in the corresponding
images, leading to a lack of diversity in the outputs that models learn to mimic.

7 LIMITATIONS

There are three main limitations to GRADE. First, because GRADE considers specific attributes
of specific concepts, the diversity scores do not reflect the diversity of concepts and attributes that
were not measured. Second, GRADE relies on an underlying LLM and VQA, which have unknown
biases that influence the suggestions by the LLM and affect the quality of information extracted by
the VQA. Finally, while our definition of diversity is clearly defined, human perception of diversity
is an open question, and we do not know if it aligns with GRADE.

8 CONCLUSION

We introduce GRADE, an automated fine-grained evaluation method for measuring sample diversity
in T2I models based on concepts and their attributes. By estimating the distribution of attributes in
generated images for a given concept and computing entropy, GRADE provides a diversity score
that can be used to interpret model behavior. Unlike traditional diversity metrics, GRADE does not
rely on reference images. Our experiments demonstrate that humans GRADE is accurate, while at
the same time showing weak correlation with traditional metrics like FID and Recall. We conduct
a comprehensive analysis of 12 state-of-the-art T2I models and uncovered a prevalent limitation:
these models default to generating images with the same attributes for a concept on anywhere from
78% to 90% of the concepts we tested, with an increasing trend as models scale in size and improve
in prompt adherence, highlighting a limited ability to capture the rich diversity inherent in visual
concepts. We further hypothesize that diversity in generation is linked to diversity in the training
data, and that under-specification encourages default behavior. Future work could explore methods
to enrich training data, incorporate diversity-promoting mechanisms during model training, and
extend GRADE to evaluate relationships between different attributes of a concept or the relationship
between multiple concepts in a scene. We hope our work will inspire more nuanced evaluations and
drive advancements in generating diverse visual content from textual descriptions.

10
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ETHICS STATEMENT

This research evaluates the diversity of text-to-image (T2I) models using our proposed method,
GRADE. We note that T2I models may inadvertently perpetuate biases present in their training
data, leading to less diverse or stereotypical outputs. By quantifying sample diversity and identifying
default behaviors, our work aims to promote fairness and inclusivity in generative modeling. At the
same time, the pipeline we propose does not capture all human notions of diversity, and models
should not be judged as “diverse enough” based on it alone in application where output diversity is
crucial.

All datasets and models used are open-source. Human evaluations were conducted with informed
consent, and participants were fairly compensated (an hourly rate of $15).

REPRODUCIBILITY STATEMENT

All necessary information to reproduce GRADE is provided in Section [3] and the complete set of
concepts, prompts, attributes, and attribute values are included in our submission. The code and data
for this paper will be open-sourced.
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A QUALITATIVE EXAMPLES OF DIVERSITY

Highest Diversity (SD-1.4)

Figure 5: Difference in diversity between models. Images generated using the prompt “a bag
on a cliffside”. Each row corresponds to a model, top-down: SD-1.4 (most diverse), SDXL, and
FLUX.1-dev (least diverse). While no model exhibits high diversity, there is a marked difference
between SD-1.4 and FLUX.1-dev, with SDXL between them. Specifically, diversity is reduced in
attributes such as color and placement of the bags, as well as the background.

Highest Diversity (SD-1.4)

Moderate Diversity (SDXL)

Figure 6: Difference in diversity between models. Images generated using the prompt “a bottle in
adesert”. Each row corresponds to a model, top-down: SD-1.4 (most diverse), SDXL, and FLUX.1-
dev (least diverse). While no model exhibits high diversity, there is a marked difference between
SD-1.4 and FLUX.1-dev, with SDXL between them. Here, the lack of diversity is most pronounced
in the color of the bottle or its liquid. While SD-1.4 depicts relatively varied bottles, SDXL depicts
transparent ones, while FLUX.1-dev depicts almost exclusively orange-like bottles.
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What is the of the car?

FLUX-dev

Figure 7: Illustration of diversity score. Displayed are 24 of the 100 images generated by FLUX.1-
dev using the prompt “A car in a car dealership”. The accompanying histogram and the subsequent
entropy plot both represent the 100. The diversity score is 0.78, indicating the color of the cars is

relatively diverse.
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Figure 8: Illustration of diversity score. Displayed are 24 of the 100 images generated by FLUX.1-
dev using the prompt “A rug at a palace”. The accompanying histogram and the subsequent entropy
plot both represent the 100. The diversity score is 0, indicating the rugs are consistently patterned.

A neon sign at a retro diner

Where is the neon sign ?
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FLUX-dev

20
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Sltdoors indoors

Figure 9: Illustration of diversity score. Displayed are 24 of the 100 images generated by FLUX.1-
dev using the prompt “A neon sign at a retro diner”. The accompanying histogram and the subse-
quent entropy plot both represent the 100. The diversity score is 0.99, indicating the location of the

signs is uniform.
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B EXTENDED DATA OVERVIEW

Table 6: Concepts and their attributes with detailed distributions.

Concept Question (Attribute) Attribute Values
Bin What shape is the bin? circular, octagonal, square, cylindrical, triangular,
rectangular, round, oval, hexagonal

Does the bin have a 1id? yes, no
Is the person male or male, female

Person
female?
Does the image show the yes, no
person from up-close?

Sui Is the suitcase open or open, closed

uitcase

closed?
Is the suitcase soft-shell or soft-shell suitcase, hard-shell suitcase

hard-shell?

Does the cake have multiple

Cake tiers? yes, no
Is the cake eaten?
Is there anyone swimming yes, no
Pool .
in the pool?
What color is the water in reflective like a mirror, black, clear, green, blue,
the pool? brown
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C COMPARING GRADE TO PREVIOUS METRICS

Table 7: PCC between GRADE and traditional metrics, using CLIP. FID, Recall (R), and Pre-
cision (P) show low to moderate degrees of correlation among each other, while the TVD based on
the distributions from GRADE (TVDg) exhibits weak correlations with all of them. This indicates
the distributions estimated by GRADE capture diversity existing metrics do not.

Model Dataset FID-R FID-P R-P FID-TVDg R-TVD¢ P-TVDg

SD-1.1 LAION-2B 0.14 -0.15 O 0.12 -0.15 0
SD-1.4 LAION-2B 0.19 -040 O 0 -0.20 -0.15
SD-2.1 LAION-5B -0.21 -048 0 0 -0.19 0.15

Table 8: Evaluation results with existing metrics using CLIP. Each value in the table is the mean
of the metric over the 50 pairs of multi-prompt distributions.

Model Dataset TVDg FID Recall Precision

SD-1.1 LAION-2B 0.15 290 0.12 0.88
SD-1.4 LAION-2B 0.15 276 0.15 0.92
SD-2.1 LAION-5B 0.16 290 0.12 0.94

Table 9: PCC between GRADE and traditional metrics, using Inception v3. FID, Recall (R),
and Precision (P) show low to moderate degrees of correlation among each other, while the TVD
based on the distributions from GRADE (TVDg) exhibits weak correlations with all of them. This
indicates the distributions estimated by GRADE capture diversity existing metrics do not.

Model Dataset  FID-R FID-P R-P FID-TVDg R-TVDg P-TVDg

SD-1.1 LAION-2B -041 0.23 -0.34 0.14 0.04 0
SD-1.4 LAION-2B -0.48 0.14 -0.22 0.18 -0.10 0.14
SD-2.1 LAION-5B -0.12 -052 0 -0.16 -0.15 0.13

Extended results for the comparison between GRADE and traditional metrics described in Sec-
tion 4.1} Results using CLIP for feature extraction can be viewed in Table [7] and Table [§] Results
using Inception v3 (Szegedy et all 2014) (ImageNet features (Deng et al.,[2009)) are in Table §]and
Table[I0] Below we detail the process of collecting the image sets and comparing between them.

Reference and generated images. Since LAION is opensource and was used to train SD-1.1,
SD-1.4, and SD-2.1; LAION-2B for the first two and LAION-5B for the latter—we sample images
from it and compare them to images generated by the models. Specifically, we sample 50 from the
405 multi-prompt distributions (i.e., only the concept, attribute, and attribute values, not the prompts
and images) in Section[5] Next, we sample 115 image and caption pairs using WIMBD, where the
image depicts the concept and the caption mentions the concept but not the attribute, in accordance
with our approach (Section [3.1). We end up with 50 reference distributions, each consisting of 115
images. To get our generated images, we generate one image for each caption, to maintain equal
proportion between the distributions. For example, if an image in LAION is linked to the caption
“Unicorn Cookie”, its corresponding distribution will contain an image that was generated using
that caption as a prompt.

Details of metrics. Using the 50 pairs of distributions, we can compare GRADE to the metrics.
Since entropy is not a reference-based metric, we change it in favor of Total Variation Distance
(TVD) and use it on top of the distributions estimated by GRADE. We compute FID and Recall,
using features from the open-clip implementation (the ViT—-H/14 variant) (Ilharco et al.| 2021}
Radford et al., [2021), trained on LAION-2B. Recall was computed with £k = 3. We run the same
experiment using Inception v3 features with 64 dimensions.
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Table 10: Evaluation results with existing metrics using Inception v3. Each value in the table is
the mean of the metric over the 50 pairs of distributions.

Model Dataset TVDg FID Recall Precision

SD-1.1 LAION-2B 0.15 19.67 0.35 0.75
SD-1.4 LAION-2B 0.15 15.0 0.45 0.74
SD-2.1 LAION-5B 0.16 18.67 0.49 0.83

C.1 QUALITATIVE METRIC COMPARISON EXAMPLES

Is the picnic basket made of ?  TVDgpape =0  FID=272 Recall=0 Precision = 0.9
LAION-2B

Figure 10: Comparison between GRADE, FID, and Recall, using CLIP features. The metrics
are compared over the “wicker” attribute of the concept “picnic basket”. TVDgrapg reports very
high similarity between the sets of images, which is indeed shown in the images (almost all picnic
baskets are made of wicker). In contrast, Recall and FID report very low scores.

Are there any TVDgpppe =0.03 FID=240 Recall=0.08  Precision = 0.93
on the tablecloth?

LAION-2B

Figure 11: Comparison between GRADE, FID, and Recall, using CLIP features. The metrics
are compared over the “visible stains or damage” attribute of the “tablecloth” concept. TVDgraDE
reports very high similarity between the sets of images, which is indeed shown in the images (the
tablecloth is rarely damaged in either set). In contrast, Recall and FID report very low scores.
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D EXTENDED RESULTS

28810 21 22 22 | 20 pE) so-1.1-30) 18 [pal 21 21 E 2
200

13 16 pECERCESER 15 13 13 14 sp14- 13

12 sl 16 14 13 13 13 -5 so21- 18 21 0

U@ 15 16 15 11 8 15 14 13 SDXL—‘ 21

15 M 15 14 16 16 16 sD3

16 15 N 11 16 16 BN > FLUKSCHNELL
15 14 11 M 15 16 L L) 16 100 xRy

11 16 16 15 UM 12 16 16 SDXLTURBO

FLUX-DEV

SDXLTURBO

Lom-SDXL

8 16 16 12 o) 14 14 LeM-SDXL
DEEPFLOYDM

1 5 19 18 16 [ 2E 21
oeeprlovoL 16 13 13 14 16 R SER 16 14 25 DEEPFLOYD-L
DEEPFLOYDXL

Loo -

DEEPFLOYD-XL - 14 13 13 16 16 16 14
(a) The mean TVD between all pairs of models over (b) The mean TVD between all pairs of models over
multi-prompt distributions. single prompt distributions.

8§ 8

D11
D14
D21

FLUX-DEV

£
H

xschneLs |

3
g

XLTURBO -
PFLOYDXL

g

KSCHNELL -

Figure 12: For readability, both figures show TVD in a range between 0 and 100 instead of O to 1.

Table 11: Backbones, their associated models, and the average mean TVD of models with a
shared backbone.

Backbone Models Average mean TVD
SD-1.1 SD-1.1, SD-1.4, SD-2.1 11
SDXL SDXL, SDXL-LCM, SDXL 10
FLUX FLUX.1-schnell, FLUX.1-dev 11
DeepFloyd DeepFloyd-M, DeepFloyd-L, DeepFloyd-XL 8

Similarity in diversity across distributions. We investigate the similarity in diversity across mod-
els we find in Section @ We modify GRADE to use Total Variation Distance (TVD) instead of
entropy to facilitate comparisons between corresponding distributions in the attribute value level.
For example, the difference between the frequency of “blue” in the multi-prompt distribution of the
concept tie and attribute color. Results for both concept and single prompt distributions are shown in
Fig.[I2] The results are in line with our other findings: all models have similar distributions, with the
maximum TVD for multi-prompt distributions being 0.22 and for single prompt distributions 0.26,
with these numbers being the result of a comparison between the least and most diverse models (i.e.,
SD-1.1 and FLUX.1-dev). Moreover, models with similar backbone have smaller distances. The
groups and the mean TVDs are shown in Table[TT]

D.1 ADDITIONAL ANALYSIS ON MODEL SIZE

We further investigate the relationship between model size and diversity, and prompt adherence and
diversity. Fig. [[3] shows that as the denoisers’ parameter size increases, both the mean concept
entropy and the mean prompt entropy decrease. This suggests that larger models produce less di-
verse outputs, indicating an inverse-scaling law (McKenzie et al [2023). The negative correlation
is supported by significant Pearson and Spearman correlation coefficients at both the concept level
(Pearson r = —0.701, p = 0.011; Spearman p = —0.842, p = 0.001) and the prompt level (Pearson
r = —0.666, p = 0.018; Spearman p = —0.804, p = 0.002).

Figure[[4]illustrates negative correlation between diversity and prompt adherence. As the percentage
of unanswerable images (‘“none of the above”) increases i.e., prompt adherence decreases, the diver-
sity measured by entropy increases. This is quantified by strong positive Pearson and Spearman cor-
relations at both the concept level (Pearson » = 0.802, p = 0.002; Spearman p = 0.938, (p < 0.001)
and the prompt level (Pearson » = 0.871, (p < 0.001); Spearman p = 0.947, (p < 0.001). This
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Figure 13: (a) The mean concept entropy of the models plotted against the denoiser’s parameter size.
(b) The mean prompt entropy of the models plotted against the denoiser’s parameter size. To a de-
gree, diversity deteriorates in tandem with parameter size. This phenomenon is most apparent within
every model family. Models marked with U denote U-Net-based models, T" denotes transformer-
based models. Up and T'p denote distilled models.
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Figure 14: (a) The mean concept entropy of the models plotted against the % of “none of the
above”. (b) The mean prompt entropy of the models plotted against the % of “none of the above”.
In Section 4 we show 80% of which account for missing concepts in the image. The plots show
negative correlation between diversity and prompt adherence, which indicates there is a tradeoff.

indicates a trade-off between diversity and prompt adherence: models that generate more diverse
outputs tend to adhere less strictly to the prompts.

D.2 STATISTICAL SIGNIFICANCE OF DIVERSITY SCORES

To confirm that our results are statistically significant, we perform a two-tailed permutation test be-
tween every unique pair of models for both distribution types (single-prompt and multi-prompt).
This test is common when the data comes from a complex distribution (Bonnini et al.,[2024), in our
case, the distribution of diversity scores of each model. We demonstrate that the difference between
the vast majority of models is statistically significant in both cases.

Concretely, there are 66 unique model pairs. For each pair, we compute a two-tailed permutation test
with the null hypothesis H that the diversity scores of the two models are the same. We perform

21



Under review as a conference paper at ICLR 2025

N = 100,000 permutations, where the p-value is defined as

number of permutations where | Dperm| > [Dobs|
p = b
N
where Dy is the observed difference in diversity scores between the two models, and Dy, is the

difference obtained under each permutation. We compare the p-value p to a significance level of
a = 0.05.

Results. The vast majority of pairs are statistically significant.

Comparisons based on single-prompt distributions reveal just three pairs are not statistically signifi-
cant: (SDXL, SDXL-LCM), (SDXL, DeepFloyd-XL), and (SDXL-Turbo, FLUX-schnell).

Similarly, comparisons using multi-prompt distributions, reveal only 15 pairs are not statistically
significant. Non-significant pairs are similar in quality. For example, all pair combinations of SD-
1.1, SD-1.4, and SD-2.1 are not significant, which is not surprising since these models largely share
the same underlying architectures and training data.

D.3 DISCUSSION OF RESULTS

Our findings reinforce the observations made in the main text regarding the interplay between model
scale, diversity, and prompt adherence:

Inverse-scaling law. There is a negative correlation between diversity and model size, suggesting
that increasing model parameters leads to decreased diversity. This phenomenon is most apparent
within each model family and aligns with the concept of an inverse-scaling law.

Fidelity-diversity trade-off. The negative correlation between diversity and prompt adherence indi-
cates a trade-off between a model’s ability to generate images that match the prompt and the diversity
of its outputs. This is consistent with previous findings on fidelity-diversity trade-offs (Dhariwal &
Nichol| 2021; [Kynkdanniemi et al., 2019), where improving a model’s prompt-specific generation
may reduce the overall diversity of its outputs.

E DEFAULT BEHAVIORS: EXTENDED RESULTS

In Section [5.1| we define default behaviors and mention that almost all concepts are associated with
at least one default behavior, as shown in Table[I2] In Table[I3] we report the total number of default
behaviors for both types of distributions.

Table [T4] shows a sample of default behaviors detected in multi-prompt distributions and Fig. [I3]
images of these behaviors.
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Table 12: Percentage of at least one default behavior. Lower values indicate higher diversity.
Almost all concepts are associated with at least one default behavior in single prompt distributions,
with a similar trend in multi-prompt distributions. The model with the most default behaviors is in
bold. Results are rounded to the closest integer.

% of Default Behavior |

Model Multi-prompt  Single-prompt
DeepFloyd-M 83 92
DeepFloyd-L 81 92
DeepFloyd-XL 80 92
SD-1.1 78 87
SD-1.4 82 87
SD-2.1 76 89
SDXL 81 90
SDXL-Turbo 86 95
SDXL-LCM 82 92
SD-3 (2B) 88 95
FLUX.1-schnell 90 97
FLUX.1-dev 88 96

Table 13: Percentage of all default behaviors. Lower values indicate higher diversity. There
are 405 multi-prompt and 2430 single prompt distributions in total. The table quantifies the total
percentage of default behaviors observed. The model with the most default behaviors is in bold.
Results are rounded to the closest integer.

Model % of Default Behavior |
Multi-prompt  Single-prompt

DeepFloyd-M 39 54
DeepFloyd-L 39 56
DeepFloyd-XL 40 56
SD-1.1 39 49
SD-1.4 40 51
SD-2.1 40 52
SDXL 44 57
SDXL-Turbo 50 67
SDXL-LCM 44 57
SD-3 (2B) 56 69
FLUX.1-schnell 55 67
FLUX.1-dev 56 70

Table 14: A random sample of default behaviors. The concept is underlined in the question
column. Images corresponding to the behaviors in the table can be viewed in Fig. E}

Model Question (Attribute) Attribute Value Percentage
SD-1.1 Is the brick alone or in a stack with others? stacked 97.4
SD-1.4 Is there a frame around the mirror? yes 92.9
SD-2.1 Is the suitcase soft-shell or hard-shell? hard-shell 88.3
SDXL Is the detective female or male? male 99.6
SD-3 (2B) Is the tie a necktie or a bowtie? necktie 100
FLUX.1-schnell Is the clock analog or digital? analog 100
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Brick
(SD-1.1)

Mirror
(SD-1.4)

Suitcase
(sD-2.1)

Detective
(SDXL)

Tie
(SD-3)

Clock v
(FLUX-schnell) S5

Figure 15: A sample of images depicting the default behaviors in Table The concept is
shown in the left column with the model directly below it. Images were sampled randomly from
all prompts. The default behaviors, top down: (1) stacked bricks; (2) framed mirrors; (3) hard-shell
suitcase; (3) male detective; (4) neckties; and (5) analog clocks.
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F IS Low DIVERSITY ROOTED IN THE TRAINING DATA?

Filtering Captions from LAION. We aimed to measure the diversity of training images whose
captions satisfy two conditions: (1) they mention the concept as an object and not as a modifier
(e.g., “cookie” but not “cookie cutter”), and (2) the caption must not mention or imply the attribute
of interest (e.g., “a classic chocolate chip cookie” implies the cookie is round). We queried LAION
using WIMBD (Elazar et al.,|2024) and sampled 500 captions for each concept.

To efficiently filter the captions, we utilized GPT-40 in a few-shot setup. For each caption, we
provided the caption text, the concept (e.g., “‘cookie”), and the question regarding the attribute of
interest (e.g., “what is the shape of the cookie?”’). We instructed GPT-40 to analyze each caption
and determine whether it satisfies both filtering conditions. The model was prompted to reply with
“yes” if both conditions are met and “no” otherwise.

We then downloaded the images associated with the captions that GPT-4o classified as satisfying
both conditions. To ensure the reliability of our filtering method, we conducted a human evaluation,
achieving an F1 score of 90.3%. Detailed methodology and results of the human evaluation are
provided in Appendix

Below is the prompt we use with GPT-4o to filter captions from LAION:

In this task, you are provided with a caption associated with an
image, a concept, and a question. You need to find relevant captions
that do not indicate the answer to the question. Your role is
two-part. First, determine whether the caption explicitly mentions the
concept as a tangible thing, and not an accessory or an item related
to the concept. Second, determine if that question can be answered
only by reading the caption. If the answer is yes for the first and no
for the second, reply with "yes", otherwise reply with "no"

Here are some examples to guide your understanding:

Caption: teapot, glass teapot, Chinese teapot, herbal teapot, teaware
Concept: teapot

Question: What material is the teapot made of (ceramic, metal, glass,
etc.)?

Reasoning: The first part is to determine if teapot is mentioned in
the prompt. It is the first word in the caption, so it is. The second
part is to determine if the question is answerable from the prompt or
not. We want to find captions that are not answerable. Since there are
mentions of materials in the caption, it is answerable and the answer
is no.

Answer: no

Caption: My Sweet Angel Book Store Hyatt Book Store Amazon Books eBay
Book Book Store Book Fair Book Exhibition Sell your Book Book
Copyright Book Royalty Book ISBN Book Barcode How to Self Book
Concept: book

Question: Is the book dirty or clean?

Reasoning: The caption mentions items related to a book, but not an
actual book. The answer is no.

Answer: no

Caption: Perfect reading chair, cozy reading chair, nest chair, my
favorite chair, Nest Chair, Cozy Chair, Chair Cushions, Big Chair,
Cuddle Chair, Swivel Chair, Relax Chair, Big Comfy Chair, Chaise Chair
Concept: chair

Question: What color is the chair?
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Reasoning: The first part is to identify if the caption mentions a
chair. It does mention a chair, with various adjectives. The second
part is to determine if the question is answerable from the caption.
The question asks about the color of the chair, and there is no
mention of a chair color. The answer is yes.

Answer: yes

Caption: JIX motorcycle helmet, cross helmet, full helmet, safety
helmet

Concept: helmet

Question: Does the helmet have any logos or graphics on it?
Reasoning: The first part is to determine if the caption mentions a
helmet. The caption indeed mentions a variety of helmets. The second
part is to determine if the question can be answered from the caption
alone. There is no information about logos or graphics in the caption,
so it is not answerable from the caption alone. The final answer is
yes because the answer to the first is yes and the second is no.
Answer: yes

Caption: dust bin, garbage container, recycle bin, trash icon

Concept: bin

Question: What shape is the bin?

Reasoning: The first part is to determine if the caption mentions a
bin. The caption mentions a bin, but it also mentions trash icon. This
indicates this is not an actual bin, but an icon of a bin. The answer
is no.

Answer: no

Caption: Cookie Policy - Cookie Law Compliance [Multilang..

Concept: cookie

Question: What shape is the cookie?

Reasoning: The first part is to determine if the caption mentions a
cookie. The caption mentions cookie policy and cookie law compliance,
but not an actual edible cookie, that has a shape. The answer is no.
Answer: no

Caption: Best Cookie Presses - Cookie Press 150PCS Cookie Press Gun
with 16 Review

Concept: cookie

Question: Does the cookie have chocolate chips?

Reasoning: The first part is to determine if the caption mentions a
cookie or something else. The caption is about cookie press and not
actual cookie. The answer is no.

Answer: no

G HUMAN EVALUATION

Worker selection. Workers were chosen based on their performance records, requiring them to
have a minimum of 5,000 approved HITs and an approval rate above 98%. They had to achieve a
perfect score on a qualification exam before being granted access to the task. An hourly wage of $15
was provided, ensuring they were fairly compensated for their efforts. In total, 71 unique workers

participated in evaluating GRADE and 49 to filter the captions from LAION.

Validating GRADE. To validate the VQA Section 4} we run an AMT crowdsourcing task where
the worker is provided with a question, concept, image, and attribute values, and is requested to
select the attribute value that best matches the question and image. The UI for this task can be
viewed in Fig. [T6 with examples in Fig. A sample of cases from our attribute values coverage

validation (validation of step (b)) is available in Fig.[I8and Fig.
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Validating filtering of captions from LAION. To assess the effectiveness of our GPT-40-based
caption filtering method described in Section [6] we conducted an Amazon Mechanical Turk (AMT)
crowdsourcing task. We sampled 1,000 captions from LAION, ensuring an equal distribution of
500 captions that met the filtering criteria and 500 that did not. Workers were instructed to evaluate
whether each caption (1) explicitly mentioned the concept as the main object rather than as a modifier
(e.g., “cookie” instead of “cookie cutter”’) and (2) the caption must not mention or imply the attribute
of interest (e.g., “a classic chocolate chip cookie” implies the cookie is round). Each example was
reviewed by three independent workers, and the majority decision was taken as the final label. Our
automated filtering method achieved a recall of 85.8% and a precision of 95.4%, resulting in an F1
score of 90.3%, which indicates a high level of agreement with human judgments. These findings
demonstrate that GPT-40 is a reliable tool for automated caption filtering. Additional details about
the user interface and example cases are provided in Fig.[20]and Fig. 21] respectively.

Question: If there is ketchup or mustard, is it in wave form on the hot dog?

Options: 'es', ‘no*

Correct Answer: yes

Explanation: The perspective may be confusing since we can't see the entire hot dog, but the mustard is laid out in what appears to be wave form. The answer is yes.

Main Task:

Given the following image and question, select the most appropriate answer based on the image. If the image does not contain ${concept} or none of the provided answer choices correctly describe the image, please select ‘None of the above'
~:Main Task Image

Question: ${question)

Options:

[ Stoptions) | [ Submit

Figure 16: A screenshot of the VQA validation task. Workers are provided a question, concept,
image, and a set of categories, including “none of the above” (options here). Their task is to select
the option that answers the question.

Instructions: In this task, you will be provided a question. Your. based on the options in [ the object tinthe lect the “None of the above'” option.
how quide for the

Example 1:

Correct Answer: bicycle helmets
Explanation: The image shows a bicycle helmet.

Example 2:

iy

Question: s the umbrella open or closed?
Options: closed’, ‘open’

Correct Answer: open

Explanation: The umbrellais open.

Example 3:

T

Question: s the drawer open or closed?
Options: ‘open’, closed'
orrect Answer: None of the above
Explanation: in the image, there is , but it does not have an inner shelf for tem storage.

Figure 17: 3 out of 10 examples provided to workers as aid to complete their visual question an-
swering task.
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SD-1.1

An gppleina A tiora in a pown A crown inside a
submarine shop volcano

SDXL

A mirror on a sports
race field store

FLUX-dev

A frisbee in a library Atie in aninsect A clothes ironin a
breeding facility nightclub

Figure 18: A sample of images marked with “none of the above”, as a result of not including the
concept (underlined) in the image.
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SDXL

Popcorn ata
cinema

Q: is the popcorn in
a bowl or a bucket?

Ve = {oucket, bowl}

SDXL

a tie in an office

Q: Is the tie worn with
a formal or casual
outfit?

Ve_ = {casual, formal}

SD-1.1

FLUX-dev

a toy at a children’s
playroom

Q: Does the toy appear
to be mechanical or
electronic?

Ve  ={mechanical,
electronic}

A person in a city
square

Q: Is the person
male or female?

°_={male, female}

Figure 19: A sample of images marked with “none of the above”. The top row exhibits cases
where the attribute value is not in V¢. The bottom row exhibits cases where the question cannot be
answered just from viewing the image. The concept in each prompt is underlined.
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1. Does the sentence below discuss ${concept} and not something related to it?

Sentence: ${prompt}

- Select an answer -- ~

2. Can you answer the question based on the sentence alone?

Question: ${question}
Caption: ${prompt}

- Select an answer -- v

Figure 20: A screenshot of the caption filtering validation task. Workers are provided a caption, two
questions, and a concept. Their task is to read the caption and answer the questions.

Instructions:
You will be presented with sentences and questions about them. Your task is to read each sentence carefully and answer two questions:

1. Does the sentence below discuss ${concept} and not something related to it?
2. Can you answer the question based on the sentence alone?

For each question, select "Yes" or "No" based on the following guidelines:

¢ For Question 1:

o Select "Yes" if the sentence directly discusses the specified concept and not something related to it.

o Select "No" if the sentence does not discuss the concept directly or discusses something related but not the concept itself.
* For Question 2:

o Select "Yes" if you can answer the question based solely on the information provided in the sentence.

o Select "No" if you cannot answer the question based solely on the sentence, or if additional information is required.

Please refer to the examples below for guidance:

Sentence: O'Neal - Q RL Helmet - Bicycle helmet

Does the sentence below discuss a helmet? Yes

Explanation: The sentence says it is a bicycle helmet.

Question: What type of helmet is depicted in the image (e.g., sports, construction, military)?
Can you answer the question based on the sentence? Yes

Explanation: This is a bicycle helmet, as stated in the sentence.

Sentence: Motorcycle Helmet Motocross Helmet cookie cutter set

Does the sentence below discuss a helmet? Yes

Explanation: The helmet is a motorcycle helmet, so we know it’s an actual helmet.
Question: What color is the helmet?

Can you answer the question based on the sentence? No

Explanation: The sentence doesn’t imply the color of the helmet.

Sentence: Photo #2 - Cookie & Cookie Monster

Does the sentence below discuss a cookie? Yes

Explanation: The sentence explicitly mentions "Cookie," identifying it as a concept in the sentence.
Question: What shape is the cookie?

Can you answer the question based on the sentence? No

Explanation: The sentence does not provide information about the shape of the cookie, only its presence.

Figure 21: 3 out of 10 examples provided to workers as aid to complete their caption filtering task.
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H ProMPTS IN GRADE

H.1 CoONCEPT COLLECTION

To collect a list of diverse concepts, we prompt GPT-40 (OpenAl et al., [2024) with the following:

e \

Provide a CSV of 100 unique concepts, like the example below.
concept_id is an enumeration that begins from 0.
Choose concepts that are easy to visually verify for a VQA model.

concept_id, concept
0, an ice cream

1, a cake

2, a suitcase

3, a clock

H.2 PROMPT GENERATION

The following prompt was used to generate common prompts:

s N

Please suggest three typical settings for the concept below.
Note that the output should be a list of strings.

Here's an example:

Concept: a cake

Prompts: [

"a cake in a bakery,

"a cake at a birthday party",
"a cake at a swimming pool"

1

Concept: {concept}

\ J

This one was used to generate uncommon prompts:

s N

Please suggest three atypical settings for the concept below.
Note that the output should be a list of strings.

Here's an example:

Concept: a cake

Prompts: [

"a cake on a weight loss clinic,
"a cake at a gym",

"a cake at a swimming pool"

1

Concept: {concept}

H.3 ATTRIBUTE GENERATION

GRADE first analyzes the specific attributes of the concept provided in the prompt, and then gener-
ates questions that can be used to count the occurrences of attribute values in images. Below is the
prompt we used with GPT-4o.

Help me ask questions about images that depict certain concepts.

I will provide you a concept.
Your job is to analyze the concept's typical attributes
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and ask simple questions that can be answered by viewing the image.
Here's an example:

concept:

a cake

attributes:

cakes can be made in different flavors, shapes,
and can have multiple tiers.

questions:

1. Is the cake eaten?

2. Does the cake have multiple tiers?

3. In what flavor is the cake?

4. What is the shape of the cake?

5. Does the cake show any signs of fruit on the outside or

suggest a fruit flavor?
Now that you understand, let's begin.

concept: {c}

H.4 ATTRIBUTE VALUES GENERATION

To generate attribute values f}g for PV\a}c’ we provide GPT-40 (OpenAl et al.,[2024) with a concept,

a question, and a prompt. GPT-40 then outputs a list of attribute values that can match the question
(attribute). The process is performed for all prompts mentioning the concept. The sets are then
unified with similar answers removed (e.g., “motorbike helmets” is removed, because “motorcycle

helmets” already exists). The result of the unification is f)g.

I have a question that is asked about an image. I will provide you
— with the question and a caption of the image.
Your job is to first analyze the description of the image and the
— question, then, hypothesize plausible answers that can surface
— from viewing the image. Do not write anything other than the
< answer.
Then, I need you to list the plausible answers in a list, just like in
— the example below. For example,
Caption: a helmet in a bike shop
Question: What type of helmet is depicted in the image?
Plausible answers: ["motorcycle helmets",

"bicycle helmets",

"football helmets",

"construction helmets",

"military helmets",

"firefighter helmets",

"rock climbing helmets",

"hockey helmets"]
Now your turn.
Caption: {caption}
Question: {question}
Plausible answers:
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I have a question that is asked about an image. I will provide you

— with the question and a caption of the image. Your job is to first
— carefully read the question and analyze, then hypothesize

— plausible answers to the question assuming you could examine the
— 1mage (instead, you examine the caption). The answers should be in
— a list, as in the example below. Do not write anything other than
— the plausible answers.

Example:

Caption: a helmet in a bike shop

Question: What type of helmet is depicted in the image?

Plausible answers: ["motorcycle helmets",
"bicycle helmets",
"football helmets",
"construction helmets",
"military helmets",
"firefighter helmets",
"rock climbing helmets",
"hockey helmets"]

Now your turn.

Caption: {caption}

Question: {gquestion}

Plausible answers:

H.5 GENERATING ANSWERS

We use GPT-40 to answer the generated questions with 1, 000 as max tokens and temperature 0. We
use the Structured Outputs feature (OpenAl, 2024) to map the natural language answers to attribute
values in a single step. Our prompt is straightforward:

-

Answer the following question with one of the categories. To come up
— with the correct answer, carefully analyze the image and think
— step-by-step before providing the final answer.

Question: {gquestion}
Categories: {categories}
Selection:
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