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ABSTRACT

Large Language Models (LLMs) have become integral to a wide range of natural
language processing tasks. A key component enabling fast autoregressive infer-
ence in LLMs is the Key-Value (KV) cache, which stores hidden states across
decoding steps. However, the KV cache imposes substantial memory overhead,
especially in long-context generation. While recent studies have proposed various
compression techniques to mitigate this issue, they largely overlook the interaction
between the techniques Parameter-Efficient Fine-Tuning (PEFT) methods such as
LoRA, under which models are significantly more sensitive to KV cache compres-
sion. To address this issue, we propose the Deep Low-Rank Projector (DLRP),
a novel adapter that compresses the KV cache along the head dimension while
preserving downstream performance in PEFT-adapted models. We introduce the
Deep Linear Projector (DLP), which is realized leveraging a Deep Linear Network
(DLN). We also propose a novel regularizer that approximates the nuclear norm
of the DLP, thereby promoting low-rank structure in the learned projection. After
training with the proposed regularizer, we inspect the singular-value spectrum and
select the minimum rank satisfying a predefined energy threshold, yielding a com-
pact head dimension that balances compression and accuracy. Based on this rank,
we construct the DLRP, fine-tune it on the target task, and merge its factorized lay-
ers into a single linear operator for efficient inference. Empirical evaluation con-
firms that DLRP achieves substantial KV cache compression while maintaining
strong performance across diverse LLM benchmarks, offering a practical solution
for deploying PEFT-adapted models in memory-constrained settings.

Large Language Models (LLMs), such as the GPT series (Achiam et al., 2023; Brown et al., 2020;
Ouyang et al., 2022), Claude series (Enis & Hopkins, 2024), and Qwen series (Yang et al., 2025),
have become indispensable for a wide range of downstream natural language processing (NLP)
tasks, including text generation (Brown et al., 2020; Raffel et al., 2020), summarization (Pu et al.,
2023; Zhang et al., 2024), and code generation (Roziere et al., 2023). A key architectural innovation
enabling efficient autoregressive inference in LLMs is the Key-Value (KV) cache (Pope et al., 2023),
which retains hidden states from previous decoding steps to avoid redundant computation.

While KV caching dramatically speed up inference, its memory footprint grows linearly with both
sequence length and model size, leading to substantial memory consumptions (Shi et al., 2024). To
address this issue, recent studies have explored a variety of KV cache compression strategies along
different structural axes, including the number of layers (Brandon et al., 2024; Sun et al., 2024; Wu &
Tu, 2024; Zuhri et al., 2024; Liao & Vargas, 2024; Goldstein et al., 2024), number of heads (Shazeer,
2019; Ainslie et al., 2023; Yu et al., 2024; Chen et al., 2024), sequence length (Devoto et al., 2024;
Wang et al., 2024; Xiao et al., 2023; Li et al., 2024; Cai et al., 2024; Feng et al., 2024; Park et al.,
2025), and the dimensionality of the head (Liu et al., 2024; Saxena et al., 2024; Yu et al., 2024; Lin
et al., 2024).

However, a common limitation of these approaches is that they are primarily developed and evalu-
ated their method under the base models (e.g., pretrained or instruction-tuned) without accounting
for downstream adaptation phase. In practice, models are frequently fine-tuned using Parameter-
Efficient Fine-Tuning (PEFT) methods such as LoRA (Hu et al., 2022), which introduce small train-
able modules while keeping the base model frozen. Notably, we observe that these PEFT-adapted
models are considerably more sensitive to KV cache compression. As Figure 1 shows, compressing
the KV cache leads to significant performance drops in LoRA-adapted models compared to their
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Figure 1: Relative drop of average performance across five benchmark tasks (GSM8K, PIQA, Hel-
laSwag, XSum, and CNN/DM) under different KV cache compression rates (10%, 25%, 50%).
Relative Drop of Average Performance denotes the percentage reduction in the task-averaged per-
formance relative to the baseline without KV cache compression. LoRA-dapted models (solid lines)
exhibit larger performance degradation than non-adapted models (dashed lines), indicating greater
sensitivity to compression.

non-adapted counterparts. This indicates a crucial interaction between PEFT mechanisms and KV
cache compression that existing methods fail to address.

To mitigate this issue, we introduce the Deep Low-Rank Projector (DLRP), a novel adapter that
compresses the KV cache along the head dimension while enabling effective adaptation to down-
stream tasks. First, we define the Deep Linear Projector (DLP) as a Deep Linear Network (DLN)—a
composition of purely linear layers. While DLNs lack non-linear activations, their compositional
depth allows them to approximate the optimization and generalization behavior of non-linear ar-
chitectures such as MLPs. This enables the DLP to effectively capture task-relevant information
despite the structural simplicity of linear transformations. To guide the DLP toward a compact,
task-aligned projection, we propose a novel regularizer that theoretically approximates the nuclear
norm of the DLP. This regularizer elicits the KV cache to be represented in a low-dimensional (i.e.,
low-rank) subspace that retains task-relevant information. After regularized training, we examine
the singular-value spectrum of the learned DLP and select the smallest rank that satisfies a prede-
fined energy threshold, yielding a task-preferred compression level that balances compactness and
performance. Based on this rank, we instantiate a Deep Low Rank Projector (DLPR) as a DLN
whose output dimension equals the selected rank. We fine-tune the DLRP on the downstream task
and then fold its factorized layers into a single linear matrix, which enables efficient inference while
preserving compatibility with lightweight adaptation workflows. This process explicitly captures
the interaction between PEFT mechanisms and KV cache compression by optimizing the adapter
within the learned low-rank subspace induced by regularized training. Empirically, we show that the
DLRP not only achieves substantial KV cache compression but also preserves performance under
PEFT across a wide range of LLM benchmarks. Our contributions can be summarized as follows:

• We propose Deep Low-Rank Projector (DLRP), a novel adapter that compresses the KV
cache along its head dimension while preserving its ability to adapt to downstream tasks.

• The DLRP is built on a deep linear network (DLN) – a stack of purely linear layers –
marking a novel application of DLNs as adapter modules in large language models.

• We propose a new regularizer that approximates the nuclear norm of the Deep Linear Pro-
jector (DLP), encouraging low-rank projections to compress the KV cache.

• DLRP consistently outperforms existing KV Cache compression methods across a range
of benchmarks with superior trade-offs between compression rate and task performance.
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1 RELATED WORKS

1.1 KEY-VALUE (KV) CACHE COMPRESSION

Key-Value (KV) Cache stores tensors of the shape (number of layers, number of heads, sequence
length, feature dimension). Prior works have proposed the KV cache compression method along
various axes, including the number of layers (Brandon et al., 2024; Sun et al., 2024; Wu & Tu, 2024;
Zuhri et al., 2024; Liao & Vargas, 2024; Goldstein et al., 2024), number of heads (Shazeer, 2019;
Ainslie et al., 2023; Yu et al., 2024; Chen et al., 2024), sequence length (Devoto et al., 2024; Wang
et al., 2024; Xiao et al., 2023; Li et al., 2024; Cai et al., 2024; Feng et al., 2024; Park et al., 2025),
and feature dimensionality (Liu et al., 2024; Saxena et al., 2024; Yu et al., 2024; Lin et al., 2024).
YOCO (Sun et al., 2024) introduces a dual-decoder architecture in which only the self-decoder
encodes global key-value caches, while the cross-decoder reuses them via cross-attention, reducing
KV cache size proportionally to the number of cross-decoder layers. SnapKV (Li et al., 2024)
compresses the cache by storing less important key-value pairs in low precision while preserving
critical ones in high precision. MatryoshkaKV (Lin et al., 2024) reduces the feature dimension
of KV caches through trainable orthogonal projection matrices. While these methods effectively
reduce KV cache size in base models, they do not consider parameter-efficient fine-tuning (PEFT)
scenarios. In this work, we propose a novel adapter that enables efficient KV cache compression
along the feature dimension, while preserving performance under PEFT settings.

1.2 DEEP LINEAR NETWORKS

Deep Linear Networks have been widely used as analytical tools to understand the behavior of
nonlinear neural networks. Even in the depth-0 cases–equivalent to linear regression–DLNs offer
valuable insights into generalization in over-parapmeterized regimes (Ziyin et al., 2022; Hastie et al.,
2022). The training dynamics of a depth-1 DLNs have also been studied to shed light on the dynam-
ics of learning in nonlinear neural networks (Saxe et al., 2013). While DLNs are as expressive as
linear models, the introduction of depth induces non-trivial loss landscapes, which are often consid-
ered useful proxies for those of nonlinear neural networks (Kawaguchi, 2016; Hardt & Ma, 2016;
Laurent & Brecht, 2018). DLNs continue to provide theoretical insights into modern deep learning
problems, such as posterior collapse in variational autoencoders (Lucas et al., 2019; Wang & Ziyin,
2022) and neural collapse in contrastive learning (Tian, 2022). Inspired by the view that DLNs can
mimic the behavior of nonlinear neural networks, our work is the first to leverage DLNs not just as
theoretical tools but as functional building blocks for desigining an adapter that enables both KV
cache compression and parameter-efficient fine-tuning.

2 BACKGROUNDS

2.1 KEY-VALUE (KV) CACHE IN TRANSFORMER

In an L-layer transformer, the new token embedding xt ∈ R1×dembed at decoding step t and l-th layer
is used to compute the query vector qtl , key vector ktl , and value vector vtl as follows:

qtl = xtWQl
, ktl = xtWKl

, vtl = xtWVl
, (1)

where WQl
∈ Rdembed×dhead ,WKl

∈ Rdembed×dhead ,WVl
∈ Rdembed×dhead are query, key, and value ma-

trices, respectively. The newly computed ktl and vtl are then appended to the cached key and value
matrices from previous steps:

Kt
l = Concat(Kt−1

l , ktl ), V
t
l = Concat(V t−1

l , vtl ) ∈ Rt×dhead , (2)

where Kt−1
l ∈ R(t−1)×dhead and V t−1

l ∈ R(t−1)×dhead denote the cached key and value matrices of
tokens for the previous tokens x1, · · · , xt−1. These cached matrices are subsequently used in the
scaled dot-product attention computation for token xt. The attention output ztl ∈ R1×dhead for the
token xt at step t is computed as:

ztl = Softmax
(qtlKt⊤

l√
dk

)
V t
l (3)
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Figure 2: Visualization of the overall framework. The top diagram shows the training stage. For
training, Deep Linear Projectors (DLPs) are attached to the frozen backbone network (shown with
snowflake).The regularization term LReg encourages DLPs (marked with fire) to learn low-rank
structure while preserving task performance. The right-hand figure with dotted line depicts the
change in DLP. DLPs gradually obtain low-rank form during training. After training, through step 1,
we select rank r that satisfies

∑r
i=1 σ

2
i ≥ e

∑dhead
i=1 σ2

i , where e is the energy preservation threshold.
During step 2, using the rank, we construct corresponding Deep Low-Rank Projections (DLRPs),
denoted D̃.Finally, as shown in the bottom figure, constructed D̃ are trained for inference.

This key and value reuse process can be applied across the different attention heads within each layer
of the transformer. As a result, the KV cache stores tensors of shape [number of layers,
number of heads, sequence length, head dimension].

2.2 DEEP LINEAR NETWORKS (DLNS)

Deep Linear Networks (DLNs) are fundamental model for studying optimization and generalization
in deep learning. This model is a fully connected neural network that excludes intermediate non-
linearities (e.g., ReLU). Formally, an DLN f with L-layer is defined as:

f(x; θ) = WLWL−1 · · ·W1x, θ = {W1, · · · ,WL}, (4)

where Wl ∈ Rdl×dl−1 is a weight matrix of l-th layer, and x ∈ Rd1 denote the input. While DLNs do
not gain expressiveness from depth—since they implement only linear input-output mappings—they
nonetheless exhibit optimization and generalization behaviors that resemble several characteristics
of MLPs. For example, they induce highly non-convex training objectives with numerous minima
and saddle points Ge et al. (2015); Lee et al. (2016), and exhibit an implicit bias toward low-rank
solutions under gradient descent Li et al. (2020); Huh et al. (2021).

3 METHOD

In this section, we introduce a novel adapter that compresses the KV cache effectively. The overall
workflow of proposed method is illustrated in Figure 21. We begin by introducing the Deep Linear
Projector (DLP), along with a novel regularizer that effectively enforces a low-rank structure on
the projector. Next, we describe how to extract an appropriate low rank from the trained DLP and
use it to construct Deep Low-Rank Projector (DLRP). Finally, we explain how the DLRP is fine-
tuned and constructed as a lightweight adapter module. The algorithms used for regularized training,
fine-tuning, and inference deployment are provided in Appendix A.

1Snowflake and Fire icons created by Freepik–Flaticon
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3.1 DEEP LINEAR PROJECTOR (DLP)

For the query matrix WQl
∈ Rdembed×dhead in the l-th transformer layer, we first define the Deep Linear

Projector (DLP) as follows:
D1

Ql
D2

Ql
· · ·DN

Ql
∈ Rdhead×dhead , (5)

where the matrices at each end D1
Ql

∈ Rdhead×dhidden , DN
Ql

∈ Rdhidden×dhead , and intermediate matrix
Dn

Ql
∈ Rdhidden×dhidden for n = 2, · · · , N − 1. Here, dhidden denotes the hidden dimension used within

the DLP. Analogously, we define the DLPs for the key, value, and output matrices as:

D1
Kl

D2
Kl

· · ·DN
Kl

∈ Rdhead×dhead

D1
Vl
D2

Vl
· · ·DN

Vl
∈ Rdhead×dhead

D1
Ol
D2

Ol
· · ·DN

Ol
∈ Rdhead×dhead

(6)

To encourage low-rankness in these projectors, an established approach is to employ a nuclear norm
regularizer (Alvarez & Salzmann, 2017). However, computing this regularizer requires a Singualr
Value Decompoistion (SVD), which entails O(d3) computational cost. To address this limitation,
we propose the following novel regularizer:

LReg =

L∑
l=1

N∑
n=1

(
||Dn

Ql
||F + ||Dn

Kl
||F + ||Dn

Vl
||F + ||Dn

Ol
||F

)
(7)

This regularizer function as a practical surrogate of the nuclear norm. Specifically, it exhibits the
same low-rank promoting effect while avoiding the costly SVD computation. The precise relation-
ship between the proposed regularizer and the nuclear norm is established by the following theorem:
Theorem 3.1. Let D1 · · ·DN ∈ Rd×d be a Deep Linear Projector. Then, the following inequality
holds:

||D1 · · ·DN ||∗ ≤ 1

N
·
( N∑

n=1

||Dn||F
)N

, (8)

where || · ||∗ is the nuclear norm and || · ||F is the Frobenius norm.

We provide the proof of this theorem in Appendix B. The proposed regularizer reduces the time
complexity required to inducing low-rankness from O(d3) to O(d2), making it scalable for large-
scale models. As a result, the total loss used for training the DLPs is given by:

LCE + α · LReg, (9)
where LCE denotes the cross-entropy loss and α is a regularization strength. By coupling the task-
oriented term LCE with our regularizer LReg, the resulting objective encourages each DLP to learn a
low-rank structure while preserving task performance.

3.2 DEEP LOW RANK PROJECTOR (DLRP)

Given the trained DLPs for the query, key, value, and output matrices, regularized according to
Eq. (9) to promote low rankness, we construct the Deep Low-Rank Projector (DLRP), which com-
presses KV cache by projecting the key and value vectors onto reduced-dimensional spaces, in
following two steps.

Step 1. Rank Selection from DLPs We first fold each trained DLP into a single linear matrix by
multiplying its N factors. For example, we set DQl

:= D1
Ql
D2

Ql
· · ·DN

Ql
for the query matrix in

layer l. Then, we determine the rank r for each folded DLP using a predefined energy threshold e ∈
(0, 1], where e is the fraction of total energy captured by the cumulative singular values; concretely,
r is the smallest index satisfying

∑r
i=1 σ

2
i ≥ e

∑dhead
i=1 σ2

i . Because the query and key projections
must share the same dimensionality (see Eq. (3)), we first compute the per-projector ranks rlquery

and rlkey by applying the predefined energy threshold e separately to each folded projectors DQl
and

DKl
. We then set a shared rank rlqk := max{rlquery, r

l
key} to satisfy the energy threshold for both

query and key. Likewise, we obtain rlvalue and rloutput from DVl
and DOl

using the same threshold
and define rlvo := max{rlvalue, r

l
output}. These ranks are used to construct the DLRP architecture in

the following step.
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Step 2. Construct the DLRPs Based on the selected ranks rlqk and rlvo, we define a Deep Low
Rank Projectors (DLRPs) for the query, key, value, and output matrices as follows:

D̃1
Ql

· · · D̃N
Ql

∈ Rdhead×rlqk D̃1
Kl

· · · D̃N
Kl

∈ Rdhead×rlqk

D̃1
Vl
· · · D̃N

Vl
∈ Rdhead×rlvo D̃1

Ol
· · · D̃N

Ol
∈ Rrlqk×dhead

(10)

In this construction, we adopt the trained DLP’s dhidden as the DLRP’s intermediate size because the
ranks rlqk and rlvo are derived from the DLP’s structure, making it appropriate for the DLRP to carry
that structure over and maintain architectural consistency.

Since the KV cache tensors have the shape [number of layers, number of heads,
sequence length, head dimension], the DLRP can compress the KV cache by reducing
the head dimension (i.e., rlqk, r

l
vo << dhead). Because the head dimension is typically the largest axis

and the amount of redundant information varies across tasks and layers, automatically discovering
suitable low-rank dimensions rlqk and rlvo is highly beneficial. Detailed analysis on the task and layer
dependent patterns are done in Section 5.1.

3.3 FINE-TUNING AND DEPLOYMENT

After constructing the DLRPs, we fine-tune them under a standard supervised objective with the
backbone frozen. This procedure is similar to parameter efficient fine-tuning (PEFT) methods such
as LoRA (Hu et al., 2022), in which only a small subset of adapter parameters is updated. Concretely,
we optimize the factorized DLRPs using the cross-entropy loss LCE. Once training is complete, we
fold each factor chain into a single linear matrix via matrix multiplication. For the DLRP for the
query matrix, we fold as follows:

D̃1
Ql

· · · D̃N
Ql

→ D̃Ql
∈ Rdhead×rlqk . (11)

Similarly, the DLRPs for key, value, and output matrices can be folded. This consolidation replaces
the chain of linear layers with a single projection during inference, keeping deployment overhead
minimal. It also stays compatible with standard KV-cache compression strategies (e.g., a reduced
head dimension produces smaller cached key/value tensors) and requires no changes to the serving
pipeline.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We conduct experiments on three publicly available, open-source instruction-tuned models: Qwen3-
4B, Qwen3-8B (Qwen et al., 2025), and Mistral-7B-Instruct-v0.3 (Jiang et al., 2023). These models
span a range of parameter scales, which allows us to assess the effectiveness of our method across
different model sizes. To access core LLM capabilities spanning short form reasoning and long
context summarization, we evaluate our method on five widely used benchmarks: GSM8K (Cobbe
et al., 2021), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), Xsum (Narayan et al., 2018),
and CNN/Daily Mail (Hermann et al., 2015).

We evaluate recent KV cache compression methods using implementations from NVIDIA’s KV-
Press repository (Jegou et al., 2024): SnapKV (Li et al., 2024), StreamingLLM (Xiao et al., 2023),
Knorm (Devoto et al., 2024), PyramidKV (Cai et al., 2024), KeyDiff (Park et al., 2025) in three
target compression rates (approximately 10%, 25%, and 50%).

All base models are first fine-tuned with LoRA Hu et al. (2022) (rank 32) under a zero-shot regime.
To ensure a fair comparison, we attach adapters only to the attention projections (i.e., query, key,
value, and output). Each KV cache baseline is then applied to these LoRA-adapted models so that
any performance differences are attributable to the compression method rather than to the adaptation
process. We measure performance with EleutherAI’s lm-eval-harness (Gao et al., 2024) under
the same zero-shot protocol across all models and benchmarks.

For DLRP, we use a two-layer DLN (i.e., N = 2) with hidden dimension dhidden = 256 and regu-
larization strength α = 0.01. Ranks are selected using energy thresholds that correspond approx-
imately to 10%, 25%, and 50% compression rates. All projections Dn

Ql
, Dn

Kl
, Dn

Vl
, and Dn

Ol
are
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Table 1: Performance under different KV cache compression ratios for each baseline and benchmark.
†denotes the method in combined with LoRA (rank 32). The base model is Qwen3-4B. R-1, R-2,
and R-L means the ROUGE-1, ROUGE-2, and ROUGE-L, respectively. For each compression rate,
the best result is shown in boldface and the second-best in underlined text.

Method CR GSM8K PIQA HellaSwag Xsum CNN/DM Avg.
Acc Acc Acc R-1 R-2 R-L R-1 R-2 R-L

LoRA (r=32) 73.086 86.670 91.615 43.810 19.192 34.469 44.890 21.296 31.375 49.600
SnapKV†

10%

37.528 61.153 83.621 38.529 16.373 30.122 40.116 18.389 27.764 39.288
StreamingLLM† 31.387 79.181 85.087 36.740 15.655 29.043 34.159 13.221 22.623 38.566
Knorm† 1.137 54.026 50.500 29.154 10.403 22.705 29.551 11.185 19.784 25.383
PyramidKV† 38.438 61.425 83.611 38.349 17.139 30.861 39.778 18.042 27.486 39.459
KeyDiff† 68.234 80.745 85.059 36.266 15.095 28.863 37.374 16.568 25.786 43.777
DLRP (Ours) 69.182 81.109 86.957 41.951 18.335 32.626 42.345 20.104 29.045 46.850
SnapKV†

25%

11.221 46.736 75.530 35.835 15.930 28.852 36.708 16.001 25.207 32.447
StreamingLLM† 11.827 74.126 76.522 33.313 13.758 26.245 29.256 10.063 19.055 32.685
Knorm† 0.379 36.453 24.283 22.511 7.411 17.433 20.741 6.502 14.285 16.666
PyramidKV† 11.979 47.008 74.006 35.632 15.658 28.579 35.357 14.646 24.050 31.879
KeyDiff† 59.287 73.271 78.333 31.139 11.997 24.494 31.200 12.457 21.356 38.171
DLRP (Ours) 65.909 79.565 82.218 39.957 17.695 31.677 38.813 18.137 27.056 44.559
SnapKV†

50%

0.531 19.260 55.803 30.861 13.015 24.568 30.952 11.811 20.914 23.079
StreamingLLM† 4.701 65.066 58.760 28.601 10.820 22.372 24.089 7.131 15.803 26.371
Knorm† 0.015 6.474 2.295 9.988 2.826 7.768 8.640 1.840 6.796 5.183
PyramidKV† 0.601 19.532 56.206 30.840 12.953 24.563 30.604 11.575 20.710 23.065
KeyDiff† 26.535 65.356 73.499 18.675 5.674 14.550 16.712 5.109 12.461 26.508
DLRP (Ours) 59.424 75.587 78.187 34.058 15.422 28.412 36.153 16.633 25.448 41.036

Table 2: Performance under different KV cache compression ratios for each baseline and benchmark.
†denotes the method in combined with LoRA (rank 32). The base model is Qwen3-8B. R-1, R-2,
and R-L means the ROUGE-1, ROUGE-2, and ROUGE-L, respectively. For each compression rate,
the best result is shown in boldface and the second-best in underlined text.

Method CR GSM8K PIQA HellaSwag Xsum CNN/DM Avg.
Acc Acc Acc R-1 R-2 R-L R-1 R-2 R-L

LoRA (r=32) 76.403 89.772 93.428 44.586 20.909 36.117 45.378 21.810 31.759 51.129
SnapKV†

10%

41.970 69.957 87.712 40.032 18.720 32.452 40.603 18.931 28.264 42.071
StreamingLLM† 32.727 82.348 87.250 38.289 17.319 30.676 34.892 13.875 23.211 40.065
Knorm† 2.424 78.109 61.788 31.878 12.307 25.170 35.282 14.599 23.723 31.698
PyramidKV† 42.807 70.174 87.752 39.953 18.646 32.429 40.247 18.631 28.103 42.082
KeyDiff† 72.423 82.630 87.230 37.745 16.588 30.336 38.526 17.334 26.633 45.494
DLRP (Ours) 73.882 85.373 90.532 43.159 20.177 34.564 43.336 20.850 29.790 49.074
SnapKV†

25%

15.415 53.870 84.466 37.526 17.343 30.375 37.402 16.698 25.804 35.433
StreamingLLM† 12.425 76.370 83.647 34.905 15.308 27.829 29.989 10.632 19.712 34.535
Knorm† 1.060 68.870 39.964 25.517 9.199 20.027 28.576 10.442 18.032 24.632
PyramidKV† 15.854 53.435 82.491 37.307 17.213 30.165 35.925 15.330 24.667 34.710
KeyDiff† 60.757 75.957 84.051 32.328 13.112 25.750 32.950 13.625 22.567 40.122
DLRP (Ours) 70.444 83.757 85.767 41.108 19.487 33.517 39.797 18.757 27.757 46.710
SnapKV†

50%

0.909 18.978 60.751 32.495 14.629 26.150 31.876 12.634 21.619 24.449
StreamingLLM† 4.248 69.109 63.833 30.410 12.464 24.067 24.406 7.363 15.990 27.988
Knorm† 0.015 41.044 1.095 12.258 3.702 9.698 13.006 3.443 9.438 10.411
PyramidKV† 1.368 19.196 61.288 32.527 14.653 26.192 31.486 12.379 21.418 24.501
KeyDiff† 31.060 63.870 78.548 20.675 6.662 16.187 20.396 6.641 14.612 28.739
DLRP (Ours) 63.644 79.628 81.563 35.134 16.999 30.122 37.119 17.295 26.138 43.071

initialized as identity matrices for every layer l and depth n. Additional hyperparameter details are
provided in Appendix C

4.2 EXPERIMENTAL RESULTS

We present the results on Qwen3-4B and Qwen3-8B across KV cache compression rates of 10%,
25%, and 50%. Additional results for Mistral-7B-Instruct-v0.3, are provided in Appendix D. As
shown in Table 1, DLRP consistently outperforms baseline methods–SnapKV, StreamingLLM,
Knorm, PyramidKV, and KeyDiff–especially as compression intensifies. Whereas these methods
often degrade sharply at moderate and high compression rate, DLRP maintains robust performance
on reasoning-heavy tasks (e.g., GSM8K) and on long-context summarization (e.g., CNN/DM). For
example, at 10% compression, DLRP achieves 69.182% on GSM8K and 86.975% on HellaSwag,
surpassing all baselines; even at 25% and 50%, GSM8K accuracy remains 65.909% and 59.242,
respectively. These results indicate that, within a PEFT setting, DLRP remains robust under aggres-
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sive KV-cache compression by optimizing the adapters within the low-rank subspace induced by our
training procedure. A similar trend is observed in Table 2, where DLRP demonstrates strong per-
formance on Qwen3-8B across all benchmark and compression rate. Notably, it achieves 73.882%
GSM8K accuracy at 10% compression and sustains 63.644% even at 50%, significantly outperform-
ing other methods. These results highlight DLRP’s robustness and generalizability across different
model backbones and task types, including both reasoning and summarization.

Table 3: Average performance comparison of
DLP architectures with varying depth N and hid-
den dimension dhidden under 25% KV-cache com-
pression. We employ Qwen3-4B as base model.

N = 1 N = 2 N = 3

dhidden = 128 43.597 45.191 44.266
dhidden = 256 ✗ 45.482 45.085
dhidden = 512 ✗ 44.670 43.814

Figure 3: Average performance across five
benchmarks under 25% KV-cache compression
with varying regularization strength α. We em-
ploy Qwen3-4B as base model.

4.3 ABLATION STUDIES

4.3.1 REGULARIZATION STRENGTH α OF THE REGULARIZER LREG

We examine the effect of the regularization strength α on DLP training under a 25% KV cache
compression target. Figure 3 visualizes the average performance across five benchmarks for each
α ∈ {1.0, 0.1, 0.01, 0.0}. As α decreases from 1.0 to 0.01, performance improves, indicating that
excessively strong regularization limits the projector’s expressivity. When α = 0, performance
drops slightly, suggesting that a modest regularization terms is necessary to reliably identify an
appropriate rank (via the energy threshold) for each task while maintaining performance at the target
compression level. Based on this finding, we set α = 0.01 as the default value for all experiments.

4.4 THE WIDTH AND DEPTH OF DEEP LINEAR PROJECTOR

We study how the architecture of the DLP affects the performance by varying its depth (N ∈
{1, 2, 3}) and hidden dimensions (dhidden ∈ {128, 256, 512}). All ablations are conducted under
a 25% KV cache compression target, and we report the average performance across five bench-
marks. For N = 1, the DLP reduces to a single linear map with no intermediate layer; consequently
dhidden is not applicable, and we exclude the pairs (1, 256) and (1, 512). Table 3 shows that the
configuration with N = 2 and dhidden = 256 performs best overall. In theory, adding more layers to
a linear network does not increase its expressiveness, since stacked linear layers are still equivalent
to a single linear transformation. However, we observe that different depth and width choices still
lead to clear differences in performance. Smaller models (e.g., dhidden = 128) tend to perform worse,
possibly due to limited flexibility during training. Larger or deeper models (e.g., dhidden = 512 or
N = 3) do not improve results and can even slightly hurt performance because deeper linear com-
positions make optimization harder. In particular, increasing depth beyond two layers consistently
shows a small drop in accuracy across all widths. These results suggest that, even in linear network,
architectural choices affect how well the model trains, rather than how much it can represent. Based
on this finding, we choose the N = 2, dhidden = 256 configuration as the default DLP architecture
for all experiments.

5 DISCUSSION

In this section, we discuss the rank pattern arising from the proposed regularizer, with extended
discussion in Appendix E.

5.1 EMERGENT RANK PATTERNS ACROSS TASKS

To clarify how low-rank structure varies across layers and tasks, we analyze the per-layer ranks rlqk

and rlvo for each task and characterize their emergent patterns across depth. Each rank is determined
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Figure 4: Layer-wise rank pattern for rqk and rvo. These ranks are determined by an energy threshold
e = 0.95. We employ Qwen3-4B as base model.

by an energy threshold e = 0.95. Figure 4 shows the rank pattern for rlqk andrlvo revealing clear task-
dependent pattern across tasks. Across the five benchmarks, we find that GSM8K and PIQA (short-
context, reasoning-intensive) sustain near-full ranks over most layers, indicating strong resistance to
compression; HellaSwag exhibits mid-scale ranks consistent with its moderate length and common-
sense difficulty; and within summarization, XSum (shorter, more abstractive) induces higher ranks
scale than CNN/DM, whose much longer and more redundant inputs yield the lowest rank scale
overall. These trends align with established findings in KV-cache compression: redundancy in long
contexts permits more aggressive reduction (e.g., via heavy-hitter retention), whereas reasoning-
centric workloads are fragile—particularly under prefill compression—and therefore require larger
effective subspaces (Xu et al., 2025; Liu et al., 2025). The pronounced layer-wise heterogeneity in
the rank pattern further suggests that optimal budgets are non-uniform across depth. Overall, these
findings indicate that our regularizer adapts ranks to task demands, preserving capacity where re-
quired (reasoning tasks) while collapsing low-energy dimensions for redundant, long-context inputs
(CNN/DM). Collectively, these results are consistent with depth-aware compression that funnels
information across layers and with adaptive policies that selectively retain impactful tokens/heads.

6 LIMITATIONS

One possible limitation of our work is that DLRP focuses solely on compressing the KV-cache’s
head dimension, leaving the layer count, sequence length, and the number of head unchanged. Al-
though head-dimension compression reliably reduces size regardless of input shape, applying com-
pression to these additional axes could further improve the overall compression rate. Consequently,
extensive exploration of combining DLRP with other techniques may yield even greater reductions
of the KV cache. This line of research is both valuable and highly relevant to multi-dimensional
KV-cache compression. Future work could therefore extend DLRP to operate on multiple cache
dimensions and investigate synergistic integrations with existing KV-compression methods.

7 CONCLUSION

In this work, we identify a key limitation of KV-cache compression: PEFT-adapted LLMs are unusu-
ally brittle under compression. We address this with the Deep Low-Rank Projector (DLRP), which
compresses the head dimension via a deep linear projector trained on the downstream objective
alongside a nuclear-norm-inspired regularizer that induces low rank. After training, we examine the
singular-value spectrum to select the smallest energy-preserving rank, instantiate DLRP at that rank,
fine-tune the adapter, and fold its factors into a single linear map for deployment. This procedure
optimizes within a learned low-rank subspace and explicitly captures the interaction between PEFT
and KV-cache compression. Across diverse LLM benchmarks, DLRP consistently delivers strong
memory–accuracy trade-offs and stable adaptation under compression, enabling efficient inference
of PEFT-adapted models in memory-constrained settings.
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A ALGORITHM

We provide concise algorithms for (1) regularized training the Deep Linear Projector (DLP), (2) fine-
tuning the Deep Low-Rank Projector (DLRP), and (3) deploying the DLRP for efficient inference.
For brevity, the pseudo-code shows only the attention weights.

Algorithm 1 Regularized Training for the DLP

Require: Training dataset Dtrain, Regularization strength α
Require: Cross-entropy loss LCE
Require: Pre-trained attention weights:

WQ = {WQl
}Ll=1, WK = {WKl

}Ll=1

WV = {WVl
}Ll=1, WO = {WOl

}Ll=1

1: Initialize DLPs:

DQ = {D1
Ql

· · ·DN
Ql
}Ll=1, DK = {D1

Kl
· · ·DN

Kl
}Ll=1

DV = {D1
Vl
· · ·DN

Vl
}Ll=1, ;DO = {D1

Ol
· · ·DN

Ol
}Ll=1

2: Obtain the DLP-applied pre-trained attention weights:

WDLP
Q = {WQl

·D1
Ql

· · ·DN
Ql
}Ll=1

WDLP
K = {WKl

·D1
Kl

· · ·DN
Kl

}Ll=1

WDLP
V = {WVl

·D1
Vl
· · ·DN

Vl
}Ll=1

WDLP
O = {WOl

·D1
Ol

· · ·DN
Ol
}Ll=1

3: while not converged do
4: Sample mini-batch B ∼ Dtrain
5: Compute the cross-entropy loss

LCE(W
DLP
Q ,WDLP

V ,WDLP
K ,WDLP

O ;B)

6: Compute the regularizer LReg via Eq. (7)
7: Compute the total loss Ltotal = LCE + α · LReg
8: Update the DLPs (DQ, DK , DV , and DO) via the total loss Ltotal
9: end while
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Algorithm 2 Fine-Tuning for the DLRP

Require: Training dataset Dtrain, predefined energy threshold e
Require: Cross-entropy loss LCE
Require: Pre-trained attention weights:

WQ = {WQl
}Ll=1, WK = {WKl

}Ll=1

WV = {WVl
}Ll=1, WO = {WOl

}Ll=1

Require: Regularized trained DLPs:

DQ = {D1
Ql

· · ·DN
Ql
}Ll=1; DK = {D1

Kl
· · ·DN

Kl
}Ll=1

DV = {D1
Vl
· · ·DN

Vl
}Ll=1; DO = {D1

Ol
· · ·DN

Ol
}Ll=1

1: for l = 1, · · · , L do
2: rlquery = rank(D1

Ql
· · ·DN

Ql
; e), rlkey = rank(D1

Kl
· · ·DN

Kl
; e)

3: rlvalue = rank(D1
Vl
· · ·DN

Vl
; e), rloutput = rank(D1

Ol
· · ·DN

Ol
; e)

4: rlqk = max(rlquery, r
l
key), rlvo = max(rlvalue, r

l
output)

5: end for
6: Based on rank rlqk and rlvo, construct the DLRPs via Eq. (10) and initialize them:

D̃Q = {D̃1
Ql

· · · D̃N
Ql

∈ Rdhead×rlqk}Ll=1

D̃K = {D̃1
Kl

· · · D̃N
Kl

∈ Rdhead×rlqk}Ll=1

D̃V = {D̃1
Vl
· · · D̃N

Vl
∈ Rdhead×rlvo}Ll=1

D̃O = {D̃1
Ol

· · · D̃N
Ol

∈ Rdhead×rlvo}Ll=1

7: Obtain the DLRP-applied pre-trained attention weights:

WDLRP
Q = {WQl

· D̃1
Ql

· · · D̃N
Ql
}Ll=1

WDLRP
K = {WKl

· D̃1
Kl

· · · D̃N
Kl

}Ll=1

WDLRP
V = {WVl

· D̃1
Vl
· · · D̃N

Vl
}Ll=1

WDLRP
O = {WOl

· D̃1
Ol

· · · D̃N
Ol
}Ll=1

8: while not converged do
9: Sample mini-batch B ∼ Dtrain

10: Compute the cross-entropy loss

LCE(W
DLRP
Q ,WDLRP

V ,WDLRP
K ,WDLRP

O ;B)

11: Update the DLRPs (D̃Q, D̃K , D̃V , and D̃O) via the cross-entropy loss LCE
12: end while
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Algorithm 3 Inference for the DLRP (i.e., Deployment)

Require: Fine-tuned DLRP

D̃Q = {D̃1
Ql

· · · D̃N
Ql

∈ Rdhead×rlqk}Ll=1

D̃K = {D̃1
Kl

· · · D̃N
Kl

∈ Rdhead×rlqk}Ll=1

D̃V = {D̃1
Vl
· · · D̃N

Vl
∈ Rdhead×rlvo}Ll=1

D̃O = {D̃1
Ol

· · · D̃N
Ol

∈ Rdhead×rlvo}Ll=1

1: Fold the factorized DLRP into a single linear matrix via Eq. (11):

D̃Fold
Q = {D̃Ql

∈ Rdq×rlqk}Ll=1

D̃Fold
K = {D̃Kl

∈ Rdq×rlqk}Ll=1

D̃Fold
V = {D̃Vl

∈ Rdq×rlvo}Ll=1

D̃Fold
O = {D̃Ol

∈ Rdq×rlvo}Ll=1

2: Deploy the folded DLRPs: D̃Fold
Q , D̃Fold

K , D̃Fold
V , and D̃Fold

O
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B PROOF

We begin by stating the lemma, followed by the proof of the theorem in Section 3.1.
Lemma B.1. For any two matrices A ∈ Rm×n, B ∈ Rn×p, the following inequality holds:

||AB||F ≤ ||A||F · ||B||F (12)

where || · ||F is the Frobenius norm.

Proof. Let C = AB ∈ Rm×p. By definition,

||C||2F =

m∑
i=1

p∑
j=1

c2ij =

m∑
i=1

p∑
j=1

(
Aibj

)2

, (13)

where cij denotes the (i, j)-th entry of C, Ai is the i-th row of A, and bj is the j-th column of B.
By Cauchy-Schwarz Inequality Bityutskov (2001), we obtain that

||C||2F ≤
m∑
i=1

p∑
j=1

||Ai||2||bj ||2

=
( m∑

i=1

||Ai||2
)( p∑

j=1

||bj ||2
)

= ||A||2F ||B||2F

(14)

Taking the quare root of each side completes the proof.

Theorem B.1 (Restate). Let U1 · · ·UN ∈ Rd×d be a Deep Linear Projector. Then, the following
inequality holds:

||U1 · · ·UN ||∗ ≤ 1

N
·
( N∑

n=1

||Un||F
)N

, (15)

where || · ||∗ is the nuclear norm and || · ||F is the Frobenius norm.

Proof. Let U = U1 · · ·UN be a deep linear projector and abbreviate Û := U2 · · ·UN . By defini-
tion, the nuclear norm of U is given by

||U ||∗ = ||U1Û ||∗ = Tr(U1Û) (16)

By Cauchy-Schwarz Inequality Bityutskov (2001), we can obtain the following inequality:

Tr(U1Û) ≤
√

Tr
(
(U1)TU1

)
Tr
(
ÛT Û

)
(17)

By definition, we can calculate the following inequality:√
Tr
(
(U1)TU1

)
Tr
(
ÛT Û

)
= ||U1||F ||Û ||F (18)

By Lemma B.1, we can derive the following:

||U1||F ||Û ||F ≤ ||U1||F · · · ||UN ||F (19)

Using the AM-GM Inequality, we can derive the following inequality:

||U1||F · · · ||UN ||F ≤ 1

N

(
||U1||F + · · ·+ ||UN ||F

)N

=
1

N
·
( N∑

i=1

||Un||F
)N

(20)

Combining Eq. (16) - (20) yields the following inequality:

||U ||∗ ≤ 1

N
·
( N∑

i=1

||Un||F
)N

(21)
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C HYPER-PARAMETER SETTING

Common Setting All experiments use AdamW with a warm-up/decay schedule: the learning rate
rises linearly to 5 × 10−4 over the first 10% of steps, then decays. We adopt a global batch size of
32 and truncate or pad all inputs to 512 tokens across the five datasets.

Regularized Training (DLP) The Deep Linear Projector (DLP) is trained for 10 epochs in
bfloat16 on up to four H100 (80 GB) GPUs; this stage completes in under two hours on the full
4-GPU setup.

Fine-Tuning (DLRP) The Deep Low-Rank Projector (DLRP) is fine-tuned for 3 epochs in
bfloat16 on up to four H100 (80 GB) GPUs, finishing in less than one hour on four H100 GPUs.

Fine-Tuning (LoRA) The LoRA baseline is likewise fine-tuned for 5 epochs in bfloat16 on up to
four H100 GPUs, requiring under one hour to converge.

D ADDITIONAL RESULTS

In this section, we report additional results on Mistral-7B-Instruct-v0.3 under KV cache compres-
sion rates of 10%, 25%, and 50%. DLRP consistently achieves the highest average performance
among the baselines, matching the trends observed on Qwen3-4B and Qwen3-8B, and the advan-
tage becomes more pronounced as compression rate increases.

Table 4: Performance under different KV cache compression ratios for each baseline and benchmark.
†denotes the method in combined with LoRA (rank 32). The base model is Mistral-7B-Instruct-
v0.3. R-1, R-2, and R-L means the ROUGE-1, ROUGE-2, and ROUGE-L, respectively. For each
compression rate, the best result is shown in boldface and the second-best in underlined text.

Method CR GSM8K PIQA HellaSwag Xsum CNN/DM Avg.
Acc Acc Acc R-1 R-2 R-L R-1 R-2 R-L

LoRA (r=32) 53.030 88.152 94.604 46.366 23.174 37.693 45.482 21.766 31.945 49.135
SnapKV†

10%

35.000 75.620 84.821 41.336 20.304 33.565 40.572 18.624 28.096 41.993
StreamingLLM† 27.576 79.337 84.512 39.976 19.051 32.220 35.828 14.336 23.871 39.634
Knorm† 13.182 43.924 30.512 39.369 19.491 32.587 40.554 18.643 27.777 29.560
PyramidKV† 36.667 75.717 82.929 41.262 20.461 33.504 40.327 18.452 27.934 41.917
KeyDiff† 45.955 78.946 84.817 41.214 20.446 33.653 40.853 19.329 28.566 43.753
DLRP (Ours) 50.742 83.176 90.730 44.637 22.251 35.876 43.174 20.678 29.771 46.781
SnapKV†

25%

15.909 61.717 78.094 36.702 18.570 30.994 37.304 16.337 25.541 35.685
StreamingLLM† 8.939 74.098 79.279 36.891 17.233 29.609 30.869 11.060 20.182 34.240
Knorm† 4.848 41.484 25.468 36.272 17.458 30.038 37.668 16.972 25.809 26.224
PyramidKV† 15.455 62.457 77.502 37.568 18.575 30.210 36.824 15.925 25.202 35.524
KeyDiff† 37.992 74.560 79.512 38.928 19.390 31.744 38.501 18.051 26.962 40.627
DLRP (Ours) 48.371 81.567 85.867 42.520 21.482 34.808 39.610 18.621 27.728 44.508
SnapKV†

50%

1.364 29.826 58.765 33.626 16.139 28.549 32.423 12.778 21.712 26.131
StreamingLLM† 4.091 69.130 56.233 31.811 14.119 25.570 25.603 8.084 16.693 27.926
Knorm† 1.970 38.783 25.468 33.074 15.735 27.379 32.619 12.924 21.881 23.315
PyramidKV† 1.515 30.435 59.180 35.335 16.958 28.585 32.295 12.621 21.666 26.510
KeyDiff† 17.644 63.478 72.356 35.235 16.722 28.306 35.153 15.813 24.276 34.331
DLRP (Ours) 43.660 77.516 81.662 36.295 18.734 31.257 36.915 17.130 26.099 41.030
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E ADDITIONAL DICUSSION: DLRP-INDUCED STRUCTURED
LOTTERY-TICKET SUBSPACES IN THE KV CACHE

Our analysis of the rank pattern in Figure 4 indicates that DLRP adopts task-adaptive KV cache com-
pression via the per-layer ranks rlqk and rlvo. On reasoning-intensive benchmarks such as GSM8K
and PIQA, DLRP preserves near-full ranks across most layers, indicating limited tolerance for di-
mensionality reduction. In contrast, summarization tasks admit lower ranks: XSum maintains lower
ranks than reasoning tasks but consistently higher than CNN/DM, while CNN/DM exhibits the low-
est ranks overall. These patterns suggest that, depending on task characteristics, DLRP allocates
more KV-cache capacity to the most consequential layers by assigning higher ranks, while reducing
capacity in less influential layers via lower-rank projections. This behavior is conceptually aligned
with the Lottery Ticket Hypothesis (LTH) (Frankle & Carbin, 2018). Rather than relying on the
full KV-cache basis, DLRP identifies a winning subspace—a compact set of significant dimen-
sion—that, once fine-tuned, suffices to match the performance of the full model on the target tasks.
The proposed regularizer and energy-based rank selection serve as a subspace-discovery mecha-
nism, concentrating KV cache capacity on informative dimensions while suppressing uninformative
ones. Unlike classical LTH, which searches for sparse subnetworks in weight space (often via prun-
ing and rewinding), DLRP operates in the KV-cache space and achieves compression by learning a
low-rank projector.

F STATEMENT OF LARGE-LANGUAGE-MODEL (LLM) USAGE

The authors acknowledge that a large-language-model (LLM) was employed as a general-purpose
assistance tool during the preparation of this manuscript. Specifically, the following tasks were
supported by the LLM under the direct supervision of the authors:

• Formatting and LaTeX assistance – The LLM supplied LaTeX snippets for tables, equa-
tions, and figure captions. The authors integrated these snippets into the manuscript and
performed all final compilation and formatting checks.

• Language polishing – The LLM was used to improve readability, correct grammar, and
adjust stylistic tone across the entire manuscript. The final wording reflects the authors’
own decisions after thorough review.

All content generated by the LLM was fully supervised, fact-checked, and substantially revised by
the human authors before inclusion in the final version. No portion of the manuscript was submitted
to the LLM for autonomous generation without subsequent author verification.

The authors affirm that the intellectual contributions, experimental design, data analysis, and conclu-
sions are entirely their own work, and that the LLM served only as an auxiliary writing and editing
aid.
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