
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DEEP LOW RANK PROJECTOR FOR KV CACHE
COMPRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have become integral to a wide range of natural
language processing tasks. A key component enabling fast autoregressive infer-
ence in LLMs is the Key-Value (KV) cache, which stores hidden states across
decoding steps. However, the KV cache imposes substantial memory overhead,
especially in long-context generation. While recent studies have proposed various
compression techniques to mitigate this issue, they largely overlook the interaction
between the techniques Parameter-Efficient Fine-Tuning (PEFT) methods such as
LoRA, under which models are significantly more sensitive to KV cache compres-
sion. To address this issue, we propose the Deep Low-Rank Projector (DLRP),
a novel adapter that compresses the KV cache along the head dimension while
preserving downstream performance in PEFT-adapted models. We introduce the
Deep Linear Projector (DLP), which is realized leveraging a Deep Linear Network
(DLN). We also propose a novel regularizer that approximates the nuclear norm
of the DLP, thereby promoting low-rank structure in the learned projection. After
training with the proposed regularizer, we inspect the singular-value spectrum and
select the minimum rank satisfying a predefined energy threshold, yielding a com-
pact head dimension that balances compression and accuracy. Based on this rank,
we construct the DLRP, fine-tune it on the target task, and merge its factorized lay-
ers into a single linear operator for efficient inference. Empirical evaluation con-
firms that DLRP achieves substantial KV cache compression while maintaining
strong performance across diverse LLM benchmarks, offering a practical solution
for deploying PEFT-adapted models in memory-constrained settings.

Large Language Models (LLMs), such as the GPT series (Achiam et al., 2023; Brown et al., 2020;
Ouyang et al., 2022), Claude series (Enis & Hopkins, 2024), and Qwen series (Yang et al., 2025),
have become indispensable for a wide range of downstream natural language processing (NLP)
tasks, including text generation (Brown et al., 2020; Raffel et al., 2020), summarization (Pu et al.,
2023; Zhang et al., 2024), and code generation (Roziere et al., 2023). A key architectural innovation
enabling efficient autoregressive inference in LLMs is the Key-Value (KV) cache (Pope et al., 2023),
which retains hidden states from previous decoding steps to avoid redundant computation.

While KV caching dramatically speed up inference, its memory footprint grows linearly with both
sequence length and model size, leading to substantial memory consumptions (Shi et al., 2024). To
address this issue, recent studies have explored a variety of KV cache compression strategies along
different structural axes, including the number of layers (Brandon et al., 2024; Sun et al., 2024; Wu &
Tu, 2024; Zuhri et al., 2024; Liao & Vargas, 2024; Goldstein et al., 2024), number of heads (Shazeer,
2019; Ainslie et al., 2023; Yu et al., 2024; Chen et al., 2024), sequence length (Devoto et al., 2024;
Wang et al., 2024; Xiao et al., 2023; Li et al., 2024; Cai et al., 2024; Feng et al., 2024; Park et al.,
2025), and the dimensionality of the head (Liu et al., 2024; Saxena et al., 2024; Yu et al., 2024; Lin
et al., 2024).

However, a common limitation of these approaches is that they are primarily developed and evalu-
ated their method under the base models (e.g., pretrained or instruction-tuned) without accounting
for downstream adaptation phase. In practice, models are frequently fine-tuned using Parameter-
Efficient Fine-Tuning (PEFT) methods such as LoRA (Hu et al., 2022), which introduce small train-
able modules while keeping the base model frozen. Notably, we observe that these PEFT-adapted
models are considerably more sensitive to KV cache compression. As Figure 1 shows, compressing
the KV cache leads to significant performance drops in LoRA-adapted models compared to their

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Relative drop of average performance across five benchmark tasks (GSM8K, PIQA, Hel-
laSwag, XSum, and CNN/DM) under different KV cache compression rates (10%, 25%, 50%).
Relative Drop of Average Performance denotes the percentage reduction in the task-averaged per-
formance relative to the baseline without KV cache compression. LoRA-dapted models (solid lines)
exhibit larger performance degradation than non-adapted models (dashed lines), indicating greater
sensitivity to compression.

non-adapted counterparts. This indicates a crucial interaction between PEFT mechanisms and KV
cache compression that existing methods fail to address.

To mitigate this issue, we introduce the Deep Low-Rank Projector (DLRP), a novel adapter that
compresses the KV cache along the head dimension while enabling effective adaptation to down-
stream tasks. First, we define the Deep Linear Projector (DLP) as a Deep Linear Network (DLN)—a
composition of purely linear layers. While DLNs lack non-linear activations, their compositional
depth allows them to approximate the optimization and generalization behavior of non-linear ar-
chitectures such as MLPs. This enables the DLP to effectively capture task-relevant information
despite the structural simplicity of linear transformations. To guide the DLP toward a compact,
task-aligned projection, we propose a novel regularizer that theoretically approximates the nuclear
norm of the DLP. This regularizer elicits the KV cache to be represented in a low-dimensional (i.e.,
low-rank) subspace that retains task-relevant information. After regularized training, we examine
the singular-value spectrum of the learned DLP and select the smallest rank that satisfies a prede-
fined energy threshold, yielding a task-preferred compression level that balances compactness and
performance. Based on this rank, we instantiate a Deep Low Rank Projector (DLPR) as a DLN
whose output dimension equals the selected rank. We fine-tune the DLRP on the downstream task
and then fold its factorized layers into a single linear matrix, which enables efficient inference while
preserving compatibility with lightweight adaptation workflows. This process explicitly captures
the interaction between PEFT mechanisms and KV cache compression by optimizing the adapter
within the learned low-rank subspace induced by regularized training. Empirically, we show that the
DLRP not only achieves substantial KV cache compression but also preserves performance under
PEFT across a wide range of LLM benchmarks. Our contributions can be summarized as follows:

• We propose Deep Low-Rank Projector (DLRP), a novel adapter that compresses the KV
cache along its head dimension while preserving its ability to adapt to downstream tasks.

• The DLRP is built on a deep linear network (DLN) – a stack of purely linear layers –
marking a novel application of DLNs as adapter modules in large language models.

• We propose a new regularizer that approximates the nuclear norm of the Deep Linear Pro-
jector (DLP), encouraging low-rank projections to compress the KV cache.

• DLRP consistently outperforms existing KV Cache compression methods across a range
of benchmarks with superior trade-offs between compression rate and task performance.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

1 RELATED WORKS

1.1 KEY-VALUE (KV) CACHE COMPRESSION

Key-Value (KV) Cache stores tensors of the shape (number of layers, number of heads, sequence
length, feature dimension). Prior works have proposed the KV cache compression method along
various axes, including the number of layers (Brandon et al., 2024; Sun et al., 2024; Wu & Tu, 2024;
Zuhri et al., 2024; Liao & Vargas, 2024; Goldstein et al., 2024), number of heads (Shazeer, 2019;
Ainslie et al., 2023; Yu et al., 2024; Chen et al., 2024), sequence length (Devoto et al., 2024; Wang
et al., 2024; Xiao et al., 2023; Li et al., 2024; Cai et al., 2024; Feng et al., 2024; Park et al., 2025),
and feature dimensionality (Liu et al., 2024; Saxena et al., 2024; Yu et al., 2024; Lin et al., 2024).
YOCO (Sun et al., 2024) introduces a dual-decoder architecture in which only the self-decoder
encodes global key-value caches, while the cross-decoder reuses them via cross-attention, reducing
KV cache size proportionally to the number of cross-decoder layers. SnapKV (Li et al., 2024)
compresses the cache by storing less important key-value pairs in low precision while preserving
critical ones in high precision. MatryoshkaKV (Lin et al., 2024) reduces the feature dimension
of KV caches through trainable orthogonal projection matrices. While these methods effectively
reduce KV cache size in base models, they do not consider parameter-efficient fine-tuning (PEFT)
scenarios. In this work, we propose a novel adapter that enables efficient KV cache compression
along the feature dimension, while preserving performance under PEFT settings.

1.2 DEEP LINEAR NETWORKS

Deep Linear Networks have been widely used as analytical tools to understand the behavior of
nonlinear neural networks. Even in the depth-0 cases–equivalent to linear regression–DLNs offer
valuable insights into generalization in over-parapmeterized regimes (Ziyin et al., 2022; Hastie et al.,
2022). The training dynamics of a depth-1 DLNs have also been studied to shed light on the dynam-
ics of learning in nonlinear neural networks (Saxe et al., 2013). While DLNs are as expressive as
linear models, the introduction of depth induces non-trivial loss landscapes, which are often consid-
ered useful proxies for those of nonlinear neural networks (Kawaguchi, 2016; Hardt & Ma, 2016;
Laurent & Brecht, 2018). DLNs continue to provide theoretical insights into modern deep learning
problems, such as posterior collapse in variational autoencoders (Lucas et al., 2019; Wang & Ziyin,
2022) and neural collapse in contrastive learning (Tian, 2022). Inspired by the view that DLNs can
mimic the behavior of nonlinear neural networks, our work is the first to leverage DLNs not just as
theoretical tools but as functional building blocks for desigining an adapter that enables both KV
cache compression and parameter-efficient fine-tuning.

2 BACKGROUNDS

2.1 KEY-VALUE (KV) CACHE IN TRANSFORMER

In an L-layer transformer, the new token embedding xt ∈ R1×dembed at decoding step t and l-th layer
is used to compute the query vector qtl , key vector ktl , and value vector vtl as follows:

qtl = xtWQl
, ktl = xtWKl

, vtl = xtWVl
, (1)

where WQl
∈ Rdembed×dhead ,WKl

∈ Rdembed×dhead ,WVl
∈ Rdembed×dhead are query, key, and value ma-

trices, respectively. The newly computed ktl and vtl are then appended to the cached key and value
matrices from previous steps:

Kt
l = Concat(Kt−1

l , ktl), V
t
l = Concat(V t−1

l , vtl) ∈ Rt×dhead , (2)

where Kt−1
l ∈ R(t−1)×dhead and V t−1

l ∈ R(t−1)×dhead denote the cached key and value matrices of
tokens for the previous tokens x1, · · · , xt−1. These cached matrices are subsequently used in the
scaled dot-product attention computation for token xt. The attention output ztl ∈ R1×dhead for the
token xt at step t is computed as:

ztl = Softmax
(qtlKt⊤

l√
dk

)
V t
l (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Visualization of the overall framework. The top diagram shows the training stage. For
training, Deep Linear Projectors (DLPs) are attached to the frozen backbone network (shown with
snowflake).The regularization term LReg encourages DLPs (marked with fire) to learn low-rank
structure while preserving task performance. The right-hand figure with dotted line depicts the
change in DLP. DLPs gradually obtain low-rank form during training. After training, through step 1,
we select rank r that satisfies

∑r
i=1 σ

2
i ≥ e

∑dhead
i=1 σ2

i , where e is the energy preservation threshold.
During step 2, using the rank, we construct corresponding Deep Low-Rank Projections (DLRPs),
denoted D̃.Finally, as shown in the bottom figure, constructed D̃ are trained for inference.

This key and value reuse process can be applied across the different attention heads within each layer
of the transformer. As a result, the KV cache stores tensors of shape [number of layers,
number of heads, sequence length, head dimension].

2.2 DEEP LINEAR NETWORKS (DLNS)

Deep Linear Networks (DLNs) are fundamental model for studying optimization and generalization
in deep learning. This model is a fully connected neural network that excludes intermediate non-
linearities (e.g., ReLU). Formally, an DLN f with L-layer is defined as:

f(x; θ) = WLWL−1 · · ·W1x, θ = {W1, · · · ,WL}, (4)

where Wl ∈ Rdl×dl−1 is a weight matrix of l-th layer, and x ∈ Rd1 denote the input. While DLNs do
not gain expressiveness from depth—since they implement only linear input-output mappings—they
nonetheless exhibit optimization and generalization behaviors that resemble several characteristics
of MLPs. For example, they induce highly non-convex training objectives with numerous minima
and saddle points Ge et al. (2015); Lee et al. (2016), and exhibit an implicit bias toward low-rank
solutions under gradient descent Li et al. (2020); Huh et al. (2021).

3 METHOD

In this section, we introduce a novel adapter that compresses the KV cache effectively. The overall
workflow of proposed method is illustrated in Figure 21. We begin by introducing the Deep Linear
Projector (DLP), along with a novel regularizer that effectively enforces a low-rank structure on
the projector. Next, we describe how to extract an appropriate low rank from the trained DLP and
use it to construct Deep Low-Rank Projector (DLRP). Finally, we explain how the DLRP is fine-
tuned and constructed as a lightweight adapter module. The algorithms used for regularized training,
fine-tuning, and inference deployment are provided in Appendix A.

1Snowflake and Fire icons created by Freepik–Flaticon

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.1 DEEP LINEAR PROJECTOR (DLP)

For the query matrix WQl
∈ Rdembed×dhead in the l-th transformer layer, we first define the Deep Linear

Projector (DLP) as follows:
D1

Ql
D2

Ql
· · ·DN

Ql
∈ Rdhead×dhead , (5)

where the matrices at each end D1
Ql

∈ Rdhead×dhidden , DN
Ql

∈ Rdhidden×dhead , and intermediate matrix
Dn

Ql
∈ Rdhidden×dhidden for n = 2, · · · , N − 1. Here, dhidden denotes the hidden dimension used within

the DLP. Analogously, we define the DLPs for the key, value, and output matrices as:

D1
Kl

D2
Kl

· · ·DN
Kl

∈ Rdhead×dhead

D1
Vl
D2

Vl
· · ·DN

Vl
∈ Rdhead×dhead

D1
Ol
D2

Ol
· · ·DN

Ol
∈ Rdhead×dhead

(6)

To encourage low-rankness in these projectors, an established approach is to employ a nuclear norm
regularizer (Alvarez & Salzmann, 2017). However, computing this regularizer requires a Singualr
Value Decompoistion (SVD), which entails O(d3) computational cost. To address this limitation,
we propose the following novel regularizer:

LReg =

L∑
l=1

N∑
n=1

(
||Dn

Ql
||F + ||Dn

Kl
||F + ||Dn

Vl
||F + ||Dn

Ol
||F

)
(7)

This regularizer function as a practical surrogate of the nuclear norm. Specifically, it exhibits the
same low-rank promoting effect while avoiding the costly SVD computation. The precise relation-
ship between the proposed regularizer and the nuclear norm is established by the following theorem:
Theorem 3.1. Let D1 · · ·DN ∈ Rd×d be a Deep Linear Projector. Then, the following inequality
holds:

||D1 · · ·DN ||∗ ≤ 1

N
·
(N∑

n=1

||Dn||F
)N

, (8)

where || · ||∗ is the nuclear norm and || · ||F is the Frobenius norm.

We provide the proof of this theorem in Appendix B. The proposed regularizer reduces the time
complexity required to inducing low-rankness from O(d3) to O(d2), making it scalable for large-
scale models. As a result, the total loss used for training the DLPs is given by:

LCE + α · LReg, (9)
where LCE denotes the cross-entropy loss and α is a regularization strength. By coupling the task-
oriented term LCE with our regularizer LReg, the resulting objective encourages each DLP to learn a
low-rank structure while preserving task performance.

3.2 DEEP LOW RANK PROJECTOR (DLRP)

Given the trained DLPs for the query, key, value, and output matrices, regularized according to
Eq. (9) to promote low rankness, we construct the Deep Low-Rank Projector (DLRP), which com-
presses KV cache by projecting the key and value vectors onto reduced-dimensional spaces, in
following two steps.

Step 1. Rank Selection from DLPs We first fold each trained DLP into a single linear matrix by
multiplying its N factors. For example, we set DQl

:= D1
Ql
D2

Ql
· · ·DN

Ql
for the query matrix in

layer l. Then, we determine the rank r for each folded DLP using a predefined energy threshold e ∈
(0, 1], where e is the fraction of total energy captured by the cumulative singular values; concretely,
r is the smallest index satisfying

∑r
i=1 σ

2
i ≥ e

∑dhead
i=1 σ2

i . Because the query and key projections
must share the same dimensionality (see Eq. (3)), we first compute the per-projector ranks rlquery

and rlkey by applying the predefined energy threshold e separately to each folded projectors DQl
and

DKl
. We then set a shared rank rlqk := max{rlquery, r

l
key} to satisfy the energy threshold for both

query and key. Likewise, we obtain rlvalue and rloutput from DVl
and DOl

using the same threshold
and define rlvo := max{rlvalue, r

l
output}. These ranks are used to construct the DLRP architecture in

the following step.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Step 2. Construct the DLRPs Based on the selected ranks rlqk and rlvo, we define a Deep Low
Rank Projectors (DLRPs) for the query, key, value, and output matrices as follows:

D̃1
Ql

· · · D̃N
Ql

∈ Rdhead×rlqk D̃1
Kl

· · · D̃N
Kl

∈ Rdhead×rlqk

D̃1
Vl
· · · D̃N

Vl
∈ Rdhead×rlvo D̃1

Ol
· · · D̃N

Ol
∈ Rrlqk×dhead

(10)

In this construction, we adopt the trained DLP’s dhidden as the DLRP’s intermediate size because the
ranks rlqk and rlvo are derived from the DLP’s structure, making it appropriate for the DLRP to carry
that structure over and maintain architectural consistency.

Since the KV cache tensors have the shape [number of layers, number of heads,
sequence length, head dimension], the DLRP can compress the KV cache by reducing
the head dimension (i.e., rlqk, r

l
vo << dhead). Because the head dimension is typically the largest axis

and the amount of redundant information varies across tasks and layers, automatically discovering
suitable low-rank dimensions rlqk and rlvo is highly beneficial. Detailed analysis on the task and layer
dependent patterns are done in Section 5.1.

3.3 FINE-TUNING AND DEPLOYMENT

After constructing the DLRPs, we fine-tune them under a standard supervised objective with the
backbone frozen. This procedure is similar to parameter efficient fine-tuning (PEFT) methods such
as LoRA (Hu et al., 2022), in which only a small subset of adapter parameters is updated. Concretely,
we optimize the factorized DLRPs using the cross-entropy loss LCE. Once training is complete, we
fold each factor chain into a single linear matrix via matrix multiplication. For the DLRP for the
query matrix, we fold as follows:

D̃1
Ql

· · · D̃N
Ql

→ D̃Ql
∈ Rdhead×rlqk . (11)

Similarly, the DLRPs for key, value, and output matrices can be folded. This consolidation replaces
the chain of linear layers with a single projection during inference, keeping deployment overhead
minimal. It also stays compatible with standard KV-cache compression strategies (e.g., a reduced
head dimension produces smaller cached key/value tensors) and requires no changes to the serving
pipeline.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We conduct experiments on three publicly available, open-source instruction-tuned models: Qwen3-
4B, Qwen3-8B (Qwen et al., 2025), and Mistral-7B-Instruct-v0.3 (Jiang et al., 2023). These models
span a range of parameter scales, which allows us to assess the effectiveness of our method across
different model sizes. To access core LLM capabilities spanning short form reasoning and long
context summarization, we evaluate our method on five widely used benchmarks: GSM8K (Cobbe
et al., 2021), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), Xsum (Narayan et al., 2018),
and CNN/Daily Mail (Hermann et al., 2015).

We evaluate recent KV cache compression methods using implementations from NVIDIA’s KV-
Press repository (Jegou et al., 2024): SnapKV (Li et al., 2024), StreamingLLM (Xiao et al., 2023),
Knorm (Devoto et al., 2024), PyramidKV (Cai et al., 2024), KeyDiff (Park et al., 2025) in three
target compression rates (approximately 10%, 25%, and 50%).

All base models are first fine-tuned with LoRA Hu et al. (2022) (rank 32) under a zero-shot regime.
To ensure a fair comparison, we attach adapters only to the attention projections (i.e., query, key,
value, and output). Each KV cache baseline is then applied to these LoRA-adapted models so that
any performance differences are attributable to the compression method rather than to the adaptation
process. We measure performance with EleutherAI’s lm-eval-harness (Gao et al., 2024) under
the same zero-shot protocol across all models and benchmarks.

For DLRP, we use a two-layer DLN (i.e., N = 2) with hidden dimension dhidden = 256 and regu-
larization strength α = 0.01. Ranks are selected using energy thresholds that correspond approx-
imately to 10%, 25%, and 50% compression rates. All projections Dn

Ql
, Dn

Kl
, Dn

Vl
, and Dn

Ol
are

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance under different KV cache compression ratios for each baseline and benchmark.
†denotes the method in combined with LoRA (rank 32). The base model is Qwen3-4B. R-1, R-2,
and R-L means the ROUGE-1, ROUGE-2, and ROUGE-L, respectively. For each compression rate,
the best result is shown in boldface and the second-best in underlined text.

Method CR GSM8K PIQA HellaSwag Xsum CNN/DM Avg.
Acc Acc Acc R-1 R-2 R-L R-1 R-2 R-L

LoRA (r=32) 73.086 86.670 91.615 43.810 19.192 34.469 44.890 21.296 31.375 49.600
SnapKV†

10%

37.528 61.153 83.621 38.529 16.373 30.122 40.116 18.389 27.764 39.288
StreamingLLM† 31.387 79.181 85.087 36.740 15.655 29.043 34.159 13.221 22.623 38.566
Knorm† 1.137 54.026 50.500 29.154 10.403 22.705 29.551 11.185 19.784 25.383
PyramidKV† 38.438 61.425 83.611 38.349 17.139 30.861 39.778 18.042 27.486 39.459
KeyDiff† 68.234 80.745 85.059 36.266 15.095 28.863 37.374 16.568 25.786 43.777
DLRP (Ours) 69.182 81.109 86.957 41.951 18.335 32.626 42.345 20.104 29.045 46.850
SnapKV†

25%

11.221 46.736 75.530 35.835 15.930 28.852 36.708 16.001 25.207 32.447
StreamingLLM† 11.827 74.126 76.522 33.313 13.758 26.245 29.256 10.063 19.055 32.685
Knorm† 0.379 36.453 24.283 22.511 7.411 17.433 20.741 6.502 14.285 16.666
PyramidKV† 11.979 47.008 74.006 35.632 15.658 28.579 35.357 14.646 24.050 31.879
KeyDiff† 59.287 73.271 78.333 31.139 11.997 24.494 31.200 12.457 21.356 38.171
DLRP (Ours) 65.909 79.565 82.218 39.957 17.695 31.677 38.813 18.137 27.056 44.559
SnapKV†

50%

0.531 19.260 55.803 30.861 13.015 24.568 30.952 11.811 20.914 23.079
StreamingLLM† 4.701 65.066 58.760 28.601 10.820 22.372 24.089 7.131 15.803 26.371
Knorm† 0.015 6.474 2.295 9.988 2.826 7.768 8.640 1.840 6.796 5.183
PyramidKV† 0.601 19.532 56.206 30.840 12.953 24.563 30.604 11.575 20.710 23.065
KeyDiff† 26.535 65.356 73.499 18.675 5.674 14.550 16.712 5.109 12.461 26.508
DLRP (Ours) 59.424 75.587 78.187 34.058 15.422 28.412 36.153 16.633 25.448 41.036

Table 2: Performance under different KV cache compression ratios for each baseline and benchmark.
†denotes the method in combined with LoRA (rank 32). The base model is Qwen3-8B. R-1, R-2,
and R-L means the ROUGE-1, ROUGE-2, and ROUGE-L, respectively. For each compression rate,
the best result is shown in boldface and the second-best in underlined text.

Method CR GSM8K PIQA HellaSwag Xsum CNN/DM Avg.
Acc Acc Acc R-1 R-2 R-L R-1 R-2 R-L

LoRA (r=32) 76.403 89.772 93.428 44.586 20.909 36.117 45.378 21.810 31.759 51.129
SnapKV†

10%

41.970 69.957 87.712 40.032 18.720 32.452 40.603 18.931 28.264 42.071
StreamingLLM† 32.727 82.348 87.250 38.289 17.319 30.676 34.892 13.875 23.211 40.065
Knorm† 2.424 78.109 61.788 31.878 12.307 25.170 35.282 14.599 23.723 31.698
PyramidKV† 42.807 70.174 87.752 39.953 18.646 32.429 40.247 18.631 28.103 42.082
KeyDiff† 72.423 82.630 87.230 37.745 16.588 30.336 38.526 17.334 26.633 45.494
DLRP (Ours) 73.882 85.373 90.532 43.159 20.177 34.564 43.336 20.850 29.790 49.074
SnapKV†

25%

15.415 53.870 84.466 37.526 17.343 30.375 37.402 16.698 25.804 35.433
StreamingLLM† 12.425 76.370 83.647 34.905 15.308 27.829 29.989 10.632 19.712 34.535
Knorm† 1.060 68.870 39.964 25.517 9.199 20.027 28.576 10.442 18.032 24.632
PyramidKV† 15.854 53.435 82.491 37.307 17.213 30.165 35.925 15.330 24.667 34.710
KeyDiff† 60.757 75.957 84.051 32.328 13.112 25.750 32.950 13.625 22.567 40.122
DLRP (Ours) 70.444 83.757 85.767 41.108 19.487 33.517 39.797 18.757 27.757 46.710
SnapKV†

50%

0.909 18.978 60.751 32.495 14.629 26.150 31.876 12.634 21.619 24.449
StreamingLLM† 4.248 69.109 63.833 30.410 12.464 24.067 24.406 7.363 15.990 27.988
Knorm† 0.015 41.044 1.095 12.258 3.702 9.698 13.006 3.443 9.438 10.411
PyramidKV† 1.368 19.196 61.288 32.527 14.653 26.192 31.486 12.379 21.418 24.501
KeyDiff† 31.060 63.870 78.548 20.675 6.662 16.187 20.396 6.641 14.612 28.739
DLRP (Ours) 63.644 79.628 81.563 35.134 16.999 30.122 37.119 17.295 26.138 43.071

initialized as identity matrices for every layer l and depth n. Additional hyperparameter details are
provided in Appendix C

4.2 EXPERIMENTAL RESULTS

We present the results on Qwen3-4B and Qwen3-8B across KV cache compression rates of 10%,
25%, and 50%. Additional results for Mistral-7B-Instruct-v0.3, are provided in Appendix D. As
shown in Table 1, DLRP consistently outperforms baseline methods–SnapKV, StreamingLLM,
Knorm, PyramidKV, and KeyDiff–especially as compression intensifies. Whereas these methods
often degrade sharply at moderate and high compression rate, DLRP maintains robust performance
on reasoning-heavy tasks (e.g., GSM8K) and on long-context summarization (e.g., CNN/DM). For
example, at 10% compression, DLRP achieves 69.182% on GSM8K and 86.975% on HellaSwag,
surpassing all baselines; even at 25% and 50%, GSM8K accuracy remains 65.909% and 59.242,
respectively. These results indicate that, within a PEFT setting, DLRP remains robust under aggres-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

sive KV-cache compression by optimizing the adapters within the low-rank subspace induced by our
training procedure. A similar trend is observed in Table 2, where DLRP demonstrates strong per-
formance on Qwen3-8B across all benchmark and compression rate. Notably, it achieves 73.882%
GSM8K accuracy at 10% compression and sustains 63.644% even at 50%, significantly outperform-
ing other methods. These results highlight DLRP’s robustness and generalizability across different
model backbones and task types, including both reasoning and summarization.

Table 3: Average performance comparison of
DLP architectures with varying depth N and hid-
den dimension dhidden under 25% KV-cache com-
pression. We employ Qwen3-4B as base model.

N = 1 N = 2 N = 3

dhidden = 128 43.597 45.191 44.266
dhidden = 256 ✗ 45.482 45.085
dhidden = 512 ✗ 44.670 43.814

Figure 3: Average performance across five
benchmarks under 25% KV-cache compression
with varying regularization strength α. We em-
ploy Qwen3-4B as base model.

4.3 ABLATION STUDIES

4.3.1 REGULARIZATION STRENGTH α OF THE REGULARIZER LREG

We examine the effect of the regularization strength α on DLP training under a 25% KV cache
compression target. Figure 3 visualizes the average performance across five benchmarks for each
α ∈ {1.0, 0.1, 0.01, 0.0}. As α decreases from 1.0 to 0.01, performance improves, indicating that
excessively strong regularization limits the projector’s expressivity. When α = 0, performance
drops slightly, suggesting that a modest regularization terms is necessary to reliably identify an
appropriate rank (via the energy threshold) for each task while maintaining performance at the target
compression level. Based on this finding, we set α = 0.01 as the default value for all experiments.

4.4 THE WIDTH AND DEPTH OF DEEP LINEAR PROJECTOR

We study how the architecture of the DLP affects the performance by varying its depth (N ∈
{1, 2, 3}) and hidden dimensions (dhidden ∈ {128, 256, 512}). All ablations are conducted under
a 25% KV cache compression target, and we report the average performance across five bench-
marks. For N = 1, the DLP reduces to a single linear map with no intermediate layer; consequently
dhidden is not applicable, and we exclude the pairs (1, 256) and (1, 512). Table 3 shows that the
configuration with N = 2 and dhidden = 256 performs best overall. In theory, adding more layers to
a linear network does not increase its expressiveness, since stacked linear layers are still equivalent
to a single linear transformation. However, we observe that different depth and width choices still
lead to clear differences in performance. Smaller models (e.g., dhidden = 128) tend to perform worse,
possibly due to limited flexibility during training. Larger or deeper models (e.g., dhidden = 512 or
N = 3) do not improve results and can even slightly hurt performance because deeper linear com-
positions make optimization harder. In particular, increasing depth beyond two layers consistently
shows a small drop in accuracy across all widths. These results suggest that, even in linear network,
architectural choices affect how well the model trains, rather than how much it can represent. Based
on this finding, we choose the N = 2, dhidden = 256 configuration as the default DLP architecture
for all experiments.

5 DISCUSSION

In this section, we discuss the rank pattern arising from the proposed regularizer, with extended
discussion in Appendix E.

5.1 EMERGENT RANK PATTERNS ACROSS TASKS

To clarify how low-rank structure varies across layers and tasks, we analyze the per-layer ranks rlqk

and rlvo for each task and characterize their emergent patterns across depth. Each rank is determined

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Layer-wise rank pattern for rqk and rvo. These ranks are determined by an energy threshold
e = 0.95. We employ Qwen3-4B as base model.

by an energy threshold e = 0.95. Figure 4 shows the rank pattern for rlqk andrlvo revealing clear task-
dependent pattern across tasks. Across the five benchmarks, we find that GSM8K and PIQA (short-
context, reasoning-intensive) sustain near-full ranks over most layers, indicating strong resistance to
compression; HellaSwag exhibits mid-scale ranks consistent with its moderate length and common-
sense difficulty; and within summarization, XSum (shorter, more abstractive) induces higher ranks
scale than CNN/DM, whose much longer and more redundant inputs yield the lowest rank scale
overall. These trends align with established findings in KV-cache compression: redundancy in long
contexts permits more aggressive reduction (e.g., via heavy-hitter retention), whereas reasoning-
centric workloads are fragile—particularly under prefill compression—and therefore require larger
effective subspaces (Xu et al., 2025; Liu et al., 2025). The pronounced layer-wise heterogeneity in
the rank pattern further suggests that optimal budgets are non-uniform across depth. Overall, these
findings indicate that our regularizer adapts ranks to task demands, preserving capacity where re-
quired (reasoning tasks) while collapsing low-energy dimensions for redundant, long-context inputs
(CNN/DM). Collectively, these results are consistent with depth-aware compression that funnels
information across layers and with adaptive policies that selectively retain impactful tokens/heads.

6 LIMITATIONS

One possible limitation of our work is that DLRP focuses solely on compressing the KV-cache’s
head dimension, leaving the layer count, sequence length, and the number of head unchanged. Al-
though head-dimension compression reliably reduces size regardless of input shape, applying com-
pression to these additional axes could further improve the overall compression rate. Consequently,
extensive exploration of combining DLRP with other techniques may yield even greater reductions
of the KV cache. This line of research is both valuable and highly relevant to multi-dimensional
KV-cache compression. Future work could therefore extend DLRP to operate on multiple cache
dimensions and investigate synergistic integrations with existing KV-compression methods.

7 CONCLUSION

In this work, we identify a key limitation of KV-cache compression: PEFT-adapted LLMs are unusu-
ally brittle under compression. We address this with the Deep Low-Rank Projector (DLRP), which
compresses the head dimension via a deep linear projector trained on the downstream objective
alongside a nuclear-norm-inspired regularizer that induces low rank. After training, we examine the
singular-value spectrum to select the smallest energy-preserving rank, instantiate DLRP at that rank,
fine-tune the adapter, and fold its factors into a single linear map for deployment. This procedure
optimizes within a learned low-rank subspace and explicitly captures the interaction between PEFT
and KV-cache compression. Across diverse LLM benchmarks, DLRP consistently delivers strong
memory–accuracy trade-offs and stable adaptation under compression, enabling efficient inference
of PEFT-adapted models in memory-constrained settings.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Jose M Alvarez and Mathieu Salzmann. Compression-aware training of deep networks. Advances
in neural information processing systems, 30, 2017.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

VI Bityutskov. Bunyakovskii inequality, 2001.

William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, and Jonathan Ragan-
Kelley. Reducing transformer key-value cache size with cross-layer attention. In The Thirty-eighth
Annual Conference on Neural Information Processing Systems, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Yucheng Li, Tianyu Liu, Keming Lu, Wayne
Xiong, Yue Dong, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyra-
midal information funneling. arXiv preprint arXiv:2406.02069, 2024.

Yuang Chen, Cheng Zhang, Xitong Gao, Robert D Mullins, George A Constantinides, and
Yiren Zhao. Optimised grouped-query attention mechanism for transformers. arXiv preprint
arXiv:2406.14963, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Alessio Devoto, Yu Zhao, Simone Scardapane, and Pasquale Minervini. A simple and effective l 2
norm-based strategy for kv cache compression. arXiv preprint arXiv:2406.11430, 2024.

Maxim Enis and Mark Hopkins. From llm to nmt: Advancing low-resource machine translation
with claude. arXiv preprint arXiv:2404.13813, 2024.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S Kevin Zhou. Ada-kv: Optimizing kv cache evic-
tion by adaptive budget allocation for efficient llm inference. arXiv preprint arXiv:2407.11550,
2024.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024. URL https://zenodo.org/records/12608602.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points—online stochastic
gradient for tensor decomposition. In Conference on learning theory, pp. 797–842. PMLR, 2015.

Daniel Goldstein, Fares Obeid, Eric Alcaide, Guangyu Song, and Eugene Cheah. Goldfinch: High
performance rwkv/transformer hybrid with linear pre-fill and extreme kv-cache compression.
arXiv preprint arXiv:2407.12077, 2024.

10

https://zenodo.org/records/12608602

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Moritz Hardt and Tengyu Ma. Identity matters in deep learning. arXiv preprint arXiv:1611.04231,
2016.

Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. Surprises in high-
dimensional ridgeless least squares interpolation. Annals of statistics, 50(2):949, 2022.

Karl Moritz Hermann, Tomás Kociský, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. In NIPS, pp. 1693–
1701, 2015.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit Agrawal, and Phillip Isola.
The low-rank simplicity bias in deep networks. arXiv preprint arXiv:2103.10427, 2021.

Simon Jegou, Maximilian Jeblick, and David Austin. kvpress, November 2024. URL https:
//github.com/NVIDIA/kvpress.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Kenji Kawaguchi. Deep learning without poor local minima. Advances in neural information pro-
cessing systems, 29, 2016.

Thomas Laurent and James Brecht. Deep linear networks with arbitrary loss: All local minima are
global. In International conference on machine learning, pp. 2902–2907. PMLR, 2018.

Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin Recht. Gradient descent only
converges to minimizers. In Conference on learning theory, pp. 1246–1257. PMLR, 2016.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. Advances in Neural Information Processing Systems, 37:22947–22970, 2024.

Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. Towards resolving the implicit bias of gradient descent
for matrix factorization: Greedy low-rank learning. arXiv preprint arXiv:2012.09839, 2020.

Bingli Liao and Danilo Vasconcellos Vargas. Beyond kv caching: Shared attention for efficient llms.
arXiv preprint arXiv:2407.12866, 2024.

Bokai Lin, Zihao Zeng, Zipeng Xiao, Siqi Kou, Tianqi Hou, Xiaofeng Gao, Hao Zhang, and Zhi-
jie Deng. Matryoshkakv: Adaptive kv compression via trainable orthogonal projection. arXiv
preprint arXiv:2410.14731, 2024.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-
of-experts language model. arXiv preprint arXiv:2405.04434, 2024.

Xiang Liu, Zhenheng Tang, Hong Chen, Peijie Dong, Zeyu Li, Xiuze Zhou, Bo Li, Xuming Hu,
and Xiaowen Chu. Can llms maintain fundamental abilities under kv cache compression? arXiv
preprint arXiv:2502.01941, 2025.

James Lucas, George Tucker, Roger B Grosse, and Mohammad Norouzi. Don’t blame the elbo! a
linear vae perspective on posterior collapse. Advances in Neural Information Processing Systems,
32, 2019.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for extreme summarization. ArXiv, abs/1808.08745,
2018.

11

https://github.com/NVIDIA/kvpress
https://github.com/NVIDIA/kvpress
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Junyoung Park, Dalton Jones, Matthew J Morse, Raghavv Goel, Mingu Lee, and Chris Lott. Keydiff:
Key similarity-based kv cache eviction for long-context llm inference in resource-constrained
environments. arXiv preprint arXiv:2504.15364, 2025.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.
Proceedings of Machine Learning and Systems, 5:606–624, 2023.

Xiao Pu, Mingqi Gao, and Xiaojun Wan. Summarization is (almost) dead. arXiv preprint
arXiv:2309.09558, 2023.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynam-
ics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

Utkarsh Saxena, Gobinda Saha, Sakshi Choudhary, and Kaushik Roy. Eigen attention: Attention in
low-rank space for kv cache compression. arXiv preprint arXiv:2408.05646, 2024.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Luohe Shi, Hongyi Zhang, Yao Yao, Zuchao Li, and Hai Zhao. Keep the cost down: A review on
methods to optimize llm’s kv-cache consumption. arXiv preprint arXiv:2407.18003, 2024.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui Wang, Shuming Ma, Quanlu Zhang, Jianyong
Wang, and Furu Wei. You only cache once: Decoder-decoder architectures for language models.
Advances in Neural Information Processing Systems, 37:7339–7361, 2024.

Yuandong Tian. Deep contrastive learning is provably (almost) principal component analysis. arXiv
preprint arXiv:2201.12680, 3, 2022.

Zheng Wang, Boxiao Jin, Zhongzhi Yu, and Minjia Zhang. Model tells you where to merge: Adap-
tive kv cache merging for llms on long-context tasks. arXiv preprint arXiv:2407.08454, 2024.

Zihao Wang and Liu Ziyin. Posterior collapse of a linear latent variable model. Advances in Neural
Information Processing Systems, 35:37537–37548, 2022.

Haoyi Wu and Kewei Tu. Layer-condensed kv cache for efficient inference of large language models.
arXiv preprint arXiv:2405.10637, 2024.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

12

https://arxiv.org/abs/2412.15115

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Huimin Xu, Xin Mao, Feng-Lin Li, Xiaobao Wu, Wang Chen, Wei Zhang, and Anh Tuan Luu.
SCOPE: Compress mathematical reasoning steps for efficient automated process annotation.
In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.),
Findings of the Association for Computational Linguistics: ACL 2025, pp. 24382–24394, Vi-
enna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-256-
5. doi: 10.18653/v1/2025.findings-acl.1251. URL https://aclanthology.org/2025.
findings-acl.1251/.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Hao Yu, Zelan Yang, Shen Li, Yong Li, and Jianxin Wu. Effectively compress kv heads for llm.
arXiv preprint arXiv:2406.07056, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown, and Tatsunori B
Hashimoto. Benchmarking large language models for news summarization. Transactions of the
Association for Computational Linguistics, 12:39–57, 2024.

Liu Ziyin, Botao Li, and Xiangming Meng. Exact solutions of a deep linear network. Advances in
Neural Information Processing Systems, 35:24446–24458, 2022.

Zayd Muhammad Kawakibi Zuhri, Muhammad Farid Adilazuarda, Ayu Purwarianti, and Al-
ham Fikri Aji. Mlkv: Multi-layer key-value heads for memory efficient transformer decoding.
arXiv preprint arXiv:2406.09297, 2024.

13

https://aclanthology.org/2025.findings-acl.1251/
https://aclanthology.org/2025.findings-acl.1251/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A ALGORITHM

We provide concise algorithms for (1) regularized training the Deep Linear Projector (DLP), (2) fine-
tuning the Deep Low-Rank Projector (DLRP), and (3) deploying the DLRP for efficient inference.
For brevity, the pseudo-code shows only the attention weights.

Algorithm 1 Regularized Training for the DLP

Require: Training dataset Dtrain, Regularization strength α
Require: Cross-entropy loss LCE
Require: Pre-trained attention weights:

WQ = {WQl
}Ll=1, WK = {WKl

}Ll=1

WV = {WVl
}Ll=1, WO = {WOl

}Ll=1

1: Initialize DLPs:

DQ = {D1
Ql

· · ·DN
Ql
}Ll=1, DK = {D1

Kl
· · ·DN

Kl
}Ll=1

DV = {D1
Vl
· · ·DN

Vl
}Ll=1, ;DO = {D1

Ol
· · ·DN

Ol
}Ll=1

2: Obtain the DLP-applied pre-trained attention weights:

WDLP
Q = {WQl

·D1
Ql

· · ·DN
Ql
}Ll=1

WDLP
K = {WKl

·D1
Kl

· · ·DN
Kl

}Ll=1

WDLP
V = {WVl

·D1
Vl
· · ·DN

Vl
}Ll=1

WDLP
O = {WOl

·D1
Ol

· · ·DN
Ol
}Ll=1

3: while not converged do
4: Sample mini-batch B ∼ Dtrain
5: Compute the cross-entropy loss

LCE(W
DLP
Q ,WDLP

V ,WDLP
K ,WDLP

O ;B)

6: Compute the regularizer LReg via Eq. (7)
7: Compute the total loss Ltotal = LCE + α · LReg
8: Update the DLPs (DQ, DK , DV , and DO) via the total loss Ltotal
9: end while

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 2 Fine-Tuning for the DLRP

Require: Training dataset Dtrain, predefined energy threshold e
Require: Cross-entropy loss LCE
Require: Pre-trained attention weights:

WQ = {WQl
}Ll=1, WK = {WKl

}Ll=1

WV = {WVl
}Ll=1, WO = {WOl

}Ll=1

Require: Regularized trained DLPs:

DQ = {D1
Ql

· · ·DN
Ql
}Ll=1; DK = {D1

Kl
· · ·DN

Kl
}Ll=1

DV = {D1
Vl
· · ·DN

Vl
}Ll=1; DO = {D1

Ol
· · ·DN

Ol
}Ll=1

1: for l = 1, · · · , L do
2: rlquery = rank(D1

Ql
· · ·DN

Ql
; e), rlkey = rank(D1

Kl
· · ·DN

Kl
; e)

3: rlvalue = rank(D1
Vl
· · ·DN

Vl
; e), rloutput = rank(D1

Ol
· · ·DN

Ol
; e)

4: rlqk = max(rlquery, r
l
key), rlvo = max(rlvalue, r

l
output)

5: end for
6: Based on rank rlqk and rlvo, construct the DLRPs via Eq. (10) and initialize them:

D̃Q = {D̃1
Ql

· · · D̃N
Ql

∈ Rdhead×rlqk}Ll=1

D̃K = {D̃1
Kl

· · · D̃N
Kl

∈ Rdhead×rlqk}Ll=1

D̃V = {D̃1
Vl
· · · D̃N

Vl
∈ Rdhead×rlvo}Ll=1

D̃O = {D̃1
Ol

· · · D̃N
Ol

∈ Rdhead×rlvo}Ll=1

7: Obtain the DLRP-applied pre-trained attention weights:

WDLRP
Q = {WQl

· D̃1
Ql

· · · D̃N
Ql
}Ll=1

WDLRP
K = {WKl

· D̃1
Kl

· · · D̃N
Kl

}Ll=1

WDLRP
V = {WVl

· D̃1
Vl
· · · D̃N

Vl
}Ll=1

WDLRP
O = {WOl

· D̃1
Ol

· · · D̃N
Ol
}Ll=1

8: while not converged do
9: Sample mini-batch B ∼ Dtrain

10: Compute the cross-entropy loss

LCE(W
DLRP
Q ,WDLRP

V ,WDLRP
K ,WDLRP

O ;B)

11: Update the DLRPs (D̃Q, D̃K , D̃V , and D̃O) via the cross-entropy loss LCE
12: end while

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 3 Inference for the DLRP (i.e., Deployment)

Require: Fine-tuned DLRP

D̃Q = {D̃1
Ql

· · · D̃N
Ql

∈ Rdhead×rlqk}Ll=1

D̃K = {D̃1
Kl

· · · D̃N
Kl

∈ Rdhead×rlqk}Ll=1

D̃V = {D̃1
Vl
· · · D̃N

Vl
∈ Rdhead×rlvo}Ll=1

D̃O = {D̃1
Ol

· · · D̃N
Ol

∈ Rdhead×rlvo}Ll=1

1: Fold the factorized DLRP into a single linear matrix via Eq. (11):

D̃Fold
Q = {D̃Ql

∈ Rdq×rlqk}Ll=1

D̃Fold
K = {D̃Kl

∈ Rdq×rlqk}Ll=1

D̃Fold
V = {D̃Vl

∈ Rdq×rlvo}Ll=1

D̃Fold
O = {D̃Ol

∈ Rdq×rlvo}Ll=1

2: Deploy the folded DLRPs: D̃Fold
Q , D̃Fold

K , D̃Fold
V , and D̃Fold

O

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B PROOF

We begin by stating the lemma, followed by the proof of the theorem in Section 3.1.
Lemma B.1. For any two matrices A ∈ Rm×n, B ∈ Rn×p, the following inequality holds:

||AB||F ≤ ||A||F · ||B||F (12)

where || · ||F is the Frobenius norm.

Proof. Let C = AB ∈ Rm×p. By definition,

||C||2F =

m∑
i=1

p∑
j=1

c2ij =

m∑
i=1

p∑
j=1

(
Aibj

)2

, (13)

where cij denotes the (i, j)-th entry of C, Ai is the i-th row of A, and bj is the j-th column of B.
By Cauchy-Schwarz Inequality Bityutskov (2001), we obtain that

||C||2F ≤
m∑
i=1

p∑
j=1

||Ai||2||bj ||2

=
(m∑

i=1

||Ai||2
)(p∑

j=1

||bj ||2
)

= ||A||2F ||B||2F

(14)

Taking the quare root of each side completes the proof.

Theorem B.1 (Restate). Let U1 · · ·UN ∈ Rd×d be a Deep Linear Projector. Then, the following
inequality holds:

||U1 · · ·UN ||∗ ≤ 1

N
·
(N∑

n=1

||Un||F
)N

, (15)

where || · ||∗ is the nuclear norm and || · ||F is the Frobenius norm.

Proof. Let U = U1 · · ·UN be a deep linear projector and abbreviate Û := U2 · · ·UN . By defini-
tion, the nuclear norm of U is given by

||U ||∗ = ||U1Û ||∗ = Tr(U1Û) (16)

By Cauchy-Schwarz Inequality Bityutskov (2001), we can obtain the following inequality:

Tr(U1Û) ≤
√

Tr
(
(U1)TU1

)
Tr
(
ÛT Û

)
(17)

By definition, we can calculate the following inequality:√
Tr
(
(U1)TU1

)
Tr
(
ÛT Û

)
= ||U1||F ||Û ||F (18)

By Lemma B.1, we can derive the following:

||U1||F ||Û ||F ≤ ||U1||F · · · ||UN ||F (19)

Using the AM-GM Inequality, we can derive the following inequality:

||U1||F · · · ||UN ||F ≤ 1

N

(
||U1||F + · · ·+ ||UN ||F

)N

=
1

N
·
(N∑

i=1

||Un||F
)N

(20)

Combining Eq. (16) - (20) yields the following inequality:

||U ||∗ ≤ 1

N
·
(N∑

i=1

||Un||F
)N

(21)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C HYPER-PARAMETER SETTING

Common Setting All experiments use AdamW with a warm-up/decay schedule: the learning rate
rises linearly to 5 × 10−4 over the first 10% of steps, then decays. We adopt a global batch size of
32 and truncate or pad all inputs to 512 tokens across the five datasets.

Regularized Training (DLP) The Deep Linear Projector (DLP) is trained for 10 epochs in
bfloat16 on up to four H100 (80 GB) GPUs; this stage completes in under two hours on the full
4-GPU setup.

Fine-Tuning (DLRP) The Deep Low-Rank Projector (DLRP) is fine-tuned for 3 epochs in
bfloat16 on up to four H100 (80 GB) GPUs, finishing in less than one hour on four H100 GPUs.

Fine-Tuning (LoRA) The LoRA baseline is likewise fine-tuned for 5 epochs in bfloat16 on up to
four H100 GPUs, requiring under one hour to converge.

D ADDITIONAL RESULTS

In this section, we report additional results on Mistral-7B-Instruct-v0.3 under KV cache compres-
sion rates of 10%, 25%, and 50%. DLRP consistently achieves the highest average performance
among the baselines, matching the trends observed on Qwen3-4B and Qwen3-8B, and the advan-
tage becomes more pronounced as compression rate increases.

Table 4: Performance under different KV cache compression ratios for each baseline and benchmark.
†denotes the method in combined with LoRA (rank 32). The base model is Mistral-7B-Instruct-
v0.3. R-1, R-2, and R-L means the ROUGE-1, ROUGE-2, and ROUGE-L, respectively. For each
compression rate, the best result is shown in boldface and the second-best in underlined text.

Method CR GSM8K PIQA HellaSwag Xsum CNN/DM Avg.
Acc Acc Acc R-1 R-2 R-L R-1 R-2 R-L

LoRA (r=32) 53.030 88.152 94.604 46.366 23.174 37.693 45.482 21.766 31.945 49.135
SnapKV†

10%

35.000 75.620 84.821 41.336 20.304 33.565 40.572 18.624 28.096 41.993
StreamingLLM† 27.576 79.337 84.512 39.976 19.051 32.220 35.828 14.336 23.871 39.634
Knorm† 13.182 43.924 30.512 39.369 19.491 32.587 40.554 18.643 27.777 29.560
PyramidKV† 36.667 75.717 82.929 41.262 20.461 33.504 40.327 18.452 27.934 41.917
KeyDiff† 45.955 78.946 84.817 41.214 20.446 33.653 40.853 19.329 28.566 43.753
DLRP (Ours) 50.742 83.176 90.730 44.637 22.251 35.876 43.174 20.678 29.771 46.781
SnapKV†

25%

15.909 61.717 78.094 36.702 18.570 30.994 37.304 16.337 25.541 35.685
StreamingLLM† 8.939 74.098 79.279 36.891 17.233 29.609 30.869 11.060 20.182 34.240
Knorm† 4.848 41.484 25.468 36.272 17.458 30.038 37.668 16.972 25.809 26.224
PyramidKV† 15.455 62.457 77.502 37.568 18.575 30.210 36.824 15.925 25.202 35.524
KeyDiff† 37.992 74.560 79.512 38.928 19.390 31.744 38.501 18.051 26.962 40.627
DLRP (Ours) 48.371 81.567 85.867 42.520 21.482 34.808 39.610 18.621 27.728 44.508
SnapKV†

50%

1.364 29.826 58.765 33.626 16.139 28.549 32.423 12.778 21.712 26.131
StreamingLLM† 4.091 69.130 56.233 31.811 14.119 25.570 25.603 8.084 16.693 27.926
Knorm† 1.970 38.783 25.468 33.074 15.735 27.379 32.619 12.924 21.881 23.315
PyramidKV† 1.515 30.435 59.180 35.335 16.958 28.585 32.295 12.621 21.666 26.510
KeyDiff† 17.644 63.478 72.356 35.235 16.722 28.306 35.153 15.813 24.276 34.331
DLRP (Ours) 43.660 77.516 81.662 36.295 18.734 31.257 36.915 17.130 26.099 41.030

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E ADDITIONAL DICUSSION: DLRP-INDUCED STRUCTURED
LOTTERY-TICKET SUBSPACES IN THE KV CACHE

Our analysis of the rank pattern in Figure 4 indicates that DLRP adopts task-adaptive KV cache com-
pression via the per-layer ranks rlqk and rlvo. On reasoning-intensive benchmarks such as GSM8K
and PIQA, DLRP preserves near-full ranks across most layers, indicating limited tolerance for di-
mensionality reduction. In contrast, summarization tasks admit lower ranks: XSum maintains lower
ranks than reasoning tasks but consistently higher than CNN/DM, while CNN/DM exhibits the low-
est ranks overall. These patterns suggest that, depending on task characteristics, DLRP allocates
more KV-cache capacity to the most consequential layers by assigning higher ranks, while reducing
capacity in less influential layers via lower-rank projections. This behavior is conceptually aligned
with the Lottery Ticket Hypothesis (LTH) (Frankle & Carbin, 2018). Rather than relying on the
full KV-cache basis, DLRP identifies a winning subspace—a compact set of significant dimen-
sion—that, once fine-tuned, suffices to match the performance of the full model on the target tasks.
The proposed regularizer and energy-based rank selection serve as a subspace-discovery mecha-
nism, concentrating KV cache capacity on informative dimensions while suppressing uninformative
ones. Unlike classical LTH, which searches for sparse subnetworks in weight space (often via prun-
ing and rewinding), DLRP operates in the KV-cache space and achieves compression by learning a
low-rank projector.

F STATEMENT OF LARGE-LANGUAGE-MODEL (LLM) USAGE

The authors acknowledge that a large-language-model (LLM) was employed as a general-purpose
assistance tool during the preparation of this manuscript. Specifically, the following tasks were
supported by the LLM under the direct supervision of the authors:

• Formatting and LaTeX assistance – The LLM supplied LaTeX snippets for tables, equa-
tions, and figure captions. The authors integrated these snippets into the manuscript and
performed all final compilation and formatting checks.

• Language polishing – The LLM was used to improve readability, correct grammar, and
adjust stylistic tone across the entire manuscript. The final wording reflects the authors’
own decisions after thorough review.

All content generated by the LLM was fully supervised, fact-checked, and substantially revised by
the human authors before inclusion in the final version. No portion of the manuscript was submitted
to the LLM for autonomous generation without subsequent author verification.

The authors affirm that the intellectual contributions, experimental design, data analysis, and conclu-
sions are entirely their own work, and that the LLM served only as an auxiliary writing and editing
aid.

19

	Related Works
	Key-Value (KV) Cache Compression
	Deep Linear Networks

	Backgrounds
	Key-Value (KV) Cache in Transformer
	Deep Linear Networks (DLNs)

	Method
	Deep Linear Projector (DLP)
	Deep Low Rank Projector (DLRP)
	Fine-Tuning and Deployment

	Experiments
	Experimental Setup
	Experimental Results
	Ablation Studies
	Regularization Strength of the Regularizer LReg

	The Width and Depth of Deep Linear Projector

	Discussion
	Emergent Rank Patterns across Tasks

	Limitations
	Conclusion
	Algorithm
	Proof
	Hyper-parameter setting
	Additional Results
	Additional Dicussion: DLRP-induced Structured Lottery-Ticket Subspaces in the KV Cache
	Statement of Large‑Language‑Model (LLM) Usage

