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Abstract

The development of large language models001
(LLMs) has significantly expanded model sizes,002
resulting in substantial GPU memory require-003
ments during inference. The key and value004
storage of the attention map in the KV (key-005
value) cache accounts for more than 80% of006
this memory consumption. Nowadays, most007
existing KV cache compression methods fo-008
cus on intra-layer compression within a sin-009
gle Transformer layer but few works consider010
layer-wise compression. In this paper, we pro-011
pose a plug-and-play method called KVSharer,012
which shares the KV cache between layers to013
achieve layer-wise compression. Rather than in-014
tuitively sharing based on higher similarity, we015
discover a counterintuitive phenomenon: shar-016
ing dissimilar KV caches better preserves the017
model performance. Experiments show that018
KVSharer can reduce KV cache computation019
by 30%, thereby lowering memory consump-020
tion without significantly impacting model per-021
formance and it can also achieve at least 1.3022
times generation acceleration. Additionally, we023
verify that KVSharer is compatible with exist-024
ing intra-layer KV cache compression methods,025
and combining both can further save memory.026

1 Introduction027

Recently, large language models (LLMs) built on028

the Transformer (Vaswani et al., 2017) architecture029

have demonstrated remarkable abilities (Touvron030

et al., 2023; Cai et al., 2024; Yang et al., 2024a;031

Brown, 2020; Jiang et al., 2023). However, these032

impressive capabilities come with increased model033

size, leading to significant GPU memory costs dur-034

ing inference. The memory consumption of LLM035

during inference primarily comes from model pa-036

rameters and the KV cache. The KV cache, widely037

used for efficient inference, stores keys and val-038

ues from the attention mechanism, allowing for039

reuse in subsequent generation processes to im-040

prove inference speed, but also substantially in-041
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Figure 1: Previous methods primarily focus on discard-
ing Keys and Values within layers. In contrast, we share
KV caches across layers based on their dissimilarity.

creasing memory consumption. Typically, the KV 042

cache accounts for 80% (Yang et al., 2024b; Zhang 043

et al., 2024b) of the total memory usage during the 044

inference phase, making it essential to optimize 045

the KV cache to reduce memory consumption for 046

efficiency inference, particularly for long-context 047

scenario (Bai et al., 2023; Chen et al., 2024b). 048

Recent research has seen a proliferation of meth- 049

ods aimed at KV cache compression (Zandieh et al., 050

2024; Xu et al., 2024; Yang et al., 2024b; Zhang 051

et al., 2024b,a; Dong et al., 2024). However, these 052

efforts have predominantly focused on intra-layer 053

KV cache compression within individual Trans- 054

former layers. In contrast, layer-wise KV cache 055

compression strategies, which calculate the KV 056

cache for only a subset of layers to minimize mem- 057

ory usage, remain largely unexplored. The limited 058

existing work on layer-wise KV cache compression 059

typically requires additional training to maintain 060

performance (Wu and Tu, 2024; Liu et al., 2024a). 061

In this paper, we propose KVSharer, a plug-and- 062

play method for compressing the KV cache of well- 063

trained LLMs. Contrary to the intuitive expectation 064

of sharing similar KV caches, our method lever- 065

ages a counterintuitive observation: sharing dissim- 066
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Figure 2: An illustration of the strategy searching process of the KVSharer. For a given LLM, process (a) performs
inference on the calibration dataset and computes the Euclidean distance between flattened KV cache vectors from
any two layers, sorting pairs in descending order. (b) KV cache pairs are sequentially replaced, ensuring the final
hidden-state similarity with the original model exceeds threshold T until the KV cache compression ratio reaches
R.

ilar KV caches during inference causes minimal067

performance degradation. The paradox in this dis-068

covery lies in that previous methods for sharing069

parameters or activation values have always relied070

on replacing similar values (Dehghani et al., 2018;071

Reid et al., 2021; Cao et al., 2024). In contrast,072

we are the first to show that, in the context of KV073

caches, model performance can be effectively main-074

tained by sharing dissimilar layer-wise KV caches.075

Leveraging this observation, KVSharer employs a076

search strategy to identify the KV cache sharing077

strategy across different layers during inference.078

KVSharer significantly reduces GPU memory con-079

sumption while maintaining most of the model per-080

formance. For example, it retains over 95% of081

the model performance while using only 70% of082

the original memory. As a layer-wise KV cache083

compression technique, KVSharer is compatible084

with existing intra-layer KV cache compression085

methods, offering a complementary approach to086

memory optimization in LLMs. KVsharer is also087

a general method and not task-specific, meaning088

that once a sharing strategy is found on a general089

calibration dataset, it can be directly applied to090

any downstream task. Our key contributions are091

summarized as:092

• We observe a counterintuitive phenomenon093

where sharing dissimilar KV caches mini-094

mally impacts performance. Leveraging this,095

we propose KVSharer, a layer-wise KV cache096

sharing mechanism for efficient inference097

without retraining.098

• Experiments with PPL (Perplexity) and down-099

stream benchmarks show that KVSharer re-100

duces GPU memory usage with minimal im-101

pact on performance while improving genera- 102

tion speed. 103

• KVSharer is compatible with intra-layer KV 104

cache compression, allowing further memory 105

reduction while preserving performance. 106

2 Related Work 107

2.1 KV cache compression 108

Most existing KV cache compression meth- 109

ods focus on intra-layer compression within 110

a single transformer layer. Techniques like 111

StreamingLLM (Xiao et al., 2023), H2O (Zhang 112

et al., 2024b), Scissorhands (Liu et al., 2024b), 113

PyramidInfer (Yang et al., 2024b), FastGen (Ge 114

et al., 2023), TOVA (Oren et al., 2024), Recur- 115

Former (Yan et al., 2024), Sepllm (Chen et al., 116

2024a) and SnapKV (Li et al., 2024) achieve spar- 117

sification by discarding unimportant tokens or opti- 118

mizing key-value storage within layers. However, 119

these methods operate only within individual layers 120

and do not address layer-wise KV cache compres- 121

sion. 122

Recently, a few approaches have explored layer- 123

wise KV cache compression. LCKV (Wu and Tu, 124

2024) caches KVs for fewer layers to save memory, 125

CLA (Brandon et al., 2024) introduces inter-layer 126

attention for KV sharing, and YOCO (Sun et al., 127

2024) enforces KV reuse across layers. However, 128

these methods require additional model training. 129

Although MiniCache (Liu et al., 2024a) merges 130

KV caches across layers to enhance throughput, it 131

is a layer-wise compression algorithm that does not 132

require training. However, there is still significant 133

room for improvement in its performance. 134
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Algorithm 1 Workflow of Strategy Searching

Require: LLMM, Target Shared KV Cache Layers C, Calibration Dataset D, Threshold for representa-
tion similarity T

Ensure: Sharing Strategy Z
1: S ← Euclidean_KV_Dis(M, D) ▷ Perform inference on the calibration dataset D, calculate the

Euclidean distances between KV caches of all layer pairs, and record them as S
2: R ← Descend_Rank(S) ▷ Sort KV cache layer pairs by Euclidean distance in descending order
3: Z ← ∅ ▷ Initialize candidate sharing strategy as Z
4: P ← 0 ▷ Initialize current number of shared layers as P
5: for each r inR do
6: Z ← Z ∪ r ▷ Add the current pair r to the candidate set
7: Mtmp ← Sharing_KV(M, Z) ▷ Apply layer-wise KV cache sharing toM according to the

current candidate strategy and get candidate modelMtmp

8: s← Avg_Cos_Sim(Mtmp,M, D) ▷ Compute the similarity of the final layer hidden-state
between the two models on the calibration dataset as s

9: if s <= T then
10: Z ← Z \ r ▷ Discard the pair r if the output similarity falls below the threshold
11: else
12: P ← P + 1 ▷ Find a replacement and increase the shared layers P by 1
13: if P == C then
14: return Z ▷ Return the currently found optimal strategy
15: end if
16: end if
17: end for
18: return None

2.2 Attention Map & Parameter sharing135

Since the introduction of Transformer-based pre-136

trained language models (PLMs) like BERT (De-137

vlin et al., 2018), attention map sharing and param-138

eter sharing have been explored to enhance model139

efficiency. Lazyformer (Ying et al., 2021) reuses140

lower-layer attention maps in higher layers, improv-141

ing throughput. Xiao et al. (2019) share attention142

weights across layers to speed up machine trans-143

lation inference, while Takase and Kiyono (2021)144

propose rule-based parameter sharing strategies for145

efficiency. Shim et al. (2023) evaluate various at-146

tention map sharing methods comprehensively.147

In the era of LLMs, parameter and attention map148

sharing have been widely adopted. Multi-Query149

Attention (MQA) (Shazeer, 2019) and Grouped-150

Query Attention (GQA) (Ainslie et al., 2023) op-151

timize efficiency by sharing attention values and152

keys within layers. Cao et al. (2024) analyze at-153

tention map and parameter similarity in LLMs,154

proposing sharing strategies to reduce memory us-155

age. However, none of these works have extended156

to the KV cache. They all rely on replacing lay-157

ers with higher parameter similarity or activation158

values, which aligns with intuition, whereas we 159

replace dissimilar KV cache. 160

3 KVSharer 161

The main steps of KVSharer are divided into two 162

parts. First, for a given LLM, it searches a shar- 163

ing strategy, a list that specifies which layers’ KV 164

caches should be replaced by those of other spe- 165

cific layers. Then, during the subsequent prefill 166

and generation processes on all the tasks, the KV 167

caches of the relevant layers are directly replaced 168

according to this list, enabling efficient inference. 169

3.1 Strategy Searching 170

To heuristically search for a sharing strategy, we 171

infer on a calibration dataset, calculate Euclidean 172

distances between KV caches of all layer pairs, and 173

sort them in descending order. We then sequentially 174

replace KV caches, ensuring output consistency 175

with the original model. The process is detailed in 176

Algorithm 1 and Figure 2. 177

3.1.1 Initialization 178

For a given LLMM and target shared KV cache 179

layers C, we use a calibration dataset D of plain 180
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sentences. Forward computations are performed181

with both the shared KV cache model and the orig-182

inal model, ensuring their output cosine similarity183

exceeds the threshold T .184

3.1.2 Searching185

KV Cache Similarity Calculation & Initializa-186

tion (1-4) First, we perform a forward pass using187

the original model M on the calibration dataset188

D, saving the KV cache for each layer during the189

forward pass of each sentence. Then, we average190

the KV cache for each layer across all samples to191

obtain the average KV cache for each layer. Fi-192

nally, we flatten the keys and values of the KV193

cache for each layer into a one-dimensional vector,194

and then average the keys and values separately195

to represent the KV cache for that layer. We then196

calculate the Euclidean distance between the KV197

cache representations of any two layers to obtain198

S. We then sort S in descending order to get R,199

since a larger Euclidean distance indicates a lower200

similarity. Consequently, dissimilar layer pairs are201

prioritized. We then set two variables, Z and P ,202

to record the candidate KV cache sharing strategy203

and the current number of shared layers.204

Sharing Strategy Searching (5-18) Based on the205

values inR, we sequentially select a pair of layers r206

to add to Z for sharing. When sharing, we replace207

the layer closer to the output with the one closer to208

the input, as the layers near the input end in LLMs209

are more sensitive, and modifying them could result210

in significant performance degradation (Cao et al.,211

2024; Yang et al., 2024c).212

We then apply the candidate strategy Z by di-213

rectly replacing the KV cache of one layer with214

another during the forward pass. Using the model215

with KV cache sharing and the original model, we216

perform inference on the calibration dataset to ob-217

tain the output representation from the last layer.218

We then average these representations across differ-219

ent sentences. If the cosine similarity between the220

averaged output representations of the two mod-221

els exceeds the threshold T , we retain the current222

pair replacement r; otherwise, we discard it. This223

iteration continues until the predefined number of224

compressed layers C is reached. At the end of the225

iteration, we obtain an KV cache sharing strategy226

Z through the heuristic search.227

3.2 Inference With KV cache Sharing228

After deriving the sharing strategyZ , we apply it to229

all inference tasks, including prefill and generation.230
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Figure 3: During the inference process of prefill and
generation, according to the currently found optimal
sharing strategy, KVSharer directly copy the result of
the KV cache from a previously computed layer to the
current layer during the forward computation.

As shown in Figure 3, when a layer’s KV cache is 231

shared based on Z , it is directly copied from the 232

corresponding layer, and subsequent computations 233

proceed as in the original model. 234

4 Experiments 235

4.1 Models 236

To evaluate the effectiveness of the proposed 237

KVSharer, we perform experiments on widely- 238

used English LLMs, specifically Llama2-7B and 239

13B (Touvron et al., 2023). We also examine its ef- 240

fectiveness on bilingual LLMs, namely InternLM2- 241

7B and 20B (Cai et al., 2024), which support both 242

Chinese and English. For main experiments, we 243

utilize the chat versions of Llama2-7B, InternLM2- 244

7B, InternLM2-20B and Llama2-13B. We choose 245

these two model series because they offer open- 246

source models in a relatively complete range of 247

different sizes and versions (Base or Chat). Addi- 248

tionally, we include experiments on the advanced 249

Mistral-7B-Instruct-v0.3 (Jiang et al., 2023) to val- 250

idate the universality of our method. 251

4.2 Benchmarks 252

To evaluate the model’s broad capabilities, we use 253

the OpenCompass framework (Contributors, 2023), 254

focusing on five areas: Reasoning, Language, 255

Knowledge, Examination, and Understanding, with 256

selected benchmarks for each category. Reason- 257

ing: CMNLI (Xu et al., 2020), HellaSwag (HeSw) 258

(Zellers et al., 2019), PIQA (Bisk et al., 2019). Lan- 259

guage: CHID (Zheng et al., 2019), WSC (Levesque 260

et al., 2012). Knowledge: CommonSenseQA 261

(CSQA) (Talmor et al., 2018), BoolQ (Clark et al., 262

2019). Examination: MMLU (Hendrycks et al., 263

2021), CMMLU (Li et al., 2023b). Understand- 264
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LLM Rate Reasoning Language Knowledge Examination Understanding Average Percent

Llama2-7B

0% 60.83 40.67 68.67 38.89 33.03 46.55 100%
12.5% 60.73 54.41 71.86 36.18 44.73 52.89 113.6%
25% 57.74 51.00 60.52 33.12 31.15 45.58 97.9%

37.5% 53.68 38.52 53.90 26.94 25.37 38.55 82.8%

Llama2-13B

0% 62.90 60.56 75.67 46.67 49.67 58.13 100%
12.5% 61.31 57.33 74.56 46.16 47.77 56.32 96.9%
25% 61.35 47.38 73.66 46.03 40.51 51.97 89.4%

37.5% 57.46 43.75 52.39 35.39 21.97 40.50 69.7%

InternLM2-7B

0% 62.00 71.30 76.37 64.46 69.82 68.63 100%
12.5% 60.81 66.99 75.32 60.26 69.36 66.57 97.0%
25% 62.19 65.37 74.66 62.70 68.71 66.59 97.0%

37.5% 61.10 63.74 74.28 62.54 65.51 65.01 94.7%

InternLM2-20B

0% 70.66 67.34 77.88 66.26 72.33 70.82 100%
12.5% 69.02 66.84 77.39 65.94 70.75 69.80 98.6%
25% 66.82 65.55 77.41 65.45 70.76 68.99 97.4%

37.5% 66.58 59.62 77.41 65.07 68.48 66.96 94.5%

Mistral-7B

0% 64.78 62.76 79.03 53.49 62.53 64.13 100%
12.5% 64.40 57.88 77.35 50.02 60.05 61.56 96.0%
25% 63.28 50.15 76.18 45.23 52.55 56.67 88.4%

37.5% 61.40 49.72 71.50 35.50 40.02 50.53 78.8%

Table 1: The main results of our experiments. “Rate” represents the compression rate. We present the average
values of the model across different aspects of tasks and the average scores of all tasks as percentages relative to the
full KV cache.

Method
Reasoning Language Knowledge Examination Understanding

CMNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMMLU RaceH RaceM XSum C3

KVSharer 34.89 63.97 74.37 37.62 55.77 59.62 48.65 72.39 38.38 27.87 30.33 31.27 21.30 41.70

MiniCache 33.99 49.54 63.12 28.51 51.11 49.41 35.01 55.13 22.54 15.92 24.12 26.93 10.44 28.12

Table 2: A comparison between KVSharer and MiniCache at a 25% KVCache compression rate on Llama2-7B.
Results show that KVSharer significantly outperforms MiniCache.

ing: Race-High/Middle (H/M) (Lai et al., 2017),265

XSum (Narayan et al., 2018), C3 (Sun et al., 2020).266

Evaluations use OpenCompass official scripts in267

zero-shot or few-shot settings, with two modes: per-268

plexity (PPL) and generation (GEN) 1. GEN is used269

for CHID and XSum, while both PPL (WSCP) and270

GEN (WSCG) are applied to WSC. Other bench-271

marks are evaluated in PPL mode. Scores are com-272

puted by OpenCompass, with higher values indi-273

cating better performance.274

4.3 Settings275

We configure the compression rates for each model276

at 12.5%, 25%, and 37.5% by setting the target277

shared layers C, as subsequent results show that the278

models can maintain relatively good performance279

within this range. For all the models, we randomly280

select 30 sentences from English Wikipedia as the281

1https://opencompass.readthedocs.io/en/latest/
get_started/faq.html

calibration dataset where each sentence has 64 to- 282

kens. We set T to 0.5 for all the models 2. All 283

experiments related to the PPL evaluation are con- 284

ducted on a Wikipedia dataset consisting of 200 285

sentences, where the token length of each sentence 286

is set to 2048. We perform experiments on a server 287

equipped with 4 Nvidia A100 80GB GPUs. 288

4.4 Main Result 289

We conduct experiments on each dataset, calculate 290

the average score for each aspect, the average score 291

across all tasks, and the percentage of the average 292

score for all tasks using KVShare compression rel- 293

ative to the average score with the full KV cache 294

in Table 1. Detailed results can be found in Table 9 295

of Appendix A.1. 296

2When strategy searching, the similarity of the last layer’s
hidden state between the compressed model and the original
model is usually greater than 0.8. We set a threshold of 0.5 to
avoid rare cases of model output collapse. Since this situation
is infrequent, we do not perform an ablation study on T .
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Llama2-7B and InternLM2-7B each have 32 lay-297

ers, while Llama2-13B and InternLM2-20B have298

40 and 48 layers, respectively. To evaluate perfor-299

mance, we apply different numbers of compressed300

layers to the four models at compression rates of301

12.5%, 25%, and 37.5%. Additionally, we include302

models with full KV cache for comparison. Based303

on the main results, KVSharer exhibits minimal304

performance degradation compared to the full KV305

cache in the vast majority of tasks. Notably, when306

the compression rate is 25% or less, the perfor-307

mance remains close to 90%, and in some cases,308

even exceeds 95%. Furthermore, the model does309

not suffer significant performance drops in any310

specific aspect, as no individual score approaches311

zero. These results demonstrate that KVSharer312

effectively preserves the model’s overall and task-313

specific performance. To present the results in Ta-314

ble 1 more intuitively, we show the average perfor-315

mance of each model across all tasks at different316

compression rates, as illustrated in Appendix A.1317

Figure 7. It can also be observed that KVSharer318

can maintain the model’s performance well with319

a compression rate of 25% or less, and even im-320

proves the average performance of the model at a321

12.5% compression rate on Llama2-7B.322

We compare our method with MiniCache, a 323

cross-layer, training-free KVCache compression 324

method, on several datasets. Since their code is not 325

publicly available, we reimplemented it and con- 326

ducted experiments on LLaMA2-7B with a 25% 327

compression rate. The results in Table 2 show that 328

KVSharer significantly outperforms MiniCache, 329

achieving better performance across all tasks. 330

We also validate the larger Llama2-70B model, 331

MQA (Multi-Query Attention) and MLA (Multi- 332

Head Latent Attention) models, discovering that 333

KVSharer is also effective for it, maintaining most 334

of its performance, as in Appendix A.2 and Ap- 335

pendix A.3. 336

4.5 Strategy Searching Time 337

To evaluate the time consumption of KVSharer, 338

we also test the time required for the most time- 339

consuming part of the algorithm, Strategy Search- 340

ing, as shown in Figure 5. The results show that 341

searching for a sharing strategy on the models takes 342

approximately one minute or less. This is expected, 343

as Strategy Searching only requires the model to 344

perform several inferences on a calibration dataset 345

consisting of a few to several dozen sentences, a 346

process that can be completed within minutes on 347

a GPU. Note that our sharing strategy is general 348

rather than task-specific, allowing for only one 349

search per model, which significantly reduces the 350

time required. 351

4.6 Compatibility with Intra-layer 352

Compression 353

Since KVSharer is a layer-wise KV cache compres- 354

sion method, it is inherently orthogonal to intra- 355

layer KV cache techniques. Therefore, we explore 356

the effectiveness of combining it with existing intra- 357

layer KV cache methods. Specifically, we combine 358

it with H2O (Zhang et al., 2024b) and PyramidIn- 359

fer (Yang et al., 2024b), which are popular intra- 360
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Full

SeqLen. 512+32 256+2048 512+2048 1024+4096

Memory 28461 36095 51639 58177

Prefill 0.088 0.047 0.088 0.193

Gen. 11.0 18.0 18.2 18.7

KVSharer
(25%)

SeqLen. 512+32 256+2048 512+2048 1024+4096

Memory
28257
(99%)

31403
(87%)

37049
(72%)

37231
(64%)

Prefill 0.087 0.046 0.087 0.191

Gen.
13.9

(×1.26)
29.8

(×1.66)
30.0

(×1.65)
28.7

(×1.53)

KVSharer
(25%)
+ H2O

SeqLen. 512+32 256+2048 512+2048 1024+4096

Memory
24852
(87%)

26195
(73%)

30891
(60%)

31591
(54%)

Prefill 0.090 0.044 0.089 0.190

Gen.
14.1

(×1.28)
29.2

(×1.62)
28.3

(×1.55)
27.1

(×1.45)

KVSharer
(25%)
+ Pyr.

SeqLen. 512+32 256+2048 512+2048 1024+4096

Memory
23195
(81%)

26059
(72%)

30141
(58%)

31417
(54%)

Prefill 0.089 0.048 0.089 0.195

Gen.
14.5

(×1.31)
33.8

(×1.88)
34.1

(×1.87)
33.4

(×1.79)

Table 3: Memory usage (MB), prefill time (s) and gen-
eration speed (tokens/s) of the Llama2-13B-Chat. “Se-
qLen.” represents the “input length” + “maximum out-
put length”. “Gen.” represents the “Generation”.

layer compression methods. We conduct experi-361

ments on Llama2-7B and Llama2-13B, first using362

KVSharer to identify 8 layers for shared KV cache,363

effectively calculating the KV cache for only 24364

out of the 32 layers. Then, these two layer-wise365

compression methods are further applied for an ad-366

ditional 20% compression. The reproduction of367

PyramidInfer and H2O can be found in the Ap-368

pendix B. We present the changes in PPL after369

adding H2O and PyramidInfer in Figure 4. At370

12.5% and 25% KVSharer compression rates, both371

methods cause only a slight increase in PPL. The372

impact of PyramidInfer on PPL is lower compared373

to H2O, which is expected since PyramidInfer gen-374

erally maintains better model performance.375

Figure 4 also shows the PPL of InternLM2 and376

Llama2 series under different KVSharer compres-377

sion rates. At compression rates up to 25%, the378

PPL remains below 15, or even 10, ensuring good379

generation quality. Case studies of the model’s380

outputs are provided in Appendix C, Table 14.381

Rate PPL Quality SFiction Coursera MultiDoc2Dial

0% 6.26 35.14 8.14 11.01 8.01
12.5% 7.88 29.29 6.91 19.19 6.53
25% 10.05 25.74 5.60 10.07 5.68

Table 4: The performance of longchat-7b-v1.5-32k with
KVSharer under different compression rates. PPL rep-
resents the perplexity on the Wikipedia corpus with the
sentence length of 16k. Quality, SFiction, Coursera, and
MultiDoc2Dial are subsets of L-EVAL.

4.7 Memory Cost & Inference Speed 382

In this section, we aim to explore the memory sav- 383

ings and the impact on inference speed brought 384

by KVSharer. Specifically, we test the memory 385

consumption, prefill time, and generation speed 386

of Llama2-13B-Chat under the following settings: 387

Full KV cache, KVSharer with 25% compression, 388

KVSharer with 25% compression + H2O, and 389

KVSharer with 25% compression + PyramidInfer, 390

across different input and maximum output lengths. 391

We show the results in Table 3. 392

When sentence length is short (e.g., 512+32), 393

KVSharer shows minimal memory savings, as 394

memory is dominated by the model itself. However, 395

as length increases, the effect becomes significant, 396

reaching up to 30% savings at 256+2048 tokens. 397

In terms of speed, although there is no accelera- 398

tion during the prefill phase, there is a significant 399

acceleration during the generation phase as our 400

results also show at least 1.2 times acceleration. 401

When the length reaches 512+2048, it can provide 402

over 1.6 times acceleration during the generation. 403

After adding PyramidInfer and H2O, the mem- 404

ory usage is further reduced. Additionally, Pyra- 405

midInfer further accelerates the generation speed. 406

4.8 Long-Context Scenario 407

As long-context is a key application of efficiency 408

inference, we evaluate KVSharer using PPL and 409

the L-EVAL benchmark (An et al., 2023). We use 410

longchat-7b-v1.5-32k (Li et al., 2023a), a model 411

fine-tuned from LLaMA 2 for extended context. 412

PPL is tested on a Wikipedia corpus with the 16k 413

sentence length, and the benchmark evaluation in- 414

cludes four L-EVAL subsets: Quality, SFiction, 415

Coursera, and MultiDoc2Dial. Results are shown 416

in Table 4. 417

In terms of PPL, KVSharer shows a similar im- 418

pact on model performance in long-context and 419

short-context scenarios. At a 25% compression 420

rate (Layer=24), the model maintains good PPL, 421
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Figure 6: The model’s PPL when using KVSharer with similarity-based sharing (+Sim.) and dissimilarity-based
sharing (+Dis.). The PPL for dissimilarity-based sharing is significantly better than for similarity-based sharing.

Similarity
Layer 28 24 20

Similar 8.96 15.68 424.81

Dissimilar 8.57 15.11 30.67

Table 5: The PPL results of using cosine similarity as
the metric for KV cache similarity.

demonstrating effective preservation of generation422

capability in the long-context scenario. On the sub-423

sets of L-EVAL, KVSharer is able to retain most of424

the performance and even achieves improvements425

on some subsets, such as Coursera. These results426

further demonstrates that KVSharer remains effec-427

tive in long-context scenarios.428

5 Ablation Study429

5.1 Sharing by KV Cache Similarity or430

Dissimilarity?431

We adopt a counterintuitive strategy by compress-432

ing during inference through sharing dissimilar KV433

caches instead of the intuitive approach of sharing434

similar ones. This section demonstrates experimen-435

tally that dissimilarity-based sharing outperforms436

similarity-based sharing. We modify Algorithm 1437

to sort KV caches in ascending order of Euclidean438

distance while keeping other steps unchanged, and439

test it on the four models from the main experiment.440

Figure 6 shows that similarity-based sharing441

results in significantly higher PPL, often dou-442

bling or more compared to dissimilarity-based443

sharing at the same compression rates, supporting444

dissimilarity-based approach in KVSharer.445

5.2 Effect of Different Similarity Metrics446

In Algorithm 1, we use the Euclidean distance to447

measure the similarity between the KV caches of448

any two layers. In this section, we also explore449

whether cosine similarity can be used as an al-450

ternative metric. Specifically, we conduct experi-451

ments using the Llama-2-7B-Chat model, replac- 452

ing the Euclidean distance metric with cosine simi- 453

larity while keeping other experimental settings 454

unchanged. We explore various configurations, 455

including different numbers of computed layers 456

and two types of sharing—similarity-based and 457

dissimilarity-based, as outlined in Table 5. The 458

results demonstrate that when cosine similarity is 459

used instead of Euclidean distance, the observed 460

pattern remains consistent. Specifically, leveraging 461

dissimilarity for sharing yields better performance 462

compared to using similarity for sharing, highlight- 463

ing the effectiveness of dissimilarity-based sharing 464

in this context. 465

Moreover, since models with the same compres- 466

sion rate achieve better PPL when using Euclidean 467

distance for sharing, we chose to use Euclidean 468

similarity as the metric. 3 469

6 Conclusion 470

In this paper, we introduce KVSharer, a layer-wise 471

KV cache sharing method designed for efficient 472

inference. By counterintuitively sharing dissimilar 473

KV caches, KVSharer reduces memory usage and 474

boosts prefill speed during inference. Our exper- 475

iments show that KVSharer maintains over 90% 476

of the original performance of mainstream LLMs 477

while reducing KV cache computation by 30%. 478

It can also provide at least 1.3 times acceleration 479

in generation. Additionally, KVSharer can be in- 480

tegrated with existing intra-layer KV cache com- 481

pression methods to achieve even greater mem- 482

ory savings and faster inference. We also explore 483

the effectiveness of the dissimilarity-based sharing 484

approach and perform ablation studies on several 485

components of the method. 486

3Further ablation studies on the calibration dataset, com-
patibility with quantized models, comparison between random
sharing and KVSharer and applicability to Base models are
provided in Appendix A.4.
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Limitations487

KVSharer is based on empirical observations,488

demonstrating that compression can be achieved489

by sharing dissimilar KV caches. A theoretical490

analysis of this counterintuitive phenomenon is left491

for future work.492

In the long-context scenario, L-EVAL metrics493

like Rouge may be influenced by output length,494

potentially affecting objectivity. We plan further495

experiments in scenarios like the “Needle-In-A-496

Haystack” benchmark.497
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A Supplementary Results726

A.1 Main Result727

Figure 7 shows the average performance of each728

model across all tasks at different compression729

rates in the main results. Table 9 presents the de-730

tailed results of the main results.731

A.2 Experiments on Large-size LLMs732

Due to limitations in computational resources, we733

only validate the effectiveness of KVSharer on734

a subset of benchmarks and using PPL on the735

Llama2-70B model as shown in Table 6. We set736

the compression rates to 12.5% and 25%, and find737

that KVSharer effectively maintains most of the738

model’s performance.

LLM Rate BoolQ PIQA HeSw PPL

Llama2
-70B

0% 86.45 79.61 78.49 4.25

12.5% 84.59 76.93 77.01 5.59

25% 83.73 75.11 75.57 7.01

Table 6: The model performance achieved by applying
KVSharer with different compression rates on Llama2-
70B.739

A.3 Effect of KVSharer on MQA and MLA 740

Models 741

We also aim to explore the performance of 742

KVSharer on MQA (Multi-Query Attention) and 743

MLA (Multi-Head Latent Attention) models. We 744

add experiments evaluating the Falcon-7b model 745

(using MQA) and the DeepSeek-v2 model (using 746

MLA) with KVSharer at a 25% KV cache com- 747

pression rate across different datasets. The results 748

are shown in Table 7. 749

LLM BoolQ MMLU CSQA HeSw

Falcon-7B 75.19 41.85 67.14 69.85
+KVSharer 71.68 42.62 52.69 65.10

DeepSeek-V2 78.52 44.68 71.34 70.53
+KVSharer 72.53 37.59 50.48 64.12

Table 7: Performance of KVSharer at a 25% KVCache
compression rate on the Falcon-7B model (using MQA)
and the DeepSeek-v2 model (using MLA).

Experiments show that at a 25% compression 750

rate, KVSharer retains over 90% of the original 751

model’s performance, demonstrating its effective- 752

ness for MQA and MLA models. 753

A.4 More Ablation Studies 754

755A.4.1 Effect of Different Calibration Datasets 756

To investigate the impact of different calibration 757

datasets, we replace the Wikipedia dataset with 758

a randomly selected, equally sized subset of the 759

BookCorpus dataset (Kiros et al., 2015). We set the 760

compression rate to 25% and rerun the experiments, 761

keeping all other settings unchanged. 762

LLM Calibration
Dataset BoolQ PIQA HeSw PPL

Llama2-7B Wikipedia 72.39 74.37 63.97 9.39
BookCorpus 72.01 74.10 64.05 9.15

Llama2-13B Wikipedia 78.20 76.71 72.40 9.11
BookCorpus 78.34 76.81 72.18 9.17

InternLM2-7B Wikipedia 80.37 79.49 73.22 9.78
BookCorpus 80.37 79.49 73.22 9.78

InternLM2-20B Wikipedia 80.61 80.96 75.84 7.05
BookCorpus 81.08 80.53 75.46 7.01

Table 8: Model performance at a 25% compression
rate using Wikipedia and BookCorpus as calibration
dataset. For each model, using a subset of BookCorpus
as the calibration dataset has little impact on KVSharer
compared to using a subset of the Wikipedia dataset.

The results are shown in Table 8. The findings 763

indicate that using the two different calibration 764

datasets has almost no impact on model perfor- 765

mance, with only minimal differences in perfor- 766
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Figure 7: The percentage of the model’s average score at different compression rates relative to the full KV cache
model.

LLM Rate
Reasoning Language Knowledge Examination Understanding

CMNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMMLU RaceH RaceM XSum C3

Llama2
-7B

0% 32.98 71.35 78.18 46.04 37.50 38.46 66.67 70.67 45.92 31.86 35.51 33.15 19.68 43.78

12.5% 35.11 70.37 76.71 42.08 63.46 57.69 69.62 74.10 38.63 33.74 53.95 55.92 23.24 45.81

25% 34.89 63.97 74.37 37.62 55.77 59.62 48.65 72.39 38.38 27.87 30.33 31.27 21.30 41.70

37.5% 34.49 55.11 71.44 32.18 52.61 30.77 48.65 59.14 28.46 25.42 22.81 23.19 16.81 38.68

Llama2
-13B

0% 35.06 75.41 78.24 48.02 66.35 67.31 69.78 81.56 54.64 38.71 58.46 64.07 25.84 50.30

12.5% 34.27 72.84 76.82 46.04 63.46 62.50 68.71 80.40 53.87 38.44 58.18 64.14 20.30 48.44

25% 34.93 72.40 76.71 44.06 53.85 44.23 69.12 78.20 53.88 38.19 53.60 60.45 0.71 47.29

37.5% 34.93 64.07 73.39 33.17 58.65 39.42 39.80 64.98 40.81 29.97 25.13 25.00 0.04 37.70

Intern.
-7B

0% 33.09 73.30 79.60 82.18 61.54 70.19 69.53 83.21 65.98 62.94 84.19 89.00 33.56 72.55

12.5% 33.07 72.64 76.71 83.66 51.92 65.38 69.70 80.95 58.12 62.40 83.68 89.00 32.43 72.33

25% 33.87 73.22 79.49 81.68 45.19 69.23 68.96 80.37 63.11 62.29 83.33 88.72 30.62 72.16

37.5% 33.44 72.23 77.64 78.71 42.31 70.19 68.47 80.09 63.27 61.81 80.96 86.84 25.14 69.10

Intern.
-20B

0% 54.01 76.57 81.39 86.63 50.00 65.38 74.05 81.71 66.55 65.98 86.51 90.25 33.04 79.51

12.5% 50.14 76.17 80.74 85.15 50.00 65.38 73.59 81.19 66.17 65.70 86.48 90.39 26.63 79.51

25% 43.65 75.84 80.96 84.16 56.73 55.77 74.20 80.61 65.98 64.92 86.13 90.60 26.47 79.84

37.5% 43.98 75.89 79.87 83.66 42.31 52.88 72.73 82.08 65.32 64.82 86.11 90.67 17.48 79.67

Mistral
-7B

0% 32.99 78.59 82.75 48.51 67.31 72.45 74.86 83.21 62.62 44.37 75.30 79.25 34.59 60.99

12.5% 32.99 78.87 81.34 47.03 57.69 68.91 73.55 81.16 58.21 41.83 71.73 77.09 31.38 60.00

25% 32.99 76.07 80.79 47.52 36.54 66.39 73.55 78.81 52.61 37.85 57.66 62.19 30.36 60.00

37.5% 32.99 73.62 77.58 47.52 36.54 65.10 66.99 76.02 41.06 29.94 41.02 44.99 28.63 45.42

Table 9: The main results of our experiments. “Rate” represents the compression rate.

mance across several benchmarks and PPL. For767

InternLM2-7B, the same sharing strategy is iden-768

tified with both datasets, further indicating that769

KVSharer is not sensitive to the calibration dataset.770

A.4.2 Effect of Calibration Dataset Size 771

We also conduct an ablation study on the size of the 772

calibration dataset, experimenting with different 773

sizes selected from the Wikipedia dataset. 774

As shown in Table 11, the impact of calibration 775

dataset size on KVSharer is also minimal, as the 776
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LLM Llama2-7B Llama2-13B InternLM2-7B InternLM2-20B
Version Base Chat Base Chat Base Chat Base Chat

Rate 0% 25% 0% 25% 0% 25% 0% 25% 0% 25% 0% 25% 0% 25% 0% 25%

BoolQ 70.67 69.27 70.67 72.39 71.50 65.63 81.56 78.20 71.28 70.40 83.21 80.37 65.44 54.04 81.71 80.61

PIQA 78.18 76.66 78.18 74.37 79.71 75.35 78.24 76.71 80.30 79.00 79.60 79.49 82.10 81.23 81.39 80.96

HeSW 71.28 69.43 71.35 63.97 74.83 67.81 75.41 72.40 73.43 72.46 73.30 73.22 75.46 74.99 76.57 75.84

PPL 5.25 11.13 6.62 9.39 4.32 7.73 5.99 9.11 7.27 10.59 6.99 9.78 5.13 7.38 5.67 7.05

Table 10: Comparison of performance on different benchmarks and PPL between Chat and Base versions of the
models at the same compression rate.

LLM Calibration
Dataset Size BoolQ PIQA HeSw PPL

Llama2
-7B

10 72.01 74.21 63.54 9.48

30 72.39 74.37 63.97 9.39

50 72.41 74.00 63.98 9.33

Table 11: Ablation study on calibration dataset size
conducted on Llama2-7B under 25% compression rate.

Rate 0% 12.5% 25% 37.5%

PPL 8.61 10.40 16.68 25.89

Table 12: The PPL of GPTQ-quantized Llama2-7B-
Chat with KVSharer under different compression rates.

model still maintains good performance under a777

25% compression rate. To mitigate the potential778

risk of obtaining suboptimal sharing strategies due779

to a smaller calibration dataset size, we recommend780

using a larger size.781

A.4.3 Compatibility with Quantized Model782

Since quantization is also a mainstream approach783

for efficiency inference, we further explore whether784

KVSharer is compatible with quantization meth-785

ods. We conducted experiments using a GPTQ-786

quantized (Frantar et al., 2022) Llama2-7B-Chat787

model combined with KVSharer. The results are788

shown in Table 12. We also find that KVSharer789

does not significantly increase the model’s PPL790

within a 25% compression rate, further demonstrat-791

ing its effectiveness.792

A.4.4 Effect of KVSharer on different Model793

Versions794

Since the models used in our main experiments are795

all Chat versions, we also want to explore whether796

KVSharer can be effective on the Base versions of797

the models. We conduct comparative experiments798

using the Base versions of different models, setting799

the compression rate at 25%, and also comparing 800

the results with those of the full KV cache. 801

We show the results in the Table 10. As shown 802

in the result, KVSharer also works for Base models, 803

as it similarly maintains a minor impact on both 804

various tasks and PPL, comparable to its effect 805

on the Chat model. This also demonstrates that 806

KVSharer has strong generalizability. 807

A.4.5 Random Sharing v.s. KVSharer 808

KVSharer compresses KV caches by sharing dis- 809

similar caches, prompting us to test whether ran- 810

dom sharing can achieve similar results. We ran- 811

domly replace 25% of layers’ KV caches, keep- 812

ing other settings unchanged, and evaluate perfor- 813

mance on benchmarks and PPL, averaging results 814

over three runs. 815

LLM Strategy BoolQ PIQA HeSw PPL

Llama2-7B KVSharer 72.39 74.37 63.97 9.39
Random 50.67 59.15 44.97 21.29

Llama2-13B KVSharer 78.20 76.71 72.40 9.11
Random 40.69 51.21 42.99 51.41

InternLM2-7B KVSharer 80.37 79.49 73.22 9.78
Random 63.33 61.73 58.13 13.58

InternLM2-20B KVSharer 80.61 80.96 75.84 7.05
Random 61.43 64.11 58.39 18.50

Table 13: Model performance using KVSharer and ran-
dom sharing strategies at a 25% compression rate.

As shown in Table 13, random sharing sig- 816

nificantly increases PPL, reaching up to 50 for 817

Llama2-13B, compared to KVSharer’s PPL under 818

10. Benchmark performance also drops by around 819

30%. These results show that random sharing 820

fails to maintain performance, while KVSharer’s 821

search-based approach finds a more effective strat- 822

egy. However, the results reveal surprising findings: 823

randomly sharing the KV cache does not lead to 824

performance collapse, such as a complete failure 825
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or a PPL explosion. This suggests potential redun-826

dancy in the KV cache or a lesser-than-expected827

impact of self-attention keys and values on hidden-828

state calculations. We will investigate this further829

in future work.830

B Details of Reproduction831

For H2O 4 and PyramidInfer 5, we integrate their832

official code with our KVSharer. Specifically, we833

sparsify the KV caches for each layer sequentially834

according to their methods. If a particular layer’s835

KV cache needs to utilize the sparsified KV cache836

from a previous layer based on KVSharer, we di-837

rectly place the sparsified KV cache from that pre-838

vious layer into the current layer. This process is839

used during both the strategy searching phase and840

the inference phase of KV sharing in KVSharer.841

We first tune their respective hyperparameters842

on the full attention model to achieve approxi-843

mately 20% compression rate, and then directly844

apply these hyperparameters to their combination845

with KVSharer.846

C Case Study847

Table 14 presents the outputs of different models848

for the same prompt. The results indicate that, un-849

der a 25% KVSharer compression rate, the models850

can still generate fluent and meaningful responses.851

4https://github.com/FMInference/H2O
5https://github.com/mutonix/pyramidinfer
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Prompt

Hello, please give a brief introduction to the Earth.

Llama2-7B

The planet Earth is the third planet from the sun in our solar system and the
only known inhabited world. With a mass of approximately 5.97 x 1worlds, Earth
has a radius of about 6,311 kilometers at the equator and an average surface
temperature of around 15 degrees CelsiVCentered on the axis of rotation, Earth
rotates on its axis every 24 hours, which means it takes approximately 24 hours
for the planet to rotate once on its axis. The planet orbits the sun at an
average distance of about 149.6 million kilometers every 365 days.

Llama2-13B

The Earth is the third planet from the Sun and the fifth largest of the eight
planets in our solar system. It is a terrestrial planet, meaning it is made
up of rock and metal, and has a solid surface that is suitable for life. The
Earth is approximately 93 million miles (150 million kilometers) away from the
Sun and takes 365.25 days to complete one orbit around the star. The planet is
composed of three main layers: the crust, the mantle, and the core. The crust
is the outermost layer and is made up of a variety of minerals such as granite
and basalt. The mantle is the largest layer and is made up of hot, viscous rock
that can flow over long periods of time. The core is divided into two layers:
the inner core is solid and made up of iron and nickel, while the outer core is
molten and also made up of iron and nickel.

InternLM2-7B

The earth is an oblate spheroidal planet in our solar system and third from
out of five known as "terrestrial" (rocky) planets. It’s not quite round; it
’wobbles’ slightly on its axis which we call precession or wobble for short!
The two main features that you can see with your own eyes are: - A day/night
cycle this means one side will be lighted at all times when they’re facing
their star while other parts have no direct sunlight but do get some indirect
illumination through scattering by gasses & dust. This also has implications
about what timezones people use around here!

InternLM2-20B

The earth is our home and it’s where we live on this planet that has been around
for about four billion years or so according to scientists who study these
things called geologists (people with degrees from universities). It’s made up
of land masses known as continents which are separated by large bodies of water
such as oceans like Pacific Ocean; there are also smaller seas including the
Mediterranean Sea.
There have always existed life forms living here but they were not human beings
until millions upon millions year ago when early humans first appeared out into
open air after evolving over time through a natural selection process involving
genetic mutations occurring randomly throughout history leading them towards
becoming more advanced than their earlier ancestors had ever dreamed possible!

Table 14: Under a 25% KVSharer compression rate, different models respond based on the prompts. The results
show that the model’s responses remain fluent and meaningful.
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