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Unlocking the Non-deterministic Computing Power with
Memory-Elastic Multi-Exit Neural Networks

Anonymous Author(s)
ABSTRACT
With the increasing demand for Web of Things (WoT) and edge
computing, the efficient utilization of limited computing power on
edge devices is becoming a crucial challenge. Traditional neural
networks (NNs) as web services rely on deterministic computational
resources. However, they may fail to output the results on non-
deterministic computing power which could be preempted at any
time, degrading the task performance significantly. Multi-exit NNs
with multiple branches have been proposed as a solution, but the
accuracy of intermediate results may be unsatisfactory. In this
paper, we proposeMEEdge, a system that automatically transforms
classic single-exit models into heterogeneous and dynamic multi-
exit models which enablesMemory-Elastic inference at the Edge
with non-deterministic computing power. To build heterogeneous
multi-exit models, MEEdge uses efficient convolutions to form a
branch zoo and High Priority First (HPF)-based branch placement
method for branch growth. To adapt models to dynamically varying
computational resources, we employ a novel on-device scheduler
for collaboration. Further, to reduce the memory overhead caused
by dynamic branches, we propose neuron-level weight sharing and
few-shot knowledge distillation(KD) retraining. Our experimental
results show that models generated by MEEdge can achieve up to
27.31% better performance than existing multi-exit NNs.

1 INTRODUCTION
With the rapid advance of AI and the limited resources at the edge,
the efficient use of resources on devices has attracted widespread
attention in edge computing [4, 9] and WoT [2, 24, 26, 28]. WoT
facilitates the connection and interaction with edge devices over
the web. To fulfill the delay requirements, web services on devices
usually need to be executed on deterministic computing power
(i.e., it cannot be preempted). For example, Concordia [4] assigns
dedicated CPU cores to some 5G vRAN processing tasks, in order
to obtain deterministic network performance. Because of this, there
are bound to be tasks that execute on non-deterministic computing
power (e.g., CPU/GPU cores or VRAM which can be preempted).
Due to the compute-intensive nature of deep learning inference
services and the limited non-deterministic CPU/GPU memory, en-
suring the model fits within the available CPU/GPU memory is the
key to improving resource utilization in WoT.

However, traditional DNNs cannot use non-deterministic com-
puting power efficiently. Since a traditional DNN only outputs the
inference results once at the end, it will not be able to output any
result if the computing power is preempted before the inference
finishes, wasting the computing power. In order to solve this prob-
lem, multi-exit NNs have been proposed in the literature. As the
name implies, these multi-exit NNs have multiple exits to output
the inference results. This design enables them to output interme-
diate inference results if the computing power is preempted before
the whole inference finishes.

The problem with these multi-exit neural networks is that the
accuracy of the intermediate results could be unsatisfactory. In
order to improve the inference accuracy, we analyzed the existing
multi-exit eural networks and found out that the homogeneous and
static structure of the exit models (i.e., branches) was harmful to
the inference accuracy. Concretely, static exit models are defined
as the models that remain unchanged once they are constructed,
while homogeneous exit models mean that all exit branches at
different exit locations are identical. As we will show in Section
2, using dynamic and heterogeneous exit models can significantly
improve the inference accuracy of multi-exit NNs. Therefore, in
this paper, we focus on designing and implementing a system to
transform existing single-exit eural networks into multi-exit ones
with heterogeneous and dynamic exit models.

There are two main challenges we need to address. First, how to
determine the structure, number, and placement of the heteroge-
neous branches efficiently? There are a large number of possible
branch structures, e.g., fully connected (FC) layer or convolution +
FC layers, and many possible exit locations of the original NN. It is
challenging to automatically select proper branch structures and
place them in proper exit locations for various single-exit NNs. Sec-
ond, how to tackle the high memory consumption problem caused
by the dynamic branches? Concretely, using dynamic branches
requires the device to store many different versions of branches,
resulting in high memory consumption. It is challenging to re-
duce memory consumption while keeping a sufficient number of
branches to achieve high accuracy.

To address the above challenges, we propose MEEdge, a sys-
tem that can automatically transform traditional single-exit models
into heterogeneous and dynamic multi-exit models, which enables
Memory-Elastic inference at the Edge. To design and place het-
erogeneous branches efficiently, we utilize efficient convolution
techniques to construct alternative branch structures that incorpo-
rate FC layers. These superior branches constitute our branch zoo,
which we leverage to propose the HPF-based branch placement
method. This method facilitates the online construction of a hetero-
geneous multi-exit model, based on the resources available on edge
devices. In order to minimize the memory overhead resulting from
dynamic branches, we propose utilizing neuron-level weight shar-
ing. Moreover, we present the few-shot KD technique to increase
the inference accuracy. As for the limited and dynamically changing
memory resources on devices, we propose to build an on-device
scheduler to collaborate with the edge server. Building upon the
framework of WoT, this collaboration further extends it by integrat-
ing IoT devices with the edge server to distribute computation and
storage [24, 26] for for complex web tasks.

Our main contributions can be summarized as follows:

• We propose branch cultivation andHPF-based branch place-
ment method to generate and place proper branches auto-
matically for classical single-exit neural networks.
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• We present neuron-level weight sharing and few-shot KD
retraining to reduce branch parameters. Further, we design
a scheduler for server-device collaboration to minimize the
memory overhead of dynamic model inference.

• We implemented our automation system and conducted
extensive experiments. The model generated by MEEdge
proves to be efficient in multiple cases and can respond
quickly to switching in end-to-end performance tests.

The rest of this paper is organized as follows. Section 2 explores
the motivation for designing heterogeneous and dynamic multi-
exit models. Section 3 provides design details of MEEdge. Section
4 presents the experimental findings. Section 5 discusses related
work, and lastly, Section 6 summarizes the work.

2 MOTIVATION
2.1 Multi-exit vs. single-exit models
Multi-exit networks are widely used in edge computing, which can
output inference results before the whole inference finishes. To ana-
lyze the relationship between inference time and accuracy of multi-
exit networks, we tested the lightweight model (MobileNetV2 [31]),
the classic models (LeNet [21], AlexNet [17]), and other works on
multi-exit models (BranchyNet [33], MSDNet [8], SPINN [19]) with
CIFAR-10 [16] on Raspberry Pi 4B. The execution time and accuracy
of different models are shown in Figure 1. Among them, B_AlexNet
and S_AlexNet are generated by BranchyNet and SPINN, respec-
tively, and MSDNet7 is produced by MSDNet for seven blocks.

As we can see from Figure 1(a), it is clear that all single-exit infer-
ences (i.e., complete execution of the model) encounter the issue of
no inference results before the whole inference process is finished.
Besides, we can see that in edge environment, even lightweight
models (e.g., MobileNetV2) require a long time to complete the
whole inference process. Figure 1(b) shows the multi-exit inference.
As we can see from the figure, multi-exit models can output more
accurate inference results when they have more inference time.

	0.5

	0.6

	0.7

	0.8

	0.9

	0 	100 	200 	300 	400

A
cc

ur
ac

y

Execution	time(ms)

LeNet
AlexNet
MobileNetV2

(a) Single-exit

	0.5

	0.6

	0.7

	0.8

	0.9

	0 	25 	50 	75 	100

A
cc
ur
ac
y

Execution	time(ms)

B_AlexNet
S_AlexNet
MSDNet7

(b) Multi-exit

Figure 1: Multi-exit inference with early exit can adapt to
non-deterministic resources.

B_AlexNet inserts only two branches at earlier exit points, allow-
ing for results with a shorter execution time. Concretely, B_AlexNet
outputs results with an average accuracy of 83.01% in the second
branch, using only about 14ms. Note that the original single-exit
version of AlexNet (in Figure 1(a)) achieves the final inference ac-
curacy of 83.42%, using 100ms. This example shows how multi-exit
models can achieve better inference performance when the com-
puting resource can be preempted at any time. This inspires us to
push the convex envelope of the time-accuracy profile of models to
the upper left corner by placing proper branch structures.
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Figure 2: Profiles of different branching structures including
inference accuracy, time, and parameters.

Convolution Fully connected Layers

Comb1 None(1×1) (in_f, 10) 0 + 1
Comb2 DepConv(3×3) (in_f, 10) 1 + 1
Comb3 SpSepConv(7×7) (in_f, 10) 2 + 1
Comb4 DepConv(7×7) (in_f, 10) 3 + 1
Comb5 None(1×1) (in_f, 2048, 10) 0 + 2
Comb6 None(1×1) (in_f,4096,2048,10) 0 + 3

Table 1: Details of combinations. Convolutions contain the
option of DepConv and SpSepConv [7, 27] with varying ker-
nel sizes. FC layers receive the same input features(i.e., in_f)
and differ on hidden layers.

2.2 Static vs. dynamic branches
The placement, number, and structures of branches in multi-exit
models are crucial for the inference performance on edge devices.
To better analyze the impact of different branches on accuracy and
inference time, we illustrate the execution results of LeNet at the
second exit for six different branch combinations in Figure 2. Table
1 shows the details, including types of convolutions, configurations
of FC layers, and their corresponding number of layers.

Evidently, the unconstrained allocation of memory resources
would result in a continual enhancement of branch performance.
Yet, memory resources essential for edge computing are both limited
and dynamically changing. Dynamically allocating appropriate
branches within the available memory ensures model inference
instead of being killed. Concretely, a multi-exit model, originally
operating within a 30MB memory, loses its inference capability as
the available memory diminishes to 20MB.

Besides, we were quite surprised to find out that, enhancing the
capacity of convolutions did not result in better inference accuracy,
but can have a significant impact on inference time (Comb 1, 2,
3, 4). This is because the CPUs in weak devices are less capable
of single-step computation. If the operation exceeds the comput-
ing power limit, it must be split into multiple computation steps.
Instead of adding convolutional layers, in some cases, it is better
to add one FC layer to improve accuracy and reduce execution
time (Comb 4, 5). However, using complex FC layers will increase
the parameters, resulting in a longer inference time (Comb 6). The
proposed convolutions can help mitigate the issue of FC layers by
significantly reducing the parameters. However, in our tests, we
found that their impact on accuracy was quite limited.

From these experiments, we can see that different branches have
a significant impact on the execution time and accuracy of the same
model at the same exit location. Therefore, discovering dynamic
branches that are both highly accurate and fast within available
memory is an important task for multi-exit models.
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Figure 3: Heterogeneous branches can significantly improve
the inference performance compared to homogeneous ones.

2.3 Homogeneous vs. heterogeneous branches
Previous research with homogeneous multi-exit models [10, 19, 20]
overlooks the diversity of branching structures, instead concentrat-
ing solely on the placement of branches.We selected VGG-16 [32] as
the foundational model and utilized the approach SPINN [19] to con-
struct the multi-exit model. In contrast to homogeneous branches,
four heterogeneous branches were designed for comparison. In
Figure 3, we show the branch parameters and their corresponding
mean Accuracy Expectations (mAE defined in Section 4.1) for the
various models.

When the branch structures are heterogeneous (S𝑏𝑟𝑎𝑛ℎ𝑒𝑡 ), the
performance is improved. And when the exits are heterogeneous
(S𝑒𝑥𝑖𝑡ℎ𝑒𝑡 ), there is a significant performance improvement while
the model parameters are even reduced. For variations that increase
the number of heterogeneous branches (S10ℎ𝑒𝑡𝑒 , S13ℎ𝑒𝑡𝑒 ), there is
still a performance improvement. Hence, it is beneficial to have
heterogeneous branches in the multi-exit model.

3 DESIGN
3.1 Overview
To tackle the challenges of achieving automatic generations of het-
erogeneous and dynamic multi-exit models on resource-constraint
devices at the edge, we proposeMEEdge. Figure 4 shows the overview
of MEEdge. For brevity, we utilize the "server" and "device" to refer
to edge servers and edge devices without ambiguity. Of course, if
devices have ample storage capabilities to store all branches, the
online phase can be performed entirely on devices, which is not
the focus of this work but allows MEEdge to generalize easily.

To efficiently determine the structure, number, and placement
of the heterogeneous branches, the server plays a critical role and
requires the involvement of both offline and online phases. (1)
MEEdge provides offline training of branch candidates for pre-
trained NNs leveraging a predefined Branch Zoo. And then it per-
forms Branch Survival to eliminate underperforming branches. (2)
During the online stage, MEEdge selects and places the heteroge-
neous branches using a novel HPF-based Branch Placement method,
considering the resource budgets sent from devices. Hence, irre-
spective of the non-deterministic nature of the resources, efficient
heterogeneous multi-exit models are assured.

To address the issue of high memory consumption caused by
dynamic branches, we propose solutions including both offline op-
erations on servers and online operations on devices. (3) During the
online stage, the less capable device will detect dynamic changes in
memory and transmit the latency and memory budget to the server,
while the server will perform heterogeneous branch selection (i.e.
(2)) and on-the-fly branch updating. The device can thus achieve
Memory-Elastic Inference of dynamic branches. (4) Besides, we pro-
pose Neuron-level Weight Sharing to reduce the memory overhead
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Figure 4: An overview of MEEdge. Four key techniques in-
volved consist of both offline and online phases, incorporat-
ing both servers and devices at the edge.

of branch parameters at the server during the offline stage. Utilizing
branch self-merging and few-shot KD retraining techniques, we
can obtain excellent branches. Their profiles will also be considered
during the online dynamic branch placement phase.

3.2 Branch Cultivation
In this section, we will describe how heterogeneous branch candi-
dates for multi-exit models are generated.

3.2.1 Branch zoo. The previous literature adopts branches com-
prising convolutional and FC layers. However, they are mostly
statically specified or homogeneous, which is harmful to the infer-
ence accuracy. As we have analyzed, inference performance varies
greatly across branches and can not be derived. Thus, we conduct
traversals to explore potential branches on different exit points.

We preselected several convolutions and FC structures that could
be combined to form effective branch candidates. For convolution
kernels, we applied depth-wise, depth-wise separable, spatially sep-
arable [7, 27], and dilated convolution [38] instead of 3D-full con-
volution. They are widely used in the field of Neural Architecture
Search (NAS), which has advantages in reducing the parameters
and improving the speed and accuracy of inference. Not only that,
we get more variants by changing the kernel size (3×3, 5×5, 7×7).
For FC layers, we opted for structures characterized by diverse
numbers of input features and a flexible range of 1 to 3 layers.

Finally, Branch Zoo is formed by different types of convolutions
mentioned above, with varying kernel sizes and numbers of layers,
as well as different types of FC layers with varying input feature
sizes and layer numbers. MEEdge will train diverse branches at
each potential exit for the provided NN. During training, crucial
characteristics of branches, including weight parameters, infer-
ence accuracy, and execution time, are acquired, enabling informed
branch placement for constructing heterogeneous multi-exit NNs.

3.2.2 Branch survival. For the model that undergoes Branch Zoo,
numerous distinct trained branches emerge. However, some of them
with unqualified inference time and accuracy are not suitable to be
candidates. To minimize unnecessary storage and search overhead,

3
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we perform Branch Survival to eliminate underperforming branches.
Our criterion for underperforming branches is grounded in two
considerations: 1) the ability to generate inference results prior to
the completion of the original inference; 2) the capacity to yield
superior results after the completion of the original inference.

After survival, winning branches will further undergo weight
sharing to reduce runtime memory, which will be introduced in
Section 3.5. Together with merged excellent branches, they become
potential candidates for branch placement in the online stage.

3.3 HPF-based Branch Placement
Conducting online branch placement is a crucial component in
facilitating server-device collaboration for constructing heteroge-
neous and dynamic branches. The main challenge lies in effectively
selecting and placing high-performance branches from a pool of
excellent candidates while adhering to resource constraints. In this
section, we will provide the notation and formulation of the selec-
tion problem and present the HPF-based branch placement method.

3.3.1 Notation. We divide notations into two aspects below.
Branch Related. As discussed in Section 3.2.1, there will be lots
of branch combinations for each exit. For a model with multiple
exits, we consider all original and self-merged branches of all exits
as candidates 𝐵. The profiles of each candidate include structure
type (i.e. convolution or FC layer) 𝐵𝑠 , exit point 𝐵𝑒 , execution time
𝑇 , inference accuracy 𝐴, and the number of weight parameters 𝑃 .
Transmission Related. During the online stage, data exchange
occurs between the server and the device at a transmission rate
denoted as 𝑅. The device detects the expected duration of memory
changes and sends the latency budget 𝐿 and memory budget 𝑀
to the server. The server then performs searching and sends the
selected branches 𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 back to the device.

3.3.2 Problem formulation. MEEdge focuses onmemory-constrained
devices. Each incoming task contributes to memory occupancy,
which makes it more limited and dynamically changing. To ensure
each task adapts to dynamic memory, the optimal heterogeneous
branches will be dynamically placed with 𝐿,𝑀 , and the assistance of
the server. The actual processing time of the server 𝐿𝑠𝑒𝑎𝑟𝑐ℎ requires
conversion as shown in Equation 2:

𝐿 = 𝐿𝑡𝑟𝑎𝑛𝑠 + 𝐿𝑠𝑒𝑎𝑟𝑐ℎ =
𝐵𝑖𝑡𝑠 (𝐿 +𝑀)

𝑅
+ 𝐵𝑖𝑡𝑠 (𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 )

𝑅
+ 𝐿𝑠𝑒𝑎𝑟𝑐ℎ . (1)

The search task, which is constrained by both 𝑀 and 𝐿𝑠𝑒𝑎𝑟𝑐ℎ ,
seems to be a 2-D knapsack problem. Select certain branches to
achieve high performance (i.e., the value of the knapsack) while
abiding by memory and latency constraints (i.e., the weight and vol-
ume). An intuitive solution would be dynamic programming (DP).
However, the wide range of memory and latency values contributes
to a heavy and voluminous knapsack, leading to a substantial esca-
lation in time and memory requirements.

It is imperative to establish a metric for the value of branch
combinations with 𝐴, 𝑇 , and 𝑃 . To begin, we focus on plotting the
inference time and accuracy in Figure 5. The purple line represents
the single-exit inference, and the lower right area (i.e. 𝑎𝑐𝑐 · 𝑡𝑖𝑚𝑒)
can be seen as the accuracy expectation when the given inference
time is specified uniformly. Particularly, when the time distribution

����

����

����

�� ��� ��� �	� �
� ��� ��� ���

���

�
�
�
�
��
�
�

VLQJOH�H[LW �����

����

����

����

����

�� ��� �	� ��� ��� �
�� �
��

�����

�
�
�
�
��
�
�

����������������

(a) Time-Accuracy

Root

a1t1
rank acc
param time

Root

time
rank acc

param

(b) DFS tree building

Figure 5: (a) Convex branches of multi-exit NNs and single-
exit inference. (b) Take four branches as an example.

Algorithm 1: Greedy Score Calculation
Input: All candidates branches of a model 𝐵 and their accuracy 𝐴,

execution time𝑇 , number of weight parameters 𝑃 .
Output: The sorted branches 𝐵𝑠𝑜𝑟𝑡𝑒𝑑 and their scores 𝑠 .

1 begin
2 for 𝑖 ← 0 to 𝑙𝑒𝑛 (𝐵) do
3 𝑃𝑒𝑟𝑏𝑒𝑠𝑡 ← 0
4 for 𝑗 ← 0 to 𝑙𝑒𝑛 (𝐵) do
5 if 𝐵 [ 𝑗 ] is not 𝑎𝑝𝑝𝑒𝑛𝑑𝑒𝑑 then
6 𝑃𝑒𝑟 ′ ← (𝐴 [𝑖 ]−𝐴𝑖−1 ) ·(𝑇𝑖+1−𝑇 [𝑖 ])

𝑃 [𝑖 ]
7 if 𝑃𝑒𝑟 ′ > 𝑃𝑒𝑟𝑏𝑒𝑠𝑡 then
8 𝑃𝑒𝑟𝑏𝑒𝑠𝑡 , 𝐵

′ ← 𝑃𝑒𝑟 ′, 𝐵 [ 𝑗 ]

9 𝐵𝑠𝑜𝑟𝑡𝑒𝑑 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝐵′)
10 𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑃𝑒𝑟𝑏𝑒𝑠𝑡 )
11 return 𝐵𝑠𝑜𝑟𝑡𝑒𝑑 , 𝑠

is non-uniform, the calculation should be weighted acc-time inte-
gral. Further, we consider 𝑃 and propose unit memory accuracy
expectation (i.e. 𝑎𝑐𝑐 ·𝑡𝑖𝑚𝑒𝑝𝑎𝑟𝑎𝑚𝑠 ) as the metric.

Placing a branch (i.e. red triangle in Figure 5(a)) can achieve a
performance improvement that can be simply understood as an
increase in the unit memory area. It is evident that placing one
branch affects the choice of the other branch, as their areas overlap,
which makes searching more challenging.

3.3.3 Priority-based DFS. Regardless of search time, the enumera-
tion can always be employed to obtain the optimal branch combi-
nation. But as the search space increases significantly, it becomes
time-consuming. Heuristic search methods can improve efficiency.
However, the interplay among branches exacerbates the difficulty
of heuristic searches. In this case, we propose using Depth-First-
Search (DFS) to integrate the interplay and the search time.

The core of DFS is the construction of search trees, with each
node representing a branch, as illustrated in Figure 5(b). During the
tree construction, each node acquires cumulative inference time 𝑙 ,
memory occupation of parameters𝑚, and accuracy expectation 𝑝

from the root to its position. If a node has a high expectation that
satisfies the latency and memory constraints, all nodes on this path
together form the branch combination. Properly ordering branches
is key to maximizing the efficiency of DFS. We propose to calculate
the priority score for each branch by Greedy Score Calculation

4
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outlined in Algorithm 1. The algorithm selects the current optimal
branches in a greedy manner based on the improvement of unit
memory accuracy expectation (i.e. Δ(𝑎𝑐𝑐 ·𝑡𝑖𝑚𝑒)

𝑝𝑎𝑟𝑎𝑚𝑠 ) (line 6). Actually,
the first path of the tree is the greedy search. Since the tree has
multiple branches, using the DFS will yield better results.

Furthermore, there should be a convex envelop formed by excel-
lent branches among all branches shown in Figure 5. Theoretically,
these branches should be assigned a higher priority score. Hence,
we utilize the convex hull to fine-tune branches that have already
been sorted by priority score before constructing DFS trees, i.e., all
sorted convex branches are ranked first keeping the sorted order.
Besides, we have tried eight priority score calculation based on
Monte Carlo [12] sampling and greedy selection to prove that this
calculation we proposed works well in Section 4.3.

The search algorithm is shown inAlgorithm 2. The sorted branches
are initially obtained by Algorithm 1 (line 2). They are then fine-
tuned by the convex hull (lines 3, 4). The branches are arranged in
descending order of priority scores, and then a priority-first multi-
nomial tree is then constructed (line 5). Within the given latency
and memory constraints, priority-based DFS (lines 6-19) can always
identify the near-optimal combination 𝑃𝑐 .

The HPF-based Branch Placement enables MEEdge to efficiently
update heterogeneous branches of the multi-exit model on devices
in a constrained time while adhering to memory constraints.

3.4 Memory-Elastic Inference
With the power of the server, weak edge devices can dynamically up-
date the chosen heterogeneous branches based on available memory
resources. In this section, we will describe the on-device scheduler
we designed and how it can perform memory-elastic inference to
adapt to real-time changes in memory.

The scheduler on devices has four components shown in the
part (3) of Figure 4, which sends memory and latency budgets to
the server for branch placement and receives selected branches.

Memory Budget. This module is primarily responsible for the
memory changes on the device, regulating how much the memory
will change. And the obtained memory budget will be transferred
to the server for branch placement.

Latency Budget. This module mainly detects the latency budget
on the device. For predictable memory changes, if the change occurs
after this inference, the latency budget corresponds to the time
period between the present moment and the occurrence of the
change. To cope with non-deterministic resource changes, i.e. a
sudden reduction in available memory occurs during the inference,
the multi-exit model should exit early and update branches once
changes are detected in order to ensure timely adaptation.

SBRAN. This module is used to receive the selected branch
combinations and reorganize them with the branches already in
memory. For the upcoming memory change, the branches that are
not currently stored will be loaded into memory.

MODE. This component is utilized to manage two modes of in-
ference related to whether the moment of change can be perceived.
One is the Finite-time Inference. In this mode, the model stops infer-
ence and provides results based on a known latency budget. The
other is Anytime Inference, which corresponds to non-deterministic
resources. The inference will unpredictably exit and give a result.

Algorithm 2: Priority-based DFS
Input: All candidates branches 𝐵 and their information 𝐴,𝑇 , 𝑃 as

well as the budget 𝐿𝑠𝑒𝑎𝑟𝑐ℎ ,𝑀 for the DFS.
Output: A better branch combination plan 𝑃𝑐 .

1 begin
2 𝐵𝑠𝑜𝑟𝑡𝑒𝑑 , 𝑠 ← Greedy(𝐵,𝐴,𝑇 , 𝑃 ) ⊲ Get priority scores
3 𝐵𝑐𝑜𝑛𝑣𝑒𝑥 ← convexHull(𝐵,𝐴,𝑇 ) ⊲ Fine tune
4 𝐵𝑠𝑜𝑟𝑡𝑒𝑑 ← Update(𝐵𝑠𝑜𝑟𝑡𝑒𝑑 , 𝐵𝑐𝑜𝑛𝑣𝑒𝑥 )
5 𝑇𝑟𝑒𝑒 ← Build(𝐵𝑠𝑜𝑟𝑡𝑒𝑑 ) ⊲ Building tree
6 DFS (𝑇𝑟𝑒𝑒, 𝐿𝑠𝑒𝑎𝑟𝑐ℎ, 𝑀) :
7 𝑃𝑐 , 𝑝

′ ← 𝑆𝑡𝑎𝑐𝑘 (), 0
8 𝑁𝑜𝑑𝑒 ← 𝑇𝑟𝑒𝑒.𝑔𝑒𝑡𝑅𝑜𝑜𝑡 ()
9 𝑃𝑐 .𝑝𝑢𝑠ℎ (𝑁𝑜𝑑𝑒)

10 while 𝑙′ < 𝐿𝑠𝑒𝑎𝑟𝑐ℎ do
11 for 𝑛𝑜𝑑𝑒 in 𝑁𝑜𝑑𝑒.𝑔𝑒𝑡𝐶ℎ𝑖𝑙𝑑 () do
12 if 𝑛𝑜𝑑𝑒 is not 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 and 𝑛𝑜𝑑𝑒.𝑝 > 𝑝′ then
13 𝑁𝑜𝑑𝑒, 𝑝′ ← 𝑛𝑜𝑑𝑒,𝑛𝑜𝑑𝑒.𝑝

14 𝑃𝑐 .𝑝𝑢𝑠ℎ (𝑛𝑜𝑑𝑒)

15 if𝑚′ > 𝑀 then
16 𝑁𝑜𝑑𝑒 = 𝑃𝑐 .𝑝𝑜𝑝 () ⊲ Pruning
17 𝑝′ ← 𝑁𝑜𝑑𝑒.𝑝

18 return 𝑃𝑐

With the scheduler and the HPF-base placement, real-time AI
tasks on devices can perform online memory-elastic dynamic infer-
ence. The dynamic inference here leverages the dynamic inference
path of the multi-exit model and dynamic branches. Unlike tradi-
tional approaches of offloading or partially offloading models to
the server, MEEdge implements branch updating from the server
down to the device. It enables smooth model inference on weak
devices even when facing sudden changes in memory.

3.5 Neuron-level Weight Sharing
Another solution for addressing the issue of high memory consump-
tion is to perform offline operations on the server.

3.5.1 Branch self-merging. After Branch Survival, there are a large
number of branches. Actually, they are composed of similar convo-
lutional and FC layers which can achieve parameter sharing to save
storage and memory overhead. Therefore, we propose Neuron-level
Weight Sharing after survival. Since the branch structures are much
more similar, we adopt MTZ [6] which focuses on neuron-shared
layer merging for neural networks with the same number of layers
in multi-tasking learning. Taking into account that other existing
approaches [13, 18, 22, 29] may overlook the highly similar branch
structure, which encounters suboptimal weight-sharing outcomes.

Our primary focus lies in weight sharing across FC layers, which
constitute a significant proportion (over 99%) of weight parame-
ters, shown in Figure 6(a). However, merging several branches will
inevitably face two FC layers with different numbers of layers or
neurons. As shown in Section 4.4.1, merging FC layers with varying
numbers of neurons reduces memory occupation but significantly
compromises their accuracy. Thus, instead of merging all branches
into one hyperbranch, we propose using the neuron-shared self-
merge method to better leverage the fact that branches themselves
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Figure 6: Only FC layers need to be shared and L2-Norm loss
calculation can significantly reduce memory usage.

have the same number of layers and neurons. The self-merge can
maximize the shared parameters with almost no loss of accuracy,
which involves three main steps: 1) Calculate errors between dif-
ferent neurons; 2) Select neuron pairs to be merged; 3) Calculate
shared weights for each merged neuron pair.

To measure the difference between different neurons, [6] used
the Hessian-based error calculation. However, for the FC layer
with a large number of input features, our findings in Figure 6(b)
highlight the memory-intensive nature of computations reliant on
its Hessian matrix. To allow all branches to be merged efficiently,
we propose the L2-Norm loss calculation, and the memory usage is
greatly reduced. According to the experimental results in Section
4.4.2, we also find that the merging efficiency with retraining is
greatly improved with almost no loss of accuracy.

With these errors, we sorted the individual neuron pairs and
merged them in ascending order. As the number of merged pairs
increases, the accuracy decreases. Based on our observations, the
calculated errors vary considerably for different merging branch
pairs, which makes it hard to use a fixed threshold to determine the
number of fusion branch pairs. In order to compromise between
memory and accuracy, instead of using a fixed threshold, we opt to
merge the first third of the neuron pairs and traverse from here to
half of them to find the pair with the highest merged accuracy.

To calculate the shared weights of two merged neurons, we
simply use the average of two weights, rather than following the
Hessian-based approach [6], which proved to be memory-intensive.
While the calculation is straightforward, it is highly effective in
reducing memory usage and enhancing merging efficiency.

It is inevitable to experience the accuracy loss of self-merged
branches although we have tried not to. Therefore, we introduce
few-shot KD retraining to recover accuracy.

3.5.2 Few-shot KD retraining. Retraining only updates the weights
of unshared neurons and the shared weights will remain unchanged.
To recover quickly, we select a subset of the origin dataset and use
KD to maximize the benefits of these samples.

It is worth emphasizing that KD is not used to distill a newmodel
from the merged model, but self-distillation [39] for efficient re-
covery. In contrast to [39] considering the knowledge of all exit
points, MEEdge only requires the knowledge of the final classifier.
We introduce the Kullback-Leibler (KL) divergence between the
prediction of the final classifier and the current branch. Moreover,
the information derived from the labels is highly significant. There-
fore, the Mean Square Error (MSE) between the predicted value and
the label also should be incorporated into the loss.

Besides, in order not to interfere with the merged results, the
shared weights must be consistent. We add the L1-Norm between
the initial and the updated shared weights after back-propagation
to the loss.To incorporate KD and shared weight binding while
maintaining accuracy, we use the loss function shown in Equation
(2) composed of three parts: supervision information from labels, KL
divergence for self-distillation, and L1-norm loss of shared weights.

L = 𝛼 ·𝑀𝑆𝐸 (𝑦, �̂�𝑖 ) + (1 − 𝛼) · 𝐾𝐿 (𝑦𝑐 , �̂�𝑖 ) + 𝛽 · 𝐿1(𝑊 𝑠 ,𝑊 𝑠 ), (2)

where 𝑦 is the label, 𝑦𝑖 is the prediction of the 𝑖𝑡ℎ branch, 𝑦𝑐 is
the prediction of the final classifier, and𝑊 𝑠 ,𝑊 𝑠 correspond to the
shared weights and updated weights by backpropagation, respec-
tively. The 𝛼 hyperparameter balances ground truth and distilled
knowledge, while the 𝛽 hyperparameter determines the accuracy
of predictions and stability of shared weights. Based on our experi-
ments, we recommend setting 𝛼 to 0.5 and 𝛽 to 1.

4 EVALUATION
4.1 Datasets and setup
Implementation We implement MEEdge with PyTorch. We use
two servers utilizing two NVIDIA GeForce RTX-3090 GPUs and
one RTX-3090Ti GPU as the powerful servers for branch training
and weight sharing. The server, JETSON XAVIER NX board, is used
for online branch selection. Raspberry Pi 4B with 4GB RAM is the
device, that communicates with the server through Wi-Fi.

For training details, the learning rates of all multi-exit models
and their branch candidates were all set to 0.001. They all trained
for 300 epochs and the branches retrained for 200 epochs.
DatasetsWe take into account both image and sensing data modal-
ities. The classic datasets in image classification we use are the
CIFAR-10 and CIFAR-100. The sensing dataset we use is Widar3.0.

• The CIFAR-10 and CIFAR-100 datasets [16] contain 32×32
RGB images, composed of 50,000 training and 10,000 testing
images, corresponding to 10 and 100 classes, respectively.

• The Widar3.0 dataset [40] is produced by a gesture recog-
nition system utilizing off-the-shelf Wi-Fi devices. It was
captured from 5 sensing areas with 5 orientations each. We
selected 2,500 samples contributed by 4 users.

BaselinesWe mainly compare MEEdge with the following base-
lines. The classical NNs to be transformed include LeNet [21],
AlexNet [17], VGG-16 [32], ResNet-20, and ResNet-110 [5].

Single-exit inference completes the execution of the model.
Multi-exit inference is the inference that gets results from all

exits, as all branches consist of one FC layer.
BranchyNet [33] incorporates a predetermined number of well-

designed branches in its assigned location, all through manual
intervention. It centers on using LeNet, AlexNet, and ResNet-110.

SPINN [19] uses an equal division by FLOPs to determine the
placement of six branches [15], and the branch structures are all
the same consisting of one convolutional layer and one FC layer.
Metrics The accuracy alone fails to measure the performance when
dealing with unpredictable inference time due to non-deterministic
resources. To simplify the calculation and results demonstration, we
proposed the mean Accuracy Expectation (mAE, i.e. 𝑎𝑐𝑐 ·𝑡𝑖𝑚𝑒𝑡𝑖𝑚𝑒𝑡𝑜𝑡𝑎𝑙

) rep-
resenting accuracy expectation under uniformly distributed time.
MEEdge can also accommodate irregular time distributions with

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Unlocking the Non-deterministic Computing Power with Memory-Elastic Multi-Exit Neural Networks WWW’24, May 13–17, 2024, Singapore

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

	0.7

	0.8

	0.9

	0 	10 	20 	30 	40 	50 	60

Execution	time(ms)

AlexNet
S_AlexNet
ME_AlexNet
MEEdge

A
cc
ur
ac
y

(1a) AlexNet+Widar3.0

	0.7

	0.8

	0.9

	0 	10 	20 	30 	40 	50 	60

Execution	time(ms)

ResNet
S_ResNet
ME_ResNet
MEEdge

A
cc
ur
ac
y

(1b) ResNet-20+Widar3.0

	0.5

	0.6

	0.7

	0.8

	0 	2 	4 	6 	8 	10

Execution	time(ms)

LeNet
B_LeNet
S_LeNet
ME_LeNet
MEEdge

A
cc
ur
ac
y

(1c) LeNet+CIFAR-10

0.85 

0.8 

0.75 

0.7
  0 	 10    	 20
Total	reduced	params	(MB)

B2

A
cc

ur
ac

y 

B1

(2a) Different convs

0.85 

0.8 

0.75 

0.7
	 0 	 10    	 20
Total	reduced	params	(MB)

B3

A
cc

ur
ac

y 

B1

(2b) Different linears

	0.5

	0.6

	0.7

	0.8

	0 	20 	40 	60 	80 	100

A
cc
ur
ac
y

Execution	time(ms)

AlexNet
B_AlexNet
S_AlexNet
ME_AlexNet
MEEdge

(1d) AlexNet+CIFAR-10

	0.4

	0.5

	0.6

	0 	50 	100 	150 	200 	250

Execution	time(ms)

ResNet
B_ResNet
ME_ResNet
MEEdge

A
cc
ur
ac
y

(1e) ResNet-110+CIFAR-100

	0.4

	0.5

	0.6

	0 	20 	40 	60 	80	100	120	140

Execution	time(ms)

VGG16
S_VGG
ME_VGG16
MEEdge

A
cc
ur
ac
y

(1f) VGG-16+CIFAR-100

0.85 

0.8 

0.75 

0.7

B1 B4

0 10    	 20
Total	reduced	params	(MB)

A
cc

ur
ac

y 

(2c) Different convs&linears

0.85 

0.8 

0.75 

0.7
	0 	20 	40 	60

Total	reduced	params	(MB)

B1 B4

A
cc

ur
ac

y 

(2d) Self-merge

Figure 7: (1) Finite-time Inference: MEEdge can guarantee better inference performance according to a determined inference
time. (2) Self-merge can reduce memory and improve accuracy for all branches compared to twin-merge.
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Figure 8: Priority score used by MEEdge (m7) has a superior
result in almost all memory budget cases.

weighted calculation. On the other hand, to evaluate the perfor-
mance under determined time, we treat the lower right area (i.e.
𝑎𝑐𝑐 · 𝑡𝑖𝑚𝑒) as the metric and strive to maximize this metric.

4.2 Overall performance
4.2.1 Case study. Finite-time Inference: The models can exit
with results according to a determined inference time. We profile
the execution time and corresponding accuracy of different models.
Figure 7(1) shows the performance of five models on three datasets.
The multi-exit models generated by MEEdge always have better
results within the same time compared to other baselines. The
performance of VGG-16 is suboptimal because the accuracy of
branches is constrained by the pre-trained parameters of the single-
exit model.Anytime Inference:Themodel needs to output a result
immediately at a given arbitrary time during the inference. We use
the mAE metric to represent the accuracy expectation MEEdge can
achieve for uniformly distributed random inference times. Figure
9(a) shows that MEEdge can improve the mAE among all baselines.
And the multi-exit models can indeed provide a solution for non-
deterministic resources on devices.

4.2.2 End-to-end performance. For the limited and dynamic chang-
ing memory, we tested the end-to-end performance of AlexNet and
its multi-exit baselines on CIFAR-10 as an example. The transmis-
sion rate fluctuates around 85Mbps on average. Figure 9(b) shows
performance changes as memory changes 7 times. This change is

based on the minimum memory required to ensure the single-exit
inference. The values in Figure 9 (b) are the changed budget values.

We can see that AlexNet with MEEdge can flexibly adapt to
dynamic changes in memory. For other classic neural networks
without display, MEEdge can make them achieve a similar effect
facing non-deterministic resources as AlexNet.

4.3 Priority-based DFS
We conducted DFS within different memory budgets of eight prior-
ity score calculations. A straightforward way is to sort by parame-
ters in ascending order (m0). There are also some more thoughtful
calculations such as incremental unit memory performance (i.e.
𝑎𝑐𝑐 ·𝑡𝑖𝑚𝑒
𝑝𝑎𝑟𝑎𝑚𝑠 ) (m1) and incremental area (i.e. 𝑎𝑐𝑐 · 𝑡𝑖𝑚𝑒) (m2) based
on Monte Carlo random sampling, incremental unit memory per-
formance (m3) and incremental unit memory performance per
memory (i.e. 𝑎𝑐𝑐 ·𝑡𝑖𝑚𝑒

𝑝𝑎𝑟𝑎𝑚𝑠2
) (m4) based on Monte Carlo importance sam-

pling, incremental unit memory performance (m6) and incremental
unit memory performance based on greedy search with the convex
hull (m7). Among them, m5 is the greedy search.

We plot the results based on all eight priority scores in Figure
8. The m7 used by MEEdge has a superior result in almost all
memory budget cases. It is also worth noting that m6 is actually
an enhancement of the greedy search (m5) since DFS will jump to
other branches for searching if there is enough searching time.

4.4 Neuron-shared branch merging
We selected five branches (B1 (𝐶1𝐹5𝐸0),B2 (𝐶1𝐹4𝐸0),B3 (𝐶13𝐹5𝐸0),
B4 (𝐶4𝐹1𝐸0) and B5 (𝐶1𝐹1𝐸1) ) with different convolution + FC
layers of AlexNet on CIFAR-10. The numbers in the descriptions of
them correspond to the ID of Conv, FC, and Exit points.

4.4.1 Self-merge vs. Twin-merge. Figure 7 (2a)-(2c) shows the twin-
merge (i.e. merging of two branches) performance. Compared with
twin-merge, the use of self-merge in Figure 7(2d) can reduce mem-
ory twice and there is an improvement in the accuracy of each
branch. Moreover, it can be inferred from the above that self-merge
is much more effective than merging multiple branches.
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Figure 9: (a) MEEdge can achieve 7.23-329.79% better performance than single-exit and 0.57-27.31% better than homogeneous
and static SPINN facing non-deterministic resources. (b) MEEdge can flexibly adapt to dynamic memory changes. (c) Retraining
branches with few merged pairs achieves superior accuracy. And choosing merged pairs from 1/3 to 1/2 traversal is rational.

4.4.2 Few-shot KD retrain. To showcase the performance achieved
by few-shot KD retraining, we conducted experiments on the three
self-merged branches discussed in Section 4.4.1 using 20% samples
of the original datasets. Results in Figure 9(c) indicate that retraining
branches with a small number of merged pairs can achieve accuracy
exceeding the original accuracy without merging. Furthermore,
even when dealing with a large number of merged pairs, there is
little loss in accuracy. Meanwhile, the points (red stars) where the
accuracy restored by retraining can reach the original accuracy all
appear between one-third and half of the merged pairs, which also
verifies the rationality of our choice of merged pair numbers.

4.5 Overhead
We recorded the branch training and merging overhead on servers,
detailed in Table 2. We get 105 branch combinations by selecting
15 convolutions and seven FC layers to form Branch Zoo. Few-shot
KD retraining was performed after branch self-merging and greatly
reduced training overhead. The storage overhead here refers to the
sum of the trained and merged branches. The branch profiles only
need to be generated once, the overhead is negligible.

Training Self-merge KD retrain Storage
(GPU·days) (GPU·days) (GPU·days) (GB)

AlexNet𝑊 3.0 0.49 0.17 1.3 29.29
ResNet20𝑊 3.0 0.35 0.17 0.55 25.88

LeNet𝐶10 4.73 1.26 1.97 2.85
AlexNet𝐶10 6.2 4.19 4.61 20.23

VGG𝐶100 13.57 8.52 16.82 134.12
ResNet110𝐶100 11.24 3.46 8.26 30.99

Table 2: Training and merging overhead.

5 RELATEDWORK
Multi-exit Neural Networks. Multi-exit models have demon-
strated the potential for more flexible inference. There are mainly
two types. The first is the hand-tuned models. MSDNet [8] builds
on top of the DenseNet [11] architecture. And RANet [36] is the ex-
tension of MSDNet. The other is to add branches to existing models.
BranchyNet [33] was the first to propose adding branches. Later on,
HAPI [20], FlexDNN [3], and SPINN [19] automatically designed
specific branches on corresponding locations. However, none of
these works have taken into account the structural information
of the branch itself. This oversight can impact the number and
placement of selected branches.

Cloud-edge Collaboration. There has been some research on
optimizing collaboration between cloud and edge to improve per-
formance and minimize latency. Neurosurgeon [14] was the first to
offload part of the model to large servers. Subsequent works [10,
19, 23, 34] inspired by BranchyNet [33] all added early exit mecha-
nisms. Furthermore, [9, 37] even extended the edge AI to extremely
weak devices by combining multi-exit NNs. However, pre-divided
models may still face issues with non-deterministic resources.

Neural Architecture Search.When it comes to designing NNs,
the first came to mind was NAS. The initial NNs were manually
designed, and then automatic model construction based on RNN-
based NAS [30, 41, 42] emerged. Recently, gradient descent methods
such as DARTS [25] have become the mainstream method, which
has been widely used in the field of deep learning [1]. Currently,
NAS is considered mature, but it often requires a significant time
to produce high-quality models. Additionally, these models are not
scalable enough to accommodate dynamic changes in resources.

Non-deterministic Resources on Cloud. The idle resources
that go to waste have appeared in cloud computing for a long
time. AWS provides two services with different pricing of avail-
able resources: resources are not destroyed or preempted at any
time. One of the most exciting developments in recent years has
been the emergence of serverless computing (i.e., Function-as-a-
Service). InfiniCache [35] exploits and orchestrates the memory
resources of serverless functions, which achieves 31-96× tenant-
side cost savings. However, few works consider non-deterministic
resources of AI tasks at the edge we are considering, which has
infinite possibilities in the future.

6 CONCLUSION
Enabling AI services to adapt to non-deterministic resources among
WoT devices, we proposeMEEdge in this paper. MEEdge is a sys-
tem that automatically transforms single-exit models into heteroge-
neous and dynamic multi-exit models forMemory-Elastic inference
at the Edge. We address the challenges of efficiently designing and
placing heterogeneous branches by proposing Branch Zoo formed
by efficient convolutions and the HPF-based Branch Placement.
Furthermore, we minimize the memory overhead resulting from
dynamic branches by proposing a scheduler on devices to collab-
orate with the server. For further memory optimization, we pro-
pose neuron-level weight sharing and the few-shot KD retraining.
Experimental results demonstrate models generated by MEEdge
can achieve high accuracy while reducing memory consumption,
making it a promising solution for unlocking non-deterministic
computing power on resource-constrained devices in WoT.
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