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ABSTRACT

Small lanugage models have been shown to exhibit generalisation for toy prob-
lems while being trained on algorithmically generated datasets. It is poorly un-
derstood whether this phenomenon happens in complex problems such as NP-
complete problems. In this work, we show the inability of a single-layer trans-
former to ”grok” the 0-1 knapsack problem. We analyze the internals using visu-
alisations and interpretability techniques and show why the model is not able to
form a robust internal circuit. This shows how transformer-based models struggle
to generalize on NP-complete problems as well as their inability to solve problems
requiring high amount of computation. This work showcases why LLM-based Al
agents should not be deployed in high-impact spaces where a vast amount of plan-
ning and computation is required.

1 INTRODUCTION

The last decade has seen rapid progress on many difficult problems using machine learning (ML)
and artificial intelligence (AI). This has included high-impact scenarios such as autonomous vehicles
as well as decision-making for bail in criminial courts (Hamilton & Ugwudike, 2023). Recently,
ChatGPT and other popular large language models (LLMs) have become some of the most widely
used forms of Al (Mitra et al} |2023)). Traditionally, complex systems are tested and deployed only
after guarantees are achieved on their safety - such as aircrafts, and even the atomic bomb (Wiescher
& Langanke, |2024). However, as seen in the existing literature, the community still doesn’t have a
complete understanding of LLMs (Anwar et al.|2024). As a result, it is irresponsible and dangerous
to continue the development and deployment of LLMs without sufficient work on understanding on
its internals.

Mechanistic interpretability is a sub-field of ML interpretability that dissects the behaviour of indi-
vidual components of a transformer and their interconnections (Rauker et al., [2023)). It goes beyond
explainable-AlI (XAI) in not just providing correlations, but also uncovers actual causal mechanisms
(Olah et al.,|2020). Mechanistic interpretability also helps in providing trustworthy ways to under-
stand the model’s internals (Hsia et al. 2023). Existing studies in literature have only focused on
toy problems ((Nanda et al., |2023), (Zhong et al., 2024), (Quirke & Barez, 2023), and (Chughtai
et al. 2023))). They tend to focus on P problems, and do not explore other complex algorithmic
tasks. Therefore, we focus on understanding the ability of single-layer transformers to ’grok™ NP-
complete problems.

In this study, we analyze the attention patterns of the trained small-scale transformer, and hypothe-
size why it is unable to perform well. We conclude by stating the implications of this work for the
mechanistic interpretability landscape.

2 EXPERIMENTS AND OBSERVATIONS

We use a single-layer transformer setup using the TransformerLens library (Nanda & Bloom)| [2022]).
We train these transformers to solve the 0-1 knapsack problem, where the transformer has to give
the best possible price as output.

Although we intially considered an dataset which had relatively high variance as seen in Figures 1
and 2 (Chauhanl 2022), we switched to an algorithmically generated dataset based on work showing
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Figure 1: Frequency distribution of the prices of the items in the two datasets
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Figure 2: Frequency distribution of the weights of the items in the datasets

how networks can reliably exhibit grokking on small systemically generated datsets
[2022). We constrain our dataset to only contain 4 objects due to compute constraints. The dataset
is configured as follows: Wy, Wy, W3, Wy, Py, Ps, P3, Py, C' and BP, where W; represents the
weight of the 7*" object, P; represents the price of the i*" object and C represents the capacity of
the knapsack. B P represents the best possible worth of items whichcan be placed in the knapsack
of given capacity C. We set the weights and prices to be all permutations of the range 1, ..., n. The
capacity of the knapsack contains all possible unique sums possible from the superset of {1,...,n}.

We train the model using the AdamW optimizer, and continue the training upto 100k epochs. How-
ever, the model was unable to grok. We studied why the model was unable using a combination of
visualisations and mechanistic interpretability techniques.

We can see from the attention weights visualisations that the model places more importance on the
capacity token than any other token. It also places relatively more importance on the price tokens
than the weight tokens. We also use singular values analysis to compare the embedding matrix of
the trained model with that of a matrix with the same shape. We find that the both matrices have
relatively similar graphs, showing that the amount of variance captured by each principal component
is not better than a matrix with random values. We also compare this to the singular values of the
embedding matrix of a model trained on modular subtraction, which shows a sharp drop off in
variance after the first few components.

Similarly, we look at the variance of the principal components, which shows how the matrix doesn’t
have any smooth sinusoidal patterns. We hypothesize that this could be due to two factors, either the
the knapsack problem having a more complex and less transparent embedding space, or the inability
of our model to capture the task’s underlying structure.



Under review as a conference paper at ICLR 2026

Training Curve for Knapsack Value Prediction

Log x-axis Color

train

test

Log y-axis

100y

Log loss

4] 10k 20k 30k 40k 50k 60k 7ok

Epoch

Figure 3: Train and test log-loss curve
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Figure 4: Average attention patterns across all input samples

Logit lens is used to investigate how the model’s predictions evovle as information progagtes through
its layers (nostalgebraist,2021). Even though we only use a single-layer model in this study, here we
examine the model’s output at different processing stages, such as after the embedding layer, after the
attention layer, and after the multi-layer perceptron (MLP) layer. By projecting these intermediate
representatiosn back into the output space, we are able to understand the relative importance of each
of the model’s components. We find that the MLP layer has the highest impact in shaping’s the
model’s decision.

Probing is a mechanististic interpreatibility technique which is used to understand the ability of the
model to store accurate representations of the data 2024). We train a linear regressor
to predict the given input based on the internal representations, and we find that the model is able
to perfectly store upto half of the weights and prices. However, it struggles to accurately form
representations of the other weights and prices, as well as the capacity of the knapsack.

We also use activation patching (Heimersheim & Nandal [2024) to find that activations of the neurons
attendning to the capacity token, have a relatively high impact on the loss. This shows that the model
is highly dependent on the capacity constraint to model its output.
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Figure 5: Singular values comparison of our model, a random matrix, and a model trained on mod-
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Figure 6: Variation of principal components of our model, and a model trained on modular subtrac-
tion

3 CONCLUSION

We are able to observe a lack of robustness in the model’s ability to model an algorithm for solving
the knapsack problem. In particular for this problem, we find that the model struggles to generalize
due to its failure to effectively integrate the capacity constraint during the initial embedding phase,
as the well as the lack of layers, which restrict the power of the model.

We hypothesize that:

1. Transformer-based models struggle to generalize to NP-complete tasks due to the combi-
natorial explosion in considerations involved.

2. Transformer-based models with & layers will only be able to generalize to tasks which can
be solved using O(n*) time complexity algorithms.

This raises major doubts about the ability of LLM-based Al systems to reliably act as agents, since
we find a fundamental lack of ability to generalize. We also find how the models can still give
believable answers, even though they do not have the proper internal circuits to process the data.
Therefore, further work is needed to limit the exposure of LLM-based Al systems to tasks which
involve planning and computation through regulations and laws, to prevent errors in high-impact
scenarios.

Future work could involve ways to formalize these results in a more general manner, as well as
developing tools to automate the mechanistic interpretability work, so that it is feasible on models
with a large number of layers.

LIMITATIONS

This work is limited by computational constraints. As a result of these constraints, the authors were
unable to run further experiments on transformers with more layers, as well on a wide-range of tasks.
Analysis is also avoided on state-of-the-art models due to the lack of compute.
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A APPENDIX

This appendix contains results from the mechanistic interpretability techniques, model configura-
tion, and various other visualisations for our model trained on 0-1 knapsack.
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Output after Embedding: tensor([ ©.12838, ©.0006, -0.1608, 0.3533, 0.5096, 0.0870, -0.4737, -0.1977,
9.2310, -0.3868, -0.0374], device="cuda:0")

Output after Attention: tensor([-0.2560, -©.8406, -©.1455,

1.2284, 1.4471, @.3971,

-0.7723, -0.0363,

-8.6292, -2.8247, 1.8907], device="cuda:0")
output after MLP: tensor([ 2.5363, ©.0191, -3.4691, 13.7954, 9.7629, 2.1123, -14.3343,
-7.1281, 3.@515, -12.4285, 7.3215], device='cuda:0")
Figure 7: Results from logit lens
Head Weight_1 Price_1 Weight_2 Price_2 Weight_3 Price_3 Weight_4 Price_4 Capacity
0.0 1.0 1.0 1.0 1.0 -0.0044 -0.0058 -0.0138 -0.006 -0.0263
10 1.0 1.0 10 1.0 -0.0051 -0.0044 -0.0038 -0.0009 -0.0258
2.0 1.0 10 10 1.0 -0.0064 -0.0109 -0.0159 -0.002 0.0067
3.0 1.0 1.0 1.0 1.0 -0.006 -0.0106 -0.0144 0.0004 -0.0252
Figure 8: Results from probing
Layer Index Original Loss | Patched Loss [Change in Losq

Figure 9: Results from activation patching
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ctfg = HookedTransformerContig(

n layers = 1,
n_heads = 4,
d model = 128,

d head = 32,
d mlp = 512,
act fn = "relu”,

normalization type=None,
d vocab=cap+1,

d vocab out=cap,
n_ctx=3*n+1,

init weights=True,
device=device,

seed = 999,

num_epochs = 100000

Figure 10: Model configuration
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Figure 11: Attention pattern per head for a specific input sample
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Under review as a conference paper at ICLR 2026

Avg Attention Strength

Avg Attention Strength

Head 0 Attention: Prices -> Capacity

0.2

0.4

P1

P2

Price

Figure 13:
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Head 0 Attention: Weight -> Price (Same Item)
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Figure 17:

Head 1 Attention: Weight -> Price (Same Item)
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Figure 18:
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Head 2 Attention: Weight -> Price (Same Item)
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Figure 19:

Head 3 Attention: Weight -> Price (Same Item)
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Head 0 Attention: Input -> Prediction (Last Token)
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Figure 21:

Head 1 Attention: Input -> Prediction (Last Token)
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Figure 23:

Head 3 Attention: Input -> Prediction (Last Token)
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B CODE FOR GENERATING DATASET

for i in range(len(weights_permutations)):
for x in range(n):
temp[x] = weights[i][x]
for j in range(len(prices_permutations)):
for y in range(n):
temp[n + y] = prices[j][y]
for k in range(len(capacities)):
temp[2xn] = capacities[k]

O 0O ~J NN B WIN—

capacities [k])

best_picks , best_price = knapsack(weights[i],

prices[j].
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