
SAO-Instruct: Free-form Audio Editing using
Natural Language Instructions

Michael Ungersböck
ETH Zurich

mungersboeck@ethz.ch

Florian Grötschla
ETH Zurich

fgroetschla@ethz.ch

Luca A. Lanzendörfer
ETH Zurich

lanzendoerfer@ethz.ch

June Young Yi
Seoul National University
julianyi1@snu.ac.kr

Changho Choi
Korea University

changho98@korea.ac.kr

Roger Wattenhofer
ETH Zurich

wattenhofer@ethz.ch

Abstract

Generative models have made significant progress in synthesizing high-fidelity
audio from short textual descriptions. However, editing existing audio using natural
language has remained largely underexplored. Current approaches either require
the complete description of the edited audio or are constrained to predefined edit
instructions that lack flexibility. In this work, we introduce SAO-Instruct, a model
based on Stable Audio Open capable of editing audio clips using any free-form
natural language instruction. To train our model, we create a dataset of audio
editing triplets (input audio, edit instruction, output audio) using Prompt-to-Prompt,
DDPM inversion, and a manual editing pipeline. Although partially trained on
synthetic data, our model generalizes well to real in-the-wild audio clips and
unseen edit instructions. We demonstrate that SAO-Instruct achieves competitive
performance on objective metrics and outperforms other audio editing approaches
in a subjective listening study. To encourage future research, we release our code
and model weights.

1 Introduction

Generative audio models have become increasingly popular, allowing users to generate high-fidelity
long-form audio within seconds. While they have been successfully applied in various domains,
including music [8, 10, 1, 5], speech [29, 26, 21, 4], and general audio [30, 24, 9, 13], the area
of audio editing still remains largely unexplored. These models, especially when given short or
ambiguous prompts, have freedom and flexibility in their outputs. While this enables diverse and
creative generations, it may lead to outputs that deviate from the user’s original intent. A similar issue
exists in recorded audio, which often contains imperfections and typically requires manual editing
before being suitable for real-world use. These modifications can range from subtle adjustments to
stylistic and spatial effects, such as “the birds should chirp louder”, “make it sound muffled”, or

“add reverb to the fireworks.” In addition to the challenges faced in generative audio, such as modeling
the high-dimensional long-term temporal dependencies, audio editing introduces further complexities.
Edits must selectively modify specific aspects of the provided audio while preserving the overall
background context. User-specified edits can also vary dramatically in scope and typically do not
follow rigid structures.

Recent methods have made progress towards addressing some of these challenges. Zero-shot
inversion approaches [33, 20] modify existing audio by conditioning on a full target description.
However, describing an audio clip with its unique sound characteristics in concise, unambiguous text
is challenging and requires significant effort [1]. A more intuitive alternative is instruction-based

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

SAO-Instruct

alarm going offdoor closing

"A door closes and an alarm goes off."

phone ringingdoor closing

"A door closes and a phone starts ringing."

change the alarm to a phone ringing

Figure 1: Given an input audio clip and an edit instruction, SAO-Instruct outputs the edited audio
while keeping the overall audio context intact.

editing, where users specify only the intended change in natural language rather than the desired
outcome. The AUDIT [44] model is one of the first to explore instruction-based editing, but only
supports a predefined set of editing tasks. Additionally, user instructions are often diverse and
underspecified, which prevents them from aligning neatly with such fixed operations. We argue that
enabling fully free-form instruction-based editing would allow more expressive transformations,
significantly simplify user interaction, and broaden the applicability of generative audio models.

In this work, we introduce SAO-Instruct, the first model for free-form instruction-based editing in the
audio domain. We use Prompt-to-Prompt [16], DDPM inversion [33], and a manual editing pipeline
to generate data triplets of input audio, edit instruction, and the corresponding edited audio. As
illustrated in Fig. 1, we show that the model learns to modify audio given a free-form edit instruction.
While partially fine-tuned on synthetic data, our experiments show that the model is able to generalize
well to real in-the-wild audio and is able to follow diverse editing operations.

Our key contributions can be summarized as follows:

• We present SAO-Instruct, the first fully free-form instruction-based audio editing model based
on Stable Audio Open. Our model generalizes well to real in-the-wild audio clips and achieves
competitive performance compared to zero-shot approaches that rely on full audio descriptions.

• We design a novel pipeline to create a dataset of audio editing triplets (input audio, edit instruction,
output audio), combining LLM-based prompt generation, Bayesian Optimization, and a filtering
mechanism that addresses the limitations of current generative audio models.

• We create a diverse dataset using three complementary approaches: fully synthetic generation via
Prompt-to-Prompt, semi-synthetic samples via DDPM inversion, and real-world manual edits. We
demonstrate their contribution to the performance of our editing model in an ablation study.

Samples are available online: https://eth-disco.github.io/sao-instruct

2 Related Work

2.1 Text-to-Audio Generation

The area of generative audio has gained significant popularity in recent years. Applications range
from music generation [8, 10, 1, 5] and speech synthesis [29, 26, 21, 4] to the broader general audio
domain [30, 24, 9, 13]. The latter category encompasses everything from short, distinct sound effects
(“the sound of a whip”) to more complex scenes (“frogs croaking at a pond”) and environmental
ambient noise (“light rain with distant thunder”). Several architectures have been explored for
general audio synthesis. Apart from autoregressive approaches [24], recent advancements in latent
diffusion models have achieved state-of-the-art results. AudioLDM [30] uses a latent diffusion
architecture conditioned on Contrastive Language-Audio Pretraining (CLAP) [45] embeddings to
learn the latent space of mel spectrograms. While such approaches require a vocoder to reconstruct
the waveform, which can introduce artifacts due to missing phase information, recent advances
such as BigVGAN [28] have significantly improved reconstruction fidelity. To remove the need
for vocoders, Stable Audio Open [9] uses a variational autoencoder operating at a 21.5 Hz latent
framerate to encode stereo audio into a continuous latent representation. A diffusion transformer [38]
then operates on this latent space, conditioned on the text prompt, timing information, and the current
diffusion timestep. Finally, the output is decoded back into 44.1 kHz stereo audio of up to 47 seconds
in length. By conditioning on timing information, users can specify the start and end points of the
generated audio, while the model is trained to fill the remaining segments with silence.

2

https://eth-disco.github.io/sao-instruct

Fine-tuningPrompt Generation Sample Generation

Prompt-to-Prompt
using Stable Audio OpenDataset

LLM

LLM

Stable Audio Open

SAO-Instruct

Inference

SAO-Instruct

Sampled
operation

Output Caption

Input Caption

Edit Instruction

Edit Instruction Manual Edits
adding, removing, replacing,

Dataset of Triplets

Edit Instruction

Edit Instruction

Edit Instruction
...

Audio Caption

make it a motorcycle

DDPM Inversion
using Stable Audio Open

Audio Captions

Figure 2: Overview of our proposed method. Green indicates synthetic data. Audio datasets are used
as the starting point for prompt generation. DDPM inversion and Prompt-to-Prompt use the input
caption and generated output caption to create a partial and fully synthetic dataset, respectively. For
manual edits, a predefined edit operation is sampled. In the fine-tuning stage, Stable Audio Open is
trained on the combined generated samples and edit instructions. During inference, SAO-Instruct
receives an audio clip and a free-form edit instruction and produces the edited output.

2.2 Generative Editing

Recent progress in generative models has enabled new capabilities in editing content across various
domains. Approaches to generative editing can be broadly categorized into zero-shot methods, which
adapt existing models without training, and supervised methods, which fine-tune generative models
for specific editing tasks.

Zero-shot Methods. A common zero-shot editing strategy for diffusion models involves partially
noising an input sample and then guiding the denoising process with a modified description [36]. Other
approaches [37, 19, 33, 20] use inversion techniques which first estimate the latent representation
given an input sample and its description, and then generate the edited output by guiding the denoising
process with a modified prompt. However, these inversion approaches typically require explicit
access to detailed input and output descriptions, which are often unavailable in real-world settings.
The quality of results is also highly dependent on how these descriptions are phrased, making such
approaches less intuitive for practical use.

Supervised Methods. Another line of work trains generative models specifically for editing tasks.
Diffusion models with an infilling objective learn to reconstruct masked audio regions based on the
surrounding context and a target text description [43]. A more intuitive alternative is instruction-
based editing, where users specify only the intended change in natural language rather than the
desired outcome. In the image domain, InstructPix2Pix [3] fine-tunes a diffusion model on synthetic
data triplets (input image, edit instruction, output image), generated using an LLM and Prompt-
to-Prompt [16], which enables image edits by selectively injecting attention maps of the original
prompt during the generation of the modified prompt. In the general audio domain, AUDIT [44] was
among the first to enable instruction-based editing. It supports the following five core operations:
addition, removal, replacement, inpainting, and super-resolution of audio. InstructME [14] introduced
a related approach for music editing that also considers the harmonic consistency while executing
edits. Fugatto [42] further explores free-form audio generation and transformation through specialized
multitasks datasets. While such models demonstrate broader instruction-following capabilities, they
are not specifically tailored for high-fidelity audio editing using natural free-form instructions.

3 Method

Free-form audio editing with a supervised learning approach requires a dataset of triplets consisting
of an input audio clip, an edit instruction, and the corresponding edited audio. Since no such dataset
is readily available, we construct one using a combination of LLM-based prompt generation and
partially synthetic audio, inspired by recent work in the image domain [3]. As illustrated in Fig. 2,
our approach first prepares a dataset of prompts that contain an input caption, an edit instruction, and
an output caption. The corresponding paired audio samples are created using three complementary
methods: fully synthetic audio generated via Prompt-to-Prompt [16], semi-synthetic audio via DDPM

3

inversion [33], and manually edited real audio clips. These generated edit instructions and audio pairs
are then combined to form the full training set. Finally, Stable Audio Open (SAO) [9] is fine-tuned
on this dataset to obtain SAO-Instruct, which can edit a given audio clip based on a free-form natural
language instruction.

3.1 Prompt Generation

To train our model for free-form editing, we need samples of triplets (input caption, edit instruction,
and output caption). For the input captions, we use the captioning datasets AudioCaps [22] and
WavCaps [35]. AudioCaps contains 50k human-written captions paired with audio clips sourced
from AudioSet [12]. WavCaps consists of 400k audio-caption pairs collected from multiple sources,
including FreeSound 1, AudioSet-SL [15] and the BBC Sound Effects 2 library. We use GPT-4o to
generate a synthetic dataset of structured prompts. Given an input caption, the LLM is prompted to
generate a fitting edit instruction and a corresponding output caption. For example, starting from
the caption “Birds chirping and water flowing”, it may generate the instruction “Remove the water
flowing” and the output caption “Birds chirping”, with the output caption derived by applying the
edit instruction to the input caption. The LLM also generates additional metadata, including negative
prompts and a count of distinct audible elements, which we use to improve sample quality for audio
synthesis and to enable downstream filtering. More details can be found in Appendix A.

3.2 Prompt-to-Prompt

A significant challenge in audio editing is applying targeted modifications while preserving the
overall audio context, including background sounds and overall atmosphere. Since there is no such
dataset available, we adapt the Prompt-to-Prompt [16] method, originally developed for image editing,
to the audio domain. Prompt-to-Prompt enables localized edits of synthesized audio by injecting
attention maps from the input prompt into the generation process of the edited prompt. We use Stable
Audio Open [9] as the underlying generative model, due to its high-fidelity 44.1 kHz stereo output
and flexibility of generating audio up to 47 seconds in length. As Stable Audio Open sometimes
omits sounds present in captions with connectors, such as “Helicopter taking off with wind blowing
and dogs barking”, we fine-tune it on AudioCaps to improve prompt adherence on general audio.
While fine-tuning improved the alignment between prompts and outputs, as detailed in Appendix D,
achieving more consistent high-quality results also requires selecting a suitable combination of seed
and Classifier-Free Guidance (CFG) [18] values. To this end, our approach consists of two stages,
as shown in Fig. 3. First, our method explores different combinations of seed and CFG values to
identify a configuration that produces satisfactory results for a given input/output caption pair. Next,
Prompt-to-Prompt is applied to generate the edited audio pair.

Candidate Search. The process for finding a suitable candidate configuration (seed and CFG value)
for each prompt pair is illustrated in Fig. 3, section (a) Candidate Search. We use Stable Audio Open
to generate seven audio pairs, each with a different configuration. Specifically, each pair is generated
using 50 denoising steps, a randomly chosen seed, and a CFG value sampled between 3 and 9. To
assess the similarity between the generated audio and corresponding caption, we use the Gemini
2.0 Flash API. We instruct Gemini to perform a perceptual quality check by analyzing all audible
elements in the provided audio and assigning a score between 1 and 10, based on how closely the
generated audio resembles the provided caption. Samples that score above a threshold of 6 proceed
to the next stage, in which the CLAP similarity is calculated. Finally, we select the configuration that
passes the Gemini filter and has the highest mean CLAP similarity across input and output.

Sample Generation. After finding a suitable configuration for a prompt, we move on to the sample
generation as outlined in section (b) of Fig. 3. There are various parameters that can be configured in
Prompt-to-Prompt. The injection fraction λattn

frac configures the extent to which attention maps from the
input audio influence the generation of the output audio. A fraction of 0 means that no attention maps
from the input audio are injected. As a result, the output is not directly influenced by the input, apart
from shared initial noise and sampling noise. In contrast, an injection fraction of 1 enforces strong
similarity such that the output audio closely resembles the input audio. Intermediate values allow

1https://freesound.org/
2https://sound-effects.bbcrewind.co.uk/

4

https://freesound.org/
https://sound-effects.bbcrewind.co.uk/

(b) Sample Generation

(a) Candidate Search

SAO

{
 “input”: “A female choir singing”,
 “instruction”: “it should be a male choir”,
 “output”: “A male choir singing”
}

Gemini Filter: (Yes, Yes)

A male choir singing
Seed: 1; Text Guidance: 9

A female choir singing
Seed: 2; Text Guidance: 6

A male choir singing
Seed: 2; Text Guidance: 6

A female choir singing
Seed: 3; Text Guidance: 7

A male choir singing
Seed: 3; Text Guidance: 7

Gemini Filter

A female choir singing
Seed: 1; Text Guidance: 9

A female choir singing Judge the
similarity.

8 > 6

7 > 6A male choir singing

• Injection Fraction: 0.6
• Injection Delay: 0.1
• Attention Reweighting: 1.5

• Injection Fraction: 0.3
• Injection Delay: 0.34
• Attention Reweighting: 1.2

Obj. Fct
Obj. Value
Trial 1: 0.53

Obj. Value
Trial 2: 0.81

SAO
with P2P

A female choir singing A male choir singing

A female choir singing A male choir singing

Obj. Value
Trial 1: 0.53

Obj. Fct

Accepted
Seed: 1; Text Guidance: 9

Rejected
due to lower CLAP score

Rejected
due to Gemini Filter

Selected sample pair

CLAP: (0.30, 0.26) 0.28

Gemini Filter: (Yes, Yes)

CLAP: (0.20, 0.26) 0.23

Gemini Filter: (Yes, No)

Bayesian Optim.
Trial 1

Bayesian Optim.
Trial 2

Figure 3: Pipeline for Prompt-to-Prompt audio generation. In (a), various seeds and CFG value
combinations are tested and filtered using Gemini and CLAP to identify suitable configurations for
prompts. In (b) Stable Audio Open (SAO) with Prompt-to-Prompt generates audio pairs using the
seed and CFG configuration found in (a). A Bayesian Optimization process suggests Prompt-to-
Prompt parameters and resulting samples are evaluated using an objective function. For clarity, only
3 candidate pairs and 2 Bayesian Optimization trials are shown.

for a balance between flexibility and audio similarity during generation. The injection delay λattn
delay

controls at which point the attention injection begins, expressed as a fraction of the total number of
attention maps. A value of 0 indicates that the injection starts from the first attention map, while
higher values delay the injection. For example, a value of 0.3 skips the first 30% of attention maps
before the injection begins. As a constraint, it follows that λattn

frac + λattn
delay ≤ 1. Attention reweighting

λattn
weight specifies a multiplier that increases attention to tokens that differ between the input and output

captions. These tokens are identified by comparing the tokenized versions of both captions, and
their corresponding cross-attention maps are scaled by the given factor. For example, a value of 1.5
increases the attention on changed tokens or newly added tokens by 50%, which helps the model pay
closer attention to proposed edits.

Using a fixed Prompt-to-Prompt configuration often leads to suboptimal results. While some in-
structions involve only subtle changes (e.g., “add an echo effect”), others require more extensive
modifications (e.g., “remove the people talking”). To handle this variability, we assign a unique
parameter configuration to each prompt pair. Since manual tuning is infeasible at scale, we rely
on Bayesian Optimization [2] to automatically select suitable parameters. This setup requires an
objective function that evaluates both the quality of the generated audio pair and the edit accuracy.

Objective Function. We define an objective function that evaluates the quality of the generated
audio pair and how well the edit was executed, using a combination of multiple metrics. Building
on insights from prior work, particularly InstructPix2Pix [3], as well as our own experiments, we
identified the following metrics as suitable. The output CLAP similarity M out

CLAP measures the cosine
similarity between the CLAP embeddings of the generated output audio and the output caption.
M dir

CLAP measures the direction of change in the embedded CLAP space, as initially introduced for
the image domain [11]. It calculates the cosine similarity between the difference of the CLAP
embedded audio pair and the CLAP embedded prompt pair. The CLAP audio similarity M sim

CLAP
measures the cosine similarity between the CLAP embedding of the input and output audio. The mel
spectrogram audio similarity M sim

MEL calculates the multi-scale mel spectrogram loss [25] between
the generated audio pair. The objective is computed as a weighted sum and is maximized during
Bayesian Optimization. Note that the multi-scale mel spectrogram loss is subtracted as lower values
indicate better perceptual alignment.

Lobj = ω1 ·M out
CLAP + ω2 ·M dir

CLAP + ω3 ·M sim
CLAP − ω4 ·M sim

MEL (1)

Since not all metrics contribute equally, we conducted a small-scale listening study to determine
effective weightings. Using our pipeline, we generated around 100 audio pairs with different
weightings used for the objective function. Listeners were presented with an input audio clip, the edit

5

instruction, and two output audio samples selected by the objective functions initialized with different
weightings. An ELO rating system was used to rank the different weighting configurations based on
their effectiveness in selecting high-quality, relevant edits. We found the following weightings to be
effective: ω1 = 8, ω2 = 14, ω3 = 0.5, ω4 = 1.5.

Optimization. We run the Bayesian Optimization process for 10 trials for each caption pair.
Specifically, we optimize λattn

frac ∈ [0.3, 0.9], λattn
delay ∈ [0.0, 0.6], and λattn

weight ∈ [1.0, 1.8]. Stable Audio
Open is configured to use 50 denoising steps during each trial, while the final selected audio pair is
generated using 100 denoising steps. Using fewer denoising steps during optimization significantly
reduces runtime without affecting the relative ranking of generated samples, while the final 100 steps
maximize audio fidelity once the optimal parameters are found.

3.3 DDPM Inversion

In addition to the fully synthetic Prompt-to-Prompt dataset, we create a semi-synthetic dataset of
audio pairs using DDPM inversion to increase data diversity. The main benefit of this approach is that
the input audio is a real audio clip, while only the output audio is generated. We use the zero-shot
text-based audio (ZETA) [33] implementation of DDPM inversion with Stable Audio Open as the
underlying generative model. We provide the model with an existing input audio and caption, with
the output caption generated as outlined in Section 3.1.

Sample Generation. To use ZETA in an automated manner, several parameters need to be config-
ured per sample. The CFGsrc and CFGtar parameters control the CFG strength of the input and output
prompt, respectively. Unlike traditional inversion techniques, which are applied to the full denoising
process, ZETA uses the parameter Tstart to specify up to which timestep the inversion is performed.
Lower values for Tstart result in high consistency with the input audio, while higher values enable
more editing flexibility. As the required edit strength varies across instructions, a fixed value would
lead to under- or over-editing. We therefore apply Bayesian Optimization with the objective function
as defined in Section 3.2.

Optimization. For each caption pair, we run Bayesian Optimization for 7 trials. We search for
optimal values within the following ranges: CFGsrc ∈ [1, 3], CFGtar ∈ [3, 10], and Tstart ∈ [18, 65].
Throughout optimization, Stable Audio Open is configured to use 70 denoising steps. Compared
to Prompt-to-Prompt, we use fewer optimization trials and denoising steps to balance quality and
runtime, given the higher computational cost of DDPM inversion.

3.4 Manual Edits

We further extend our dataset using a suite of twelve manually implemented operations, inspired by the
approach from AUDIT [44]. We refer to these operations as manual edits, as each edit is implemented
using standard, deterministic, and interpretable audio effects. The twelve editing tasks are ADD,
REPLACE, DROP, SWAP, LOOP, PITCH, SPEED, LOW_PASS, HIGH_PASS, INPAINT, SUPER_RES, and
DENOISE. Each task has a set number of inputs, certain constraints on those inputs, and an optional
controllable parameter. The input audio clips may be constrained by the number of unique audio
elements, as analyzed in Section 3.1, or by their duration. Some tasks accept parameters that introduce
variability in their edits. For instance, the PITCH task allows control over the amount of pitch shifting,
while the LOOP task accepts how many times the input audio should get repeated. The final output
of each operation is an audio pair consisting of the input and edited audio clip. All tasks, input
constraints, and parameters are detailed in Appendix B.

Sample Generation. To create an audio editing triplet, we first sample one of the twelve tasks
with equal probability. Based on the task’s constraints, input audio clips are filtered before suitable
candidates are randomly selected. After applying the edit operation, we synthesize the natural
language instruction by passing the captions of the input audio clips, alongside the optional parameter
value, to a task-specific LLM-based instruction generation stage built on GPT-4.1 mini. Each
generation process is provided with a description of the task and few-shot examples, allowing the
model to produce tailored task-specific instructions. To increase instruction diversity and better reflect
how real-world users might phrase requests, we apply two post-processing steps using custom stages
based on o4-mini. Each post-processing step is executed with 50% probability, independently. In the

6

Table 1: An example three-stage instruction generation pipeline for the ADD task, where the selected
base audio “People talking in a roadside cafe” is mixed with the target audio “A chirping bird”. First,
the initial stage combines the base and target audio captions to produce an edit instruction. Then, the
variation stage rewrites it with alternate phrasing to increase diversity. Finally, the minimization stage
compresses it into its most concise form. The last two stages are applied with 50% probability.

Generation Stage Applied Instruction

1. Initial 100% “Add the sound of a bird chirping to the people talking in a roadside cafe”
2. Variation 50% “Add some chirping birds to the chatter in a roadside cafe”
3. Minimization 50% “Add bird sounds”

variation stage, the instruction is rewritten without altering its meaning. In the minimization stage,
the instruction is compressed into its most concise form. An example of this three-stage pipeline for
the ADD task is shown in Table 1.

4 Experimental Setup

4.1 SAO-Instruct

Dataset. To generate the dataset of audio editing triplets we use the three approaches outlined in
Section 3. For Prompt-to-Prompt, input captions are taken from the AudioCaps [22] training split
and a random subset of FreeSound from WavCaps [35]. For DDPM inversion, the input audio and
caption are sourced from a random subset of AudioSet-SL [15]. Edit instruction and output captions
are generated as described in Section 3.1. For the manual edits, we choose a different subset of
FreeSound from WavCaps to avoid overlaps with Prompt-to-Prompt. The final audio samples are
stored as 44.1 kHz stereo WAV files. The computational resources used for the dataset generation are
listed in Appendix C.

Fine-tuning and Inference. We start from the open-source weights of Stable Audio Open and
fine-tune the model on our created dataset of triplets: input audio, output audio, and edit instruction.
SAO-Instruct uses three types of conditioning: (1) the text prompt is replaced with a free-form edit
instruction, (2) the timing condition is set to the length of the provided input audio, (3) an additional
audio condition for the input audio is concatenated to the model’s input channels. During training, the
model learns to modify the provided input audio based on the edit instruction, such that the resulting
output matches the reference output audio. During inference, we encode the input audio into the
latent space of the diffusion model and add Gaussian noise. This noised latent is used as the initial
starting point for the denoising process. Unless specified otherwise, we use 100 denoising steps and a
CFG value of 5. More fine-tuning and inference details are found in Appendix D and E.

4.2 Evaluation Metrics

Objective Metrics. We use several metrics for objective evaluation that capture both distributional
similarity and perceptual quality. To measure how closely the edited samples match the distribution
of real audio, we compute the Fréchet Distance (FD) [17], the log spectral distance (LSD), and
the Kullback-Leibler (KL) divergence. To evaluate perceptual quality, we use the Inception Score
(IS) [39]. The FD, KL, and IS metrics utilize the PANNs [23] classifier. The LSD calculates the
distance between spectrograms of original and target audio clips. To compute these metrics, we use
the evaluation pipeline provided by AudioLDM [30]. Additionally, we evaluate how well edits were
performed using the CLAP [45] score, which measures the cosine similarity between the generated
audio and the target caption in the CLAP embedding space. As CLAP is also used in our data
generation pipeline to filter samples, it can bias results towards its embedding space. We mitigate this
by not training SAO-Instruct with a CLAP loss and by reporting multiple objective and subjective
metrics.

Subjective Metrics. For the subjective evaluation, we conducted a listening study with 13 par-
ticipants. Each participant was presented with 10 randomly selected 10-second audio clips from
the AudioCaps test subset, including the original caption, an edit instruction, and the corresponding

7

Table 2: Ablation study comparing the influence of different generated datasets on edit relevance and
audio quality. FD, LSD, and KL are shown for both original and regenerated audio. Metrics reported
with ± indicate mean and standard deviation across evaluation samples. Outputs from SAO-Instruct
fine-tuned on the combined dataset balance the strengths of the individual approaches, achieving both
accurate edits and faithfulness to the input audio.

Original Ref. Regenerated Ref.

Training Dataset Samples FD ↓ LSD ↓ KL ↓ FD ↓ LSD ↓ KL ↓ IS ↑ CLAP ↑

Prompt-to-Prompt 50k 18.71 1.50 1.32 18.29 2.68 1.77 7.94±0.72 0.38±0.14
DDPM Inversion 50k 20.50 1.34 0.86 20.72 2.75 1.87 6.82±0.73 0.34±0.15
Manual Edits 50k 14.60 1.42 0.58 21.21 2.76 1.89 7.50±0.68 0.35±0.15
Combined 50k 19.11 1.41 1.02 19.24 2.72 1.74 7.69±0.76 0.38±0.14
Combined-Large 150k 18.38 1.36 0.93 18.97 2.72 1.76 7.59±1.00 0.38±0.14

edited audio clips generated by the models. Model names were hidden from participants and the
order of outputs was randomized on a per-sample basis. We use similar metrics to AudioEditor [20],
where participants were tasked to rate each clip using the Mean Opinion Score (MOS) on a discrete
scale between 1 and 5. Ratings were collected for three categories: Quality, the perceptual quality of
the edited audio compared to the original input audio, Relevance, how well the edit was performed,
and Faithfulness, the similarity between the input audio and the edited audio. The input audio refers
to the original, unedited clip provided to the model for editing. The final MOS for each category was
computed by averaging ratings across all participants and samples. Appendix F shows the evaluation
interface and the instructions given to participants.

5 Evaluation

We evaluate the performance of SAO-Instruct in an ablation study that measures the impact of the
different methods for dataset generation, and compare it with audio editing baselines. We evaluate on
1k 10-second samples from the AudioCaps test subset, where edit instructions and output captions
are generated using the approach described in Section 3.1. For the FD, LSD, and KL metrics we use
two types of references: the original AudioCaps clips and synthetic audio generated from the target
captions using Stable Audio Open. The original reference tries to capture realism with natural audio,
while the regenerated reference serves as a proxy to measure how well the edits were performed.
Notably, lower FD, LSD, and KL scores do not necessarily reflect better editing performance, as these
metrics primarily measure the similarity to the reference audio. For instance, edited audio that is
perceptually close to the original audio clips may score well, even if the edit instruction was ignored
or only partially followed. By including both types of references, we aim to capture both naturalness
and edit accuracy of generated outputs.

5.1 Ablation

To identify the effectiveness of the different dataset generation techniques, we fine-tune Stable Audio
Open separately on datasets generated using Prompt-to-Prompt, DDPM inversion, and manual edits,
each consisting of 50k samples. Additionally, we evaluate two combined variants: one with 50k
samples with equal contribution from each of the three generation methods, and a larger version
containing 150k samples with 50k samples from each method.

Results. The results of this ablation study are shown in Table 2. Edits from SAO-Instruct fine-tuned
on Prompt-to-Prompt showcase high similarity with the regenerated reference. This indicates that the
performed edits may be more accurate, while being less faithful to the original qualities of the input
audio. In contrast, fine-tuning on DDPM inversion and manual edits, which are built on partial or
fully real audio, may produce edits that are less precise while better preserving the characteristics
and quality of the input audio. Overall, the combined approaches perform robustly across all metrics,
balancing the advantages from the individual datasets.

8

Table 3: Comparison with zero-shot audio editing baselines. Results (mean ± standard deviation) are
shown for applicable objective and all subjective metrics. Inf. denotes the inference time per sample
in seconds, measured on a single NVIDIA A6000 GPU with a batch size of 1.

Original Ref. Regenerated Ref. Subjective Metrics

Models Inf. (s) ↓ FD ↓ LSD ↓ KL ↓ FD ↓ LSD ↓ KL ↓ IS ↑ CLAP ↑ Quality ↑ Relevance ↑ Faithfulness ↑

AudioEditor 79.49 17.21 1.73 1.40 25.97 2.32 1.46 10.01±0.60 0.48±0.12 3.22±1.01 3.33±1.35 2.75±0.99
ZETATstart=50 15.31 24.65 2.27 1.64 17.01 2.55 1.26 9.06±0.67 0.38±0.13 3.56±0.83 3.25±1.25 2.95±1.06
ZETATstart=75 17.78 27.91 2.69 1.86 18.88 2.59 1.36 9.07±0.72 0.36±0.13 3.28±1.00 3.04±1.24 2.75±1.12
SAO-Instruct 9.94 18.38 1.36 0.93 18.97 2.72 1.76 7.59±1.00 0.38±0.14 3.54±0.93 3.83±1.00 3.99±0.74

5.2 Comparison with Baselines

We compare SAO-Instruct with prior zero-shot audio editing baselines. The ZETA baseline [33] uses
Stable Audio Open with 100 denoising steps as the underlying generative model, which was trained
on FreeSound and the Free Music Archive (FMA) [6]. We evaluate two variants by adjusting the
edit strength via the Tstart parameter, set to 50 and 75. ZETA has access to the full original and target
audio description. We also compare our model to AudioEditor [20], which uses Auffusion [46] as
its underlying model trained on several audio datasets, including AudioCaps [22], WavCaps [35],
and MACS [34]. Depending on the edit type, AudioEditor conditions on either the original or target
description, along with the indices of words that changed between the descriptions. SAO-Instruct is
trained on a combined dataset of 150k audio editing triplets, consisting of 50k samples each from
Prompt-to-Prompt, DDPM inversion, and manual edits. Unlike the baselines, SAO-Instruct only has
access to the edit instruction, conveying significantly less information than full audio descriptions.

Results. The results of the comparison with baselines are shown in Table 3. SAO-Instruct has
the fastest inference time, editing audio in just under 10 seconds, making it nearly 8x faster than
AudioEditor. On the FD, LSD, and KL metrics, the models perform similarly, with no model
dominating across both reference proxies. AudioEditor has the highest CLAP and Inception scores
by significant margin, likely due to its additional information available as the full target audio caption
and longer inference time. However, this also leads to more aggressive edits that reduce the similarity
with the original audio clip, reflected in its lower faithfulness score. SAO-Instruct shows strong
performance in the subjective listening test and outperforms the other models in both edit relevance
and faithfulness to the original audio, while maintaining high audio quality. Using only a free-form
instruction, SAO-Instruct demonstrates competitive performance and, in several cases, exceeds the
results of models conditioned on full audio descriptions.

5.3 Limitations

While SAO-Instruct shows promising results, some limitations remain. The generation process for
our Prompt-to-Prompt and DDPM inversion datasets is computationally expensive and constrained
by the capabilities of the underlying generative model. Examples of failure cases are shown in
Appendix G.3. While our work focuses on editing general audio, our approach could be applied
to music editing, provided appropriate generative music models exist and triplets are constructed
from music datasets. Future work could explore handling multi-step edits and extending support to
languages other than English. See Appendix H for a discussion on broader impacts.

6 Conclusion

We introduce SAO-Instruct, the first fully free-form instruction-based audio editing model. SAO-
Instruct can perform a wide-range of edit instructions, while preserving the overall context and
coherence of the provided input audio. We propose a novel data generation pipeline utilizing Prompt-
to-Prompt [16], DDPM inversion [33], and manual edits [44] to create a diverse dataset of audio
editing triplets. Our evaluations show that SAO-Instruct outperforms existing zero-shot editing
baselines in subjective listening tests and achieves competitive performance on objective metrics.
While prior baselines require information from both the input and target audio captions to guide the
editing process, SAO-Instruct requires only a single free-form edit instruction. We believe free-form
instruction-based audio editing unlocks new possibilities for creative audio workflows and hope that
our released model weights and code will encourage further research in this area.

9

References
[1] A. Agostinelli, T. I. Denk, Z. Borsos, J. Engel, M. Verzetti, A. Caillon, Q. Huang, A. Jansen,

A. Roberts, M. Tagliasacchi, et al. MusicLM: Generating music from text. arXiv preprint
arXiv:2301.11325, 2023. URL https://arxiv.org/abs/2301.11325.

[2] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-generation hyper-
parameter optimization framework. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2019.

[3] T. Brooks, A. Holynski, and A. A. Efros. InstructPix2Pix: Learning to follow image editing
instructions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18392–18402, 2023.

[4] S. Chen, S. Liu, L. Zhou, Y. Liu, X. Tan, J. Li, S. Zhao, Y. Qian, and F. Wei. VALL-E 2: neural
codec language models are human parity zero-shot text to speech synthesizers. arXiv preprint
arXiv:2406.05370, 2024.

[5] J. Copet, F. Kreuk, I. Gat, T. Remez, D. Kant, G. Synnaeve, Y. Adi, and A. Defossez. Simple
and controllable music generation. In Advances in Neural Information Processing Systems,
volume 36, pages 47704–47720. Curran Associates, Inc., 2023.

[6] M. Defferrard, K. Benzi, P. Vandergheynst, and X. Bresson. FMA: A dataset for music analysis.
In International Society for Music Information Retrieval Conference, 2017.

[7] A. Défossez, N. Usunier, L. Bottou, and F. Bach. Demucs: Deep extractor for music sources
with extra unlabeled data remixed. arXiv preprint arXiv:1909.01174, 2019.

[8] P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford, and I. Sutskever. Jukebox: A generative
model for music. arXiv preprint arXiv:2005.00341, 2020.

[9] Z. Evans, J. D. Parker, C. Carr, Z. Zukowski, J. Taylor, and J. Pons. Stable Audio Open, 2024.
URL https://arxiv.org/abs/2407.14358.

[10] S. Forsgren and H. Martiros. Riffusion - stable diffusion for real-time music generation. 2022.
URL https://riffusion.com/about.

[11] R. Gal, O. Patashnik, H. Maron, A. H. Bermano, G. Chechik, and D. Cohen-Or. StyleGAN-
NADA: Clip-guided domain adaptation of image generators. ACM Transactions on Graphics
(TOG), 41(4):1–13, 2022.

[12] J. F. Gemmeke, D. P. Ellis, D. Freedman, A. Jansen, W. Lawrence, R. C. Moore, M. Plakal, and
M. Ritter. AudioSet: An ontology and human-labeled dataset for audio events. In 2017 IEEE
international conference on acoustics, speech and signal processing (ICASSP), pages 776–780.
IEEE, 2017.

[13] J. Hai, Y. Xu, H. Zhang, C. Li, H. Wang, M. Elhilali, and D. Yu. EzAudio: Enhancing text-to-
audio generation with efficient diffusion transformer, 2024. URL https://arxiv.org/abs/
2409.10819.

[14] B. Han, J. Dai, W. Hao, X. He, D. Guo, J. Chen, Y. Wang, Y. Qian, and X. Song. InstructME:
An instruction guided music edit and remix framework with latent diffusion models. arXiv
preprint arXiv:2308.14360, 2023.

[15] S. Hershey, D. P. Ellis, E. Fonseca, A. Jansen, C. Liu, R. C. Moore, and M. Plakal. The benefit of
temporally-strong labels in audio event classification. In ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 366–370. IEEE, 2021.

[16] A. Hertz, R. Mokady, J. Tenenbaum, K. Aberman, Y. Pritch, and D. Cohen-or. Prompt-to-
Prompt image editing with cross-attention control. In The Eleventh International Conference
on Learning Representations, 2023.

[17] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. GANs trained by a two
time-scale update rule converge to a local nash equilibrium. Advances in neural information
processing systems, 30, 2017.

10

https://arxiv.org/abs/2301.11325
https://arxiv.org/abs/2407.14358
https://riffusion.com/about
https://arxiv.org/abs/2409.10819
https://arxiv.org/abs/2409.10819

[18] J. Ho and T. Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

[19] I. Huberman-Spiegelglas, V. Kulikov, and T. Michaeli. An edit friendly DDPM noise space:
Inversion and manipulations. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12469–12478, 2024.

[20] Y. Jia, Y. Chen, J. Zhao, S. Zhao, W. Zeng, Y. Chen, and Y. Qin. AudioEditor: A training-free
diffusion-based audio editing framework. In ICASSP 2025-2025 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 1–5. IEEE, 2025.

[21] Z. Ju, Y. Wang, K. Shen, X. Tan, D. Xin, D. Yang, Y. Liu, Y. Leng, K. Song, S. Tang, Z. Wu,
T. Qin, X.-Y. Li, W. Ye, S. Zhang, J. Bian, L. He, J. Li, and S. Zhao. NaturalSpeech 3:
Zero-shot speech synthesis with factorized codec and diffusion models, 2024. URL https:
//arxiv.org/abs/2403.03100.

[22] C. D. Kim, B. Kim, H. Lee, and G. Kim. AudioCaps: Generating captions for audios in the wild.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pages 119–132, 2019.

[23] Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang, and M. D. Plumbley. PANNs: Large-scale
pretrained audio neural networks for audio pattern recognition. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 28:2880–2894, 2020.

[24] F. Kreuk, G. Synnaeve, A. Polyak, U. Singer, A. Défossez, J. Copet, D. Parikh, Y. Taigman,
and Y. Adi. AudioGen: Textually guided audio generation. In The Eleventh International
Conference on Learning Representations, 2023.

[25] R. Kumar, P. Seetharaman, A. Luebs, I. Kumar, and K. Kumar. High-fidelity audio compression
with improved RVQGAN. Advances in Neural Information Processing Systems, 36:27980–
27993, 2023.

[26] M. Le, A. Vyas, B. Shi, B. Karrer, L. Sari, R. Moritz, M. Williamson, V. Manohar, Y. Adi,
J. Mahadeokar, et al. Voicebox: Text-guided multilingual universal speech generation at scale.
Advances in neural information processing systems, 36, 2024.

[27] J. Le Roux, S. Wisdom, H. Erdogan, and J. R. Hershey. SDR–half-baked or well done? In
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 626–630. IEEE, 2019.

[28] S.-g. Lee, W. Ping, B. Ginsburg, B. Catanzaro, and S. Yoon. BigVGAN: A universal neural
vocoder with large-scale training. arXiv preprint arXiv:2206.04658, 2022.

[29] Y. A. Li, C. Han, V. Raghavan, G. Mischler, and N. Mesgarani. StyleTTS 2: towards human-
level text-to-speech through style diffusion and adversarial training with large speech language
models. Advances in Neural Information Processing Systems, 36:19594–19621, 2023.

[30] H. Liu, Z. Chen, Y. Yuan, X. Mei, X. Liu, D. Mandic, W. Wang, and M. D. Plumbley. Au-
dioLDM: Text-to-audio generation with latent diffusion models. In Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learn-
ing Research, pages 21450–21474. PMLR, 2023.

[31] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[32] Y. Luo and N. Mesgarani. TasNet: time-domain audio separation network for real-time, single-
channel speech separation. In 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 696–700. IEEE, 2018.

[33] H. Manor and T. Michaeli. Zero-shot unsupervised and text-based audio editing using DDPM
inversion. In Proceedings of the 41st International Conference on Machine Learning, volume
235 of Proceedings of Machine Learning Research, pages 34603–34629. PMLR, 21–27 Jul
2024.

11

https://arxiv.org/abs/2403.03100
https://arxiv.org/abs/2403.03100

[34] I. Martín-Morató and A. Mesaros. What is the ground truth? reliability of multi-annotator data
for audio tagging. In 2021 29th European Signal Processing Conference (EUSIPCO), pages
76–80. IEEE, 2021.

[35] X. Mei, C. Meng, H. Liu, Q. Kong, T. Ko, C. Zhao, M. D. Plumbley, Y. Zou, and W. Wang.
WavCaps: A chatgpt-assisted weakly-labelled audio captioning dataset for audio-language
multimodal research. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
2024.

[36] C. Meng, Y. He, Y. Song, J. Song, J. Wu, J.-Y. Zhu, and S. Ermon. SDEdit: Guided image
synthesis and editing with stochastic differential equations. arXiv preprint arXiv:2108.01073,
2021.

[37] R. Mokady, A. Hertz, K. Aberman, Y. Pritch, and D. Cohen-Or. Null-text inversion for editing
real images using guided diffusion models. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 6038–6047, 2023.

[38] W. Peebles and S. Xie. Scalable diffusion models with transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), pages 4195–4205, October
2023.

[39] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved
techniques for training GANs. Advances in neural information processing systems, 29, 2016.

[40] U.-H. Shin, S. Lee, T. Kim, and H.-M. Park. Separate and reconstruct: Asymmetric encoder-
decoder for speech separation. Advances in Neural Information Processing Systems, 37:
52215–52240, 2024.

[41] A. Tjandra, Y.-C. Wu, B. Guo, J. Hoffman, B. Ellis, A. Vyas, B. Shi, S. Chen, M. Le,
N. Zacharov, et al. Meta audiobox aesthetics: Unified automatic quality assessment for speech,
music, and sound. arXiv preprint arXiv:2502.05139, 2025.

[42] R. Valle, R. Badlani, Z. Kong, S.-g. Lee, A. Goel, S. Kim, J. F. Santos, S. Dai, S. Gururani,
A. Aljafari, et al. Fugatto 1: Foundational generative audio transformer opus 1. In The Thirteenth
International Conference on Learning Representations, 2025.

[43] A. Vyas, B. Shi, M. Le, A. Tjandra, Y.-C. Wu, B. Guo, J. Zhang, X. Zhang, R. Adkins, W. Ngan,
et al. Audiobox: Unified audio generation with natural language prompts. arXiv preprint
arXiv:2312.15821, 2023.

[44] Y. Wang, Z. Ju, X. Tan, L. He, Z. Wu, J. Bian, and S. Zhao. AUDIT: Audio editing by following
instructions with latent diffusion models. In Advances in Neural Information Processing Systems,
volume 36, pages 71340–71357. Curran Associates, Inc., 2023.

[45] Y. Wu, K. Chen, T. Zhang, Y. Hui, T. Berg-Kirkpatrick, and S. Dubnov. Large-scale contrastive
language-audio pretraining with feature fusion and keyword-to-caption augmentation. In
ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1–5, 2023.

[46] J. Xue, Y. Deng, Y. Gao, and Y. Li. Auffusion: Leveraging the power of diffusion and large
language models for text-to-audio generation. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 2024.

[47] R. Yamamoto, E. Song, and J.-M. Kim. Parallel WaveGAN: A fast waveform generation model
based on generative adversarial networks with multi-resolution spectrogram. In ICASSP 2020-
2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 6199–6203. IEEE, 2020.

12

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction are substantiated in the
main text of the paper. Specifically, our approach is outlined in Section 3 and our model is
compared with baselines in Section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our work are outlined in Section 5.3.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

13

Answer: [NA]
Justification: Our work does not contain theoretical results or formal proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our dataset generation approach is outlined in Section 3, while our specific
experimental setup is discussed in Section 4 and Appendix D. Additionally, we provide all
our code and model weights online: https://github.com/eth-disco/sao-instruct.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

14

https://github.com/eth-disco/sao-instruct

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code and model weights with documentation to reproduce our
dataset and results: https://github.com/eth-disco/sao-instruct

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details for the dataset generation are discussed in Section 3. Experimental
setup is outlined in Section 4 with additional information in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We show the standard deviation for applicable objective metrics and for
subjective metrics in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

15

https://github.com/eth-disco/sao-instruct
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computational resources used to generate the dataset and fine-tune the
models are described in Appendix C and Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms to the NeurIPS code of Ethics in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts in Appendix H.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

16

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We describe safeguards in Appendix H.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly cited all existing assets that were used in our work. Additional
licenses of dataset and models that we build upon are outlined in Appendix I.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

17

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our approach to generate the dataset of audio editing triplets is outlined
in Section 3. We describe SAO-Instruct and used datasets in Section 4.1. Additional
documentation to generate the dataset and use SAO-Instruct is released alongside our code
at https://github.com/eth-disco/sao-instruct.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: The evaluation interface and instructions given to participants for our listening
study are outlined in Appendix F.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: Our listening study did not pose any risk to participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

18

paperswithcode.com/datasets
https://github.com/eth-disco/sao-instruct

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We describe our LLM usage for prompt generation in Section 3.1, Appendix A
and Section 3.4 for manual edits.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

A Prompt Generation

GPT-4o

{
 “input”: “Birds chirping and water flowing”,
 “reasoning”: “There are two main elements ...”,
 “instruction”: “Remove the water flowing”,
 “output”: “Birds chirping”,
 “input_neg”: “”,
 “output_neg”: “water flowing”,
 ...
}

Caption Dataset

Birds chirping and water flowing

...

Dogs barking and squealing

System Prompt
Generate a synthetic dataset ...

Few-shots
[{"input": "Cars drive... }]

Dogs barking and squealing

Figure 4: Pipeline for prompt generation. A caption is taken from a dataset and passed to an LLM,
which produces an edit instruction and a corresponding output caption. Additional metadata is
generated for downstream filtering and for improving sample quality for synthetic audio generation.

Generation and Filtering. As illustrated in Fig. 4, we use GPT-4o to create a dataset of structured
prompts. Before generating outputs, the LLM reasons about the provided input caption to identify
all audible elements and a suitable edit instruction. The LLM also generates additional metadata,
including a count of distinct audio elements of the input caption. Captions vary in complexity, with
some containing only a single audible element (“A cat meows”), while others may have multiple
distinct elements, such as “A man speaks during heavy traffic with emergency sirens going by”.
Current generative audio models often struggle to accurately synthesize these complex captions,
which can result in incomplete generations, with parts of the caption missing, or outputs with
substantial audible artifacts. To address this, we filter out prompts that contain more than two distinct
audio elements.

Table 4: Examples of prompt generation. The input caption is taken from an existing captioning
dataset, while the rest is generated using an LLM. The reasoning step is not shown for brevity.

Input Caption Instruction Output Caption Elem. Neg. Input Neg. Output

A man speaks as
birds chirp

“Remove the birds chirping” A man speaks 2 – birds chirp

Thunder and rain “add distant wind” Thunder and rain with
distant wind

2 distant wind –

A car accelerates “Change it to a motorcycle” A motorcycle
accelerates

1 motorcycle car

A plane takes off “it should be further away” A plane takes off in
the distance

1 – –

Negative Prompts. Depending on the edit instruction, the LLM also generates optional negative
captions, which contain descriptions of audio elements that should be excluded from the input and
output. These negative prompts help improve sample quality during synthetic audio generation by
ensuring that elements are properly removed or added. For example, given the input caption “A
man speaks as birds chirp”, the model generates the edit instruction “Remove the birds chirping”
(cf. Table 4). Since this instruction removes a sound, the negative input caption is empty, while the
negative output caption contains “birds chirp”. If the edit instruction instead adds a new sound, the
negative input caption would contain that new element, while the negative output caption remains
empty. Both negative input and output prompts are used during synthetic sample generation with
Prompt-to-Prompt. For DDPM inversion, only the negative output prompt is used, since the input
audio is not generated.

B Manual Edit Tasks

We define twelve editing tasks in total: ADD, REPLACE, DROP, SWAP, LOOP, PITCH, SPEED, LOW_PASS,
HIGH_PASS, INPAINT, SUPER_RES, and DENOISE. These tasks differ in the number of inputs they
require, the constraints on those inputs, and whether they accept controllable parameters.

20

Table 5: The four editing tasks that accept parameters. The function len(·) returns the audio length in
seconds.

Task/Inputs Parameter Description and Constraints Example Instruction

ADD/2 Position t Mixes a target audio into a base audio.
• ℓ = len(target) ≤ L = len(base)
• t ∈ {start, middle, end} ∪ [0, L− ℓ]

“Add the sound of a barking
dog to the beginning of the
street ambience.”

LOOP/1 Count l Repeats an audio multiple times.
• l ∈ Z>0 st. len(result) ≤ 47s

“Repeat five times.”

PITCH/1 Semitones p Shifts pitch up or down.
• p ∈ [−12, 12]

“Make the voice sound deeper
by three notes.”

SPEED/1 Factor s Changes speed without affecting pitch.
• s ∼ LogUnif (1/3, 3)
• len(result) ≤ 47s

“Slow this clip down by about
30 percent.”

Input Constraints. While some tasks operate on multiple audio clips, others only require one. For
example, ADD overlays two audio clips, while HIGH_PASS processes a single clip by removing its
low-frequency region. In addition to the number of inputs, each task may also impose constraints
based on the relative length of the inputs or the number of distinct audio elements as analyzed in
Section 3.1. These constraints ensure that the edited audio does not exceed the 47 second limitation
of Stable Audio Open and avoids producing samples that contain an excessive number of distinct
audio elements. For instance, DROP is configured to only remove a single element from a composite
audio.

Parameters. Tasks can be separated into two groups based on whether they accept controllable
parameters. The tasks ADD, LOOP, PITCH, and SPEED each accept one controllable parameter as
detailed in Table 5. The values of these parameters are all numerical, except for ADD, which accepts
the insertion location either as a floating point timestamp or as one of the keywords “start”, “middle”,
or “end”, which are automatically converted into their corresponding timestamp values. These
parameters also come with some restrictions. For example, the insertion location of the ADD tasks
cannot insert the target audio before the start or beyond the length of the base audio, while the pitch
shift of the PITCH tasks is restricted to a full octave in either direction. For tasks such as LOOP
that change the length of a given audio clip, the number of loops is constrained to ensure that the
final audio does not exceed 47 seconds. The parameter values are sampled uniformly, unless stated
otherwise, within the allowed values. The REPLACE, DROP, SWAP, LOW_PASS, HIGH_PASS, INPAINT,
SUPER_RES, and DENOISE tasks do not accept parameters and are outlined in Table 6. For example,
HIGH_PASS simply removes the low-frequency region of a given audio.

C Dataset Generation

We outline the computational resources used for generating the dataset of audio editing triplets via
the three approaches introduced in Section 3. While the dataset was generated using various GPUs,
we report the average inference times based on a single NVIDIA A6000 GPU for consistency. For
the Prompt-to-Prompt dataset, we generate seven candidate pairs to find suitable seed and CFG
values and filter them using Gemini and CLAP. For each prompt pair, this step takes on average 2.2
minutes. After finding a suitable candidate, we perform the Prompt-to-Prompt sample generation
using Bayesian Optimization with 10 trials, which takes approximately 3.4 minutes per audio pair.
For DDPM inversion, we use 7 Bayesian Optimization trials to find the optimal inversion parameters,
taking 1.8 minutes per audio pair. To generate 100k samples (50k from each method), we used a total
of 6.2k GPU hours. In contrast, generating manual edits is comparatively lightweight, as no GPUs
are required. The full pipeline, including audio manipulation and generating the edit instruction,
takes approximately 5.1 seconds per sample on a single CPU core.

21

Table 6: The eight editing tasks that take no parameters. The function len(·) returns the audio length
in seconds and elem(·) counts the number of audible elements as generated in Section 3.1.

Task/Inputs Description and Constraints Example Instruction

REPLACE/3 Swaps out one element (target) in a composite
audio (base + target) with another (replace).
• elem(target) = elem(base) = 1

• len(target), len(replace) ≤ len(base)

“Replace the engine hum with the
sound of a propeller plane.”

DROP/2 Drops a sound (target) from a composite audio
(base + target).
• elem(target) = 1

• len(target) ≤ len(base)

“Remove the rain sounds from this
outdoor recording.”

SWAP/2 Reorders two audio clips.
• elem(first) = elem(second) = 1

• len(first) + len(second) ≤ 47s

“Swap the order of these two
sounds.”

LOW_PASS/1 Removes high-frequency region.
• cutoff at 8000 Hz

“Filter out the high-pitched noise
from the recording.”

HIGH_PASS/1 Removes low-frequency region.
• cutoff at 1000 Hz

“Remove the bass rumble from the
audio.”

INPAINT/1 Fills in a silent region.
• α ∼ U(0, 95)
• randomly blank out α% of input

“Restore the missing audio in the
middle of this clip.”

SUPER_RES/1 Reconstruct high-frequency region.
• input is resampled to 1/4th of its sample rate

“Enhance the quality of this low-
frequency audio.”

DENOISE/1 Removes noise from the signal.
• gaussian noise N (0, 0.01) is added to input

“Remove the background hiss from
this audio.”

Table 7: Performance of Stable Audio Open (SAO) and its fine-tuned variant on AudioCaps. The
AudioCaps test subset was used for evaluation.

Models FD ↓ KL ↓ IS ↑ CLAP ↑

SAO 41.64 2.19 8.56±0.47 0.26±0.14
SAO + AudioCaps 20.85 1.42 10.05±0.51 0.46±0.11

D Fine-tuning

To fine-tune Stable Audio Open on both AudioCaps and our generated audio editing triplets, we
follow the guidelines in the official repository 3 and adopt the default optimizer and inverse learning
rate scheduler with exponential warmup. Specifically, the AdamW [31] optimizer is configured with
a learning rate of 5e − 5, (β1, β2) = (0.9, 0.999), and weight decay of 1e − 3. In both cases, we
keep the autoencoder frozen and only train the diffusion transformer.

Stable Audio Open on AudioCaps. To improve prompt adherence of Stable Audio Open, we
fine-tune the model on both the training and validation splits of AudioCaps [22] using a total of 47k
samples. The model is trained for 15 epochs with a batch size of 64 on two NVIDIA A100 GPUs for
30 hours. For evaluation, we provide the models with captions from the test subset of AudioCaps and
generate audio using 100 denoising steps and a CFG of 6. As shown Table 7, the fine-tuned version
followed prompts more closely.

SAO-Instruct. We train the diffusion transformer on two NVIDIA A6000 GPUs with a batch size
of 16 for 4 epochs. Models trained on the individual datasets (50k samples each) were trained for 30
hours, while the final model on the large combined dataset (150k samples) was trained for 80 hours.

3https://github.com/Stability-AI/stable-audio-tools

22

https://github.com/Stability-AI/stable-audio-tools

Table 8: Comparing two inference configurations of SAO-Instruct. Starting from an encoded input
audio with added Gaussian noise preserves more input audio characteristics while still providing
enough editing flexibility.

Original Ref. Regenerated Ref.

Initial Latent FD ↓ LSD ↓ KL ↓ FD ↓ LSD ↓ KL ↓ IS ↑ CLAP ↑

Pure Noise 29.73 2.23 2.59 19.17 2.61 2.27 8.10±0.69 0.32±0.15
Audio + Noise 18.38 1.36 0.93 18.97 2.72 1.76 7.59±1.00 0.38±0.14

Table 9: Comparison with zero-shot audio editing baselines on Production Quality (PQ) and Produc-
tion Complexity (PC) from AudioBox Aesthetics [41].

Model PQ ↑ PC ↑

AudioEditor 5.38±0.91 3.02±0.72
ZETATstart=50 6.06±0.94 2.76±0.69
ZETATstart=75 6.04±0.91 2.73±0.66
SAO-Instruct 5.61±0.89 3.23±0.78

E Inference

We compare two inference configurations for SAO-Instruct in Table 8: sampling from pure noise
and sampling from the Gaussian-noised latent of the encoded input audio. Starting from the noised
latent substantially improves metrics computed against the original audio clips, which indicates better
preservation of the input audio’s characteristics. It also achieves a higher CLAP score and lower
FD/KL relative to the target caption-conditioned regenerated reference, showing accurate instruction
following. Overall, sampling from the noised latent preserves more input audio characteristics while
still providing enough flexibility to perform the required edits.

F Listening Study

The evaluation interface for the subjective listening study is shown in Fig. 5. The 13 participants
were volunteers and received no compensation. They were given the following instructions to rate the
model outputs:

• Quality: How good is the sound quality of the edited audio compared to the input?
1 = Poor quality with strong artifacts, 5 = Same quality as the input audio

• Relevance: How well does the edited audio match the given instruction?
1 = Completely irrelevant to instruction, 5 = Perfectly follows instruction

• Faithfulness: How similar does the edited audio sound to the input audio?
1 = Completely different from the input audio, 5 = Same as input audio

G Results

G.1 Comparison with Baselines

To compare our model with zero-shot editing baselines, we also evaluate on objective metrics designed
for automatic quality assessment of audio. Production Quality (PQ) measures technical aspects of
audio quality, while Production Complexity (PC) focuses on the complexity of the audio scene [41].
The results are shown in Table 9. We observe that SAO-Instruct slightly underperforms ZETA in
production quality, while slightly outperforming ZETA in production complexity. These results
reflect the findings from our subjective listening study.

23

Figure 5: Evaluation interface for the subjective listening study comparing SAO-Instruct with audio
editing baselines.

G.2 Deterministic Editing

We compare SAO-Instruct with the baselines on deterministic manual editing tasks using 100 samples
per edit type drawn from the AudioCaps test set. As evaluation metrics, we provide the STFT
loss, the Multi-Resolution STFT loss (MR-STFT) [47], the Multi-Resolution Mel-Spectrogram
loss (MR-MEL) [25], the Scale-Invariant Signal-to-Distortion Ratio (SI-SDR) [27], and the Scale-
invariant Signal-to-Noise Ratio (SI-SNR) [27, 32]. Together, these metrics provide a perceptual- and
signal-level view of the performance on these tasks. The input caption, edit instruction, and target
captions were generated using an LLM based on the selected edit task, its optional parameter, and the
captions from the selected input audio clips from AudioCaps. The edit types ADD and REPLACE are
not evaluated as their target audio is ambiguous and not deterministic. For all other edit types the
input audio and target audio can be created similarly as during dataset generation (cf. Section 3.4) and
evaluated using common time- and frequency-based metrics [7, 40, 25]. A summary of the results
averaged over all deterministic manual editing tasks is given in Table 10, while the full per-task
results are shown in Table 11.

G.3 Qualitative Results

Fig. 6 demonstrates the editing capabilities of SAO-Instruct across a range of instruction types. In
the first example, ambient noise is introduced in a speech recording without distorting the primary
signal. The second example shows a global transformation where the volume of rain is reduced. The

24

Table 10: Average performance across all deterministic manual editing tasks.

Model STFT ↓ MR-STFT ↓ MR-MEL ↓ SI-SDR ↑ SI-SNR ↑

AudioEditor 6.06±4.16 6.02±4.20 7.53±2.54 -54.55±11.74 -54.50±11.57
ZETATstart=50 4.73±3.43 4.65±3.53 5.61±2.12 -28.75±13.68 -28.89±13.65
ZETATstart=75 5.21±4.41 5.13±4.51 5.91±2.19 -30.65±14.85 -30.67±14.83
SAO-Instruct 2.91±1.82 2.82±1.83 3.47±1.33 -21.62±12.81 -21.79±12.65

third example shows a more localized operation, in which the sound of crumpling paper is replaced
with typing, while the original speech remains intact. Notably, the model performs all edits based
solely on the input audio and a free-form edit instruction, with no access to either the original or
target audio captions.

Woman speaking

add ambient office noise

A heavy rain dies down and begins again

make the rain quieter

Crumpling paper noise with speech

replace the crumpling paper with typing

A woman speaking with ambient office noise A quiet rain dies down and begins again Typing noise with speech

Figure 6: Edits performed by SAO-Instruct. The model has only access to the input audio and the
edit instruction. It is able to perform global operations and local operations while keeping the overall
background context intact.

Failure Cases While the performance of SAO-Instruct can be further improved by per-sample
adjustments, such as tuning the CFG scale or the amount of noise applied to the initial encoded audio,
some limitations remain. In Fig. 7, we observe that the phrasing of edit instruction can influence the
edit quality and accuracy of the model. The model also occasionally struggles to reconstruct coherent
speech and may produce edits with audible artifacts. In Fig. 8, when adding elements, the newly
added sounds sometimes fail to naturally blend in with the background and instead appear overlaid
on existing sound elements. Additionally, if a clip contains many distinct elements, the model may
be unable to alter sounds or confuses them, leading to unintended edits. These limitations primarily
stem from insufficient data diversity and could be mitigated by training on larger and more diverse
datasets.

H Broader Impacts

Our work introduces SAO-Instruct, a model that enables free-form instruction-based audio editing. It
enables an intuitive and accessible way for users to edit audio using natural language instructions.
However, it also introduces potential risks of misuse, such as the manipulation of audio clips for
deceptive or harmful purposes. To mitigate these concerns, we do not scrape data from arbitrary
sources and only use well-established datasets that have been widely adopted in prior research. We
encourage future work to further explore responsible deployment practices for instruction-based
audio models and methods for detecting synthetically edited audio.

25

Table 11: Performance on all deterministic manual editing tasks.

Task Model STFT ↓ MR-STFT ↓ MR-MEL ↓ SI-SDR ↑ SI-SNR ↑

DROP

AudioEditor 6.59±6.63 6.58±6.69 6.37±2.67 -51.24±9.26 -51.20±9.28
ZETATstart=50 5.58±7.22 5.57±7.63 5.51±2.17 -20.21±16.19 -20.38±16.56
ZETATstart=75 6.27±8.88 6.29±9.41 5.93±2.31 -23.28±18.21 -23.06±17.93
SAO-Instruct 6.12±11.63 6.06±11.68 4.44±3.08 -13.77±16.86 -13.69±16.75

SWAP

AudioEditor 6.22±1.13 6.07±1.11 11.78±2.71 -60.70±13.89 -59.94±13.77
ZETATstart=50 4.39±1.34 4.29±1.31 6.70±2.30 -57.52±10.98 -58.01±10.28
ZETATstart=75 4.56±1.58 4.46±1.56 6.45±1.72 -56.45±9.86 -56.53±9.65
SAO-Instruct 4.38±1.05 4.25±1.04 7.32±2.17 -54.19±11.35 -54.30±11.36

LOOP

AudioEditor 6.34±2.23 6.21±2.19 10.39±3.90 -55.31±12.19 -55.19±11.99
ZETATstart=50 4.70±1.85 4.55±1.83 8.01±3.41 -18.13±12.79 -18.10±12.75
ZETATstart=75 5.11±2.29 4.95±2.27 8.26±3.34 -19.61±14.10 -19.58±14.28
SAO-Instruct 2.01±0.58 1.94±0.58 2.36±0.93 -11.91±13.78 -11.89±13.76

PITCH

AudioEditor 5.73±4.04 5.73±4.20 5.79±1.97 -51.73±11.31 -51.40±10.97
ZETATstart=50 5.44±7.75 5.42±8.32 4.78±1.55 -46.78±13.71 -46.79±13.79
ZETATstart=75 5.95±8.82 5.94±9.44 5.08±1.85 -48.66±14.11 -48.59±14.21
SAO-Instruct 2.63±0.70 2.49±0.71 3.11±0.96 -41.39±14.74 -41.31±14.42

SPEED

AudioEditor 6.49±4.85 6.45±4.98 7.02±3.03 -50.96±13.55 -50.60±12.52
ZETATstart=50 4.94±2.82 4.83±2.83 5.84±2.44 -45.93±13.81 -46.75±13.66
ZETATstart=75 5.33±2.97 5.23±2.99 6.22±2.54 -47.28±12.97 -47.39±12.85
SAO-Instruct 3.53±1.23 3.43±1.26 5.13±1.37 -45.12±13.79 -46.15±13.00

LOW_PASS

AudioEditor 4.94±2.17 4.92±2.16 5.92±1.90 -53.40±10.43 -53.99±10.64
ZETATstart=50 3.41±1.27 3.32±1.27 4.87±1.76 -16.07±13.30 -15.99±13.30
ZETATstart=75 3.79±1.54 3.70±1.48 5.28±1.95 -17.76±15.49 -17.78±15.47
SAO-Instruct 1.63±0.45 1.56±0.47 1.89±0.59 -2.26±10.95 -2.28±10.95

HIGH_PASS

AudioEditor 6.95±7.75 6.94±7.74 6.52±1.46 -62.28±12.08 -62.25±12.08
ZETATstart=50 4.89±3.42 4.82±3.43 5.15±1.77 -31.05±12.92 -30.98±13.01
ZETATstart=75 5.82±5.53 5.71±5.46 5.65±2.12 -34.64±15.85 -34.23±15.52
SAO-Instruct 1.75±0.38 1.68±0.40 2.08±0.59 -28.48±12.66 -28.48±12.66

INPAINT

AudioEditor 6.50±3.80 6.43±3.91 9.81±4.40 -54.40±12.39 -54.71±11.92
ZETATstart=50 4.61±3.45 4.54±3.44 5.33±2.13 -22.34±17.05 -22.51±17.09
ZETATstart=75 5.62±6.32 5.53±6.28 5.13±1.74 -23.49±16.82 -24.21±17.06
SAO-Instruct 2.49±1.00 2.42±0.99 3.31±2.24 -13.98±13.20 -14.61±12.85

SUPER_RES

AudioEditor 5.56±2.66 5.53±2.66 6.66±1.75 -52.83±12.23 -52.93±12.31
ZETATstart=50 4.51±3.02 4.43±3.02 4.68±1.63 -14.19±11.74 -14.18±11.75
ZETATstart=75 4.75±3.47 4.67±3.47 4.96±1.70 -16.97±14.71 -16.96±14.74
SAO-Instruct 2.16±0.71 2.10±0.71 2.36±0.81 -1.68±9.70 -1.67±9.69

DENOISE

AudioEditor 5.30±6.38 5.29±6.38 5.00±1.66 -52.65±10.11 -52.79±10.24
ZETATstart=50 4.79±2.17 4.70±2.17 5.28±2.02 -15.31±14.27 -15.16±14.28
ZETATstart=75 4.91±2.70 4.83±2.70 6.10±2.59 -18.37±16.37 -18.34±16.62
SAO-Instruct 2.36±0.50 2.30±0.48 2.74±0.56 -3.39±11.03 -3.50±11.02

26

An alarm beeps while a woman speaks

remove the alarm

An alarm beeps while a woman speaks

the alarm should be silent!

A woman speaks A woman speaks

Figure 7: An example failure case where the phrasing of an instruction impacts edit quality and
accuracy. While “remove the alarm” fails to suppress the alarm, “the alarm should be silent!” is
more successful.

A cat meowing

add a dog howling

Drums, footsteps, frogs, and crickets are heard

replace the drums with claps

A cat meowing and a dog howling Claps, footsteps, frogs, and crickets are heard

Figure 8: Examples of failure cases where newly added sounds fail to blend naturally with the
background and where edits in complex audio scenes lead to unintended edits.

I Licenses

We provide the licenses of datasets and models that we build upon in our work below. We ensure
that our use of these assets fully complies with their license and terms of use. AudioCaps [22]
is released under the MIT License. AudioSet [12] and AudioSet-SL [15] are available under the
CC BY 4.0 license. WavCaps [35] is available for academic use and includes audio data from
multiple sources. We follow the licensing terms for the BBC Sound Effects 4 library and respect
the licenses associated with each audio clip from FreeSound.5 We comply with the Stability AI
Community License Agreement 6, which allows the use of Stable Audio Open [9] for research
purposes. CLAP [45] is licensed under the Creative Commons CC0 1.0 Universal license, which
allows unrestricted use and distribution.

4https://sound-effects.bbcrewind.co.uk/licensing
5https://freesound.org/help/faq/#licenses
6https://huggingface.co/stabilityai/stable-audio-open-1.0

27

https://sound-effects.bbcrewind.co.uk/licensing
https://freesound.org/help/faq/#licenses
https://huggingface.co/stabilityai/stable-audio-open-1.0

	Introduction
	Related Work
	Text-to-Audio Generation
	Generative Editing

	Method
	Prompt Generation
	Prompt-to-Prompt
	DDPM Inversion
	Manual Edits

	Experimental Setup
	SAO-Instruct
	Evaluation Metrics

	Evaluation
	Ablation
	Comparison with Baselines
	Limitations

	Conclusion
	Prompt Generation
	Manual Edit Tasks
	Dataset Generation
	Fine-tuning
	Inference
	Listening Study
	Results
	Comparison with Baselines
	Deterministic Editing
	Qualitative Results

	Broader Impacts
	Licenses

