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ABSTRACT

Visual Prompt Tuning (VPT) has proven effective for parameter-efficient adapta-
tion of pre-trained vision models to downstream tasks by inserting task-specific
learnable prompt tokens. Despite its empirical success, a comprehensive theoretical
understanding of VPT remains an active area of research. Building on the recently
established connection between Mixture of Experts (MoE) and prompt-based meth-
ods, wherein each attention head can be conceptualized as a composition of multiple
MoE models, we reinterpret VPT as the introduction of new prompt experts into
these MoE structures. We identify a key limitation in existing VPT frameworks: the
restricted functional expressiveness of prompt experts, which remain static and thus
limited in their adaptability. To address this, we propose Visual Adaptive Prompt
Tuning (VAPT), a novel method that endows prompt experts with enhanced expres-
siveness while preserving parameter efficiency. Empirical evaluations on VTAB-1K
and FGVC demonstrate that VAPT achieves substantial performance improvements,
surpassing fully fine-tuned baselines by 7.34% and 1.04%, respectively. Moreover,
VAPT consistently outperforms VPT while requiring fewer additional parame-
ters. Furthermore, our theoretical analysis indicates that VAPT achieves optimal
sample efficiency. Collectively, these results underscore the theoretical ground-
ing and empirical advantages of our approach. Our code is publicly available at
https://github.com/Minhchuyentoancbn/VAPT.

1 INTRODUCTION

Foundational vision models, pre-trained on large-scale datasets (Dosovitskiy, 2020; Radford et al.,
2021; Kirillov et al., 2023), have demonstrated remarkable success and robust generalization across a
wide range of computer vision tasks. As a result, fine-tuning these models for specific downstream
tasks has become a widely adopted paradigm (Iofinova et al., 2022). However, fully fine-tuning large
foundational models can be computationally prohibitive, leading to growing interest in parameter-
efficient fine-tuning (PEFT) techniques (Cai et al., 2020; Zhang et al., 2020; Hu et al., 2021), which
update only a small subset of parameters. Among these methods, Visual Prompt Tuning (VPT) (Jia
et al., 2022) has emerged as a simple yet powerful approach that appends learnable prompt tokens to
the input, which serve as task-specific instructions to guide the pre-trained transformer model. Despite
VPT’s empirical effectiveness, its theoretical underpinnings remain an active area of research (Petrov
et al., 2023; Oymak et al., 2023; Wang et al., 2024).

Recently, Le et al. (2024) established a formal connection between attention mechanisms (Vaswani,
2017), prompt-based methods, and Mixture of Experts (MoE) models (Jacobs et al., 1991; Shazeer
et al., 2017), yielding new insights into the design and optimization of prompting strategies. Their
analysis demonstrates that each attention head in a transformer can be equivalently interpreted as a
composition of multiple MoE models stacked together. Within this framework, VPT corresponds to
fine-tuning these implicit, pre-trained MoE structures by introducing new, learnable prompt experts.
These prompt experts collaborate with the pre-trained experts to facilitate effective task adaptation.
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This connection opens avenues for deeper theoretical investigations and the development of advanced
strategies for prompt-based learning (Le et al., 2025b;a; Diep et al., 2025).

Building on this MoE interpretation, we identify a key limitation in the standard formulation of VPT.
While the pre-trained experts within attention heads are linear functions of the input features, the newly
introduced prompt experts are modeled as constant, input-invariant vectors. Given that effective
adaptation relies on collaboration between these prompt and pre-trained experts, we hypothesize that
this functional disparity, specifically, the restricted expressiveness of static prompts, may constrain
VPT’s adaptation efficacy. This design also deviates from standard MoE practices, where experts are
typically designed to be input-adaptive. However, increasing the expressiveness of prompt experts
raises concerns about parameter and computational overhead. This leads us to the following question:

(Q) Can we improve model performance by increasing the expressiveness of prompt experts
while maintaining parameter efficiency?

To answer this question, we propose Visual Adaptive Prompt Tuning (VAPT), a novel approach that
incorporates input-dependent prompt experts while maintaining the parameter efficiency characteristic
of VPT. The VAPT design comprises two main components: token-wise projectors and a shared
feature projector, which leverage global information from input features to generate adaptive prompt
tokens. A key advantage of VAPT is its efficiency: it achieves enhanced expressiveness with
minimal computational overhead, adding only 0.6% FLOPs relative to VPT and requiring fewer
trainable parameters. Additionally, the token-wise projectors and channel-wise convolutions result in
a structurally simple formulation of the prompt experts. This simplicity enables a rigorous theoretical
analysis (see Section 5), a contribution largely absent in the prior prompt-tuning literature. Our
analysis demonstrates that VAPT attains optimal sample efficiency for prompt estimation. Empirical
results strongly corroborate these theoretical findings. For example, in a low-data regime on the
Stanford Dogs dataset (Khosla et al., 2011) (using only 1% of training data), VAPT achieves 60.1%
accuracy, a stark contrast to VPT’s 3.6%. Moreover, on standard benchmarks VTAB-1K (Zhai et al.,
2019) and FGVC (Jia et al., 2022), VAPT significantly improves performance over fully fine-tuned
baselines by 7.34% and 1.04%, respectively. Crucially, VAPT consistently outperforms VPT across
benchmarks despite utilizing fewer parameters, underscoring its theoretical and empirical strengths.

Contributions. 1. From MoE perspective, we identify a key limitation in the formulation of VPT:
its prompt experts are input-invariant, thereby constraining their functional expressiveness. 2. We
introduce VAPT, a novel formulation that injects input-adaptive prompt experts while preserving the
parameter-efficiency of VPT. 3. VAPT’s simple formulation enables a theoretical analysis to validate
its effectiveness, an aspect largely missing in prior work. Our theoretical analysis demonstrates that
VAPT attains optimal sample efficiency for prompt estimation, providing a rigorous foundation for
its practical value. 4. Extensive experiments show that VAPT consistently surpasses VPT with fewer
trainable parameters, validating its effectiveness and efficiency both theoretically and empirically.

Notation. For n ∈ N, let [n] = {1, 2, . . . , n}. For a set S, |S| denotes its cardinality. Given a
vector u = (u1, u2, . . . , ud) ∈ Rd and α = (α1, α2, . . . , αd) ∈ Nd, define uα = uα1

1 uα2
2 . . . uαd

d ,
|u| = u1 + u2 + . . . + ud and α! = α1!α2! . . . αd!. Let ∥u∥ denote the Euclidean norm of u. For
positive sequences (an)n≥1 and (bn)n≥1, we write an = O(bn) or an ≲ bn if an ≤ Cbn for all
n ∈ N for some C > 0. The notation an = OP (bn) indicates an/bn is stochastically bounded.

2 BACKGROUND

In this section, we first review Visual Prompt Tuning in Section 2.1 and then the Mixture of Experts
model in Section 2.2. Additional related work is presented in Appendix C.

2.1 VISUAL PROMPT TUNING

Vision Transformer (ViT) (Dosovitskiy, 2020) has proven to be a powerful backbone architecture
for visual recognition. A ViT contains L blocks, each comprising a multi-head self-attention (MSA)
layer followed by a feed-forward network (FFN). For clarity, we consider the l-th ViT block. Let

X̃(l) =
[
x
(l)
1 , . . . ,x

(l)
N

]⊤
∈ RN×d be the input tokens, where N is the sequence length, and d is the

embedding dimension. The MSA layer processes XQ = XK = XV = X̃(l) ∈ RN×d as queries,
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keys, and values, producing:

MSA(X̃(l)) = Concat(h1, ...,hM )WO ∈ RN×d,

hm = Attention(XQWQ
m ,XKWK

m ,XV WV
m ) ∈ RN×dv , (1)

for m ∈ [M ], where M is the number of attention heads, WQ
m ∈ Rd×dk , WK

m ∈ Rd×dk , WV
m ∈

Rd×dv , and WO ∈ RMdv×d are projection matrices with dk = dv = d
M .

Visual Prompt Tuning (VPT) (Jia et al., 2022) adapts a pre-trained ViT by appending Np learnable

prompt parameters P (l) =
[
p
(l)
1 , . . . ,p

(l)
Np

]⊤
∈ RNp×d, (where Np is the prompt length), to the

input of each ViT block, thereby modifying the MSA layer’s output as follows:

MSA(X̃(l),P (l)) = Concat(h̃1, ..., h̃M )WO,

h̃m = Attention

([
XQ

P (l)

]
WQ

m ,

[
XK

P (l)

]
WK

m ,

[
XV

P (l)

]
WV

m

)
=

[
h̃m,1, . . . , h̃m,N+Np

]⊤
∈ R(N+Np)×dv . (2)

During training, only the prompts P (l) and the classification head are updated, while all ViT weights,
including WQ

m , WK
m , WV

m , and WO, remain frozen. Within the VPT framework, MSA output
tokens corresponding to the input prompt locations are discarded and replaced by the prompts of the
next layer P (l+1), before these tokens enter the subsequent block. Consequently, in Equation (2),
h̃m,N+1, . . . , h̃m,N+Np

are not utilized downstream and their computation can therefore be bypassed.

2.2 MIXTURE OF EXPERTS

Mixture of Experts (MoE) is a class of statistical machine learning frameworks that combines multiple
models, known as experts, to produce more expressive and accurate predictions (Jacobs et al., 1991;
Jordan & Jacobs, 1994). An MoE model typically consists of N ′ expert functions, fi : Rd → Rdv for
i ∈ [N ′], along with a gating function, G : Rd → RN ′

which assigns weights to experts based on
learned score functions, si : Rd → R. For a given input h ∈ Rd, the MoE model generates output as:

y =

N ′∑
j=1

G(h)j · fj(h) =
N ′∑
j=1

exp (sj(h))∑N ′

ℓ=1 exp (sℓ(h))
· fj(h),

where G(h) = softmax(s1(h), . . . , sN ′(h)). Recent studies reveal connections between the atten-
tion mechanism, prompt-based methods, and MoE frameworks (Le et al., 2024; 2025b), presenting
new promising opportunities to investigate prompt-based techniques through MoE lens.

3 MOTIVATION

Mixture of Experts meets Visual Prompt Tuning. We begin by discussing the connection be-
tween VPT and MoE. Following the notation from Section 2.1 and Equation (2), let X(l) =[
x
(l)
1

⊤
, . . . ,x

(l)
N

⊤
]⊤

∈ RNd be the concatenation of all N input tokens to the l-th MSA layer.

For notational simplicity, the layer superscript (l) is omitted in the subsequent derivations. As shown
in Le et al. (2024), each output vector h̃m,i within the m-th attention head can be equivalently
expressed as the output of an MoE model with input X . Specifically, we define the set of experts as:

fj(X) = WV
m

⊤
EjX = WV

m

⊤
xj , (3)

fN+j′(X) = WV
m

⊤
pj′ , (4)

where j ∈ [N ] and j′ ∈ [Np]. The corresponding score functions are defined as:

si,j(X) =
X⊤E⊤

i WQ
mWK

m
⊤
EjX√

dv
=

x⊤
i W

Q
mWK

m
⊤
xj√

dv
, (5)

si,N+j′(X) =
X⊤E⊤

i WQ
mWK

m
⊤
pj′√

dv
=

x⊤
i W

Q
mWK

m
⊤
pj′√

dv
, (6)
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for i ∈ [N ]. Here, Ej ∈ Rd×Nd is a two-dimensional matrix such that EjX = xj . Finally, the
output of the m-th attention head for the i-th token can be expressed as follows:

h̃m,i =

N∑
j=1

exp(si,j(X))∑N+Np

k=1 exp(si,k(X))
fj(X) +

Np∑
j′=1

exp(si,N+j′(X))∑N+Np

k=1 exp(si,k(X))
fN+j′(X). (7)

These formulations reveal that each attention head in ViT implicitly encodes multiple MoE models,
h̃m,i for i ∈ [N ]. This contrasts with conventional MoE layers (Shazeer et al., 2017), where experts
and their gating functions typically operate on individual token embeddings xi. In our formulation,
the expert networks and their score functions process the entire input sequence X . Furthermore, these
initial experts f1, . . . , fN and score functions are inherently part of the pre-trained ViT, with their
parameters embedded within the model weights (see Equations (3) and (5)), thereby constituting pre-
trained experts. Meanwhile, the new prompt experts fN+1, . . . , fN+Np

, whose learnable parameters
are contained within prompts (see Equations (4) and (6)), are introduced to efficiently adapt the
model to downstream tasks. Consequently, VPT can be viewed as an efficient method for fine-tuning
these implicit MoE models by adding new prompt experts. These added experts effectively act as
downstream task experts, enabling specialization for new tasks without retraining the entire model.

Restricted Functional Expressiveness of Prompt Experts. Equation (4) reveals a key limitation of
prompt experts fN+1, . . . , fN+Np . Although they are formally functions of X , they are represented
by fixed prompt vectors p1, . . . ,pNp

that remain constant regardless of the input. While their
associated score functions si,N+j′ in Equation (6) are input-dependent linear functions, the functional
form realized by the prompt expert itself is static. This departs from typical MoE usage in the literature,
where experts are adaptive functions of the input. Furthermore, it contrasts with the pre-trained
experts f1, . . . , fN , which are linear functions of X (see Equation (3)), making them comparatively
more expressive. We hypothesize that this limited flexibility may constrain the effectiveness of VPT
as a fine-tuning strategy. Supporting this, prior work Petrov et al. (2023) demonstrates that prompt
tuning can only add a bias term to the output of an attention block, thereby restricting representational
capacity. This observation naturally motivates the central question: Can the performance of visual
prompt tuning be improved by making prompt experts more expressive? Addressing this, we propose
a novel prompt formulation to enhance their expressiveness in Section 4.

Balancing Expressivity and Efficiency. Despite the limitations noted above, one of the main
advantages of the current prompt design in VPT is its simplicity. As indicated by Equation (4),
each prompt expert requires only d parameters, making it highly parameter-efficient. One might
consider a naive linear design for a prompt expert fN+j′ : RNd → Rdv , where fN+j′(X) = W⊤

j′ X .
However, this approach would necessitate up to Nd×dv parameters, drastically increasing storage and
computational overhead compared to the current approach, especially given the high dimensionality
Nd of the input X . This illustrates the core design challenge: enhancing prompt expert expressiveness
without sacrificing the parameter efficiency that makes VPT attractive. Our objective is therefore to
devise a prompt mechanism that effectively balances these competing requirements.

4 VAPT: VISUAL ADAPTIVE PROMPT TUNING

To investigate adaptive prompting, this section presents our proposed method, VAPT, which integrates
two key modules: token-wise projectors and a feature projector. These components are detailed in
Section 4.1 and Section 4.2, respectively. Figure 1 illustrates the overall VAPT architecture.

4.1 AGGREGATING GLOBAL INFORMATION

To rigorously design the prompt experts, we first re-examine the formulation of the input and pre-
trained experts. The input is defined as X =

[
x⊤
1 , . . . ,x

⊤
N

]⊤
, formed by concatenating N feature

tokens. These tokens can be spatially organized into the input feature map Ximg ∈ RH×W×d, where
H and W are its height and width, respectively, and N = H ×W . Given that each token xj ∈ Rd

corresponds to a small patch of this feature map, Equation (3) implies that each pre-trained expert fj
process their respective patches xj independently. Consequently, these experts are inherently limited
to capturing only local information within the feature map.

Token-wise Projectors. As prompt experts are designed to collaborate with pre-trained experts for
adaptation to downstream tasks, it is desirable for them to specialize in information complementary
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Figure 1: Overview of VAPT. Unlike VPT, where prompt tokens remain constant irrespective of the
input, VAPT dynamically generates prompt tokens P (l) conditioned on the input X̃(l) via a VAPT
block. This endows prompt experts with more adaptive and expressive functional formulation.

to that captured by pre-trained experts. To this end, our prompt experts are designed to extract global
information from the feature map using token-wise projectors, defined as follows:

Gj′(X) = (

N∑
k=1

αj′,kEk)X =

N∑
k=1

αj′,kxk ∈ Rd, (8)

for j′ ∈ [Np], where αj′,k are learnable scalars for k ∈ [N ]. These projectors aggregate tokens across
spatial locations, thereby facilitating global information exchange within the feature map.

Channel-wise Convolution. Token-wise projectors aggregate features through weighted averaging of
feature tokens. While computationally efficient, this approach may not fully capture important spatial
relationships. For instance, the adjacency between x1 and x2, which correspond to neighboring
patches in the feature map, can be overlooked by token-wise projectors that treat tokens independently
of their spatial origin. To address this, we introduce a channel-wise convolution layer, applied to the
input feature map before token-wise projectors. Let F = [wi,j ]

K
i,j=1 represent a kernel of size K.

Unlike standard convolution kernels which utilize distinct weights for each input channel, F reuses
the same K ×K weights across all d channels. This design significantly reduces the parameter count
by a factor of d, without sacrificing its ability to model local spatial interactions. We show that this
channel-wise convolution not only saves parameters but also improves performance in Appendix E.6.
Formally, the channel-wise convolution is applied to Ximg as:

Xconv = F ∗Ximg ∈ RH′×W ′×d, (9)
where ∗ denotes the 2D convolution operation, and H ′ = H −K + 1 and W ′ = W −K + 1 are
the height and width of the output feature map, respectively. By convolving neighboring patches,
this operation explicitly encodes local spatial relationships into the feature map Xconv. We employ a
single channel-wise convolution layer within each ViT block. The resulting feature map Xconv is
subsequently flattened to [xconv

1 , . . . ,xconv
H′·W ′ ]

⊤ ∈ RH′·W ′×d before being processed by the token-
wise projectors. The final aggregated features can be expressed as:

Gj′(Xconv) =

H′·W ′∑
k=1

αj′,kx
conv
k = Wj′X ∈ Rd (10)

for j′ ∈ [Np]. Crucially, since both channel-wise convolution and token-wise projection are linear
operations, the aggregated features also constitute a linear function of X , with the transformation
weights Wj′ ∈ Rd×Nd. This aggregated information is then leveraged to construct our adaptive
prompts in the next section.

4.2 ADAPTIVE PROMPT

Each prompt initially aggregates its corresponding global feature token Gj′(Xconv) through a token-
wise projector. Subsequently, to generate the final adaptive prompts, we introduce a feature projector
implemented as a small MLP g : Rd → Rd, defined as follows:

g(x) = W (2)σ(W (1)x), (11)
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where W (1) ∈ Rr×d, W (2) ∈ Rd×r, r ≪ d, and σ(·) is a non-linear activation function (ReLU in
this work). This feature projector is applied to the aggregated features to produce the final adaptive
prompt tokens. Formally, the adaptive prompts at each block are given by:

Pj′(X) = g(Gj′(Xconv)) = W (2)σ(W (1)Wj′X) = W (2)σ(W
(1)
j′ X) ∈ Rd, (12)

for j′ ∈ [Np], where W
(1)
j′ = W (1)Wj′ . Our proposed adaptive prompts refine the prompt experts

and their associated score functions within the MSA layers as follows:

fN+j′(X) = WV
m

⊤
Pj′(X), (13)

si,N+j′(X) =
X⊤E⊤

i WQ
mWK

m
⊤
Pj′(X)√

dv
, (14)

where i ∈ [N ] and j′ ∈ [Np]. Equation (13) demonstrates that the prompt experts become adaptive
to the input X , enhancing their expressiveness and addressing the limited flexibility discussed in
Section 3. The statistical advantages of this formulation are further analyzed in Section 5.

Efficiency Considerations. Following VPT, we insert adaptive prompts into every ViT block. While
the feature projector is a lightweight MLP, distinct projector for each block would incur substantial
parameter and memory overhead. To mitigate this, we employ a single, shared feature projector
g(·) reused across all ViT blocks. This significantly reduces the overall computational cost and
enhances efficiency, while preserving prompt expert expressiveness relative to VPT. Furthermore,
an independent LayerNorm (Lei Ba et al., 2016) is incorporated, we incorporate an independent
LayerNorm (Lei Ba et al., 2016) before the token-wise projectors in each block. Regarding parameter
complexity, VPT introduces approximately L×Np × d parameters across L ViT blocks. In contrast,
VAPT’s learnable parameters include token-wise projectors, a channel-wise convolution layer per
block, and a shared feature projector. The total parameter count is given by:

L×Np ×H ′ ×W ′︸ ︷︷ ︸
token-wise projectors

+L×K2︸ ︷︷ ︸
convolution

+ 2× r × d︸ ︷︷ ︸
feature projector

, (15)

where H ′×W ′ < N , with K, r as small constants. Notably, for typical ViT configurations (e.g., ViT-
B/16, N = 196 and d = 768), N is considerably smaller than d. Consequently, VAPT can achieve
greater parameter efficiency than VPT, as empirically shown in Table 1 and Table 2. Moreover, VAPT
introduces only marginal computational overhead, up to 0.6% relative to VPT (see Appendix E.7).

Novelty. A central contribution of VAPT is its ability to achieve both flexibility and effectiveness
while preserving computational efficiency. A common assumption is that increasing functional
expressiveness necessarily incurs substantial computational or parameter overhead. As outlined in the
above analysis, a naive implementation of a linear prompt expert would require a prohibitively large
number of parameters due to the high dimensionality (Nd) of the input X . In contrast, VAPT strikes
a favorable balance between parameter efficiency and the expressivity of prompt experts. Despite
the absence of a principled framework for designing adaptive prompts, VAPT’s architectural choices
of token-wise projectors and channel-wise convolutions yield a straightforward implementation and
a compact, interpretable prompt-expert formulation. This architectural simplicity is particularly
important, as it enables the rigorous theoretical analysis in Section 5, where we show that VAPT
achieves an optimal sample-efficiency rate. Prior work often relies on more complex architectures or
heuristic mechanisms to adapt prompts across inputs (Wang et al., 2022; Huang et al., 2023; Kim
et al., 2023). While these designs can perform well empirically, their functional complexity typically
precludes meaningful theoretical understanding. By contrast, VAPT is deliberately designed to retain
a simple yet expressive functional form, leading to the clean expert formulations in Equations (13)
and (14). These formulations support a thorough theoretical analysis without sacrificing empirical
performance, addressing a key gap in the literature: VAPT not only performs well in practice but also
enjoys provable robustness and generalization guarantees. Importantly, our approach leverages the
existing MoE structure implicit in attention heads rather than imposing an additional, external MoE
module, as is common in prior work (Zeng et al., 2025). Conventional MoE-based methods explicitly
insert new routing components and expert modules into the Transformer architecture, introducing
substantial architectural modifications. In contrast, VAPT avoids such intrusive changes to the
backbone while still admitting a formulation that is amenable to formal analysis. This perspective
allows us to design VAPT as a simple and practical mechanism that fully benefits from MoE theory
to rigorously characterize its behavior. For a more detailed comparison with related methods, please
refer to Appendix C.
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5 STATISTICAL ADVANTAGES OF VAPT

In this section, we explore the theoretical advantages of VAPT through its MoE connection, as detailed
in Equation (7). This perspective provides a rigorous framework for analyzing the convergence
properties of prompt estimation in MoE models (Le et al., 2024; 2025b). Recalling from Section 3
that the MoE models h̃m,1, . . . , h̃m,N in each attention head share a common structure of experts
and score functions. Furthermore, as noted in Section 2.1, omitting h̃m,N+1, . . . , h̃m,N+Np

does not
affect ViT block output. Thus, to simplify our analysis while maintaining rigor, we focus on the first
head (i.e., m = 1), and specifically the first row of its attention matrix (i.e., i = 1) in Equation (7).
Within this simplified setting, we consider a regression framework for MoE models as follows.

Problem Setup. Assume that the i.i.d. samples of size n: (X1, Y1), (X2, Y2), . . . , (Xn, Yn) ∈
Rd × Rd′

are generated from the following regression model:

Yi = fG∗(Xi) + εi, i = 1, 2, . . . , n, (16)

where ε1, ε2, . . . , εn are independent Gaussian noise variables with E[εi|Xi] = 0 and Var(εi|Xi) =
ν2Id′ for i ∈ [n]. Furthermore, X1,X2, . . . ,Xn are assumed to be i.i.d. samples from a distribution
µ. The ground-truth regression function fG∗(·) is an MoE model of the form

fG∗(X) :=

N∑
j=1

exp(X⊤A0
jX + a0j )

Df,G∗(X)
· h(X, η0j )

+

L∑
j′=1

exp((BW∗,2σ(W∗,1j′X))⊤X + b∗,j′)

Df (X)
· CW∗,2σ(W∗,1j′X), (17)

where Df,G∗(X) =
∑N

k=1 exp(X
⊤A0

kX + a0k) +
∑L

j′=1 exp((BW∗,2σ(W∗,1j′X))⊤X + b∗,j′).

Here, G∗ =
∑L

j′=1 exp(b∗,j′)δ(W∗,1j′ ,W∗,2) denotes the true mixing measure, which is a weighted
sum of Dirac measures δ associated with the unknown parameters (b∗,j′ ,W∗,1j′ ,W∗,2)

L
j′=1 in the

parameter space Θ ⊂ R × Rr×d × Rd×r. The matrix A0
j , the expert parameter η0j , and the bias

parameter a0j are known for j ∈ [N ]. Finally, the matrices B ∈ Rd×d and C ∈ Rd′×d are given;
these play the role of pre-trained projection matrices in the context of prompt tuning.

Least-Squares Estimator: To estimate the unknown prompt parameters or, equivalently, the ground-
truth mixing measure G∗, we use the least-squares method (van de Geer, 2000). In particular, we
consider the estimator defined as follows:

Ĝn := argminG∈GL′ (Θ)

n∑
i=1

∥∥∥Yi − fG(Xi)
∥∥∥2, (18)

where GL′(Θ) := {G =
∑ℓ

i=1 exp(bi)δ(W1,i,W2) : ℓ ∈ [L′], (bi,W1,i,W2) ∈ Θ} is the set of all
mixing measures with at most L′ atoms. Since the true number of experts L is generally unknown,
we assume the number of fitted experts L′ is sufficiently large, i.e., L′ > L. To analyze prompt
estimation convergence, it is essential to define a suitable loss function on the prompt parameters. In
this work, we propose the Voronoi loss function, derived from the concept of Voronoi cells (Manole
& Ho, 2022).

Voronoi Loss. Given a mixing measure G ∈ GL′(Θ), we consider a Voronoi cell set {Vj ≡
Vj(G), j ∈ [L]} generated by the atoms of G∗, where

Vj := {i ∈ [L′] : ∥Zi − Z∗,j∥ ≤ ∥Zi − Z∗,ℓ∥,∀ℓ ̸= j} ,

where Zi := (W1,i,W2). The Voronoi loss tailored to the setting in Equation (17) is defined as:

D1(G,G∗) :=

L∑
j′=1

∣∣∣ ∑
i∈Vj′

exp(bi)− exp(b∗,j′)
∣∣∣+ ∑

j′∈[L]:|Vj′ |=1

∑
i∈Vj′

exp(bi)(∥∆W1ij′∥+ ∥∆W2∥)

+
∑

j′∈[L]:|Vj′ |>1

∑
i∈Vj′

exp(bi)(∥∆W1ij′∥2 + ∥∆W2∥2),
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Table 1: Overall Comparison for ViT-B/16 Supervised Pre-trained on ImageNet-21K. Following Jia et al.
(2022), we report average accuracy (3 runs) on FGVC and VTAB-1K, “Number of Wins” [·] compared to full
fine-tuning, and “Number of Wins over VPT” {·}. “Tuned/Total” denotes the average percentage of parameters
tuned (24 tasks), “Scope” specifies the tuning scope, and “Additional parameters” indicates if parameters beyond
pre-trained backbone/head are introduced. Per-task results are in Appendix E.1.

ViT-B/16 (Dosovitskiy, 2020) Tuned/ Scope Extra VTAB-1K (Zhai et al., 2019) [19]
(85.8M) Total (%) Input Backbone params FGVC [5] Natural [7] Specialized [4] Structured [8] Mean Total

Full (Iofinova et al., 2022) 100.00 ✓ 88.54 75.88 83.36 47.64 65.57

Linear (Iofinova et al., 2022) 0.08 79.32 [0] 68.93 [1] 77.16 [1] 26.84 [0] 52.94
Partial-1 (Yosinski et al., 2014) 8.34 82.63 [0] 69.44 [2] 78.53 [0] 34.17 [0] 56.52
MLP-3 (Chen et al., 2020) 1.44 ✓ 79.80 [0] 67.80 [2] 72.83 [0] 30.62 [0] 53.21

Sidetune (Zhang et al., 2020) 10.08 ✓ ✓ 78.35 [0] 58.21 [0] 68.12 [0] 23.41 [0] 45.65
Bias (Rebuffi et al., 2017) 0.80 ✓ 88.41 [3] 73.30 [3] 78.25 [0] 44.09 [2] 62.05
Adapter (Cai et al., 2020) 1.02 ✓ ✓ 85.46 [1] 70.67 [4] 77.80 [0] 33.09 [0] 62.41
LoRA (Hu et al., 2021) 0.73 ✓ ✓ 89.46 [3] 78.26 [5] 83.78 [2] 56.20 [7] 72.25

VPT-Shallow (Jia et al., 2022) 0.16 ✓ ✓ 84.62 [1] 76.81 [4] 79.66 [0] 46.98 [4] 64.85
VPT-Deep (Jia et al., 2022) 0.73 ✓ ✓ 89.11 [4] 78.48 [6] 82.43 [2] 54.98 [8] 69.43
E2VPT (Han et al., 2023) 0.39 ✓ ✓ ✓ 89.22 [4] 80.01 [6] 84.43 [3] 57.39 [8] 71.42
SA2VP (Pei et al., 2024) 0.65 ✓ ✓ 90.08 [4] 80.97 [6] 85.73 [4] 60.80 [8] 73.47
ViaPT (Xiao et al., 2025) 0.66 ✓ ✓ 91.40 [4] 82.62 [6] 85.22 [2] 61.25 [8] 73.70
VFPT (Zeng et al., 2024) 0.66 ✓ ✓ 89.24 [4] 81.35 [6] 84.93 [4] 60.19 [8] 73.20

VAPT (Ours) 0.36 ✓ ✓ 89.58 [4] {4} 81.43 [6] {7} 85.13 [4] {4} 59.34 [8] {8} 72.91

where we denote ∆W1ij′ := W1i −W∗,1j′ for any i, j′, and ∆W2 := W2 −W∗,2.

Equipped with this loss function, we wrap up the setting in Equation (17) by providing the convergence
rate of prompt estimation in Theorem 1. For that purpose, it is necessary to make essential assumptions
on the activation function σ. However, due to the space limitations, we defer these assumptions to the
proof of Theorem 1 in Appendix A.1.
Theorem 1. Let Ĝn be the least-squares estimator defined in Equation (18) and assume that the
activation function σ satisfies the Assumptions (A.1)-(A.3) specified in Appendix A.1, we obtain that

D1(Ĝn, G∗) = OP ([log(n)/n]
1
2 ).

Implications for Prompt Estimation. Given the formulation of the Voronoi loss function D1,
Theorem 1 indicates that the estimation rates for the true parameters (W∗,1j ,W∗,2) for indices j

such that |Vj | = 1 are of parametric order OP ([log(n)/n]
1
2 ). Due to the Lipschitz property of

the activation function σ, this directly leads to an estimation rate of OP ([log(n)/n]
1
2 ) for the true

prompt P ∗
j (X) = W∗,2σ(W∗,1jX). On the other hand, for true parameters (W∗,1j ,W∗,2) where

|Vj | > 1, their estimation rates are of the order OP ([log(n)/n]
1/4), which yields an estimation

rate of OP ([log(n)/n]
1/4) for true prompt P ∗

j (X) = W∗,2σ(W∗,1jX). Finally, all these rates are
optimal, up to the logarithmic factor, demonstrating the statistical benefits of visual adaptive prompt
tuning for the non-linear setting of the activation function σ.

Linear Activation Setting. For completeness, we also show that the visual adaptive prompt tuning
achieves optimal sample efficiency when the activation function σ(·) is linear identity in Appendix B.

6 EXPERIMENT

In this section, we compare VAPT with VPT and other widely used PEFT methods. We also examine
the robustness of VAPT under different pre-training objectives and present our findings on its sample
efficiency. For additional results, including ablation studies, semantic segmentation results, statistical
significance tests, computational cost, and interpretive visualizations, please refer to Appendix E.

6.1 EXPERIMENTAL SETUP

Datasets. We evaluate VAPT on two benchmarks: FGVC and VTAB-1K (Zhai et al., 2019). FGVC
includes five fine-grained classification datasets: CUB (Wah et al., 2011), Oxford Flowers (Nilsback
& Zisserman, 2008), Stanford Cars (Gebru et al., 2017), Stanford Dogs (Khosla et al., 2011), and
NABirds (Van Horn et al., 2015) that require distinguishing between visually similar classes. VTAB-
1K comprises 19 datasets, each with 1,000 training examples, grouped into: Natural (images captured
by standard cameras), Specialized (images collected via specialized equipment), and Structured
(tasks requiring structural understanding, such as 3D depth prediction). Beyond classification, we
also assess performance on semantic segmentation using ADE20K (Zhou et al., 2019).
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Table 2: Comparison of Different Pre-training Objectives. We consider MAE (He et al., 2022) and MoCo
v3 (Chen et al., 2021) using ViT-B/16. We report test accuracy on VTAB-1K, the “Number of Wins” [·] relative
to full fine-tuning and the “Number of Wins over VPT” {·}. “Tuned/Total” denotes the average percentage of
parameters tuned. Per-task results are in Appendix E.2.

Pre-trained objectives MAE (He et al., 2022) MoCo v3 (Chen et al., 2021)

Tuned/ VTAB-1K (Zhai et al., 2019) [19] Tuned/ VTAB-1K (Zhai et al., 2019) [19]
Methods

Params & Data
Total (%) Natural [7] Specialized [4] Structured [8] Total (%) Natural [7] Specialized [4] Structured [8]

Full (Iofinova et al., 2022) 100.00 59.31 79.68 53.82 100.00 71.95 84.72 51.98

Linear (Iofinova et al., 2022) 0.04 18.87 [0] 53.72 [0] 23.70 [0] 0.04 67.46 [4] 81.08 [0] 30.33 [0]
Partial-1 (Yosinski et al., 2014) 8.30 58.44 [5] 78.28 [1] 47.64 [1] 8.30 72.31 [5] 84.58 [2] 47.89 [1]

Bias (Rebuffi et al., 2017) 0.16 54.55 [1] 75.68 [1] 47.70 [0] 0.16 72.89 [3] 81.14 [0] 53.43 [4]
Adapter (Cai et al., 2020) 0.87 54.90 [3] 75.19 [1] 38.98 [0] 1.12 74.19 [4] 82.66 [1] 47.69 [2]

VPT-Shallow (Jia et al., 2022) 0.05 39.96 [1] 69.65 [0] 27.50 [0] 0.06 67.34 [3] 82.26 [0] 37.55 [0]
VPT-Deep (Jia et al., 2022) 0.31 36.02 [0] 60.61 [1] 26.57 [0] 0.22 70.27 [4] 83.04 [0] 42.38 [0]
GateVPT (Yoo et al., 2023) 0.05 47.61 [2] 76.86 [1] 36.80 [1] 0.06 74.84 [4] 83.38 [1] 49.10 [3]
E2VPT (Han et al., 2023) 0.07 59.52 [4] 77.80 [1] 44.65 [3] 0.13 76.47 [4] 87.28 [2] 54.91 [6]
ViaPT (Xiao et al., 2025) 0.36 54.26 [-] 78.01 [-] 37.52 [-] 0.30 79.12 [-] 86.81 [-] 60.05 [-]
VFPT (Zeng et al., 2024) 0.38 53.59 [6] 77.75 [1] 36.15 [1] 0.22 77.47 [5] 85.76 [3] 58.74 [6]

VAPT (Ours) 0.28 59.23 [5] {7} 80.73 [2] {3} 47.24 [2] {7} 0.27 77.69 [6] {7} 83.95 [2] {3} 60.74 [7] {8}

Baselines. In line with prior work (Jia et al., 2022; Han et al., 2023), we compare VAPT against
commonly used PEFT methods. All classification experiments use standard Vision Transformer
(ViT) (Dosovitskiy, 2020) that are supervised pre-trained on ImageNet-21K (Deng et al., 2009). For
semantic segmentation, we employ SETR-PUP (Zheng et al., 2021), which uses ViT as the backbone
encoder. Additionally, we evaluate VAPT with backbones pre-trained using two self-supervised
learning: MAE (He et al., 2022) and MoCo v3 (Chen et al., 2021).

Training. We perform a grid search on val set of each task to determine the optimal learning rate,
weight decay, kernel size K, and projector dimension r. We schedule the learning rate using a cosine
decay schedule and train all models for 100 epochs. Following Jia et al. (2022), we use batch sizes of
64 and 128. Additional implementation details can be found in Appendix D.

6.2 EMPIRICAL RESULTS

Overall Comparison. Table 1 compares VAPT against full fine-tuning and other prominent PEFT
methods on VTAB-1K and FGVC. Full denotes full fine-tuning, which updates all model parameters,
while methods such as Linear, Partial-1 (top layer), and MLP-3 (3 MLP layers) modify only a subset
of parameters. Sidetune (Zhang et al., 2020), Bias (Rebuffi et al., 2017), Adapter (Cai et al., 2020),
and LoRA (Hu et al., 2021) introduce trainable modules for adaptation. Concurrent visual prompt
tuning approaches, VPT (Jia et al., 2022), E2VPT (Han et al., 2023), SA2VP (Pei et al., 2024),
ViaPT (Xiao et al., 2025) and VFPT (Zeng et al., 2024), are also included for comparison (see
Appendix C for further details). Our results indicate that VAPT surpasses full fine-tuning in 22 out of
24 tasks. Specifically, VAPT achieves a notable 1.04% accuracy increase on FGVC and a substantial
11.70% improvement on VTAB-1K Structured. Across the entire VTAB-1K benchmark, VAPT
demonstrates an average gain of 7.34% over full fine-tuning, while updating merely 0.36% of the
backbone parameters. These findings highlight VAPT’s significant effectiveness and efficiency as an
innovative PEFT method. Additionally, VAPT achieves state-of-the-art performance compared to
other PEFT approaches. Among prompt tuning methods, VAPT consistently outperforms VPT in 23
out of 24 tasks and attains competitive performance with VFPT, a recent state-of-the-art approach,
despite utilizing nearly 50% fewer parameters. We attribute these improvements to VAPT’s design,
which enhances the expressiveness of prompt experts. These results underscore VAPT’s potential as
a powerful tool for improving performance with significantly reduced parameter overhead.

Different Pre-training Methods. We investigate VAPT’s performance when initialized with back-
bones pre-trained using different self-supervised learning (SSL) objectives, specifically MAE (He
et al., 2022) and MoCo v3 (Chen et al., 2021), with detailed results in Table 2. Previous studies (Jia
et al., 2022; Yoo et al., 2023) have indicated that VPT can exhibit suboptimal performance with
SSL pre-trained backbones. In contrast, VAPT achieves significant performance improvements
by effectively leveraging the rich information present in the input features. For example, VAPT
demonstrates a remarkable 23.21% accuracy improvement under MAE on VTAB-1K Natural tasks
and an 18.36% improvement with MoCo v3 on VTAB-1K Structured. Furthermore, when compared
to other PEFT methods, VAPT consistently outperforms them, achieving the highest “Number of
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Wins” relative to full fine-tuning, with 9 out of 19 tasks under MAE and 15 out of 19 tasks under
MoCo v3. In addition, VAPT outperforms state-of-the-art approaches such as VFPT under MAE and
remains competitive under MoCo v3. These results underscore the generality and robustness of our
method across different pre-training objectives, supported by both theoretical analysis (Section 5)
and empirical evidence.

3x faster

Figure 2: Comparison of VAPT and VPT across varying
fractions of training data on Stanford Dogs.

Table 3: Classification accuracy on Stanford
Dogs (Khosla et al., 2011) using varying fractions of
training data. Bold indicates the best performance.

Training fraction VPT VAPT Gap

1% 3.6 60.1 56.5%
10% 83.3 88.0 4.7%
30% 87.8 90.3 2.5%
50% 87.5 90.9 3.4%

100% 90.2 91.7 1.5%

Sample Efficiency. To empirically validate the
theoretical sample efficiency from Section 5, we
conducted experiments on the Stanford Dogs
dataset (Khosla et al., 2011). Following d’Ascoli
et al. (2021), we subsampled each class by frac-
tion f = {0.01, 0.1, 0.3, 0.5, 1.0} and scaled
the number of training epochs by 1/f , thereby
ensuring a constant total number of image pre-
sentations to the model. The results, presented
in Figure 2 and Table 3, demonstrate that VAPT
consistently outperforms VPT across all evalu-
ated training set sizes. Notably, with only 1%
of the data, VPT achieves an accuracy of 3.6%,
whereas VAPT attains a substantially higher ac-
curacy of 60.1%. Furthermore, VAPT requires
only 30% of the data to match the performance
of VPT trained on the full 100% dataset, signify-
ing an approximate 3× reduction in data require-
ments. This underscores the superior sample
efficiency of our approach.

It is important to note that the primary objective
of this work is not to establish a new state-of-
the-art on every dataset. As outlined in the ab-
stract and introduction, our focus is on scholarly
value rather than purely incremental method-
ological gains: we aim to provide the commu-
nity with clear insights into the benefits of in-
creasing the functional expressiveness of prompt
experts within visual prompt tuning frameworks.
VAPT serves as a concrete instantiation of this idea. Its adaptive formulation illustrates the potential
of adaptive prompt experts to deliver improved performance, stronger parameter efficiency, and
enhanced sample efficiency in both theory and practice.

Within this perspective, the most relevant comparison is between VAPT’s adaptive prompt-expert
formulation and VPT, where prompt experts are constant functions. Our experiments consistently
show that VAPT outperforms VPT on the majority of benchmarks while using a more compact set of
trainable parameters. Moreover, our empirical findings quantify the statistical advantages of VAPT
over VPT, and these observations are rigorously supported by our theoretical analysis in Section 5
and Appendix A. Together, these results reinforce our central claim that increasing the expressiveness
of prompt experts is a principled and effective direction for advancing visual prompt tuning.

7 CONCLUSION

In this paper, we highlight the limited functional expressiveness of prompt experts in existing VPT
formulation and introduce VAPT, a novel adaptive prompt design. Our approach achieves superior
performance compared to VPT while using fewer parameters and demonstrates optimal sample
efficiency both theoretically and empirically. Our theoretical analysis is grounded in interpreting
self-attention as a composition of multiple MoE models. Given that self-attention is central to
most Transformer architectures, we believe our analysis can naturally extend to other Transformer
variants. While our experiments were conducted on Vision Transformers, the potential demonstrated
by adaptive prompts suggests that future work could explore alternative designs across diverse
Transformer architectures and broaden their applications to a wider range of tasks. Furthermore,
future research could investigate the potential synergies between VAPT and VPT, for instance, by
exploring their integration.
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REPRODUCIBILITY STATEMENT

In order to facilitate the reproduction of our empirical results, we provide detailed descriptions of
the experimental setup in Section 6.1 and Appendix D. All datasets used in this study are publicly
available, enabling full replication of our experiments.
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Supplement to “Revisit Visual Prompt Tuning: The
Expressiveness of Prompt Experts”

In this supplementary material, we provide detailed proofs of the main results in Appendix A
and additional theoretical findings in Appendix B. A discussion of related work is presented in
Appendix C. Implementation details of our experiments are described in Appendix D, while additional
experimental results are included in Appendix E. Specifically, these include detailed per-task results
corresponding to the main experiments in Section 6 (Appendices E.1, E.2), statistical significance tests
(Appendix E.3), an evaluation of VAPT performance across different backbone scales (Appendix E.4),
and semantic segmentation results (Appendix E.5). Finally, ablation studies, computational cost
analyses, adversarial robustness, and interpretive visualizations are presented in Appendix E.6,
Appendix E.7, Appendix E.8, and Appendix E.9, respectively.

A PROOFS

In this appendix, we provide proofs for key theoretical results on prompt estimation presented in the
main text.

A.1 PROOF OF THEOREM 1

Proposition 1. Given the least-squares estimator Ĝn defined in Equation (18), under the L2(µ) norm,
the estimator fĜn

(·) converges to the true model fG∗(·) at a parametric rate with respect to the
sample size. That is,

∥fĜn
− fG∗∥L2(µ) = OP ([log(n)/n]

1
2 ). (19)

The proof of Proposition 1 is provided in Appendix A.2. Building on the convergence rate established
therein, we now aim to demonstrate the following inequality:

inf
G∈GL′ (Θ)

∥fG − fG∗∥L2(µ)/D1(G,G∗) > 0. (20)

We divide the proof of the above inequality into local and global parts presented in Appendices A.1.1
and A.1.2, respectively. Before presenting the proof details, let us introduce some essential assump-
tions on the activation function σ.

Assumptions. We impose the following assumptions on the activation function σ:

(A.1) (Identifiability) If there exist parameters (W1,W2) and (W ′
1,W

′
2) such that W2σ(W1X) =

W ′
2σ(W

′
1X) holds for almost surely X , then (W1,W2) = (W ′

1,W
′
2).

(A.2) (Uniform Lipschitz) Let F (X;W1,W2) := exp((BW2σ(W1X))⊤X)CW2σ(W1X). Then,
for any τ ∈ {1, 2}, we have∑
|α|=τ

∣∣∣∣∣( ∂|α|F

∂Wα1
1 ∂Wα2

2

(X;W1,W2)−
∂|α|F

∂Wα1
1 ∂Wα2

2

(X;W ′
1,W

′
2)
)
γα

∣∣∣∣∣ ≤ C∥(W1,W2)− (W ′
1,W

′
2)∥ζ∥γ∥τ ,

for any vector γ ∈ R2dr and for some positive constants ζ and C that are independent of X and
(W1,W2), (W

′
1,W

′
2). Here, α = (α1, α2) ∈ Nr×d × Nd×r.

(A.3) (Strong identifiability) The function σ is twice differentiable almost surely. For any natural
number ℓ and distinct parameters {W1,j : j ∈ [ℓ]}, the functions in the set{

σ(W1,jX), σ2(W1,jX)X(u), σ(1)(W1,jX)X(u), σ(1)(W1,jX)σ(W1,jX)X(u)X(v),

[σ(1)(W1,jX)]2σ(W1,jX)X(u)X(v)X(w), σ(1)(W1,jX)σ2(W1,jX)X(u)X(v)X(w),

[σ(1)(W1,jX)]2X(u)X(v)X(w), σ(2)(W1,jX)X(u), σ(2)(W1,jX)X(u)X(v),

σ(2)(W1,jX)X(u)X(v)X(w) : j ∈ [ℓ], u, v, w ∈ [d]
}

are linearly independent for almost surely X . Here, σ(1) and σ(2) denote the first and second
derivatives of σ, respectively, which are applied element-wise to the matrices W1,jX .
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A.1.1 LOCAL PART

The local part of the inequality (20) corresponds to the following inequality:

lim
ε→0

inf
G∈GL′ (Θ):D1(G,G∗)≤ε

∥fG − fG∗∥L2(µ)

D1(G,G∗)
> 0.

We assume, for the sake of contradiction, that the above inequality does not hold. Then, we can find a
sequence of measures Gn :=

∑L′

j′=1 exp(bn,j′)δ(Wn,1j′ ,Wn,2) in GL′(Θ) such that{
D1n := D1(Gn, G∗) → 0,

∥fGn − fG∗∥L2(µ)/D1n → 0.

For the sake of the presentation, Vn
j := Vj(Gn) is denoted as a Voronoi cell of Gn generated by the

j-th components of the true measure G∗. Given that the ensuing arguments are asymptotic, without
loss of generality we assume that those Voronoi cells do not depend on the sample size, i.e., we have
Vj = Vn

j for all n and 1 ≤ j ≤ L. Hence, the Voronoi loss D1n can be rewritten as follows:

D1n :=

L∑
j′=1

∣∣∣ ∑
i∈Vj′

exp(bn,i)− exp(b∗,j′)
∣∣∣+ ∑

j′∈[L]:|Vj′ |=1

∑
i∈Vj′

exp(bn,i)(∥∆Wn,1ij′∥+ ∥∆Wn,2∥)

+
∑

j′∈[L]:|Vj′ |>1

∑
i∈Vj′

exp(bn,i)(∥∆Wn,1ij′∥2 + ∥∆Wn,2∥2)

where we define ∆Wn,1ij′ = Wn,1i −W∗,1j′ and ∆Wn,2 = Wn,2 −W∗,2 for all i ∈ Vj′ .

From the hypothesis, since D1n → 0 as n → ∞, we have
∑

i∈Vj
exp(bn,i) → exp(b∗,j), Wn,1i →

W∗,1j′ , and Wn,2 → W∗,2 for any i ∈ Vj , j ∈ [L]. Throughout this proof, for simplicity of argument
we assume without loss of generality that B = Id, C = Id, and r = 1. We note that our techniques
can be generalized to the general case of these given matrices. Now, we divide the proof of the local
part into the following three main substeps:

Step 1 - Taylor expansion. We first define the following function:

Qn(X) :=
[ N∑
j=1

exp(X⊤A0
jX+a0j )+

L∑
j′=1

exp((W∗,2σ(W∗,1j′X))⊤X+b∗,j′)
]
·[fGn

(X)−fG∗(X)].

Then, we can decompose the function Qn(X) as follows:

Qn(X) =

L∑
j=1

∑
i∈Vj

exp(bn,i)
[
exp((Wn,2σ(Wn,1iX))⊤X)Wn,2σ(Wn,1iX)

− exp((W∗,2σ(W∗,1jX))⊤X)W∗,2σ(W∗,1jX)
]

−
L∑

j=1

∑
i∈Vj

exp(bn,i)
[
exp((Wn,2σ(Wn,1iX))⊤X)− exp((W∗,2σ(W∗,1jX))⊤X)

]
fGn(X)

+

L∑
j=1

( ∑
i∈Vj

exp(bn,i)− exp(b∗,j)
)
exp((W∗,2σ(W∗,1jX))⊤X)

[
W∗,2σ(W∗,1jX)− fGn

(X)
]

:= An(X)−Bn(X) + Cn(X). (21)

Decomposition of the function An(X). To streamline the argument, we define the following func-
tions: Ē(X;W1,W2) := exp((W2σ(W1X))⊤X) and H̄(X;W1,W2) = W2σ(W1X). Further-
more, the product of these functions is defined as F̄ (X;W1,W2) = Ē(X;W1,W2)H̄(X;W1,W2).
To account for the difference in the number of elements among Voronoi cells, we further decompose
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the function An(X) as follows:

An(X) =
∑

j:|Vj |=1

∑
i∈Vj

exp(bn,i)
[
F̄ (X;Wn,1i,Wn,2)− F̄ (X;W∗,1j ,W∗,2)

]
+

∑
j:|Vj |>1

∑
i∈Vj

exp(bn,i)
[
F̄ (X;Wn,1i,Wn,2)− F̄ (X;W∗,1j ,W∗,2)

]
:= An,1(X) +An,2(X)

An application of the first-order Taylor expansion leads to:

Ē(X;Wn,1i,Wn,2) = Ē(X;W∗,1j ,W∗,2) +
∑
|α|=1

(∆Wn,1ij)
α1(∆Wn,2)

α2
∂|α1|+|α2|Ē

∂Wα1
1 ∂Wα2

2

(X;W∗,1j ,W∗,2)

+ R̄ij,1(X),

H̄(X;Wn,1i,Wn,2) = H̄(X;W∗,1j ,W∗,2) +
∑
|α|=1

(∆Wn,1ij)
α1(∆Wn,2)

α2
∂|α1|+|α2|H̄

∂Wα1
1 ∂Wα2

2

(X;W∗,1j ,W∗,2)

+ R̄ij,2(X).

Here, the indices i, j in the above equations satisfy |Vj | = 1, i.e., Voronoi cells with exactly one
element and i ∈ Vj . Furthermore, the functions R̄ij,1(X) and R̄ij,2(X) in these expressions
represent the Taylor remainders from the expansions of the functions Ē and H̄ . Combining these
results leads to:

An,1(X) =
∑

j:|Vj |=1

∑
i∈Vj

exp(bn,i)

α!

∑
|α|=1

{
(∆Wn,1ij)

α1(∆Wn,2)
α2

∂|α1|+|α2|Ē

∂Wα1
1 ∂Wα2

2

(X;W∗,1j ,W∗,2)H̄(X;W∗,1j ,W∗,2)

+ (∆Wn,1ij)
α1(∆Wn,2)

α2
∂|α1|+|α2|H̄

∂Wα1
1 ∂Wα2

2

(X;W∗,1j ,W∗,2)Ē(X;W∗,1j ,W∗,2)

}
+ R̃n,1(X)

=
∑

j:|Vj |=1

∑
|α|=1

{
M̄n,j,α1,α2

∂|α1|+|α2|Ē

∂Wα1
1 ∂Wα2

2

(X;W∗,1j ,W∗,2)H̄(X;W∗,1j ,W∗,2)

+ M̄n,j,α1,α2

∂|α1|+|α2|H̄

∂Wα1
1 ∂Wα2

2

(X;W∗,1j ,W∗,2)Ē(X;W∗,1j ,W∗,2)

}
+ R̃n,1(X)

where α = (α1, α2). Furthermore, due to the uniform smoothness of the functions Ē and H̄ , the
function R̃n,1(X) in the above equation satisfies R̄n,1(X)/D1n → 0 when n approaches infinity.
Finally, the terms Mn,j,α1,α2

in this equation admit the following forms:

M̄n,j,α1,α2
=

∑
i∈Vj

exp(bn,i)

α!
(∆Wn,1ij)

α1(∆Wn,2)
α2 ,

for any |α| = 1.

We now proceed to decompose the function An,2(X). Unlike the function An,1(X) for which
we utilized only a first-order Taylor expansion, the analysis of An,2(X) must account for Voronoi
cells potentially containing more than one element. Consequently, we employ second-order Taylor
expansions of the functions Ē and H̄ . In particular, an application of the second-order Taylor
expansion leads to:

An,2(X) =
∑

j:|Vj |>1

∑
1≤|α|≤2

{
M̄n,j,α1,α2

∂|α1|+|α2|Ē

∂Wα1
1 ∂Wα2

2

(X;W∗,1j ,W∗,2)H̄(X;W∗,1j ,W∗,2)

+ M̄n,j,α1,α2

∂|α1|+|α2|H̄

∂Wα1
1 ∂Wα2

2

(X;W∗,1j ,W∗,2)Ē(X;W∗,1j ,W∗,2)

}
+

∑
|α|=1,|β|=1

M̄n,j,α,β
∂|α1|+|α2|Ē

∂Wα1
1 ∂Wα2

2

(X;W∗,1j ,W∗,2)
∂|β1|+|β2|H̄

∂W β1

1 ∂W β2

2

(X;W∗,1j ,W∗,2) + R̃n,2(X)
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where α = (α1, α2), β = (β1, β2). Furthermore, due to the uniform smoothness of the functions
Ē and H̄ , the function R̃n,2(X), which represents the combination of Taylor remainders from the
second-order Taylor expansion, satisfies R̄n,2(X)/D1n → 0 as n goes to infinity. Additionally, the
coefficients M̄n,j,α1,α2

and M̄n,j,α1,α2,β1,β2
in the above formulation take the following forms:

M̄n,j,α1,α2 =
∑
i∈Vj

exp(bn,i)

α!
(∆Wn,1ij)

α1(∆Wn,2)
α2 ,

for any multi-index α such that |α| = 2 and

M̄n,j,α1,α2,β1,β2
=

∑
i∈Vj

exp(bn,i)

α!β!
(∆Wn,1ij)

α1+β1(∆Wn,2)
α2+β2 ,

for any coefficients α and β such that |α| = |β| = 1. Given the expressions for the functions
Ē(X;W1,W2) and H̄(X;W1,W2), their partial derivatives take the following forms:

∂Ē

∂W
(u)
1

(X;W1,W2) = exp((W2σ(W1X))⊤X)X⊤W2σ
(1)(W1X)X(u),

∂Ē

∂W
(v)
2

(X;W1,W2) = exp((W2σ(W1X))⊤X)X(v)σ(W1X),

∂2Ē

∂W
(u)
1 ∂W

(v)
1

(X;W1,W2) = exp((W2σ(W1X))⊤X)[X⊤W2σ
(1)(W1X)]2X(u)X(v)

+ exp((W2σ(W1X))⊤X)X⊤W2σ
(2)(W1X)X(u)X(v),

∂2Ē

∂W
(u)
2 ∂W

(v)
2

(X;W1,W2) = exp((W2σ(W1X))⊤X)X(u)X(v)σ2(W1X),

∂2Ē

∂W
(u)
1 ∂W

(v)
2

(X;W1,W2) = exp((W2σ(W1X))⊤X)X⊤W2σ
(1)(W1X)X(u)X(v)σ(W1X)

+ exp((W2σ(W1X))⊤X)σ(1)(W1X)X(u)X(v),

∂H̄

∂W
(u)
1

(X;W1,W2) = W2σ
(1)(W1X)X(u),

∂H̄

∂W2
(X;W1,W2) = σ(W1X)Id,

∂2H̄

∂W
(u)
1 ∂W

(v)
1

(X;W1,W2) = W2σ
(2)(W1X)X(u)X(v),

∂2H̄

∂W
(u)
1 ∂W2

(X;W1,W2) = σ(2)(W1X)X(u)Id,

∂2H̄

∂W
(u)
2 ∂W

(v)
2

(X;W1,W2) = 0.
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Putting the above formulations together, the functions An,1(X) and An,2(X) can be rewritten as
follows:

An,1(X) =
∑

j:|Vj |=1

exp((W∗,2σ(W∗,1jX))⊤X)
[
σ(1)(W∗,1jX)σ(W∗,1jX)X⊤Ln,1,jXW∗,2

+ σ2(W∗,1jX)L⊤
n,2,jXW∗,2 + σ(1)(W∗,1jX)L⊤

n,3,jXW∗,2 + σ(W∗,1jX)L⊤
n,2,j

]
+ R̄n,1(X),

An,2(X) =
∑

j:|Vj |>1

exp((W∗,2σ(W∗,1jX))⊤X)
[
σ(1)(W∗,1jX)σ(W∗,1jX)X⊤Ln,1,jXW∗,2

+ σ2(W∗,1jX)L⊤
n,2,jXW∗,2 + σ(1)(W∗,1jX)L⊤

n,3,jXW∗,2 + σ(W∗,1jX)L⊤
n,2,j

+
(
[σ(1)(W∗,1jX)]2σ(W∗,1jX) + σ(2)(W∗,1jX)σ(W∗,1jX)

)
X⊤Ln,4,jXX⊤W∗,2W∗,2

+ σ2(W∗,1jX)σ(W∗,1jX)X⊤Ln,5,jXW∗,2 + σ(2)(W∗,1jX)X⊤Ln,4,jXW∗,2

+
(
σ(1)(W∗,1jX)[σ(W∗,1jX)]2X⊤W∗,2 + σ(1)(W∗,1jX)σ(W∗,1jX)

)
X⊤Ln,6,jXW∗,2

+ σ(2)(W∗,1jX)X⊤Ln,6,j + [σ(1)(W∗,1jX)]2X⊤Ln,4,jXX⊤W∗,2W∗,2

+ σ(1)(W∗,1jX)σ(W∗,1jX)X⊤W∗,2X
⊤Ln,6,j + σ(1)(W∗,1jX)σ(W∗,1jX)X⊤Ln,6,jXW∗,2

+ [σ(W∗,1jX)]2X⊤Ln,5,j

]
+ R̄n,2(X),

where the formulations of Ln,1,j , Ln,2,j , . . . , Ln,6,j in these equations are given by:

L1,n := Mn,j,e1:d,0d
W⊤

∗,2, Mn,j,e1:d,0d
:= (Mn,j,eu,0d

)du=1

Ln,2,j := (Mn,j,0d,eu,)
d
u=1,

Ln,3,j := Mn,j,e1:d,0d
,

Ln,4,j := (Mn,j,eu+ev,0d
)du,v=1,

Ln,5,j := (Mn,j,0d,eu+ev )
d
u,v=1,

Ln,6,j := (Mn,j,eu,ev )
d
u,v=1,

Here, for each 1 ≤ u ≤ d, eu denotes the standard basis vector in Rd with 1 in the u-th position and
0 in all other positions.

Decomposition of the function Bn(X). Similar to our decomposition of the function An(X), in
decomposing the function Bn(X), we also distinguish between Voronoi cells containing exactly one
element and those containing more than one element. Therefore, we obtain:

Bn(X) =
∑

j:|Vj |=1

∑
i∈Vj

exp(bn,i)
[
Ē(X;Wn,1i,Wn,2)− Ē(X;W∗,1j ,W∗,2)

]
fGn(X)

+
∑

j:|Vj |>1

∑
i∈Vj

exp(bn,i)
[
Ē(X;Wn,1i,Wn,2)− Ē(X;W∗,1j ,W∗,2)

]
fGn

(X)

:= Bn,1(X) +Bn,2(X).

For Voronoi cells with exactly one element, we utilize the first-order Taylor expansion, while for
those with more than one element, the second-order Taylor expansion is employed. This strategy
leads to the following representations:

Bn,1(X) =
∑

j:|Vj |=1

∑
|α|=1

M̄n,j,α1,α2

∂|α1|+|α2|Ē

∂Wα1
1 ∂Wα2

2

(X;W∗,1j ,W∗,2)fGn(X) + R̄n,3(X),

Bn,2(X) =
∑

j:|Vj |=1

∑
1≤|α|≤2

M̄n,j,α1,α2

∂|α1|+|α2|Ē

∂Wα1
1 ∂Wα2

2

(X;W∗,1j ,W∗,2)fGn
(X) + R̄n,4(X).

In these expressions, the functions R̄n,3(X) and R̄n,4(X) correspond to the Taylor remainders. Due
to the uniform smoothness of the functions Ē, we obtain Rn,3(X)/D1n → 0 and Rn,4(X)/D1n → 0
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as n approaches infinity. By computing the closed-form expressions for the partial derivatives of the
function Ē, both functions Bn,1(X) and Bn,2(X) can be rewritten as follows:

Bn,1(X) =
∑

j:|Vj |=1

exp((W∗,2σ(W∗,1jX))⊤X)
[
σ(1)(W∗,1jX)X⊤Ln,1,jX + σ(W∗,1jX)L⊤

n,2,jX
]
fGn(X)

+ R̄n,3(X),

Bn,2(X) =
∑

j:|Vj |>1

exp((W∗,2σ(W∗,1jX))⊤X)
[
σ(1)(W∗,1jX)X⊤Ln,1,jX + σ(W∗,1jX)L⊤

n,2,jX

+
(
[σ(1)(W∗,1jX)]2 + σ(2)(W∗,1jX)

)
X⊤Ln,4,jXX⊤W∗,2 + σ2(W∗,1jX)X⊤Ln,5,jX

+
(
σ(1)(W∗,1jX)σ(W∗,1jX)X⊤W∗,2 + σ(1)(W∗,1jX)

)
X⊤Ln,6,jX

]
fGn

(X) + R̄n,4(X),

Combining these results, the function Qn(X) can be rewritten as follows:

Qn(X) =
∑

j:|Vj |=1

exp((W∗,2σ(W∗,1jX))⊤X)
[
σ(1)(W∗,1jX)σ(W∗,1jX)X⊤Ln,1,jXW∗,2

+ σ2(W∗,1jX)L⊤
n,2,jXW∗,2 + σ(1)(W∗,1jX)L⊤

n,3,jXW∗,2 + σ(W∗,1jX)L⊤
n,2,j

]
+

∑
j:|Vj |>1

exp((W∗,2σ(W∗,1jX))⊤X)
[
σ(1)(W∗,1jX)σ(W∗,1jX)X⊤Ln,1,jXW∗,2

+ σ2(W∗,1jX)L⊤
n,2,jXW∗,2 + σ(1)(W∗,1jX)L⊤

n,3,jXW∗,2 + σ(W∗,1jX)L⊤
n,2,j

+
(
[σ(1)(W∗,1jX)]2σ(W∗,1jX) + σ(2)(W∗,1jX)σ(W∗,1jX)

)
X⊤Ln,4,jXX⊤W∗,2W∗,2

+ σ2(W∗,1jX)σ(W∗,1jX)X⊤Ln,5,jXW∗,2 + σ(2)(W∗,1jX)X⊤Ln,4,jXW∗,2

+
(
σ(1)(W∗,1jX)[σ(W∗,1jX)]2X⊤W∗,2 + σ(1)(W∗,1jX)σ(W∗,1jX)

)
X⊤Ln,6,jXW∗,2

+ σ(2)(W∗,1jX)X⊤Ln,6,j + [σ(1)(W∗,1jX)]2X⊤Ln,4,jXX⊤W∗,2W∗,2

+ σ(1)(W∗,1jX)σ(W∗,1jX)X⊤W∗,2X
⊤Ln,6,j + σ(1)(W∗,1jX)σ(W∗,1jX)X⊤Ln,6,jXW∗,2

+ [σ(W∗,1jX)]2X⊤Ln,5,j

]

−
∑

j:|Vj |=1

exp((W∗,2σ(W∗,1jX))⊤X)
[
σ(1)(W∗,1jX)X⊤Ln,1,jX + σ(W∗,1jX)L⊤

n,2,jX
]
fGn(X)

−
∑

j:|Vj |>1

exp((W∗,2σ(W∗,1jX))⊤X)
[
σ(1)(W∗,1jX)X⊤Ln,1,jX + σ(W∗,1jX)L⊤

n,2,jX

+
(
[σ(1)(W∗,1jX)]2 + σ(2)(W∗,1jX)

)
X⊤Ln,4,jXX⊤W∗,2 + σ2(W∗,1jX)X⊤Ln,5,jX

+
(
σ(1)(W∗,1jX)σ(W∗,1jX)X⊤W∗,2 + σ(1)(W∗,1jX)

)
X⊤Ln,6,jX

]
fGn(X)

−
L∑

j=1

Mn,j,0d,0d
exp((W∗,2σ(W∗,1jX))⊤X)fGn(X)

+

L∑
j=1

Mn,j,0d,0d
exp((W∗,2σ(W∗,1jX))⊤X)σ(W∗,1jX)W∗,2

+ R̃n,1(X) + R̃n,2(X)− R̄n,3(X)− R̄n,4(X) (22)

where the coefficient M̄n,j,0d,0d
:=

∑
i∈Vj

exp(bn,i)− exp(b∗,j) for any j ∈ [L].
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Step 2 - Non-vanishing coefficients. An important insight from Equation (22) is that the ratio
Qn(X)/D1n can be expressed as a linear combination of the following independent functions:

E(X;W∗,1j ,W∗,2)σ(W∗,1jX)W∗,2, E(X;W∗,1j ,W∗,2)σ
(1)(W∗,1jX)σ(W∗,1jX)X(u)X(v)W∗,2,

E(X;W∗,1j ,W∗,2)σ
2(W∗,1jX)X(u)W∗,2, E(X;W∗,1j ,W∗,2)σ

(1)(W∗,1jX)X(u)W∗,2,

E(X;W∗,1j ,W∗,2)σ(W∗,1jX)eu, E(X;W∗,1j ,W∗,2)[σ
(1)(W∗,1jX)]2σ(W∗,1jX)X(u)X(v)X(w)W∗,2,

E(X;W∗,1j ,W∗,2)σ
(2)(W∗,1jX)σ(W∗,1jX)X(u)X(v)X(w)W∗,2, E(X;W∗,1j ,W∗,2)σ

(2)(W∗,1jX)X(u)X(v)W∗,2,

E(X;W∗,1j ,W∗,2)σ
2(W∗,1jX)σ(W∗,1jX)X(u)X(v)W∗,2,

E(X;W∗,1j ,W∗,2)σ
(1)(W∗,1jX)[σ(W∗,1jX)]2X(u)X(v)X(w)W∗,2, E(X;W∗,1j ,W∗,2)σ

(2)(W∗,1jX)X(u)eu,

E(X;W∗,1j ,W∗,2)[σ
(1)(W∗,1jX)]2X(u)X(v)X(w)W∗,2, E(X;W∗,1j ,W∗,2)σ

(1)(W∗,1jX)σ(W∗,1jX)X(u)X(v)ev,

E(X;W∗,1j ,W∗,2)[σ(W∗,1jX)]2X(u)eu,

E(X;W∗,1j ,W∗,2)σ
(1)(W∗,1jX)X(u)X(v)fGn

(X), E(X;W∗,1j ,W∗,2)σ(W∗,1jX)X(u)fGn
(X),

E(X;W∗,1j ,W∗,2)[σ
(1)(W∗,1jX)]2X(u)X(v)X(w)fGn(X), E(X;W∗,1j ,W∗,2)σ

(2)(W∗,1jX)X(u)X(v)X(w)fGn(X),

E(X;W∗,1j ,W∗,2)σ
2(W∗,1jX)X(u)X(v)fGn

(X), E(X;W∗,1j ,W∗,2)σ
(1)(W∗,1jX)X(u)X(v)fGn

(X),

E(X;W∗,1j ,W∗,2)σ
(1)(W∗,1jX)σ(W∗,1jX)X(u)X(v)X(w)fGn

(X), E(X;W∗,1j ,W∗,2)fGn
(X),

for any 1 ≤ j ≤ L and 1 ≤ u, v, w ≤ d.

We now demonstrate that not all of the coefficients of these linearly independent functions converge
to 0 as n goes to infinity. To prove this by contradiction, assume that all these coefficients do converge
to 0 as n goes to ∞. From the representation of the ratio Qn(X)/D1n in terms of these linearly
independent functions, it follows that these ratios L(u)

n,1,j/D1n, L(u)
n,2,j/D1n, L(u)

n,3,j/D1n, L(uv)
n,4,j/D1n,

L
(uv)
n,5,j/D1n, L(uv)

n,6,j/D1n, and Mn,j,0d,0d
/D1n all converge to 0 as n approaches infinity for all

indices u, v ∈ [d] and j ∈ [L].

By first considering the vanishing of the ratio M̄n,j,0d,0d
/D1n to 0 for any j ∈ [L] and then taking

the absolute value of this ratio, we find that

|Mn,j,0d,0d
|

D1n
=

|
∑

i∈Vj
exp(bn,i)− exp(b∗,j)|

D1n
→ 0,

By varying the index j from 1 to L and summing the corresponding limits, we find that∑L
j=1 |

∑
i∈Vj

exp(bn,i)− exp(b∗,j)|
D1n

→ 0. (23)

Our strategy is now to consider separately the terms corresponding to Voronoi cells with exactly
one element and those with more than one element. In particular, for Voronoi cells with exactly one
element, i.e., for indices j ∈ [L] such that |Vj | = 1, as the ratio L

(u)
n,3,j/D1n approaches 0, we have∑

i∈Vj
exp(bn,i)∥∆Wn,1ij∥1

D1n
=

∑d
u=1 |L

(u)
n,3,j |

D1n
→ 0.

Similarly, the condition Ln,2,j/D1n → 0 implies that

∑
i∈Vj

exp(bn,i)∥∆Wn,2ij∥1
D1n

→ 0. Combin-

ing these results, we obtain∑
j:|Vj |=1

∑
i∈Vj

exp(bn,i)(∥∆Wn,1ij∥1 + ∥∆Wn,2ij∥1)
D1n

→ 0.

Due to the equivalence of the ℓ1 and ℓ2 norms, we deduce that∑
j:|Vj |=1

∑
i∈Vj

exp(bn,i)(∥∆Wn,1ij∥+ ∥∆Wn,2ij∥)
D1n

→ 0. (24)
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We now turn to Voronoi cells with more than one element, namely, indices j ∈ [L] such that |Vj | > 1.
As the ratios L(uu)

n,4,j/D1n → 0, we find that∑d
u=1 L

(uu)
n,4,j

D1n
=

∑
i∈Vj

exp(bn,i)∥∆Wn,1ij∥2

D1n
→ 0.

Likewise, as L
(uu)
n,5,j/D1n → 0, we arrive at

∑
i∈Vj

exp(bn,i)∥∆Wn,2ij∥2

D1n
→ 0. These results

together imply that∑
j:|Vj |>1

∑
i∈Vj

exp(bn,i)(∥∆Wn,1ij∥2 + ∥∆Wn,2ij∥2)
D1n

→ 0. (25)

Combining the results of Equations (23), (24), and (25), we achieve that
D1n

D1n
= 1 → 0, as n → ∞,

which is a contradiction. Consequently, at least one of the coefficients of the linearly independent
functions in the expression for the ratio Qn(X)/D1n does not converge to 0 as n approaches infinity.

Step 3 - Application of Fatou’s lemma. In this step, we divide all coefficients of the linearly
independent terms in the expression of the ratio Qn(X)/D1n, namely, L(u)

n,1,j/D1n, L(u)
n,2,j/D1n,

L
(u)
n,3,j/D1n, L(uv)

n,4,j/D1n, L(uv)
n,5,j/D1n, L(uv)

n,6,j/D1n, and Mn,j,0d,0d
/D1n for all u, v ∈ [d], by the

maximum of their absolute values. Specifically, we denote by mn the maximum of the absolute
values of these coefficients. Since not all of these coefficients approach 0, it follows that 1/mn does
not approach infinity as n → ∞.

From the hypothesis, we have ∥fGn
− fG∗∥L2(µ)/D1n → 0 as n → ∞. As 1/mn ̸→ ∞, it follows

that ∥fGn − fG∗∥L2(µ)/(mnD1n) → 0. An application of Fatou’s lemma yields

lim
n→∞

∥fGn
− fG∗∥L2(µ)

mnD1n
≥

∫
lim inf
n→∞

|fGn
(X)− fG∗(X)|
mnD1n

dµ(X).

Combining these results, we obtain lim infn→∞
|fGn

(X)− fG∗(X)|
mnD2n

= 0 for almost surely X . To

simplify the presentation, we define the following limits:
Ln,τ,j

mnD1n
→ λτ,j ,

Mn,j,0d,0d

D1n
→ λ0,j ,

for any 1 ≤ τ ≤ 6 and 1 ≤ j ≤ L. By the definition of mn, at least one coefficient in the
sets {λ0,j , λ1,j , λ2,j , λ3,j}j:|Vj |=1, {λ0,j , λ1,j , λ2,j , λ3,j , λ4,j , λ5,j , λ6,j}j:|Vj |>1 must be non-zero.

The condition lim infn→∞
|fGn

(X)− fG∗(X)|
mnD1n

= 0, or equivalently, lim infn→∞
|Qn(X)|
mnD1n

= 0

implies that∑
j:|Vj |=1

exp((W∗,2σ(W∗,1jX))⊤X)
[
σ(1)(W∗,1jX)σ(W∗,1jX)X⊤λ1,jXW∗,2

+ σ2(W∗,1jX)λ⊤
2,jXW∗,2 + σ(1)(W∗,1jX)λ⊤

3,jXW∗,2 + σ(W∗,1jX)λ⊤
2,j

]
+

∑
j:|Vj |>1

exp((W∗,2σ(W∗,1jX))⊤X)
[
σ(1)(W∗,1jX)σ(W∗,1jX)X⊤λ1,jXW∗,2

+ σ2(W∗,1jX)λ⊤
2,jXW∗,2 + σ(1)(W∗,1jX)λ⊤

3,jXW∗,2 + σ(W∗,1jX)λ⊤
2,j

+
(
[σ(1)(W∗,1jX)]2σ(W∗,1jX) + σ(2)(W∗,1jX)σ(W∗,1jX)

)
X⊤λ4,jXX⊤W∗,2W∗,2

+ σ2(W∗,1jX)σ(W∗,1jX)X⊤λ5,jXW∗,2 + σ(2)(W∗,1jX)X⊤λ4,jXW∗,2

+
(
σ(1)(W∗,1jX)[σ(W∗,1jX)]2X⊤W∗,2 + σ(1)(W∗,1jX)σ(W∗,1jX)

)
X⊤λ6,jXW∗,2

+ σ(2)(W∗,1jX)X⊤λ6,j + [σ(1)(W∗,1jX)]2X⊤λ4,jXX⊤W∗,2W∗,2

+ σ(1)(W∗,1jX)σ(W∗,1jX)X⊤W∗,2X
⊤λ6,j + σ(1)(W∗,1jX)σ(W∗,1jX)X⊤λ6,jXW∗,2

+ [σ(W∗,1jX)]2X⊤λ5,j

]
24



Published as a conference paper at ICLR 2026

−
∑

j:|Vj |=1

exp((W∗,2σ(W∗,1jX))⊤X)
[
σ(1)(W∗,1jX)X⊤λ1,jX + σ(W∗,1jX)λ⊤

2,jX
]
fGn(X)

−
∑

j:|Vj |>1

exp((W∗,2σ(W∗,1jX))⊤X)
[
σ(1)(W∗,1jX)X⊤λ1,jX + σ(W∗,1jX)λ⊤

2,jX

+
(
[σ(1)(W∗,1jX)]2 + σ(2)(W∗,1jX)

)
X⊤λ4,jXX⊤W∗,2 + σ2(W∗,1jX)X⊤λ5,jX

+
(
σ(1)(W∗,1jX)σ(W∗,1jX)X⊤W∗,2 + σ(1)(W∗,1jX)

)
X⊤λ6,jX

]
fGn

(X)

−
L∑

j=1

λ0,j exp((W∗,2σ(W∗,1jX))⊤X)fGn
(X)

+

L∑
j=1

λ0,j exp((W∗,2σ(W∗,1jX))⊤X)σ(W∗,1jX)W∗,2 = 0, (26)

for almost surely X . However, that equation implies that all the coefficients
{λ0,j , λ1,j , λ2,j , λ3,j}j:|Vj |=1, {λ0,j , λ1,j , λ2,j , λ3,j , λ4,j , λ5,j , λ6,j}j:|Vj |>1 are 0. It is a
contradiction to the hypothesis that at least one coefficient among these coefficients is different from
0.

Consequently, we deduce that

lim
ε→0

inf
G∈GL′ (Θ):D1(G,G∗)≤ε

∥fG − fG∗∥L2(µ)/D1(G,G∗) > 0,

which proves the local part of inequality (20).

A.1.2 GLOBAL PART

From the local part of inequality (20), we can find a positive constant ε′ such that the following
inequality holds:

inf
G∈GL′ (Θ):D1(G,G∗)≤ε′

∥fG − fG∗∥L2(µ)/D1(G,G∗) > 0.

To obtain the conclusion of the theorem, we only need to demonstrate that

inf
G∈GL′ (Θ):D1(G,G∗)>ε′

∥fG − fG∗∥L2(µ)/D1(G,G∗) > 0.

We prove the claim by contradiction. Assuming the claim does not hold implies that there exists a
sequence of G′

n :=
∑L′

j′=1 exp(bn,j′)δ(Wn,1j′ ,Wn,2) in the set GL′(Θ) such that{
D1(G

′
n, G∗) > ε′

∥fG′
n
− fG∗∥L2(µ)/D1(G

′
n, G∗) → 0,

as n approaches the infinity. This implies that ∥fG′
n
− fG∗∥L2(µ) → 0 as n approaches infinity.

By hypothesis, the parameter space Θ is compact. Therefore, there exists a subsequence of G′
n’s, that

converges to a mixing measure G′ where G′ lies in the space GL′(Θ). From the hypothesis, we have
D1(G

′
n, G∗) > ε′. By taking the limit of both sides as n → ∞, we obtain D1(G

′, G∗) ≥ ε′.

An application of Fatou’s lemma leads to the following result:

0 = lim
n→∞

∥fG′
n
− fG∗∥L2(µ) ≥

∫
lim inf
n→∞

∥∥fG′
n
(X)− fG∗(X)

∥∥2 dµ(X).

This inequality is only possible if fG′ = fG∗ for almost surely X .

By the identifiability of the function fG(X), this equation only holds when G′ ≡ G∗. Consequently,
D1(G

′, G∗) = 0. This contradicts the assumption that D1(G
′, G∗) ≥ ε′ > 0. Hence, the proof of

the global part is complete, thereby establishing the conclusion of the theorem.

Proof for the Identifiability Property. The key claim we aim to show is that if the equation
fG(X) = fG∗(X) holds for almost surely X , then G ≡ G∗, namely, that the two mixing measures
are identical.
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From the hypothesis that fG(X) = fG∗(X) for almost all X , it follows that
N∑
j=1

exp(X⊤A0
jX + a0j ))

Df,G(X)
h(X, η0j ) +

L̃∑
j′=1

exp((BW2σ(W1j′X))⊤X + bj′)

Df,G(X)
CW2σ(W1j′X)

=

N∑
j=1

exp(X⊤A0
jX + a0j ))

Df,G∗(X)
h(X, η0j ) +

L∑
j′=1

exp((BW∗,2σ(W∗,1j′X))⊤X + b∗,j′)

Df,G∗(X)
CW∗,2σ(W∗,1j′X),

(27)

where G =
∑L̃

j=1 exp(bj)δ(W1j ,W2). Furthermore, we define

Df,G∗(X) =

N∑
k=1

exp(X⊤A0
kX + a0k) +

L∑
j′=1

exp((BW∗,2σ(W∗,1j′X))⊤X + b∗,j′),

Df,G(X) =

N∑
k=1

exp(X⊤A0
kX + a0k) +

L̃∑
j′=1

exp((BW2σ(W1j′X))⊤X + bj′).

This equation implies that the number of atoms of G and G∗ should be identical, namely, L = L̃.
Therefore, the following equality holds{
exp((BW2σ(W1j′X))⊤X + bj′)

Df,G(X)
: j′ ∈ [L]

}
=

{
exp((BW∗,2σ(W∗,1j′X))⊤X + b∗,j′)

Df,G∗(X)
: j′ ∈ [L]

}
,

for almost surely X . By relabelling the indices of these two sets, we can assume without loss of
generality that

exp((BW2σ(W1j′X))⊤X + bj′)

Df,G(X)
=

exp((BW∗,2σ(W∗,1j′X))⊤X + b∗,j′)

Df,G∗(X)
,

for any index j′ ∈ [L] and for almost surely X . From the translation invariance property of the
softmax function, the Equation (27) becomes

L∑
j=1

exp (bj) exp((BW2σ(W1jX))⊤X)CW2σ(W1jX)

=

L∑
j′=1

exp (b∗,j) exp((BW∗,2σ(W∗,1j′X))⊤X)CW∗,2σ(W∗,1j′X), (28)

for almost surely X . This equation suggests that there exists a partition K1,K2, . . . ,Km of the set
[L] for some m such that we have exp(bj1) = exp(b∗,j2) for any j1, j2 ∈ Ki and for any i ∈ [m].
Based on this result, the Equation (27) can be rewritten as follows:

m∑
i=1

∑
j1∈Ki

exp (bj1) exp ((BW2σ(W1j1X))⊤X)CW2σ(W1j1X)

=

m∑
i=1

∑
j2∈Ki

exp (b∗,j2) exp ((BW∗,2σ(W∗,1j2X))⊤X)CW∗,2σ(W∗,1j2X),

for almost surely X . This equation proves that
{W2σ(W1j1X) : j1 ∈ Ki} = {W∗,2σ(W∗,1j2X) : j2 ∈ Ki},

for any i ∈ [m]. Since the activation function σ is identifiable, this result indicates that
{(W1j1 ,W2) : j1 ∈ Ki} = {(W∗,1j2 ,W2) : j2 ∈ Ki}.

Consequently, we arrive at the following equality:
m∑
i=1

∑
j1∈Ki

exp (bj1)δ(W1j1
,W2) =

m∑
i=1

∑
j2∈Ki

exp (b∗,j2)δ(W∗,1j2 ,W∗,2).

This is equivalent to G ≡ G∗. Thus, we obtain the conclusion of the identifiability property of the
function fG.
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A.2 PROOF OF PROPOSITION 1

Recall that (X1, Y1), (X2, Y2), . . . , (Xn, Yn) ∈ Rd × Rd′
follow the regression model:

Yi = fG∗(Xi) + εi, i = 1, 2, . . . , n,

where the independent Gaussian noises ε1, . . . , εn satisfy that E[εi|Xi] = 0 and Var(εi|Xi) = σ2Id′

for all i ∈ [n]. The true regression function takes the following form:

fG∗(X) :=

N∑
j=1

exp(X⊤A0
jX + a0j )

Df (X)
· h(X, η0j )

+

L∑
j′=1

exp((BW
(2)
∗ σ(W

(1)
∗,j′X))⊤X + b∗,j′)

Df (X)
· CW

(2)
∗ σ(W

(1)
∗,j′X)

where Df (X) :=
∑N

k=1 exp(X
⊤A0

kX+a0k)+
∑L

j′=1 exp((BW
(2)
∗ σ(W

(1)
∗,j′X))⊤X+ b∗,j′). The

least-squares estimator Ĝn is defined as

Ĝn := argminG∈GL′ (Θ)

n∑
i=1

∥Yi − fG(Xi)∥2,

The assumption that εi|Xi ∼ N (0d, σ
2Id′) indicates that the least-squares estimator Ĝn is indeed a

maximum likelihood estimator, given by:

Ĝn ∈ argmaxG∈GL′ (Θ)
1

n

n∑
i=1

log(p(Yi|fG(Xi), σ
2Id′)),

where p(Yi|fG(Xi), σ
2Id′) is the multivariate Gaussian distribution with mean fG(X) and covari-

ance matrix σ2Id′ . From the result of Theorem 7.4 in van de Geer (2000), it follows that

h(p(Y |fĜn
(X), σ2Id′), p(Y |fG∗(X), σ2Id′)) = OP (

√
log(n)/n).

Given the closed-form expression for the Hellinger distance between two multivariate Gaussian
distributions, we have

h2(p(Y |fĜn
(X), σ2Id′), p(Y |fG∗(X), σ2Id′)) = 1− exp

{
− 1

8σ2
∥fĜn

(X)− fG∗(X)∥2
}
.

Putting the above results together leads to

1− exp

{
− 1

8σ2
∥fĜn

(X)− fG∗(X)∥2
}

= OP (log(n)/n).

Hence, for sufficiently large n, for some universal constant C the above equality implies

∥fĜn
(X)− fG∗(X)∥2 ≤ 8σ2 log

( 1

1− C log(n)/n

)
= 8σ2 log

(
1 +

C log(n)/n

1− C log(n)/n

)
≤ 8σ2 · C log(n)/n

1− C log(n)/n

≤ 16σ2C log(n)/n.

This is equivalent to

∥fĜn
(X)− fG∗(X)∥ = OP (

√
log(n)/n).

Consequently

∥fĜn
− fG∗∥L2(µ) =

(∫
X
∥fĜn

(X)− fG∗(X)∥2dµ(X)
)1/2

= OP (
√
log(n)/n).

The proof of the proposition is completed.
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B ADDITIONAL THEORETICAL RESULTS FOR VISUAL ADAPTIVE PROMPT
TUNING

Thus far, in Section 5, we have provided theoretical benefits of visual adaptive prompt tuning when
the function σ in Equation (12) is nonlinear. In this appendix, we demonstrate that the visual adaptive
prompt tuning also has appealing theoretical properties when the function σ is linear.

Similar to the setting considered in Section 5, we provide a theoretical guarantee for the linear setting
of the visual adaptive prompt tuning via the regression framework. For empirical results, please refer
to Appendix E.6.

Problem Setup. We assume that the i.i.d. samples of size n: (X1, Y1), (X2, Y2), . . . , (Xn, Yn) ∈
Rd × Rd′

are generated from the model:

Yi = fG̃∗
(Xi) + εi, i = 1, 2, . . . , n, (29)

where ε1, . . . , εn are independent Gaussian noise variables such that E[εi|Xi] = 0 and Var(εi|Xi) =
ν2Id′ for all 1 ≤ i ≤ n. Additionally, we assume that X1,X2, . . . ,Xn are i.i.d. samples from some
probability distribution µ. The regression function fG̃∗

(·) in Equation (29) then takes the form

fG̃∗
(X) :=

N∑
j=1

exp(X⊤A0
jX + a0j )

D̃f (X)
· h(X, η0j )

+

L∑
j′=1

exp((BW∗,2W∗,1j′X)⊤X + b∗,j′)

D̃f (X)
· CW∗,2W∗,1j′X, (30)

with N pre-trained experts and L unknown experts, where D̃f,G̃∗
(X) :=

∑N
k=1 exp(X

⊤A0
kX +

a0k)+
∑L

j′=1 exp((BW∗,2W∗,1j′X)⊤X+b∗,j′), while G̃∗ :=
∑L

j′=1 exp(b∗,j′)δW∗,2W∗,1j′ denotes
a mixing measure, i.e., a weighted sum of Dirac measures δ, associated with unknown parameters
(b∗,j′ ,W∗,2W∗,1j′)

L
j′=1 in the parameter space Θ ⊂ R × Rd×d. At the same time, the values of

the matrix A0
j , the expert parameter η0j , and the bias parameter a0j are known for all 1 ≤ j ≤ N .

Additionally, the matrices B ∈ Rd×d and C ∈ Rd′×d are given.

Least-Squares Estimator. In particular, we consider the estimator

G̃n := argminG∈GL′ (Θ)

n∑
i=1

(
Yi − fG(Xi)

)2

, (31)

Voronoi Loss. The Voronoi loss tailored to the setting in Equation (30) is defined as

D2(G, G̃∗) :=

L∑
j′=1

∣∣∣ ∑
i∈Vj′

exp(bi)− exp(b∗,j′)
∣∣∣+ ∑

j′∈[L]:|Vj′ |=1

∑
i∈Vj′

exp(bi)∥∆W2W1ij′∥

+
∑

j′∈[L]:|Vj′ |>1

∑
i∈Vj′

exp(bi)∥∆W2W1ij′∥2,

where we denote ∆W2W1ij′ := W2W1i−W∗,2W∗,1j′ for any i, j′. Equipped with this loss function,
we now provide the convergence rate of prompt estimation for the setting in Equation (30) in
Theorem 2.
Theorem 2. Given the least-squares estimator G̃n defined in Equation (31), we have that

D2(G̃n, G̃∗) = OP ([log(n)/n]
1
2 ).

Proof of Theorem 2. Based on the convergence rate of regression function estimation presented in
Proposition 1, our objective is to establish the following inequality:

inf
G∈GL′ (Θ)

∥fG − fG∗∥L2(µ)/D2(G,G∗) > 0. (32)

We partition the proof of the above inequality into local and global parts.
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B.0.1 LOCAL PART

The local part of the inequality (32) corresponds to the following condition:

lim
ε→0

inf
G∈GL′ (Θ):D2(G,G̃∗)≤ε

∥fG − fG̃∗
∥L2(µ)

D2(G, G̃∗)
> 0.

We assume that the above inequality does not hold. Then, we can find a sequence of measures
Gn :=

∑L′

j′=1 exp(bn,j′)δWn,2Wn,1j′ in GL′(Θ) such that as n → ∞, we have{
D2n := D2(Gn, G̃∗) → 0,

∥fGn
− fG̃∗

∥L2(µ)/D2n → 0.

Similar to the proof of Theorem 1, for clarity of presentation, Vn
j := Vj(Gn) denote the Voronoi

cell of Gn generated by the j-th component of the true measure G̃∗. Since the ensuing arguments
are asymptotic, without loss of generality we assume that these Voronoi cells do not depend on the
sample size, i.e., we have Vj = Vn

j for all n and 1 ≤ j ≤ L. Therefore, the Voronoi loss D2n can be
rewritten as follows:

D2n :=

L∑
j′=1

∣∣∣ ∑
i∈Vj′

exp(bn,i)− exp(b∗,j′)
∣∣∣+ ∑

j′∈[L]:|Vj′ |=1

∑
i∈Vj′

exp(bn,i)∥∆Wn,2Wn,1ij′∥

+
∑

j′∈[L]:|Vj′ |>1

∑
i∈Vj′

exp(bn,i)∥∆Wn,2Wn,1ij′∥2,

where we define ∆Wn,2Wn,1ij′ := Wn,2Wn,1i −W∗,2W∗,1j′ for all i ∈ Vj′ .

From the hypothesis that D2n → 0 as n approaches ∞, we find that
∑

i∈Vj
exp(bn,i) → exp(b∗,j)

and Wn,2Wn,1i → W∗,2W∗,1j′ for any i ∈ Vj and j ∈ [L]. Throughout this proof, we assume
WLOG that B = Idd, C = Idd and r = 1 for simplicity; we note that our techniques can be
generalized to the general case. We partition the proof for the local part into three steps, as detailed
below:

Step 1 - Taylor expansion. We first define the following function:

Qn(X) :=
[ N∑
j=1

exp(X⊤A0
jX+a0j )+

L∑
j′=1

exp((W∗,2W∗,1j′X)⊤X+b∗,j′)
]
·[fGn

(X)−fG̃∗
(X)].

Then, we can decompose the function Qn(X) as follows:

Qn(X) =

L∑
j=1

∑
i∈Vj

exp(bn,i)
[
exp((Wn,2Wn,1iX)⊤X)Wn,2Wn,1iX − exp((W∗,2W∗,1jX)⊤X)W∗,2W∗,1jX

]

−
L∑

j=1

∑
i∈Vj

exp(bn,i)
[
exp((Wn,2Wn,1iX)⊤X)− exp((W∗,2W∗,1jX)⊤X)

]
fGn

(X)

+

L∑
j=1

( ∑
i∈Vj

exp(bn,i)− exp(b∗,j)
)
exp((W∗,2W∗,1jX)⊤X)

[
W∗,2W∗,1jX − fGn(X)

]
:= Ãn(X)− B̃n(X) + C̃n(X). (33)

Decomposition of the function Ãn(X). To streamline the argument, we define the following
functions: Ẽ(X;W2W1) := exp((W2W1X)⊤X) and H̃(X;W2W1) = W2W1X . The product of
the functions Ẽ and H̃ is defined as F̃ (X;W2W1) = Ẽ(X;W2W1)H̃(X;W2W1). To account for
the differences in the number of components within each Voronoi cells, we further decompose the
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function An(X) as follows:

Ãn(X) =
∑

j:|Vj |=1

∑
i∈Vj

exp(bn,i)
[
F̃ (X;Wn,2Wn,1i)− F̃ (X;W∗,2W∗,1j)

]
+

∑
j:|Vj |>1

∑
i∈Vj

exp(bn,i)
[
F̃ (X;Wn,2Wn,1i)− F̃ (X;W∗,2W∗,1j)

]
:= Ãn,1(X) + Ãn,2(X)

An application of the first-order Taylor expansion to the functions Ẽ and H̃ leads to:

Ẽ(X;Wn,2Wn,1i) = Ẽ(X;W∗,2W∗,1j) +
∑
|α|=1

(∆Wn,2Wn,1ij)
α ∂|α|Ẽ

∂(W2W1)α
(X;W∗,2W∗,1j) + R̃ij,1(X),

H̃(X;Wn,2Wn,1i) = H̃(X;W∗,2W∗,1j) +
∑
|α|=1

(∆Wn,2Wn,1ij)
α ∂|α|H̃

∂(W2W1)α
(X;W∗,2W∗,1j) + R̃ij,2(X),

Here, the indices i, j in these equations satisfy that |Vj | = 1, i.e., Voronoi cells with exactly
one element and i ∈ Vj . Furthermore, the functions R̃ij,1(X) and R̃ij,2(X) in these equations
correspond to Taylor remainders when expanding the functions Ẽ and H̃ . Putting the above results
together leads to:

Ãn,1(X) =
∑

j:|Vj |=1

∑
i∈Vj

exp(bn,i)

α!

∑
|α|=1

{
(∆Wn,2Wn,1ij)

α ∂|α|Ẽ

∂(W2W1)α
(X;W∗,2W∗,1j)H̃(X;W∗,2W∗,1j)

+ (∆Wn,2Wn,1ij)
α ∂|α|H̃

∂(W2W1)α
(X;W∗,2W∗,1j)Ẽ(X;W∗,2W∗,1j)

}
+ R̂n,1(X)

=
∑

j:|Vj |=1

∑
|α|=1

{
M̃n,j,α

∂|α|Ẽ

∂(W2W1)α
(X;W∗,2W∗,1j)H̃(X;W∗,2W∗,1j)

+ M̃n,j,α
∂|α|H̃

∂(W2W1)α
(X;W∗,2W∗,1j)Ẽ(X;W∗,2W∗,1j)

}
+ R̂n,1(X)

where α = (α1, α2). Furthermore, due to the uniform smoothness of the functions Ẽ and H̃ ,
the remainder term R̂n,1(X) from the preceding expansion satisfies R̂n,1(X)/D2n → 0 when n

approaches infinity. Finally, for any |α| = 1, the terms M̃n,j,α in the same expansion are given by:

M̃n,j,α =
∑
i∈Vj

exp(bn,i)

α!
(∆Wn,2Wn,1ij)

α.

We now turn to the decomposition of Ãn,2(X). Unlike the analysis of Ãn,1(X), which involved a
first-order Taylor expansion, to account for more than one element in the Voronoi cells in Ãn,2(X),
we resort to the second-order Taylor expansions to the functions Ẽ and H̃ . Specifically, applying a
second-order Taylor expansion yields:

Ãn,2(X) =
∑

j:|Vj |>1

∑
1≤|α|≤2

{
M̃n,j,α

∂|α|Ẽ

∂(W2W1)α
(X;W∗,2W∗,1j)H̃(X;W∗,2W∗,1j)

+ M̃n,j,α
∂|α|H̃

∂(W2W1)α
(X;W∗,2W∗,1j)Ẽ(X;W∗,2W∗,1j)

}
+

∑
|α|=1,|β|=1

M̃n,j,α,β
∂|α|Ẽ

∂(W2W1)α
(X;W∗,2W∗,1j)

∂|β|H̃

∂(W2W1)β
(X;W∗,2W∗,1j) + R̂n,2(X)

where α = (α1, α2), β = (β1, β2). Due to the uniform smoothness of the functions Ẽ and H̃ ,
the term R̂n,2(X), representing the combined Taylor remainders from this second-order expansion,
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satisfies R̂n,2(X)/D2n → 0 as n goes to infinity. The coefficients M̃n,j,α and M̃n,j,α,β in the
expansion above are defined as follows:

M̃n,j,α =
∑
i∈Vj

exp(bn,i)

α!
(∆Wn,2Wn,1ij)

α,

for any coefficient α = (α1, α2) such that |α| = 2 and

M̃n,j,α,β =
∑
i∈Vj

exp(bn,i)

α!β!
(∆Wn,2Wn,1ij)

α+β ,

for any coefficients α = (α1, α2) and β = (β1, β2) such that |α| = |β| = 1. Given the definitions of
Ẽ(X;W1,W2) and H̃(X;W1,W2), their partial derivatives are computed as follows:

∂Ẽ

∂(W2W1)(u1v1)
(X;W2W1) = X(u1)X(v1) exp((W2W1X)⊤X)

∂2Ẽ

∂(W2W1)(u1v1)∂(W2W1)(u2v2)
(X;W2W1) = X(u1)X(v1)X(u2)X(v2) exp((W2W1X)⊤X),

∂H̃

∂(W2W1)(u1v1)
(X;W2W1) = X(v1)eu1

,

∂2H̃

∂(W2W1)(u1v1)∂(W2W1)(u2v2)
(X;W2W1) = 0d.

Putting the above formulations together, the functions Ãn,1(X) and Ãn,2(X) can be rewritten as
follows:

Ãn,1(X) =
∑

j:|Vj |=1

exp((W∗,2W∗,1jX)⊤X)
[ d∑
u1,v1=1

Mn,j,eu1v1
X(u1)X(v1)W∗,2W∗,1jX

+

d∑
u1,v1=1

Mn,j,eu1v1
X(v1)eu1

]
+ R̂n,1(X),

Ãn,2(X) =
∑

j:|Vj |>1

exp((W∗,2W∗,1jX)⊤X)
[ d∑
u1,v1=1

Mn,j,eu1v1
X(u1)X(v1)W∗,2W∗,1jX

+

d∑
u1,v1=1

Mn,j,eu1v1
X(v1)eu1 +

d∑
u1,v1=1

d∑
u2,v2=1

Mn,j,eu1v1
+eu2v2

X(u1)X(v1)X(u2)X(v2)W∗,2W∗,1jX

+

d∑
u1,v1=1

d∑
u2,v2=1

Mn,j,eu1v1
,eu2v2

X(u1)X(v1)X(v2)eu2

]
+ R̂n,2(X)

Here, eu denotes the standard basis vector in Rd with 1 in the u-th position and 0 in all other positions
for any 1 ≤ u ≤ d, while euv denotes the matrix in Rd×d whose uv-th entry is 1 and all other entries
are 0.

Decomposition of the function B̃n(X). Similar to the decomposition of Ãn(X), we also separate
the Voronoi cells with exactly one element and with more than one element in the decomposition of
the function B̃n(X). Therefore, we obtain

B̃n(X) =
∑

j:|Vj |=1

∑
i∈Vj

exp(bn,i)
[
Ẽ(X;Wn,2Wn,1i)− Ẽ(X;W∗,2W∗,1j)

]
fGn

(X)

+
∑

j:|Vj |>1

∑
i∈Vj

exp(bn,i)
[
Ẽ(X;Wn,2Wn,1i)− Ẽ(X;W∗,2W∗,1j)

]
fGn(X)

:= B̃n,1(X) + B̃n,2(X).
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For terms corresponding to Voronoi cells with exactly one component, we use a first-order Taylor
expansion. For cells with more than one component, we use a second-order Taylor expansion. This
strategy yields the following representations:

B̃n,1(X) =
∑

j:|Vj |=1

∑
|α|=1

M̃n,j,α
∂|α|Ẽ

∂(W2W1)α
(X;W∗,2W∗,1j)fGn

(X) + R̃n,3(X),

B̃n,2(X) =
∑

j:|Vj |=1

∑
1≤|α|≤2

M̃n,j,α
∂|α|Ẽ

∂(W2W1)α
(X;W∗,2W∗,1j)fGn

(X) + R̃n,4(X).

In these expressions, the functions R̃n,3(X) and R̃n,4(X) correspond to the Taylor remainders. Due
to the uniform smoothness of the function Ẽ, we obtain R̃n,3(X)/D2n → 0 and R̃n,4(X)/D2n → 0
as n approaches infinity. By computing the closed-form expressions for the partial derivatives of the
function Ẽ, both the functions B̃n,1(X) and B̃n,2(X) can be rewritten as follows:

B̃n,1(X) =
∑

j:|Vj |=1

exp((W∗,2W∗,1jX)⊤X)
[ d∑
u1,v1=1

M̃n,j,eu1v1
X(u1)X(v1)

]
fGn(X) + R̃n,3(X),

B̃n,2(X) =
∑

j:|Vj |>1

exp((W∗,2W∗,1jX)⊤X)
[ d∑
u1,v1=1

M̃n,j,eu1v1
X(u1)X(v1)

+

d∑
u1,v1=1

d∑
u2,v2=1

M̃n,j,eu1v1
X(u1)X(v1)X(u2)X(v2)

]
fGn(X) + R̃n,4(X),

Plugging all of these results together, the function Qn(X) can be rewritten as follows:

Qn(X) =
∑

j:|Vj |=1

exp((W∗,2W∗,1jX)⊤X)
[ d∑
u1,v1=1

M̃n,j,eu1v1
X(u1)X(v1)W∗,2W∗,1jX +

d∑
u1,v1=1

M̃n,j,eu1v1
X(v1)eu1

]

+
∑

j:|Vj |>1

exp((W∗,2W∗,1jX)⊤X)
[ d∑
u1,v1=1

M̃n,j,eu1v1
X(u1)X(v1)W∗,2W∗,1jX +

d∑
u1,v1=1

M̃n,j,eu1v1
X(v1)eu1

+

d∑
u1,v1=1

d∑
u2,v2=1

M̃n,j,eu1v1
+eu2v2

X(u1)X(v1)X(u2)X(v2)W∗,2W∗,1jX

+

d∑
u1,v1=1

d∑
u2,v2=1

M̃n,j,eu1v1 ,eu2v2
X(u1)X(v1)X(v2)eu2

]

−
∑

j:|Vj |=1

exp((W∗,2W∗,1jX)⊤X)
[ d∑
u1,v1=1

M̃n,j,eu1v1
X(u1)X(v1)

]
fGn

(X)

−
∑

j:|Vj |>1

exp((W∗,2jW∗,1jX)⊤X)
[ d∑
u1,v1=1

M̃n,j,eu1v1
X(u1)X(v1)

+

d∑
u1,v1=1

d∑
u2,v2=1

M̃n,j,eu1v1
X(u1)X(v1)X(u2)X(v2)

]
fGn(X)

−
L∑

j=1

Ñn,j exp((W∗,2W∗,1jX)⊤X)fGn
(X)

+

L∑
j=1

Ñn,j exp((W∗,2W∗,1jX)⊤X)W∗,2W∗,1jX

+ R̂n,1(X) + R̂n,2(X)− R̃n,3(X)− R̃n,4(X) (34)

where Ñn,j :=
∑

i∈Vj
exp(bn,i)− exp(b∗,j) for any j ∈ [L].
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Step 2 - Non-vanishing coefficients. An important insight from Equation (34) is that the ratio
Qn(X)/D1n can be expressed as a linear combination of the following independent functions:

E(X;W∗,2W∗,1j)X
(u1)X(v1)W∗,2W∗,1jX, E(X;W∗,2W∗,1j)X

(v1)eu1
,

E(X;W∗,2W∗,1j)X
(u1)X(v1)X(u2)X(v2)W∗,2W∗,1jX, E(X;W∗,2W∗,1j)X

(u1)X(v1)X(v2)eu2
,

E(X;W∗,2W∗,1j)X
(u1)X(v1)fGn(X), E(X;W∗,2W∗,1j)X

(u1)X(v1)X(u2)X(v2)fGn(X),

E(X;W∗,2W∗,1j)fGn
(X), E(X;W∗,2W∗,1j)W∗,2jW∗,1jX,

for any 1 ≤ j ≤ L, and for 1 ≤ u, v, w ≤ d.

We proceed to demonstrate that not all of the coefficients of these linearly independent functions
approach 0 as n goes to infinity. Assume, for the sake of contradiction, that all these coefficients
approach 0 as n goes to ∞. From the representation of the ratio Qn(X)/D2n in terms of these
linearly independent functions, it follows that the ratios M̃n,j,α/D2n, M̃n,j,α,β/D2n, and Ñn,j/D2n

approach 0 as n → ∞, for all α, β ∈ Nd×d such that 1 ≤ |α|+ |β| ≤ 2.

By first considering the condition Ñn,j/D2n → 0, it follows that

|
∑

i∈Vj
exp(bn,i)− exp(b∗,j)|

D2n
=

|Ñn,j |
D2n

→ 0,

for any 1 ≤ j ≤ L. By varying the index j from 1 to L in these limits and summing them, we find
that ∑L

j=1 |
∑

i∈Vj
exp(bn,i)− exp(b∗,j)|
D2n

→ 0. (35)

Our strategy now is to consider the limits corresponding to Voronoi cells with exactly one element and
more than one element separately. In particular, for Voronoi cells with exactly one element, namely,
for indices j ∈ [L] such that their corresponding Voronoi cells have one element, i.e., |Vj | = 1, as the
ratio M̃n,j,euv

/D2n → 0, we have∑
i∈Vj

exp(bn,i)∥∆Wn,2Wn,1ij∥1
D2n

=

∑d
u,v=1 |M̃n,j,euv

|
D2n

→ 0.

Due to the equivalence between the ℓ1 norm and the ℓ2 norm, we deduce that∑
j:|Vj |=1

∑
i∈Vj

exp(bn,i)∥∆Wn,2Wn,1ij∥
D2n

→ 0. (36)

We now move to the Voronoi cells with more than one element, namely, indices j ∈ [L] such that
|Vj | > 1. Similarly, from the assumption that the ratio M̃n,j,2euv

/D2n → 0, we obtain∑
i∈Vj

exp(bn,i)∥∆Wn,2Wn,1ij∥2

D2n
=

∑d
u,v=1 M̃n,j,2euv

D2n
→ 0. (37)

Combining all the results in Equations (35), (36), and (37), we obtain

D2n

D2n
= 1 → 0, as n → ∞,

which is a contradiction. As a consequence, at least one of the coefficients of the linearly independent
functions in the expression of the ratio Qn(X)/D2n does not approach 0 as n approaches infinity.

Step 3 - Application of Fatou’s lemma. The idea of this step is to divide all of the coefficients
of the linearly independent terms in the expression for the ratio Qn(X)/D2n, namely, the terms
M̃n,j,α/D2n, M̃n,j,α,β/D2n, and Ñn,j/D2n for all α, β ∈ Nd×d such that 1 ≤ |α|+ |β| ≤ 2, by the
maximum of their absolute values. In particular, we first denote mn as the maximum of the absolute
values of those coefficients. As not all of these coefficients go to 0, it follows that 1/mn does not go
to infinity as n → ∞.
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From the hypothesis, we have ∥fGn
− fG̃∗

∥L2(µ)/D2n → 0 as n → ∞. Since 1/mn ̸→ ∞, it
follows that ∥fGn

− fG̃∗
∥L2(µ)/(mnD2n) → 0. An application of Fatou’s lemma leads to

0 = lim
n→∞

∥fGn − fG̃∗
∥L2(µ)

mnD2n
≥

∫
lim inf
n→∞

∣∣∣fGn
(X)− fG̃∗

(X)
∣∣∣

mnD2n
dµ(X) ≥ 0.

Combining these results, we obtain lim infn→∞

∣∣∣fGn
(X)− fG̃∗

(X)
∣∣∣

mnD2n
= 0 for almost surely X . To

simplify the presentation, we define the following limits:

M̃n,j,α

mnD2n
→ λj,α,

M̃n,j,α,β

mnD2n
→ ξj,α,β ,

Ñn,j

mnD2n
→ τj ,

for any 1 ≤ j ≤ L and α, β ∈ Nd×d such that 1 ≤ |α| + |β| ≤ 2. By the definition of mn,
at least one coefficient in the set {λj,α, ξj,α,β , τj : j ∈ [L], α, β ∈ Nd×d : 1 ≤ |α| + |β| ≤ 2}

must be non-zero. Then, the equation lim infn→∞

∣∣∣fGn(X)− fG̃∗
(X)

∣∣∣
mnD2n

= 0, or equivalently,

lim infn→∞
|Qn(X)|
mnD2n

= 0 leads to

∑
j:|Vj |=1

exp((W∗,2W∗,1jX)⊤X)
[ d∑
u1,v1=1

λj,eu1v1
X(u1)X(v1)W∗,2W∗,1jX +

d∑
u1,v1=1

λj,eu1v1
X(v1)eu1

]

+
∑

j:|Vj |>1

exp((W∗,2W∗,1jX)⊤X)
[ d∑
u1,v1=1

λj,eu1v1
X(u1)X(v1)W∗,2W∗,1jX +

d∑
u1,v1=1

λj,eu1v1
X(v1)eu1

+

d∑
u1,v1=1

d∑
u2,v2=1

λj,eu1v1
+eu2v2

X(u1)X(v1)X(u2)X(v2)W∗,2W∗,1jX

+

d∑
u1,v1=1

d∑
u2,v2=1

ξj,eu1v1
,eu2v2

X(u1)X(v1)X(v2)eu2

]

−
∑

j:|Vj |=1

exp((W∗,2W∗,1jX)⊤X)
[ d∑
u1,v1=1

λj,eu1v1
X(u1)X(v1)

]
fG̃∗

(X)

−
∑

j:|Vj |>1

exp((W∗,2W∗,1jX)⊤X)
[ d∑
u1,v1=1

λj,eu1v1
X(u1)X(v1)

+

d∑
u1,v1=1

d∑
u2,v2=1

ξj,eu1v1 ,eu2v2
X(u1)X(v1)X(u2)X(v2)

]
fG̃∗

(X)

−
L∑

j=1

τj exp((W∗,2W∗,1jX)⊤X)fG∗(X)

+

L∑
j=1

τj exp((W∗,2W∗,1jX)⊤X)W∗,2W∗,1jX = 0, (38)

for almost surely X . However, the new equation implies that all the coefficients {λj,α, ξj,α,β , τj :
j ∈ [L], α, β ∈ Nd×d : 1 ≤ |α|+ |β| ≤ 2} are 0, which is a contradiction.

As a consequence, we obtain

lim
ε→0

inf
G∈GL′ (Θ):D2(G,G̃∗)≤ε

∥fG − fG̃∗
∥L2(µ)/D2(G, G̃∗) > 0,

which proves the conclusion of the local part of the inequality (32).
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B.0.2 GLOBAL PART

From the result of the local part of the inequality (32), we can find a positive constant ε′ such that the
following inequality holds:

inf
G∈GL′ (Θ):D2(G,G̃∗)≤ε′

∥fG − fG̃∗
∥L2(µ)/D2(G, G̃∗) > 0.

To obtain the conclusion of the theorem, we only need to demonstrate that

inf
G∈GL′ (Θ):D2(G,G̃∗)>ε′

∥fG − fG̃∗
∥L2(µ)/D2(G, G̃∗) > 0.

We prove the claim by contradiction. Indeed, by assuming the claim does not hold implies that there
exists a sequence of G′

n :=
∑L′

j′=1 exp(bn,j′)δWn,1j′Wn,2
in the set GL′(Θ) such that{

D2(G
′
n, G̃∗) > ε′

∥fG′
n
− fG̃∗

∥L2(µ)/D2(G
′
n, G̃∗) → 0,

as long as n approaches infinity. This implies that ∥fG′
n
− fG̃∗

∥L2(µ) → 0 as n goes to infinity.

From the hypothesis, the parameter space Θ is compact. Therefore, a subsequence of G′
n’s converges

to some mixing measure G′ where G′ lies in the space GL′(Θ). From the hypothesis, we have
D2(G

′
n, G̃∗) > ε′. By taking the limit of both sides as n → ∞, we obtain D2(G

′, G∗) ≥ ε′.

An application of the Fatou’s lemma leads to the following result:

0 = lim
n→∞

∥fG′
n
− fG̃∗

∥L2(µ) ≥
∫

lim inf
n→∞

∥∥∥fG′
n
(X)− fG̃∗

(X)
∥∥∥2 dµ(X).

This inequality is only possible if fG′ = fG̃∗
for almost surely X .

According to the identifiability of the function fG(X), this equation only holds when G′ ≡ G̃∗. As a
consequence, we obtain D2(G

′, G̃∗) = 0. This contradicts the deduction that D1(G
′, G̃∗) ≥ ε′ > 0.

Hence, the proof of the global part is completed. This achieves the conclusion of the theorem.

Proof for the identifiability property. The key claim that we aim to show is that if the equation
fG(X) = fG̃∗

(X) for almost every X , then G ≡ G̃∗, namely, the two mixing measures are
identical.

From the hypothesis, as fG(X) = fG∗(X) for almost all X , we have

N∑
j=1

exp(X⊤A0
jX + a0j ))

D̃f,G(X)
h(X, η0j ) +

L̃∑
j′=1

exp((BW2W1j′X)⊤X + bj′)

D̃f,G(X)
CW2W1j′X

=

N∑
j=1

exp(X⊤A0
jX + a0j ))

D̃f,G̃∗
(X)

h(X, η0j ) +

L∑
j′=1

exp((BW∗,2W∗,1j′X)⊤X + b∗,j′)

D̃f,G̃∗
(X)

CW∗,2W∗,1j′X,

(39)

where G =
∑L̃

j=1 exp(bj)δW2W1j . Furthermore, we define

D̃f,G̃∗
(X) =

N∑
k=1

exp(X⊤A0
kX + a0k) +

L∑
j′=1

exp((BW∗,2W∗,1j′X)⊤X + b∗,j′),

D̃f,G(X) =

N∑
k=1

exp(X⊤A0
kX + a0k) +

L̃∑
j′=1

exp((BW2W1j′X)⊤X + bj′).

That equation implies that the number of atoms of G and G̃∗ must be identical, namely, we have
L = L̃. Therefore, the following result holds{exp((BW2W1j′X)⊤X + bj′)

D̃f,G(X)
: j′ ∈ [L]

}
=

{exp((BW∗,2W∗,1j′X)⊤X + b∗,j′)

D̃f,G̃∗
(X)

: j′ ∈ [L]
}
,
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for almost surely X . By relabeling the indices of these two sets, we can assume without loss of
generality that

exp((BW2W1j′X)⊤X + bj′)

D̃f,G(X)
=

exp((BW∗,2W∗,1j′X)⊤X + b∗,j′)

D̃f,G̃∗
(X)

,

for any index j′ ∈ [L] and for almost surely X . From the invariance to translation property of the
softmax function, the Equation (39) becomes

L∑
j=1

exp (bj) exp((BW2W1jX)⊤X)CW2W1jX

=

L∑
j′=1

exp (b∗,j) exp((BW∗,2W∗,1j′X)⊤X)CW∗,2W∗,1j′X, (40)

for almost surely X . This equality suggests that there exists a partition K1,K2, . . . ,Km of the set
[L] for some m such that we have exp(bj1) = exp(b∗,j2) for any j1, j2 ∈ Ki and for any i ∈ [m].
According to this result, Equation (40) can be rewritten as follows:

m∑
i=1

∑
j1∈Ki

exp (bj1) exp ((BW2W1j1X)⊤X)CW2W1j1X

=

m∑
i=1

∑
j2∈Ki

exp (b∗,j2) exp ((BW∗,2W∗,1j2X)⊤X)CW∗,2W∗,1j2X,

for almost surely X . This equality implies that

{W2W1j1X : j1 ∈ Ki} = {W∗,2W∗,1j2X : j2 ∈ Ki},

for any i ∈ [m]. This result indicates that

{W2W1j1 : j1 ∈ Ki} = {W∗,2W∗,1j2 : j2 ∈ Ki}.

As a consequence, we arrive at the following result:
m∑
i=1

∑
j1∈Ki

exp (bj1)δW2W1j1
=

m∑
i=1

∑
j2∈Ki

exp (b∗,j2)δW∗,2W∗,1j2
.

This is equivalent to G ≡ G̃∗. Consequently, the identifiability property of fG is established.

C RELATED WORK

Mixture of Experts. Building on classical mixture models with adaptive gating mechanisms (Jacobs
et al., 1991; Jordan & Jacobs, 1994; Xu et al., 1994), the MoE model has been extensively studied
and refined over the years. Notably, subsequent works (Eigen et al., 2014; Shazeer et al., 2017)
introduced the MoE layer as an efficient tool for scaling model capacity. Unlike traditional models
that apply uniform parameters to all inputs, the MoE layer applies specific parameter subsets for each
input, creating a sparsely activated layer that enables significant capacity growth without proportional
increase in computational cost (Fedus et al., 2022; Zhou et al., 2023). This efficiency and scalability
have driven its adoption across diverse domains and tasks (Riquelme et al., 2021; Du et al., 2022;
Shen et al., 2023).

Theory of Mixture of Experts. Although MoEs have been widely used to scale up large models,
their theoretical foundations remain under active development. For example, Ho et al. (2022) focused
on input-free gating Gaussian MoEs and showed that under maximum likelihood estimation, the
experts’ convergence rates depend on the algebraic independence of the expert functions. Next,
Nguyen et al. (2023; 2024a) established convergence rates for both density and parameter estimation
in Softmax-gating Gaussian MoEs, linking these rates to the solvability of polynomial systems
under Voronoi-based loss functions. More recently, Nguyen et al. (2024b;c) employed least-squares
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estimation to identify conditions under which expert functions are identifiable. Under these conditions,
the resulting estimation rates improve substantially.

Parameter-Efficient Fine-Tuning. Fine-tuning pre-trained foundational models (Dosovitskiy, 2020;
Liu et al., 2021; Kirillov et al., 2023) has become a widely adopted strategy for tackling downstream
tasks (Xin et al., 2024). While effective, full fine-tuning is resource-intensive, requiring updates
to all network parameters and the storage of a separate fine-tuned model for each task (Han et al.,
2024). To address these challenges, researchers have increasingly focused on parameter-efficient
fine-tuning (PEFT) methods. These methods can be categorized into partial tuning, extra module,
and prompt tuning. Partial tuning freezes most of the backbone, fine-tuning only a subset, such as
linear heads or a few layers (Mahajan et al., 2018; Chen et al., 2021; He et al., 2022). Extra module
methods add trainable parameters to the backbone, such as side structures (Zhang et al., 2020),
residual MLP modules in Transformer layers (Houlsby et al., 2019; Cai et al., 2020), or low-rank
weight updates (Hu et al., 2021). Despite their promise, partial tuning and extra module methods
often face limitations that restrict their applicability. First, they may fail to achieve performance
comparable to full fine-tuning (Mahajan et al., 2018; Chen et al., 2021; Jia et al., 2022; He et al.,
2023). Second, some methods rely on specific architectural modifications (Rebuffi et al., 2017; Cai
et al., 2020; Zhang et al., 2020), limiting their generalizability across different backbone architectures.

Prompting Methods. Prompt tuning (Lester et al., 2021), initially proposed for language tasks,
offers a simpler yet effective alternative by introducing learnable parameters to the input sequence
of backbone models, updating only these parameters during fine-tuning (Lester et al., 2021; Jia
et al., 2022; Le et al., 2025b;a). Despite its simplicity, prompt tuning has demonstrated significant
performance gains. Recently, visual prompt tuning has emerged as a promising paradigm in PEFT
techniques for computer vision. Current advancements in visual prompt tuning focus on engineering
improvements, such as minimizing parameter usage (Han et al., 2023) and broadening applicability
to diverse tasks (Yao et al., 2023; Sohn et al., 2023; Yao et al., 2024). However, the theoretical foun-
dations of prompt-based methods remain underexplored. For instance, He et al. (2021) investigated
the relationship between prompt tuning and adapter methods, while Le et al. (2024) analyzed these
techniques within the context of MoE models. Furthermore, Petrov et al. (2023) highlighted the
limitations of prompting, showing that it cannot alter relative attention patterns and instead biases
attention layer outputs in a fixed direction.

Adaptive Prompting. A growing body of work investigates adaptive prompting strategies for visual
prompt tuning (Zhou et al., 2022). Several approaches employ meta-learning or clustering techniques
to tailor prompts to specific downstream datasets. In particular, Huang et al. (2023) and Kim et al.
(2023) cluster the downstream data and assign cluster-specific prompts based on the ViT’s initial
input representation, X(0). Similarly, recent prompt-pool methods (Wang et al., 2022; Kim et al.,
2024) first forward the input image through an encoder network to obtain a [CLS] representation,
which is then used to select or generate prompts at every attention layer. In all these cases, the prompt
experts effectively become functions of the first-layer input, X(0), rather than of the current layer
input, X(l).

Our proposed method, VAPT, instead generates prompts at each layer conditioned on the layer-specific
representation, X(l). This layer-wise adaptation follows directly from our theoretical framework,
which establishes a connection between MoE and VPT and implies that both the experts and their
gating functions should depend on X(l). This perspective enables a more principled and analytically
grounded examination of model behavior. Importantly, the motivation for VAPT stems from the
functional role of prompt experts and their distinction from pre-trained experts, rather than from a
purely empirical desire to assign different prompts to different inputs.

Moreover, while some adaptive prompting approaches rely on heuristics or complex image-to-prompt
transformations that make their effects difficult to interpret (Huang et al., 2024; Xiao et al., 2025),
VAPT adopts a simple yet effective formulation. This design choice leads to the clean expert
definitions in Equations (13) and (14), and supports a rigorous theoretical analysis without sacrificing
empirical performance—an aspect largely absent in prior work.

Most recently, Zeng et al. (2025) explicitly introduce MoE components into the Transformer archi-
tecture, including new routing modules for sparse prompt activation. In contrast, our analysis in
Section 3 shows that an implicit MoE structure is already embedded in existing visual prompt tuning
frameworks. Consequently, VAPT does not require additional architectural components or routing
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mechanisms. Instead, it refines the formulation of prompt experts within this inherent implicit MoE
structure. In essence, VAPT enhances the expressive capacity of the underlying prompt experts while
leaving the backbone architecture unchanged.

D IMPLEMENTATION DETAILS
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Figure 3: Dataset examples for all classification tasks evaluated

Dataset Specifications. Table 4 provides a summary of the statistics and details of the classification
datasets evaluated in this paper. Figure 3 presents image examples from all 24 datasets. Following Jia
et al. (2022), each FGVC dataset is randomly split into 90% train and 10% val, with the val set
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Table 4: Specifications of the datasets used in our experiments, which include 24 datasets from two
benchmarks: FGVC and VTAB-1K (Zhai et al., 2019).

Dataset Description # Classes Train Validation Test
Fine-grained visual recognition tasks (FGVC)

CUB-200-2011 (Wah et al., 2011) Fine-grained recognition of bird species 200 5,394 600 5,794
NABirds (Van Horn et al., 2015) Fine-grained recognition of bird species 55 21,536 2,393 24,633
Oxford Flowers (Nilsback & Zisserman, 2008) Fine-grained recognition of flower species 102 1,020 1,020 6,149
Stanford Dogs (Khosla et al., 2011) Fine-grained recognition of dog species 120 10,800 1,200 8,580
Stanford Cars (Gebru et al., 2017) Fine-grained recognition of car 196 7,329 815 8,041

Visual Task Adaptation Benchmark (VTAB-1K)

CIFAR-100 (Krizhevsky et al., 2009)

Natural

100

800/1000 200

10,000
Caltech101 (Fei-Fei et al., 2006) 102 6,084
DTD (Cimpoi et al., 2014) 47 1,880
Flowers102 (Nilsback & Zisserman, 2008) 102 6,149
Pets (Parkhi et al., 2012) 37 3,669
SVHN (Netzer et al., 2011) 10 26,032
Sun397 (Xiao et al., 2010) 397 21,750

Patch Camelyon (Veeling et al., 2018)

Specialized

2

800/1000 200

32,768
EuroSAT (Helber et al., 2019) 10 5,400
Resisc45 (Cheng et al., 2017) 45 6,300
Retinopathy (Graham, 2015) 5 42,670

Clevr/count (Johnson et al., 2017)

Structured

8

800/1000 200

15,000
Clevr/distance (Johnson et al., 2017) 6 15,000
DMLab (Beattie et al., 2016) 6 22,735
KITTI/distance (Geiger et al., 2013) 4 711
dSprites/loc (Matthey et al., 2017) 16 73,728
dSprites/ori (Matthey et al., 2017) 16 73,728
SmallNORB/azi (LeCun et al., 2004) 18 12,150
SmallNORB/ele (LeCun et al., 2004) 9 12,150

used for hyperparameter tuning. For VTAB-1K, we use an 800-200 split for tuning, and we train on
all available data for the final evaluation.

Pre-trained Backbone Specifications. This study explores two primary groups of Vision Trans-
former (ViT) models. The first group comprises conventional ViT architectures (Dosovitskiy, 2020),
including ViT-Base, ViT-Large, and ViT-Huge, pre-trained on the large-scale ImageNet-21K (Deng
et al., 2009) dataset. The second group focuses on self-supervised models, specifically Masked
Autoencoders (MAE) (He et al., 2022) and Momentum Contrast v3 (MoCo v3) (Chen et al., 2021),
both pre-trained on ImageNet-1K. Unless otherwise specified, we use ViT-B/16 with supervised
pre-training on ImageNet-21K dataset by default.

Augmentation. During training, we employ standard image augmentation techniques. For the five
FGVC datasets, images are normalized using ImageNet mean and standard deviation, followed by
random resized cropping to 224× 224 and random horizontal flipping. For VTAB-1k, images are
directly resized to 224× 224.

Hyperparameters. We use the val set of each dataset to find the optimal prompt length Np, kernel
size K, and hidden dimension r of the feature projector. Following Jia et al. (2022), the search range
for Np is {1, 5, 10, 50, 100, 200}. Given the relatively small resolution of our feature map Ximg

(e.g., 14× 14 for ViT), the kernel size K is selected from {2, 3, 4}. For the hidden dimension r, we
explore the range {4, 8, 16, 32, 64, 128, 256}. To identify the optimal learning rate and weight decay,
we perform a grid search, consistent with Mahajan et al. (2018); Jia et al. (2022). The learning rate
is searched within {50, 25, 10, 5, 2.5, 1, 0.5, 0.25, 0.1, 0.05}, while the weight decay is chosen from
{0.01, 0.001, 0.0001, 0.0}. We adopt the batch size settings of Jia et al. (2022), using values of 64
and 128. The models are optimized with SGD for 100 epochs, employing a cosine decay learning
rate schedule with 10 warm-up epochs.

Reproducibility. Our method, VAPT, is implemented in PyTorch (Paszke et al., 2019). All experi-
mental workflows, including training and evaluation, were conducted on NVIDIA A100-40GB GPUs.
The entire implementation will be made openly available to ensure reproducibility and facilitate
future research.
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Table 5: VTAB-1K Natural per-task results for ViT-B/16 supervised pre-trained on ImageNet-
21K. “Number of Wins” in [·] denotes the number of wins relative to full fine-tuning. “Tuned/Total”
represents the percentage of parameters tuned for each task. The highest accuracy among all
approaches except Full is highlighted in bold.

ViT-B/16 (Dosovitskiy, 2020) VTAB-1K (Zhai et al., 2019) Natural [7]
(85.8M) CIFAR-100 Caltech101 DTD Flowers102 Pets SVHN Sun397 Mean

Full (Iofinova et al., 2022) 68.9 87.7 64.3 97.2 86.9 87.4 38.8 75.88
Linear (Iofinova et al., 2022) 63.4 85.0 63.2 97.0 86.3 36.6 51.0 68.93 [1]
Partial-1 (Yosinski et al., 2014) 66.8 85.9 62.5 97.3 85.5 37.6 50.6 69.44 [2]
MLP-2 (Chen et al., 2020) 63.2 84.8 60.5 97.6 85.9 34.1 47.8 67.70 [2]
MLP-3 (Chen et al., 2020) 63.8 84.7 62.3 97.4 84.7 32.5 49.2 67.80 [2]
MLP-5 (Chen et al., 2020) 59.3 84.4 59.9 96.1 84.4 30.9 46.8 65.98 [1]
MLP-9 (Chen et al., 2020) 53.1 80.5 53.9 95.1 82.6 24.4 43.7 61.90 [1]

Sidetune (Zhang et al., 2020) 60.7 60.8 53.6 95.5 66.7 34.9 35.3 58.21 [0]
Bias (Rebuffi et al., 2017) 72.8 87.0 59.2 97.5 85.3 59.9 51.4 73.30 [3]
Adapter-256 (Cai et al., 2020) 74.1 86.1 63.2 97.7 87.0 34.6 50.8 70.50 [4]
Adapter-64 (Cai et al., 2020) 74.2 85.8 62.7 97.6 87.2 36.3 50.9 70.65 [4]
Adapter-8 (Cai et al., 2020) 74.2 85.7 62.7 97.8 87.2 36.4 50.7 70.67 [4]

VPT-Shallow (Jia et al., 2022) 77.7 86.9 62.6 97.5 87.3 74.5 51.2 76.81 [4]
- Tuned / Total (%) 0.18 0.10 0.04 0.27 0.08 0.19 0.36 0.17

VPT-Deep (Jia et al., 2022) 78.8 90.8 65.8 98.0 88.3 78.1 49.6 78.48 [6]
- Tuned / Total (%) 0.20 0.20 0.15 0.10 0.04 0.54 0.41 0.23

E2VPT (Han et al., 2023) 78.6 89.4 67.8 98.2 88.5 85.3 52.3 80.01 [6]
- Tuned / Total (%) 0.22 0.19 0.12 0.11 0.05 0.24 0.43 0.19

VAPT (Ours) 80.8 ± (0.15) 91.9 ± (0.46) 69.7 ± (0.63) 98.8 ± (0.05) 89.2 ± (0.05) 86.7 ± (0.42) 52.9 ± (0.15) 81.43 [6]
- Tuned / Total (%) 0.15 0.16 0.11 0.13 0.07 0.20 0.42 0.18

Table 6: VTAB-1K Specialized per-task results for ViT-B/16 supervised pre-trained on ImageNet-
21K. “Number of Wins” in [·] denotes the number of wins relative to full fine-tuning. “Tuned/Total”
represents the percentage of parameters tuned for each task. The highest accuracy among all
approaches except Full is highlighted in bold.

ViT-B/16 (Dosovitskiy, 2020) VTAB-1K (Zhai et al., 2019) Specialized [4]
(85.8M) Patch Camelyon EuroSAT Resisc45 Retinopathy Mean

Full (Iofinova et al., 2022) 79.7 95.7 84.2 73.9 83.36
Linear (Iofinova et al., 2022) 78.5 87.5 68.6 74.0 77.16 [1]
Partial-1 (Yosinski et al., 2014) 78.6 89.8 72.5 73.3 78.53 [0]
MLP-2 (Chen et al., 2020) 74.3 88.8 67.1 73.2 75.86 [0]
MLP-3 (Chen et al., 2020) 77.0 88.0 70.2 56.1 72.83 [0]
MLP-5 (Chen et al., 2020) 73.7 87.2 64.8 71.5 74.31 [0]
MLP-9 (Chen et al., 2020) 78.5 83.0 60.2 72.3 73.49 [0]

Sidetune (Zhang et al., 2020) 58.5 87.7 65.2 61.0 68.12 [0]
Bias (Rebuffi et al., 2017) 78.7 91.6 72.9 69.8 78.25 [0]
Adapter-256 (Cai et al., 2020) 76.3 88.0 73.1 70.5 76.98 [0]
Adapter-64 (Cai et al., 2020) 76.3 87.5 73.7 70.9 77.10 [0]
Adapter-8 (Cai et al., 2020) 76.9 89.2 73.5 71.6 77.80 [0]

VPT-Shallow (Jia et al., 2022) 78.2 92.0 75.6 72.9 79.66 [0]
- Tuned / Total (%) 0.01 0.05 0.09 0.01 0.04

VPT-Deep (Jia et al., 2022) 81.8 96.1 83.4 68.4 82.43 [2]
- Tuned / Total (%) 1.06 1.07 0.15 0.02 0.57

E2VPT (Han et al., 2023) 82.5 96.8 84.8 73.6 84.43 [3]
- Tuned / Total (%) 0.20 0.29 0.12 0.07 0.17

VAPT (Ours) 84.4 ± (0.72) 96.5 ± (0.09) 85.1 ± (0.46) 74.5 ± (0.32) 85.13 [4]
- Tuned / Total (%) 0.30 0.35 0.09 0.06 0.20

E ADDITIONAL EXPERIMENTS

E.1 PER-TASK RESULTS FOR VTAB-1K AND FGVC

Table 5, Table 6, Table 7, and Table 8 provide per-task results across 24 classification tasks evaluated
in Table 1. All results are averaged of three runs using different initialization seeds, with standard
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Table 7: VTAB-1K Structured per-task results for ViT-B/16 supervised pre-trained on ImageNet-
21K. “Number of Wins” in [·] denotes the number of wins relative to full fine-tuning. “Tuned/Total”
represents the percentage of parameters tuned for each task. The highest accuracy among all
approaches except Full is highlighted in bold.

ViT-B/16 (Dosovitskiy, 2020) VTAB-1K (Zhai et al., 2019) Structured [8]
Clevr/ Clevr/ KITTI/ dSprites/ dSprites/ SmallNORB/ SmallNORB/(85.8M) count distance DMLab distance location orientation azimuth elevation

Mean

Full (Iofinova et al., 2022) 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 47.64
Linear (Iofinova et al., 2022) 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 26.84 [0]
Partial-1 (Yosinski et al., 2014) 41.5 34.3 33.9 61.0 31.3 32.8 16.3 22.4 34.17 [0]
MLP-2 (Chen et al., 2020) 45.2 31.6 31.8 55.7 30.9 24.6 16.6 23.3 32.47 [0]
MLP-3 (Chen et al., 2020) 47.8 32.8 32.3 58.1 12.9 21.2 15.2 24.8 30.62 [0]
MLP-5 (Chen et al., 2020) 50.8 32.3 31.5 56.4 7.5 20.8 14.4 20.4 29.23 [0]
MLP-9 (Chen et al., 2020) 47.5 27.9 28.9 54.0 6.2 17.7 10.8 16.2 26.15 [0]

Sidetune (Zhang et al., 2020) 27.6 22.6 31.3 51.7 8.2 14.4 9.8 21.8 23.41 [0]
Bias (Rebuffi et al., 2017) 61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1 44.09 [2]
Adapter-256 (Cai et al., 2020) 45.7 37.4 31.2 53.2 30.3 25.4 13.8 22.1 32.39 [0]
Adapter-64 (Cai et al., 2020) 42.9 39.9 30.4 54.5 31.9 25.6 13.5 21.4 32.51 [0]
Adapter-8 (Cai et al., 2020) 45.2 41.8 31.1 56.4 30.4 24.6 13.2 22.0 33.09 [0]

VPT-Shallow (Jia et al., 2022) 50.5 58.6 40.5 67.1 68.7 36.1 20.2 34.1 46.98 [4]
- Tuned / Total (%) 0.10 0.18 0.09 0.09 0.10 0.10 0.19 0.19 0.13

VPT-Deep (Jia et al., 2022) 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 54.98 [8]
- Tuned / Total (%) 0.54 2.11 1.07 0.54 0.12 0.55 2.12 2.11 1.14

E2VPT (Han et al., 2023) 71.7 61.2 47.9 75.8 80.8 48.1 31.7 41.9 57.39 [8]
- Tuned / Total (%) 0.34 0.65 0.44 0.36 0.10 0.38 1.14 0.66 0.51

VAPT (Ours) 74.8 ± (1.70) 63.6 ± (0.36) 50.0 ± (0.74) 77.2 ± (0.72) 86.1 ± (0.24) 48.3 ± (0.89) 33.8 ± (0.95) 40.9 ± (2.29) 59.34 [8]
- Tuned / Total (%) 0.20 0.39 0.31 0.38 0.08 0.35 0.60 0.75 0.38

Table 8: FGVC per-task results for ViT-B/16 supervised pre-trained on ImageNet-21K. “Number
of Wins” in [·] denotes the number of wins relative to full fine-tuning. “Tuned/Total” represents the
percentage of parameters tuned for each task. The highest accuracy among all approaches except Full
is highlighted in bold.

ViT-B/16 (Dosovitskiy, 2020) FGVC [5]
(85.8M) CUB-200-2011 NAbirds Oxford Flowers Stanford Dogs Stanford Cars Mean

Full (Iofinova et al., 2022) 87.3 82.7 98.8 89.4 84.5 88.54
Linear (Iofinova et al., 2022) 85.3 75.9 97.9 86.2 51.3 79.32 [0]
Partial-1 (Yosinski et al., 2014) 85.6 77.8 98.2 85.5 66.2 82.63 [0]
MLP-2 (Chen et al., 2020) 85.7 77.2 98.2 85.4 54.9 80.28 [0]
MLP-3 (Chen et al., 2020) 85.1 77.3 97.9 84.9 53.8 79.80 [0]
MLP-5 (Chen et al., 2020) 84.2 76.7 97.6 84.8 50.2 78.71 [0]
MLP-9 (Chen et al., 2020) 83.2 76.0 96.2 83.7 47.6 77.31 [0]

Sidetune (Zhang et al., 2020) 84.7 75.8 96.9 85.8 48.6 78.35 [0]
Bias (Rebuffi et al., 2017) 88.4 84.2 98.8 91.2 79.4 88.41 [3]
Adapter-256 (Cai et al., 2020) 87.2 84.3 98.5 89.9 68.6 85.70 [2]
Adapter-64 (Cai et al., 2020) 87.1 84.3 98.5 89.8 68.6 85.67 [2]
Adapter-8 (Cai et al., 2020) 87.3 84.3 98.4 88.8 68.4 85.46 [1]

VPT-Shallow (Jia et al., 2022) 86.7 78.8 98.4 90.7 68.7 84.62 [1]
- Tuned / Total (%) 0.31 0.54 0.23 0.20 0.26 0.31

VPT-Deep (Jia et al., 2022) 88.5 84.2 99.0 90.2 83.6 89.11 [4]
- Tuned / Total (%) 0.29 1.02 0.14 1.17 2.27 0.98

E2VPT (Han et al., 2023) 89.1 84.6 99.1 90.5 82.8 89.22 [4]
- Tuned / Total (%) 0.32 0.65 0.15 0.88 1.27 0.65

VAPT (Ours) 89.7 ± (0.12) 84.6 ± (0.06) 99.1 ± (0.04) 91.7 ± (0.05) 82.8 ± (0.53) 89.58 [4]
- Tuned / Total (%) 0.36 0.79 0.19 0.53 2.04 0.78

deviation error bars included. Compared to VPT and other commonly used PEFT methods, VAPT
demonstrates consistently superior performance across a variety of downstream tasks while utilizing
fewer parameters.

E.2 PER-TASK RESULTS ON MAE AND MOCO V3

Tables 9, 10, and 11 provide per-task results for MAE (He et al., 2022), as summarized in Table 2.
Similarly, Tables 12, 13, and 14 present per-task results for MoCo v3 (Chen et al., 2021), which are
also summarized in Table 2.
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Table 9: VTAB-1K Natural per-task results for ViT-B/16 pre-trained on MAE (He et al., 2022).
“Number of Wins” in [·] denotes comparisons relative to full fine-tuning. “Tuned/Total” is the per-
centage of parameters tuned for each task. The highest accuracy among all approaches is highlighted
in bold.

ViT-B/16 (Dosovitskiy, 2020) VTAB-1K (Zhai et al., 2019) Natural [7]
(85.8M) CIFAR-100 Caltech101 DTD Flowers102 Pets SVHN Sun397 Mean

Full (Iofinova et al., 2022) 24.6 84.2 56.9 72.7 74.4 86.6 15.8 59.31
VAPT (Ours) 34.4 89.7 63.1 74.2 73.8 55.1 24.3 59.23 [5]

- Tuned / Total (%) 0.17 0.16 0.10 0.13 0.07 0.12 0.40 0.16

Table 10: VTAB-1K Specialized Per-Task Results for ViT-B/16 Pre-trained on MAE (He et al.,
2022). “Number of Wins” in [·] denotes comparisons relative to full fine-tuning. “Tuned/Total” is
the percentage of parameters tuned for each task. The highest accuracy among all approaches is
highlighted in bold.

ViT-B/16 (Dosovitskiy, 2020) VTAB-1K (Zhai et al., 2019) Specialized [4]
(85.8M) Patch Camelyon EuroSAT Resisc45 Retinopathy Mean

Full (Iofinova et al., 2022) 81.8 94.0 72.3 70.6 79.68
VAPT (Ours) 78.9 91.6 78.7 73.7 80.73 [2]

- Tuned / Total (%) 0.36 0.31 0.15 0.03 0.21

Table 11: VTAB-1K Structured Per-Task Results for ViT-B/16 Pre-trained on MAE (He et al.,
2022). “Number of Wins” in [·] denotes comparisons relative to full fine-tuning. “Tuned/Total” is
the percentage of parameters tuned for each task. The highest accuracy among all approaches is
highlighted in bold.

ViT-Base/16 (Dosovitskiy, 2020) VTAB-1K (Zhai et al., 2019) Structured [8]
Clevr/ Clevr/ KITTI/ dSprites/ dSprites/ SmallNORB/ SmallNORB/(85.8M) count distance DMLab distance location orientation azimuth elevation

Mean

Full (Iofinova et al., 2022) 67.0 59.8 45.2 75.3 72.5 47.5 30.2 33.0 53.82
VAPT (Ours) 57.9 57.1 37.3 68.2 82.6 11.5 21.6 41.7 47.24 [2]

- Tuned / Total (%) 0.18 0.65 0.33 0.35 0.09 0.36 0.66 0.67 0.41

Table 12: VTAB-1K Natural Per-Task Results for ViT-B/16 Pre-trained on MoCo v3 (Chen et al.,
2021). “Number of Wins” in [·] denotes comparisons relative to full fine-tuning. “Tuned/Total” is
the percentage of parameters tuned for each task. The highest accuracy among all approaches is
highlighted in bold.

ViT-B/16 (Dosovitskiy, 2020) VTAB-1K (Zhai et al., 2019) Natural [7]
(85.8M) CIFAR-100 Caltech101 DTD Flowers102 Pets SVHN Sun397 Mean

Full (Iofinova et al., 2022) 57.6 91.0 64.6 91.6 79.9 89.8 29.1 71.95
VAPT (Ours) 74.5 92.0 69.5 93.2 88.2 84.6 41.8 77.69 [6]

- Tuned / Total (%) 0.15 0.20 0.09 0.34 0.09 0.10 0.40 0.20

E.3 STATISTICAL SIGNIFICANCE TESTS

To determine whether VAPT consistently surpasses competing PEFT methods across the 19 VTAB
tasks, we conducted a one-tailed paired Wilcoxon signed-rank test (Wilcoxon, 1992) for each VAPT-
baseline comparison. The null hypothesis H0 for each comparison was that the median difference in
performance scores between VAPT and the baseline method is zero. The alternative hypothesis H1

was that VAPT performs better than the baseline method. As reported in Table 15, all resulting p-
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Table 13: VTAB-1K Specialized Per-Task Results for ViT-B/16 Pre-trained on MoCo v3 (Chen
et al., 2021). “Number of Wins” in [·] denotes comparisons relative to full fine-tuning. “Tuned/Total”
is the percentage of parameters tuned for each task. The highest accuracy among all approaches is
highlighted in bold.

ViT-B/16 (Dosovitskiy, 2020) VTAB-1K (Zhai et al., 2019) Specialized [4]
(85.8M) Patch Camelyon EuroSAT Resisc45 Retinopathy Mean

Full (Iofinova et al., 2022) 85.1 96.4 83.1 74.2 84.72
VAPT (Ours) 80.6 95.9 83.9 75.4 83.95 [2]

- Tuned / Total (%) 0.36 0.34 0.11 0.03 0.21

Table 14: VTAB-1K Structured Per-Task Results for ViT-B/16 Pre-trained on MoCo v3 (Chen
et al., 2021). “Number of Wins” in [·] denotes comparisons relative to full fine-tuning. “Tuned/Total”
is the percentage of parameters tuned for each task. The highest accuracy among all approaches is
highlighted in bold.

ViT-Base/16 (Dosovitskiy, 2020) VTAB-1K (Zhai et al., 2019) Structured [8]
Clevr/ Clevr/ KITTI/ dSprites/ dSprites/ SmallNORB/ SmallNORB/(85.8M) count distance DMLab distance location orientation azimuth elevation

Mean

Full (Iofinova et al., 2022) 55.2 56.9 44.6 77.9 63.8 49.0 31.5 36.9 51.98
VAPT (Ours) 74.2 65.3 48.4 73.8 88.0 51.4 32.5 52.3 60.74 [7]

- Tuned / Total (%) 0.20 0.69 0.05 0.36 0.08 0.20 0.66 0.65 0.36

values were below the 0.05 significance level, indicating that the observed performance improvements
of VAPT are statistically significant.

E.4 DIFFERENT BACKBONE SCALES
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Figure 4: Comparison of VAPT and VPT on CUB-200-2011 across different backbone scales.

In Figure 4, we compare VAPT and VPT on the CUB-200-2011 dataset (Wah et al., 2011) using pre-
trained backbones of varying scales (ViT-Base, ViT-Large, and ViT-Huge). The results demonstrate
that VAPT consistently surpasses VPT as the model size increases. Notably, with the ViT-Huge back-
bone, VAPT achieves up to a 1.3% improvement over VPT. These findings highlight the scalability
and effectiveness of VAPT compared to VPT as model size grows.
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Table 15: Wilcoxon signed-rank test evaluating whether VAPT significantly outperforms other
methods across 19 VTAB tasks. The results show that VAPT is statistically significantly better than
other baselines (p < 0.05).

Method Full Bias Adapter VPT E2VPT

p-value 5.7e-06 1.9e-06 1.9e-06 1.9e-06 0.0001

Table 16: Semantic segmentation results on ADE20K. All methods are evaluated with SETR (Zheng
et al., 2021) using ViT-L. The best mIoU scores among all methods but Full are bolded.

Method Full Head Bias VPT VAPT

mIoU 48.31 35.12 43.40 42.24 44.04

# params 318.31 13.18 13.46 15.60 15.29

E.5 SEMANTIC SEGMENTATION

To explore the potential generalizability of VAPT beyond visual classification, we evaluated its
performance on the semantic segmentation task. We report mIoU values in Table 16. Our observations
indicate that VAPT attains a higher mIoU than VPT while introducing fewer additional parameters.
Furthermore, VAPT remains competitive with other PEFT approaches. These findings highlight
VAPT’s strong generalizability across various computer vision tasks.

E.6 ABLATION STUDY

Table 17: Impact of Different Components in VAPT. Experiments were conducted on the VTAB-
1K benchmark. We used ViT-B/16 Supervised Pre-trained on ImageNet-21K as the backbone.
“Tuned/Total” is the percentage of parameters tuned for each task. Bold highlights the best results.

Components Tuned VTAB-1K (Zhai et al., 2019) Mean TotalChannel-wise Feature projector Sharing Projector / Total(%) Natural Specialized Structured

✓ ✓ ✓ 0.27 81.43 85.13 59.34 72.91
✓ ✓ 0.34 80.47 84.63 58.13 71.94

✓ 0.26 79.43 83.60 57.72 71.17
✓ ✓ 0.42 80.85 85.10 59.04 72.56

Impact of Different Components. We conducted ablation studies on the VTAB-1K benchmark (Zhai
et al., 2019) to evaluate the individual contributions of each component in VAPT. The results, presented
in Table 17, show that incorporating the channel-wise convolution layer increases the overall average
performance by 0.97%. This improvement highlights the benefit of explicitly encoding spatial
relationships in the feature map before it is processed by the token-wise projectors. Furthermore, the
channel-wise convolution layer reduces the overall parameter count by downsampling the feature
map from H ×W to H ′ ×W ′, where H ′ = H −K + 1 and W ′ = W −K + 1. Consequently, the
dimensionality for each token-wise projector is also reduced, leading to fewer parameters. When
the feature projector is removed, performance decreases; for instance, in VTAB-1K Natural, the
performance drops from 81.43% to 79.43%. This decrease highlights the importance of the feature
projector. Furthermore, our sharing mechanism for the feature projector not only reduces the number
of parameters but also facilitates knowledge transfer between layers, leading to improved performance.
Overall, combining all components yielded the best performance, with an average accuracy of 72.91%
on VTAB-1K.

Detailed Analysis of the Channel-wise Convolution Layer. We evaluated the effectiveness of
our channel-wise convolution layer by comparing its performance to that of a standard convolution
layer. We also explored alternative strategies for modeling spatial relationships, including an average
pooling layer (LeCun et al., 1998). Notably, average pooling can be considered a special case of
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Table 18: Detailed Analysis of Channel-wise Convolution. Experiments were conducted on the
VTAB-1K benchmark. We used ViT-B/16 Supervised Pre-trained on ImageNet-21K as the backbone.
“Tuned/Total” is the percentage of parameters tuned for each task. Bold highlights the best results.

Method Tuned VTAB-1K (Zhai et al., 2019) Mean Total/ Total(%) Natural Specialized Structured

Channel-wise Convolution 0.27 81.43 85.13 59.34 72.91
Standard Convolution 0.33 80.79 84.81 58.37 72.20
Average Pooling 0.27 81.30 85.02 58.41 72.45

our channel-wise convolution layer, where the kernel weights are fixed rather than learned. The
comparative results are presented in Table 18. Our channel-wise convolution layer not only reduces
the number of parameters compared to a standard convolution layer but also mitigates overfitting,
thereby improving overall performance. Furthermore, it surpasses the average pooling layer; for
instance, on VTAB-1K Structured, we achieve a 0.93% performance gain. This improvement is
attributed to the greater flexibility of our channel-wise convolution layer compared to that of average
pooling.
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Figure 5: Ablation on prompt length Np. Results are reported on 3 datasets, each corresponding to a
distinct VTAB subgroup. The dashed line indicates the best results of VPT.
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Figure 6: Ablation on kernel size K. Results are reported on 3 datasets, each corresponding to a
distinct VTAB subgroup. The dashed line indicates the best results of VPT.

Robustness to Different Hyperparameters. We systematically evaluated the influence of key
hyperparameters, including prompt length Np, kernel size K, and hidden dimension r, by conducting
experiments on three representative VTAB-1K tasks: Sun397 (Natural), Retinopathy (Specialized),
and Clevr/distance (Structured). The results are shown in Figures 5, 6, and 7. As depicted, the optimal
hyperparameters vary across tasks. Nevertheless, VAPT consistently achieves higher performance
than VPT across a range of these hyperparameters. Notably, even with only a single prompt, VAPT
maintains its advantage over VPT.

Linear Activation in the Feature Projector. As shown in Appendix B, VAPT preserves its optimal
sample efficiency even when the activation function σ in the feature projector (see Equation (11)) is
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Figure 7: Ablation on hidden dimension r. Results are reported on 3 datasets, each corresponding to
a distinct VTAB subgroup. The dashed line indicates the best results of VPT.
Table 19: Linear activation in the feature projector. Experiments were conducted on the VTAB-
1K benchmark. We used ViT-B/16 Supervised Pre-trained on ImageNet-21K as the backbone.
“Tuned/Total” is the percentage of parameters tuned for each task. Bold highlights the best results.

Method Tuned VTAB-1K (Zhai et al., 2019) Mean Total/ Total(%) Natural Specialized Structured

VPT 0.69 78.48 82.43 54.98 69.43
VAPTlinear 0.27 80.89 84.93 59.28 72.64
VAPTnon−linear 0.27 81.43 85.13 59.34 72.91

replaced by a linear identity function. To substantiate this theoretical result, we report the correspond-
ing performance in Table 19, where σ is removed. The results demonstrate that the linear version
of VAPT remains competitive with the non-linear variant. Notably, it still outperforms VPT by a
substantial margin (e.g., 4.30% on the VTAB-1K Structured task), confirming both the theoretical
and empirical robustness of our approach.

E.7 COMPUTATIONAL COST

Table 20: Comparison of FLOPs and MACs for VAPT and VPT. The experiments were conducted
on FGVC benchmark. We used ViT-B/16 Supervised Pre-trained on ImageNet-21K as the backbone.

Metric Method Stanford Cars CUB-200-2011 Oxford Flowers NABirds Stanford Dogs

FLOPs (GFLOPS) VAPT 73.67 (↑ 0.18%) 37.04 (↑ 0.11%) 36.10 (↑ 0.08%) 44.61 (↑ 0.31%) 54.30 (↑ 0.59%)
VPT 73.54 37.00 36.07 44.47 53.98

MACs (GMACs) VAPT 36.80 (↑ 0.16%) 18.51 (↑ 0.11%) 18.03 (↑ 0.06%) 22.29 (↑ 0.32%) 27.13 (↑ 0.59%)
VPT 36.74 18.49 18.02 22.22 26.97

One primary concern when designing prompts that adapt to the input is the associated computational
overhead. Although VAPT outperforms VPT, one notable advantage of VPT is its simplicity, as its
prompts remain fixed regardless of the input. To examine these trade-offs, we compare both the
performance and computational costs of the two methods. Table 20 reports these costs, measured
in FLOPs (GFLOPs) and MACs (GMACs) for VAPT and VPT across five FGVC datasets. VAPT
incurs only a slight increase in computational cost, with FLOPs increasing by 0.18% for Stanford
Cars and ranging between 0.06% and 0.59% across other datasets. A similar pattern is observed for
MACs. These modest increases are outweighed by the significant performance gains. Notably, VAPT
also employs fewer parameters than VPT. Overall, these findings highlight the efficiency of VAPT,
delivering robust performance improvements at a minimal additional computational cost.

E.8 ADVERSARIAL ROBUSTNESS

To evaluate the adversarial robustness of VAPT, we apply the Projected Gradient Descent (PGD)
attack (Madry et al., 2017) to VTAB-1K CIFAR-100 test samples. As illustrated in Figure 8, model
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Figure 8: Comparison of VAPT and VPT performance on VTAB-1K CIFAR-100 under PGD
adversarial attack.

Table 21: Image-Caption Retrieval results on ImageNet. We compare VAPT against VPT using a
CLIP ViT-B/32 backbone in a 16-shot setting. The models are evaluated using Recall@100 on the
validation set. Bold highlights the best results.

Method
Recall@100 (%)

Image → Text Text → Image Average

VPT 79.05 74.80 76.93
VAPT (Ours) 82.66 77.72 80.19

Improvement +3.61 +2.92 +3.26

performance degrades significantly under attack, which is expected given the limited training data
and the absence of adversarial-specific training methods (e.g., adversarial fine-tuning). Despite this,
VAPT consistently outperforms VPT under adversarial conditions, suggesting that it may confer some
robustness benefits. However, these findings are preliminary, and further experiments are required to
substantiate the observed trends.

E.9 INTERPRETIVE VISUALIZATIONS

To facilitate a deeper understanding of our method, we provide visualizations to illustrate the
advantages of VAPT. Specifically, we use GradCAM (Selvaraju et al., 2017) to generate attention
maps by computing the gradients of a target concept with respect to the model’s final layer. Figure 9
presents examples from five VTAB-1K datasets, namely Sun397, SVHN, Resisc45, Clevr/count,
and KITTI/distance, comparing heatmaps generated by VAPT and VPT. These visualizations enable
us to examine the regions of the input data to which each technique directs the model’s focus. We
observe that VAPT can localize relevant image regions more accurately than VPT. For instance, in the
Sun397 dataset, while VPT struggles to capture the complete structure of an object, VAPT succeeds
in identifying and highlighting its key features. This enhanced localization indicates VAPT’s stronger
ability to capture salient visual patterns. Consequently, VAPT not only improves performance over
VPT but also enhances the interpretability of the model by providing more coherent and precise
visual explanations.

E.10 MULTI-MODAL EXPERIMENTS

To investigate the generalizability of Visual Adaptive Prompt Tuning beyond uni-modal visual recog-
nition, we extend our evaluation to a multi-modal setting, specifically image-caption retrieval. This
experiment assesses whether the enhanced functional expressiveness of adaptive prompt experts can
facilitate better alignment between visual representations and textual semantics within a contrastive
learning framework.
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Figure 9: GradCAM visualization of VPT and VAPT on five VTAB-1K datasets. Red regions indicate
areas of higher class activation. From left to right: the input image after standard data augmentation,
the GradCAM output from VPT, and the GradCAM output from VAPT.

Experimental Setup. We perform image-text retrieval on the ImageNet dataset, enriched with
rich natural language descriptions as proposed by Fang et al. (2022). We employ the pre-trained
CLIP ViT-B/32 model (Radford et al., 2021) as the backbone architecture. Consistent with our main
experiments, VAPT is applied exclusively to the visual encoder, while the text encoder remains frozen.
We adopt a few-shot learning protocol, utilizing 16 samples per class, which amounts to 16,000 total
training samples across the 1,000 ImageNet classes. Both the baseline VPT and our VAPT method
utilize a prompt length of Np = 10, resulting in a marginal parameter increase of only 0.19% relative
to the backbone. The models are optimized using SGD with a learning rate of 0.01 and a global batch
size of 64. The training duration is set to 2 epochs, utilizing the first epoch for warmup, and the
objective function is the standard symmetric cross-entropy loss used in CLIP pre-training. Evaluation
is conducted on 10,000 samples from the ImageNet validation set, reporting Recall@100 (R@100)
for both Image-to-Text (I→T) and Text-to-Image (T→I) retrieval directions.

Results. The empirical results, summarized in Table 21, demonstrate that VAPT significantly
outperforms VPT in the few-shot cross-modal retrieval task. VAPT achieves an average R@100
of 80.19%, surpassing the VPT baseline by 3.26%. This performance gain is consistent across
both retrieval directions, with improvements of 3.61% for Image-to-Text and 2.92% for Text-to-
Image retrieval. These findings suggest that the input-conditional nature of VAPT prompt experts
allows the visual encoder to dynamically emphasize features that correlate more effectively with
natural language descriptions. Consequently, VAPT achieves superior alignment in the multi-modal
embedding space compared to static prompting strategies, without necessitating extensive parameter
updates or modification of the text encoder.

F USE OF LARGE LANGUAGE MODELS

Large language models were employed solely for editorial purposes, including grammar correction
and spelling refinement. They were not used for content generation, data analysis, or the design of
experiments.
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