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ABSTRACT

Offline reinforcement learning requires reconciling two conflicting aims: learning
a policy that improves over the behavior policy that collected the dataset, while at
the same time minimizing the deviation from the behavior policy so as to avoid
errors due to distributional shift. This trade-off is critical, because most current
offline reinforcement learning methods need to query the value of unseen actions
during training to improve the policy, and therefore need to either constrain these
actions to be in-distribution, or else regularize their values. We propose a new
offline RL method that never needs to evaluate actions outside of the dataset, but
still enables the learned policy to improve substantially over the best behavior in
the data through generalization. The main insight in our work is that, instead of
evaluating unseen actions from the latest policy, we can approximate the policy
improvement step implicitly by treating the state value function as a random vari-
able, with randomness determined by the action (while still integrating over the
dynamics to avoid excessive optimism), and then taking a state conditional upper
expectile of this random variable to estimate the value of the best actions in that
state. This leverages the generalization capacity of the function approximator to
estimate the value of the best available action at a given state without ever directly
querying a Q-function with this unseen action. Our algorithm alternates between
fitting this upper expectile value function and backing it up into a Q-function,
without any explicit policy. Then, we extract the policy via advantage-weighted
behavioral cloning, which also avoids querying out-of-sample actions. We dub
our method implicit Q-learning (IQL). IQL is easy to implement, computationally
efficient, and only requires fitting an additional critic with an asymmetric L2 loss.
IQL demonstrates the state-of-the-art performance on D4RL, a standard bench-
mark for offline reinforcement learning. We also demonstrate that IQL achieves
strong performance fine-tuning using online interaction after offline initialization.

1 INTRODUCTION

Offline reinforcement learning (RL) addresses the problem of learning effective policies entirely
from previously collected data, without online interaction (Fujimoto et al., 2019; Lange et al., 2012).
This is very appealing in a range of real-world domains, from robotics to logistics and operations
research, where real-world exploration with untrained policies is costly or dangerous, but prior data
is available. However, this also carries with it major challenges: improving the policy beyond the
level of the behavior policy that collected the data requires estimating values for actions other than
those that were seen in the dataset, and this, in turn, requires trading off policy improvement against
distributional shift, since the values of actions that are too different from those in the data are unlikely
to be estimated accurately. Prior methods generally address this by either constraining the policy to
limit how far it deviates from the behavior policy (Fujimoto et al., 2019; Wu et al., 2019; Fujimoto
& Gu, 2021; Kumar et al., 2019; Nair et al., 2020; Wang et al., 2020), or by regularizing the learned
value functions to assign low values to out-of-distribution actions (Kumar et al., 2020; Kostrikov
et al., 2021). Nevertheless, this imposes a trade-off between how much the policy improves and how
vulnerable it is to misestimation due to distributional shift. Can we devise an offline RL method that
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avoids this issue by never needing to directly query or estimate values for actions that were not seen
in the data?

In this work, we start from an observation that in-distribution constraints widely used in prior work
might not be sufficient to avoid value function extrapolation, and we ask whether it is possible to
learn an optimal policy with in-sample learning, without ever querying the values of any unseen
actions. The key idea in our method is to approximate an upper expectile of the distribution over
values with respect to the distribution of dataset actions for each state. We alternate between fitting
this value function with expectile regression, and then using it to compute Bellman backups for
training the Q-function. We show that we can do this simply by modifying the loss function in a
SARSA-style TD backup, without ever using out-of-sample actions in the target value. Once thisQ-
function has converged, we extract the corresponding policy using advantage-weighted behavioral
cloning. This approach does not require explicit constraints or explicit regularization of out-of-
distribution actions during value function training, though our policy extraction step does implicitly
enforce a constraint, as discussed in prior work on advantage-weighted regression (Peters & Schaal,
2007; Peng et al., 2019; Nair et al., 2020; Wang et al., 2020).

Our main contribution is implicit Q-learning (IQL), a new offline RL algorithm that avoids ever
querying values of unseen actions while still being able to perform multi-step dynamic program-
ming updates. Our method is easy to implement by making a small change to the loss function in
a simple SARSA-like TD update and is computationally very efficient. Furthermore, our approach
demonstrates the state-of-the-art performance on D4RL, a popular benchmark for offline reinforce-
ment learning. In particular, our approach significantly improves over the prior state-of-the-art on
challenging Ant Maze tasks that require to “stitch” several sub-optimal trajectories. Finally, we
demonstrate that our approach is suitable for finetuning; after initialization from offline RL, IQL is
capable of improving policy performance utilizing additional interactions.

2 RELATED WORK

A significant portion of recently proposed offline RL methods are based on either constrained or reg-
ularized approximate dynamic programming (e.g., Q-learning or actor-critic methods), with the con-
straint or regularizer serving to limit deviation from the behavior policy. We will refer to these meth-
ods as “multi-step dynamic programming” algorithms, since they perform true dynamic program-
ming for multiple iterations, and therefore can in principle recover the optimal policy if provided
with high-coverage data. The constraints can be implemented via an explicit density model (Wu
et al., 2019; Fujimoto et al., 2019; Kumar et al., 2019; Ghasemipour et al., 2021), implicit divergence
constraints (Nair et al., 2020; Wang et al., 2020; Peters & Schaal, 2007; Peng et al., 2019; Siegel
et al., 2020), or by adding a supervised learning term to the policy improvement objective (Fujimoto
& Gu, 2021). Several works have also proposed to directly regularize the Q-function to produce
low values for out-of-distribution actions (Kostrikov et al., 2021; Kumar et al., 2020; Fakoor et al.,
2021). Our method is also a multi-step dynamic programming algorithm. However, in contrast to
prior works, our method completely avoids directly querying the learned Q-function with unseen
actions during training, removing the need for any constraint during this stage, though the subse-
quent policy extraction, which is based on advantage-weighted regression (Peng et al., 2019; Nair
et al., 2020), does apply an implicit constraint. However, this policy does not actually influence
value function training.

In contrast to multi-step dynamic programming methods, several recent works have proposed meth-
ods that rely either on a single step of policy iteration, fitting the value function or Q-function of
the behavior policy and then extracting the corresponding greedy policy (Peng et al., 2019; Brand-
fonbrener et al., 2021; Gulcehre et al., 2021), or else avoid value functions completely and utilize
behavioral cloning-style objectives (Chen et al., 2021). We collectively refer to these as “single-step”
approaches. These methods avoid needing to query unseen actions as well, since they either use no
value function at all, or learn the value function of the behavior policy. Although these methods are
simple to implement and effective on the MuJoCo locomotion tasks in D4RL, we show that such
single-step methods perform very poorly on more complex datasets in D4RL, which require combin-
ing parts of suboptimal trajectories (“stitching”). Prior multi-step dynamic programming methods
perform much better in such settings, as does our method. We discuss this distinction in more detail
in Section 5.1. Our method also shares the simplicity and computational efficiency of single-step
approaches, providing an appealing combination of the strengths of both types of methods.
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Our method is based on estimating the characteristics of a random variable. Several recent works
involve approximating statistical quantities of the value function distribution. In particular, quan-
tile regression (Koenker & Hallock, 2001) has been previously used in reinforcement learning to
estimate the quantile function of a state-action value function (Dabney et al., 2018b;a; Kuznetsov
et al., 2020). Although our method is related, in that we perform expectile regression, our aim is
not to estimate the distribution of values that results from stochastic transitions, but rather estimate
expectiles of the state value function with respect to random actions. This is a very different statistic:
our aim is not to determine how the Q-value can vary with different future outcomes, but how the
Q-value can vary with different actions while averaging together future outcomes due to stochastic
dynamics. While prior work on distributional RL can also be used for offline RL, it would suffer
from the same action extrapolation issues as other methods, and would require similar constraints or
regularization, while our method does not.

3 PRELIMINARIES

The RL problem is formulated in the context of a Markov decision process (MDP)
(S,A, p0(s), p(s′|s, a), r(s, a), γ), where S is a state space, A is an action space, p0(s) is a dis-
tribution of initial states, p(s′|s, a) is the environment dynamics, r(s, a) is a reward function, and γ
is a discount factor. The agent interacts with the MDP according to a policy π(a|s). The goal is to
obtain a policy that maximizes the cumulative discounted returns:

π∗ = argmax
π

Eπ

[ ∞∑
t=0

γtr(st, at)|s0 ∼ p0(·), at ∼ π(·|st), st+1 ∼ p(·|st, at)

]
.

Off-policy RL methods based on approximate dynamic programming typically utilize a state-action
value function (Q-function), referred to as Q(s, a), which corresponds to the discounted returns
obtained by starting from the state s and action a, and then following the policy π.

Offline reinforcement learning. In contrast to online (on-policy or off-policy) RL methods, of-
fline RL uses previously collected data without any additional data collection. Like many recent
offline RL methods, our work builds on approximate dynamic programming methods that minimize
temporal difference error, according to the following loss:

LTD(θ) = E(s,a,s′)∼D[(r(s, a) + γmax
a′

Qθ̂(s
′, a′)−Qθ(s, a))2], (1)

where D is the dataset, Qθ(s, a) is a parameterized Q-function, Qθ̂(s, a) is a target network (e.g.,
with soft parameters updates defined via Polyak averaging), and the policy is defined as π(s) =
argmaxaQθ(s, a). Most recent offline RL methods modify either the value function loss (above) to
regularize the value function in a way that keeps the resulting policy close to the data, or constrain
the argmax policy directly. This is important because out-of-distribution actions a′ can produce
erroneous values for Qθ̂(s

′, a′) in the above objective, often leading to overestimation as the policy
is defined to maximize the (estimated) Q-value.

4 IMPLICIT Q-LEARNING

In this work, we aim to entirely avoid querying out-of-sample (unseen) actions in our TD loss. We
start by considering fittedQ evaluation with a SARSA-style objective which has been considered in
prior work on Offline Reinforcement Learning (Brandfonbrener et al., 2021; Gulcehre et al., 2021).
This objective aims to learn the value of the dataset policy πβ (also called the behavior policy):

L(θ) = E(s,a,s′,a′)∼D[(r(s, a) + γQθ̂(s
′, a′)−Qθ(s, a))2]. (2)

This objective never queries values for out-of-sample actions, in contrast to Eqn. (1). One specific
property of this objective that is important for this work is that it uses mean squared error (MSE) that
fits Qθ(s, a) to predict the mean statistics of the TD targets. Thus, if we assume unlimited capacity
and no sampling error, the optimal parameters should satisfy

Qθ∗(s, a) ≈ r(s, a) + γEs′∼p(·|s,a)
a′∼πβ(·|s)

[Qθ̂(s
′, a′)]. (3)

Prior work (Brandfonbrener et al., 2021; Gulcehre et al., 2021; Peng et al., 2019) has proposed
directly using this objective to learnQπβ , and then train the policy πψ to maximizeQπβ . This avoids
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Figure 1: Left: The asymmetric squared loss used for expectile regression. τ = 0.5 corresponds
to the standard mean squared error loss, while τ = 0.9 gives more weight to positives differences.
Center: Expectiles of a normal distribution. Right: an example of estimating state conditional ex-
pectiles of a two-dimensional random variable. Each x corresponds to a distribution over y. We can
approximate a maximum of this random variable with expectile regression: τ = 0.5 correspond to
the conditional mean statistics of the distribution, while τ ≈ 1 approximates the maximum operator
over in-support values of y.

any issues with out-of-distribution actions, since the TD loss only uses dataset actions. However,
while this procedure works well empirically on simple MuJoCo locomotion tasks in D4RL, we
will show that it performs very poorly on more complex tasks that benefit from multi-step dynamic
programming. In our method, which we derive next, we retain the benefits of using this SARSA-like
objective, but modify it so that it allows us to perform multi-step dynamic programming and learn a
near-optimal Q-function.

Our method will perform a Q-function update similar to Eqn. (2), but we will aim to estimate the
maximum Q-value over actions that are in the support of the data distribution. Crucially, we will
show that it is possible to do this without ever querying the learned Q-function on out-of-sample
actions by utilizing expectile regression. Formally, the value function we aim to learn is given by:

L(θ) = E(s,a,s′)∼D[(r(s, a) + γ max
a′∈A

s.t. πβ(a
′|s′)>0

Qθ̂(s
′, a′)−Qθ(s, a))2]. (4)

Our algorithm, implicit Q-Learning (IQL), aims to estimate this objective while evaluating the Q-
function only on the state-action pairs in the dataset. To this end, we propose to fit Qθ(s, a) to
estimate state-conditional expectiles of the target values, and show that specific expectiles approxi-
mate the maximization defined above. In Section 4.4 we show that this approach performs multi-step
dynamic programming in theory, and in Section 5.1 we show that it does so in practice.

4.1 EXPECTILE REGRESSION

Practical methods for estimating various statistics of a random variable have been thoroughly studies
in applied statistics and econometrics. The τ ∈ (0, 1) expectile of some random variable X is
defined as a solution to the asymmetric least squares problem:

argmin
mτ

Ex∼X [Lτ2(x−mτ )], where Lτ2(u) = |τ − 1(u < 0)|u2.

That is, for τ > 0.5, this asymmetric loss function downweights the contributions of x values
smaller than mτ while giving more weights to larger values (see Fig. 1, left). Expectile regression is
closely related to quantile regression (Koenker & Hallock, 2001), which is a popular technique for
estimating quantiles of a distribution widely used in reinforcement learning (Dabney et al., 2018b;a)
1. The quantile regression loss is defined as an asymmetric ℓ1 loss.

1Our method could also be derived with quantiles, but since we are not interested in learning all of the
expectiles/quantiles, unlike prior work (Dabney et al., 2018b;a), it is more convenient to estimate a single
expectile because this involves a simple modification to the MSE loss that is already used in standard RL
methods. We found it to work somewhat better than quantile regression with its corresponding ℓ1 loss.

4



We can also use this formulation to predict expectiles of a conditional distribution:

argmin
mτ (x)

E(x,y)∼D[L
τ
2(y −mτ (x))].

Fig. 1 (right) illustrates conditional expectile regression on a simple two-dimensional distribution.
Note that we can optimize this objective with stochastic gradient descent. It provides unbiased
gradients and is easy to implement with standard machine learning libraries.

4.2 LEARNING THE VALUE FUNCTION WITH EXPECTILE REGRESSION

Expectile regression provides us with a powerful framework to estimate statistics of a random vari-
able beyond mean regression. We can use expectile regression to modify the policy evaluation
objective in Eqn. (2) to predict an upper expectile of the TD targets that approximates the maximum
of r(s, a) + γQθ̂(s

′, a′) over actions a′ constrained to the dataset actions, as in Eqn. (4). This leads
to the following expectile regression objective:

L(θ) = E(s,a,s′,a′)∼D[L
τ
2(r(s, a) + γQθ̂(s

′, a′)−Qθ(s, a))].
However, this formulation has a significant drawback. Instead of estimating expectiles just with
respect to the actions in the support of the data, it also incorporates stochasticity that comes from the
environment dynamics s′ ∼ p(·|s, a). Therefore, a large target value might not necessarily reflect
the existence of a single action that achieves that value, but rather a “lucky” sample that happened
to have transitioned into a good state. We resolve this by introducing a separate value function that
approximates an expectile only with respect to the action distribution, leading to the following loss:

LV (ψ) = E(s,a) ∼D[L
τ
2(Qθ̂(s, a)− Vψ(s))]. (5)

We can then use this estimate to update the Q-functions with the MSE loss, which averages over the
stochasticity from the transitions and avoids the “lucky” sample issue mentioned above:

LQ(θ) = E(s,a,s′) ∼D[(r(s, a) + γVψ(s
′)−Qθ(s, a))2]. (6)

Note that these losses do not use any explicit policy, and only utilize actions from the dataset for
both objectives, similarly to SARSA-style policy evaluation. In Section 4.4, we will show that this
procedure recovers the optimal Q-function under some assumptions.

4.3 POLICY EXTRACTION AND ALGORITHM SUMMARY

Algorithm 1 Implicit Q-learning

Initialize parameters ψ, θ, θ̂, ϕ.
TD learning (IQL):
for each gradient step do

ψ ← ψ − λV∇ψLV (ψ)
θ ← θ − λQ∇θLQ(θ)
θ̂ ← (1− α)θ̂ + αθ

end for
Policy extraction (AWR):
for each gradient step do

ϕ← ϕ− λπ∇ϕLπ(ϕ)
end for

While our modified TD learning procedure learns an approx-
imation to the optimal Q-function, it does not explicitly rep-
resent the corresponding policy, and therefore requires a sep-
arate policy extraction step. We aim for a simple method for
policy extraction. As before, we aim to avoid using out-of-
samples actions. Therefore, we extract the policy with advan-
tage weighted regression (Peters & Schaal, 2007; Peng et al.,
2019) previously successfully used for policy extraction in Of-
fline RL (Wang et al., 2018; Nair et al., 2020; Brandfonbrener
et al., 2021):

Lπ(ϕ) = E(s,a) ∼D[exp(β(Qθ̂(s, a)− Vψ(s))) log πϕ(a|s)],
(7)

where β ∈ [0,∞) is an inverse temperature. As shown in
prior work, this objective learns a policy that maximizes the
Q-values subject to a distribution constraint (Peters & Schaal,
2007; Peng et al., 2019; Nair et al., 2020).

Our final algorithm consists of two stages. First, we fit the value function and Q, performing a num-
ber of gradient updates alternating between Eqn. (5) and (6). Second, we perform stochastic gradient
descent on Eqn. (7). For both steps, we use a version of clipped double Q-learning (Fujimoto et al.,
2018), taking a minimum of two Q-functions for V -function and policy updates. We summarize our
final method in Algorithm 1. Note that the policy does not influence the value function in any way,
and therefore extraction could be performed either concurrently or after TD learning. Concurrent
learning provides a way to use IQL with online finetuning, as we discuss in Section 5.3.
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4.4 ANALYSIS

In this section, we will show that IQL can recover the optimal value function under the dataset
support constraints. First, we prove a simple lemma that we will then use to show how our approach
can enable learning the optimal value function.

Lemma 1. Let X be a real-valued random variable with a bounded support and supremum of the
support is x∗. Then,

lim
τ→1

mτ = x∗

Proof Sketch. One can show that expectiles of a random variable have the same supremum x∗.
Moreover, for all τ1 and τ2 such that τ1 < τ2, we get mτ1 ≤ mτ2 . Therefore, the limit follows from
the properties of bounded monotonically non-decreasing functions.

In the following theorems, we show that under certain assumptions, our method indeed approximates
the optimal state-action value Q∗ and performs multi-step dynamical programming. We first prove
a technical lemma relating different expectiles of the Q-function, and then derive our main result
regarding the optimality of our method.

For the sake of simplicity, we introduce the following notation for our analysis. Let Eτx∼X [x] be a
τ th expectile of X (e.g., E0.5 corresponds to the standard expectation). Then, we define Vτ (s) and
Qτ (s, a), which correspond to optimal solutions of Eqn. 5 and 6 correspondingly, recursively as:

Vτ (s) = Eτa∼πβ(·|s)[Qτ (s, a)],

Qτ (s, a) = r(s, a) + γEs′∼p(·|s,a)[Vτ (s′)].

Lemma 2. For all s, τ1 and τ2 such that τ1 < τ2 we get

Vτ1(s) ≤ Vτ2(s).

Proof. The proof follows the policy improvement proof (Sutton & Barto, 2018). See Appendix A.

Corollary 2.1. For any τ and s we have

Vτ (s) ≤ max
a∈A

s.t. πβ(a|s)>0

Q∗(s, a)

where Vτ (s) is defined as above and Q∗(s, a) is an optimal state-action value function constrained
to the dataset and defined as

Q∗(s, a) = r(s, a) + γEs′∼p(·|s,a)

 max
a′∈A

s.t. πβ(a
′|s′)>0

Q∗(s′, a′)

 .

Proof. The proof follows from the observation that convex combination is smaller than maximum.

Theorem 3.
lim
τ→1

Vτ (s) = max
a∈A

s.t. πβ(a|s)>0

Q∗(s, a).

Proof. Follows from combining Lemma 1 and Corollary 2.1.

Therefore, for a larger value of τ < 1, we get a better approximation of the maximum. On the other
hand, it also becomes a more challenging optimization problem. Thus, we treat τ as a hyperparam-
eter. Due to the property discussed in Theorem 3 we dub our method implicit Q-learning (IQL).
We also emphasize that our value learning method defines the entire spectrum of methods between
SARSA (τ = 0.5) and Q-Learning (τ → 1).
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Figure 2: Evaluation of our algorithm on a toy umaze environment (a). When the static dataset
is heavily corrupted by suboptimal actions, one-step policy evaluation results in a value function
that degrades to zero far from the rewarding states too quickly (c). Our algorithm aims to learn
a near-optimal value function, combining the best properties of SARSA-style evaluation with the
ability to perform multi-step dynamic programming, leading to value functions that are much closer
to optimality (shown in (b)) and producing a much better policy (d).

5 EXPERIMENTAL EVALUATION
Our experiments aim to evaluate our method comparatively, in contrast to prior offline RL meth-
ods, and in particular to understand how our approach compares both to single-step methods and
multi-step dynamic programming approaches. We will first demonstrate the benefits of multi-step
dynamic programming methods, such as ours, in contrast to single-step methods, showing that on
some problems this difference can be extremely large. We will then compare IQL with state-of-the-
art single-step and multi-step algorithms on the D4RL (Fu et al., 2020) benchmark tasks, studying
the degree to which we can learn effective policies using only the actions in the dataset. We examine
domains that contain near-optimal trajectories, where single-step methods perform well, as well as
domains with no optimal trajectories at all, which require multi-step dynamic programming. Finally,
we will study how IQL compares to prior methods when finetuning with online RL starting from an
offline RL initialization.

5.1 THE DIFFERENCE BETWEEN ONE-STEP POLICY IMPROVEMENT AND IQL
We first use a simple maze environment to illustrate the importance of multi-step dynamic program-
ming for offline RL. The maze has a u-shape, a single start state, and a single goal state (see Fig. 2a).
The agent receives a reward of 10 for entering the goal state and zero reward for all other transitions.
With a probability of 0.25, the agent transitions to a random state, and otherwise to the commanded
state. The dataset consists of 1 optimal trajectory and 99 trajectories with uniform random actions.
Due to a short horizon of the problem, we use γ = 0.9.

Fig. 2 (c, d) illustrates the difference between single-step methods , in this case represented by
Onepstep RL (Brandfonbrener et al., 2021; Wang et al., 2018; Gulcehre et al., 2021) and IQL with
τ = 0.95. Although states closer to the high reward state will still have higher values, these values
decay much faster as we move further away than they would for the optimal value function, and
the resulting policy is highly suboptimal. Since IQL (d) performs iterative dynamic programming,
it correctly propagates the signal, and the values are no longer dominated by noise. The resulting
value function closely matches the true optimal value function (b).

5.2 COMPARISONS ON OFFLINE RL BENCHMARKS

Next, we evaluate our approach on the D4RL benchmark in comparison to prior methods (see Ta-
ble 1). The MuJoCo tasks in D4RL consist of the Gym locomotion tasks, the Ant Maze tasks,
and the Adroit and Kitchen robotic manipulation environments. Some prior works, particularly
those proposing one-step methods, focus entirely on the Gym locomotion tasks. However, these
tasks include a significant fraction of near-optimal trajectories in the dataset. In contrast, the Ant
Maze tasks, especially the medium and large ones, contain very few or no near-optimal trajectories,
making them very challenging for one-step methods. These domains require “stitching” parts of
suboptimal trajectories that travel between different states to find a path from the start to the goal of
the maze (Fu et al., 2020). As we will show, multi-step dynamic programming is essential in these
domains. The Adroit and Kitchen tasks are comparatively less discriminating, and we found that
most RL methods perform similarly to imitation learning in these domains (Florence et al., 2021).
We therefore focus our analysis on the Gym locomotion and Ant Maze domains, but include full
Adroit and Kitchen results in Appendix B for completeness.
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Table 1: Averaged normalized scores on MuJoCo locomotion and Ant Maze tasks. Our method outper-
forms prior methods on the challenging Ant Maze tasks, which require dynamic programming, and is
competitive with the best prior methods on the locomotion tasks.

Dataset BC 10%BC BCQ DT ABM AWAC Onestep RL TD3+BC CQL IQL (Ours)
halfcheetah-m-v2 42.6 42.5 47.0 42.6±0.1 53.6 43.5 48.4±0.1 48.3±0.3 44.0±5.4 47.4±0.2
hopper-m-v2 52.9 56.9 56.7 67.6±1.0 0.7 57.0 59.6±2.5 59.3±4.2 58.5±2.1 66.2±5.7
walker2d-m-v2 75.3 75.0 72.6 74.0±1.4 0.5 72.4 81.8±2.2 83.7±2.1 72.5±0.8 78.3± 8.7
halfcheetah-m-r-v2 36.6 40.6 40.4 36.6±0.8 50.5 40.5 38.1±1.3 44.6±0.5 45.5±0.5 44.2±1.2
hopper-m-r-v2 18.1 75.9 53.3 82.7±7.0 49.6 37.2 97.5±0.7 60.9±18.8 95.0±6.4 94.7±8.6
walker2d-m-r-v2 26.0 62.5 52.1 66.6±3.0 53.8 27.0 49.5±12.0 81.8±5.5 77.2±5.5 73.8±7.1
halfcheetah-m-e-v2 55.2 92.9 89.1 86.8±1.3 18.5 42.8 93.4±1.6 90.7±4.3 91.6±2.8 86.7±5.3
hopper-m-e-v2 52.5 110.9 81.8 107.6±1.8 0.7 55.8 103.3±1.9 98.0±9.4 105.4±6.8 91.5±14.3
walker2d-m-e-v2 107.5 109.0 109.5 108.1±0.2 3.5 74.5 113.0±0.4 110.1±0.5 108.8±0.7 109.6±1.0
locomotion-v2 total 466.7 666.2 602.5 672.6±16.6 231.4 450.7 684.6±22.7 677.4±44.5 698.5±31.0 692.4±52.1
antmaze-u-v0 54.6 62.8 89.8 59.2 59.9 56.7 64.3 78.6 74.0 87.5 ± 2.6
antmaze-u-d-v0 45.6 50.2 83.0 53.0 48.7 49.3 60.7 71.4 84.0 62.2 ± 13.8
antmaze-m-p-v0 0.0 5.4 15.0 0.0 0.0 0.0 0.3 10.6 61.2 71.2 ± 7.3
antmaze-m-d-v0 0.0 9.8 0.0 0.0 0.5 0.7 0.0 3.0 53.7 70.0 ± 10.9
antmaze-l-p-v0 0.0 0.0 0.0 0.0 0. 0.0 0.0 0.2 15.8 39.6±5.8
antmaze-l-d-v0 0.0 6.0 0.0 0.0 0.0 1.0 0.0 0.0 14.9 47.5±9.5
antmaze-v0 total 100.2 134.2 187.8 112.2 109.1 107.7 125.3 163.8 303.6 378.0±49.9

total 566.9 800.4 790.3 784.8 340.5 558.4 809.9 841.2 1002.1 1070.4±102.0

kitchen-v0 total 154.5 - - - - - - - 144.6 159.8±22.6
adroit-v0 total 104.5 - - - - - - - 93.6 118.1±30.7

total+kitchen+adroit 825.9 - - - - - - - 1240.3 1348.3±155.3
runtime 10m 10m 960m 20m 20m∗ 20m 80m 20m

∗: Note that it is challenging to compare one-step and multi-step methods directly. Also, Brandfonbrener et al. (2021) reports results for a set of hyperparameters, such as batch
and network size, that is significantly different from other methods. We report results for the original hyperparameters and runtime for a comparable set of hyperparameters.
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Figure 3: Left: Estimating a larger expectile τ is
crucial for antmaze tasks that require dynamical
programming (’stitching’) (left). Right: Clipped
double Q-Learning is crucial for learning values
for τ = 0.9 (right).

Comparisons and baselines. We compare to
methods that are representative of both multi-
step dynamic programming and one-step ap-
proaches. In the former category, we compare
to CQL (Kumar et al., 2020), TD3+BC (Fu-
jimoto & Gu, 2021), and AWAC (Nair et al.,
2020). In the latter category, we compare
to Onestep RL (Brandfonbrener et al., 2021)
and Decision Transformers (Chen et al., 2021).
We obtained the Decision Transformers results
on Ant Maze subsets of D4RL tasks using
the author-provided implementation2 and fol-
lowing authors instructions communicated over
email. We obtained results for TD3+BC and
Onestep RL (Exp. Weight) directly from the au-
thors. Note that Chen et al. (2021) and Brand-
fonbrener et al. (2021) incorrectly report results
for some prior methods, such as CQL, using the
“-v0” environments. These generally produce
lower scores than the “-v2” environments that
these papers use for their own methods. We use
the “-v2” environments for all methods to ensure a fair comparison, resulting in higher values for
CQL. Because of this fix, our reported CQL scores are higher than all other prior methods. We
obtained results for “-v2” datasets using an author-suggested implementation.3 On the Gym loco-
motion tasks (halfcheetah, hopper, walker2d), we find that IQL performs comparably to the best
performing prior method, CQL. On the more challenging Ant Maze task, IQL outperforms CQL,
and outperforms the one-step methods by a very large margin.
Runtime. Our approach is also computationally faster than the baselines (see Table 1). For the
baselines, we measure runtime for our reimplementations of the methods in JAX (Bradbury et al.,
2018) built on top of JAXRL (Kostrikov, 2021), which are typically faster than the original imple-
mentations. For example, the original implementation of CQL takes more than 4 hours to perform
1M updates, while ours takes only 80 minutes. Even so, IQL still requires about 4x less time than
our reimplementation of CQL on average, and is comparable to the fastest prior one-step methods.

2https://github.com/kzl/decision-transformer
3https://github.com/young-geng/CQL
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We did not reimplement Decision Transformers due to their complexity and report runtime of the
original implementation.

Effect of τ hyperparameter. We also demonstrate that it is crucial to compute a larger expectile
on tasks that require “stitching” (see Fig. 3). With larger values of τ , our method approximates
Q-learning better, leading to better performance on the Ant Maze tasks.

5.3 ONLINE FINE-TUNING AFTER OFFLINE RL

Dataset AWAC CQL IQL (Ours)
antmaze-umaze-v0 56.7 → 59.0 70.1 → 99.4 86.7 → 96.0
antmaze-umaze-diverse-v0 49.3 → 49.0 31.1 → 99.4 75.0 → 84.0
antmaze-medium-play-v0 0.0 → 0.0 23.0 → 0.0 72.0 → 95.0
antmaze-medium-diverse-v0 0.7 → 0.3 23.0 → 32.3 68.3 → 92.0
antmaze-large-play-v0 0.0 → 0.0 1.0 → 0.0 25.5 → 46.0
antmaze-large-diverse-v0 1.0 → 0.0 1.0 → 0.0 42.6 → 60.7
antmaze-v0 total 107.7 → 108.3 151.5 → 231.1 370.1 → 473.7
pen-binary-v0 44.6 → 70.3 31.2 → 9.9 37.4 → 60.7
door-binary-v0 1.3 → 30.1 0.2 → 0.0 0.7 → 32.3
relocate-binary-v0 0.8 → 2.7 0.1 → 0.0 0.0 → 31.0
hand-v0 total 46.7 → 103.1 31.5 → 9.9 38.1 → 124.0
total 154.4 → 211.4 182.8 → 241.0 408.2 → 597.7

Table 2: Online finetuning results showing the initial perfor-
mance after offline RL, and performance after 1M steps of on-
line RL. In all tasks, IQL is able to finetune to a significantly
higher performance than the offline initialization, with final per-
formance that is comparable to or better than the best of either
AWAC or CQL on all tasks except pen-binary-v0.

The policies obtained by offline
RL can often be improved with a
small amount of online interac-
tion. IQL is well-suited for on-
line fine-tuning for two reasons.
First, IQL has strong offline per-
formance, as shown in the pre-
vious section, which provides a
good initialization. Second, IQL
implements a weighted behav-
ioral cloning policy extraction
step, which has previously been
shown to allow for better on-
line policy improvement com-
pared to other types of offline
constraints (Nair et al., 2020).
To evaluate the finetuning capa-
bility of various RL algorithms,
we first run offline RL on each
dataset, then run 1M steps of online RL, and then report the final performance. We compare to
AWAC (Nair et al., 2020), which has been proposed specifically for online finetuning, and CQL (Ku-
mar et al., 2020), which showed the best performance among prior methods in our experiments in
the previous section. Exact experimental details are provided in Appendix C. We use the challenging
Ant Maze D4RL domains (Fu et al., 2020), as well as the high-dimensional dexterous manipulation
environments from Rajeswaran et al. (2018), which Nair et al. (2020) propose to use to study online
adaptation with AWAC. Results are shown in Table 2. On the Ant Maze domains, IQL significantly
outperforms both prior methods after online finetuning. CQL attains the second best score, while
AWAC performs comparatively worse due to much weaker offline initialization. On the dexterous
hand tasks, IQL performs significantly better than AWAC on relocate-binary-v0, comparably on
door-binary-v0, and slightly worse on pen-binary-v0, with the best overall score.

6 CONCLUSION

We presented implicit Q-Learning (IQL), a general algorithm for offline RL that completely avoids
any queries to values of out-of-sample actions during training while still enabling multi-step dy-
namic programming. To our knowledge, this is the first method that combines both of these fea-
tures. This has a number of important benefits. First, our algorithm is computationally efficient:
we can perform 1M updates on one GTX1080 GPU in less than 20 minutes. Second, it is sim-
ple to implement, requiring only minor modifications over a standard SARSA-like TD algorithm,
and performing policy extraction with a simple weighted behavioral cloning procedure resembling
supervised learning. Finally, despite the simplicity and efficiency of this method, we show that it at-
tains excellent performance across all of the tasks in the D4RL benchmark, matching the best prior
methods on the MuJoCo locomotion tasks, and exceeding the state-of-the-art performance on the
challenging ant maze environments, where multi-step dynamic programming is essential for good
performance.
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A PROOFS

A.1 PROOF OF LEMMA 2

Proof. We can rewrite Vτ1(s) as

Vτ1(s) = Eτ1a∼µ(·|s)[r(s, a) + γEs′∼p(·|s,a)[Vτ1(s′)]]

≤ Eτ2a∼µ(·|s)[r(s, a) + γEs′∼p(·|s,a)[Vτ1(s′)]]

= Eτ2a∼µ(·|s)[r(s, a) + γEs′∼p(·|s,a)Eτ1a′∼µ(·|s′)[r(s
′, a′) + γEs′′∼p(·|s′,a′)[Vτ1(s′′)]]

≤ Eτ2a∼µ(·|s)[r(s, a) + γEs′∼p(·|s,a)Eτ2a′∼µ(·|s′)[r(s
′, a′) + γEs′′∼p(·|s′,a′)[Vτ1(s′′)]]

= Eτ2a∼µ(·|s)[r(s, a) + γEs′∼p(·|s,a)Eτ2a′∼µ(·|s′)[r(s
′, a′) + γEs′′∼p(·|s′,a′)Eτ1a′′∼µ(·|s′′)[r(s

′′, a′′) + . . .]]

...
≤ Vτ2(s)

B EXPERIMENTAL DETAILS

Experimental details. For the MuJoCo locomotion tasks, we average mean returns overs 10 eval-
uation trajectories and 10 random seeds. For the Ant Maze tasks, we average over 100 evaluation
trajectories. We standardize MuJoCo locomotion task rewards by dividing by the difference of re-
turns of the best and worst trajectories in each dataset. Following the suggestions of the authors of
the dataset, we subtract 1 from rewards for the Ant Maze datasets. We use τ = 0.9 and β = 10.0
for Ant Maze tasks and τ = 0.7 and β = 3.0 for MuJoCo locomotion tasks. We use Adam opti-
mizer (Kingma & Ba, 2014) with a learning rate 3 · 10−4 and 2 layer MLP with ReLU activations
and 256 hidden units for all networks. We use cosine schedule for the actor learning rate. We param-
eterize the policy as a Gaussian distribution with a state-independent standard deviation. We update
the target network with soft updates with parameter α = 0.005. And following Brandfonbrener
et al. (2021) we clip exponentiated advantages to (−∞, 100]. We implemented our method in the
JAX (Bradbury et al., 2018) framework using the Flax (Heek et al., 2020) neural networks library.

Extended results on Locomotion and Ant Maze tasks. We present learning curves for MuJoCo
locomotion tasks in Fig. 4. We also present results on Locomotion and Ant Maze for different values
of τ in Fig. 5 and Table 3. We want to emphasize that τ = 0.5 corresponds to using the mean squared
error instead of expectile regression.

Results on Franca Kitchen and Adoit tasks. For Franca Kitchen and Adroit tasks we use τ = 0.7
and the inverse temperature β = 0.5. Due to the size of the dataset, we also apply Dropout (Srivas-
tava et al., 2014) with dropout rate of 0.1 to regularize the policy network. See complete results in
Table 4.

Table 3: Effect of τ . Fitting V (s) with mean squared error (τ = 0.5) is not sufficient to propagate
the signal through recursion and fails to solve more challenging medium and large tasks.

IQL w/ τ = 0.5 (MSE) IQL w/ τ = 0.7 IQL w/ τ = 0.9
antmaze-umaze-v0 44.2±7.2 87.0±2.3 87.5±2.6
antmaze-umaze-diverse-v0 53.6 ±12.7 57.2±11.9 62.2±13.8
antmaze-medium-play-v0 0.0±0.0 4.0±2.0 71.2 ±7.3
antmaze-medium-diverse-v0 0.0 ±0.0 2.6±1.4 70.0±10.9
antmaze-large-play-v0 0.0±0.0 0.2±0.4 39.6 ±5.8
antmaze-large-diverse-v0 0.0 ±0.0 1.2±1.6 47.5±9.5

total 97.8±19.9 152.2±19.6 378.0±49.9
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Figure 4: Learning curves for MuJoCo locomotion tasks.
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Figure 5: Results on Ant Maze for different values of τ . Note that τ = 0.5 corresponds to using the
mean squared error instead of expectile regression.
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Table 4: Evaluation on Franca Kitchen and Adroit tasks from D4RL

dataset BC BRAC-p BEAR Onestep RL CQL Ours
kitchen-complete-v0 65.0 0.0 0.0 - 43.8 62.5
kitchen-partial-v0 38.0 0.0 0.0 - 49.8 46.3
kitchen-mixed-v0 51.5 0.0 0.0 - 51.0 51.0
kitchen-v0 total 154.5 0.0 0.0 - 144.6 159.8
pen-human-v0 63.9 8.1 -1.0 - 37.5 71.5
hammer-human-v0 1.2 0.3 0.3 - 4.4 1.4
door-human-v0 2 -0.3 -0.3 - 9.9 4.3
relocate-human-v0 0.1 -0.3 -0.3 - 0.2 0.1
pen-cloned-v0 37 1.6 26.5 60.0 39.2 37.3
hammer-cloned-v0 0.6 0.3 0.3 2.1 2.1 2.1
door-cloned-v0 0.0 -0.1 -0.1 0.4 0.4 1.6
relocate-cloned-v0 -0.3 -0.3 -0.3 -0.1 -0.1 -0.2
adroit-v0 total 104.5 9.3 25.1 - 93.6 118.1
total 259 9.3 25.1 - 238.2 277.9

C FINETUNING EXPERIMENTAL DETAILS

For finetuning experiments, we first run offline RL for 1M gradient steps. Then we continue training
while collecting data actively in the environment and adding that data to the replay buffer, running 1
gradient update / environment step. All other training details are kept the same between the offline
RL phase and the online RL phase. For dextrous manipulation environments (Rajeswaran et al.,
2018), we use τ = 0.8 and β = 3.0, 25000 offline training steps, and add Gaussian noise with
standard deviation σ = 0.03 to the policy for exploration.

For baselines we compare to the original implementations of AWAC (Nair et al., 2020) and
CQL (Kumar et al., 2020). For AWAC we used https://github.com/rail-berkeley/
rlkit/tree/master/rlkit. We found AWAC to overfit heavily with too many offline gra-
dient steps, and instead used 25000 offline gradient steps as in the original paper. For the dex-
trous manipulation results, we report average return normalized from 0 to 100 for consistency, in-
stead of success rate at the final timestep, as reported in Nair et al. (2020). For CQL, we used
https://github.com/aviralkumar2907/CQL. Our reproduced results offline are worse
than the reported results, particularly on medium and large antmaze environments. We were not able
to improve these results after checking for discrepancies with the CQL paper authors and running
CQL with an alternative implementation (https://github.com/tensorflow/agents).
Thus, although for offline experiments (Table 1) we report results from the original paper, for fine-
tuning experiments we did not have this option and report our own results running CQL in Table 2.

D CONNECTIONS TO PRIOR WORK

In this section, we discuss how our approach is related to prior work on offline reinforcement learn-
ing. In particular, we discuss connections to BCQ Fujimoto et al. (2019).

Our batch constrained optimization objective is similar to BCQ (Fujimoto et al., 2019). In particular,
the authors of BCQ build on the Q-learning framework and define the policy as

π(s) = argmax
a

s.t.(s,a)∈D

Q(s, a). (8)

Note that in contrast to the standard Q-learning, maximization in Eqn. (8) is performed only over
the state-action pairs that appear in the dataset. In Fujimoto et al. (2019), these constraints are
implemented via fitting a generative model µ(·|s) on the dataset, sampling several candidate actions
from this generative model, and taking an argmax over these actions:

π(s) = argmax
{ai|ai∼µ(·|s),i=1...N}

Q(s, ai).

However, this generative model can still produce out-of-dataset actions that will lead to querying
undefined Q-values. Thus, our work introduces an alternative way to optimize this objective without
requiring an additional density model. Our approach avoids this issue by enforcing the hard con-
straints via estimating expectiles. Also, it is worth mentioning that a number of sampled actions N
in BCQ has similar properties to choosing a particular expectile τ in our approach.
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Note that our algorithm for optimal value approximation does not require an explicit policy, in con-
trast to other algorithms for offline reinforcement learning for continuous action spaces (Fujimoto
et al., 2019; Fujimoto & Gu, 2021; Wu et al., 2019; Kostrikov et al., 2021; Kumar et al., 2019; 2020).
Thus, we do not need to alternate between actor and critic updates, though with continuous actions,
we must still extract an actor at the end once the critic converges.
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