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ABSTRACT

Deepfake generation methods are evolving fast, making fake media harder to detect
and raising serious societal concerns. Most deepfake detection and dataset creation
research focuses on monolingual content, often overlooking the challenges of
multilingual and code-switched speech, where multiple languages are mixed within
the same discourse. Code-switching, especially between Arabic and English, is
common in the Arab world and is widely used in digital communication. This
linguistic mixing poses extra challenges for deepfake detection, as it can confuse
models trained mostly on monolingual data. To address this, we introduce ArEnAV,
the first large-scale Arabic-English audio-visual deepfake dataset featuring intra-
utterance code-switching, dialectal variation, and monolingual Arabic content.
It contains 387k videos and over 765 hours of real and fake videos. Our
dataset is generated using a novel pipeline integrating four Text-To-Speech and
two lip-sync models, enabling comprehensive analysis of multilingual multimodal
deepfake detection. We benchmark our dataset against existing monolingual and
multilingual datasets, state-of-the-art deepfake detection models, and a human
evaluation, highlighting its potential to advance deepfake research. The dataset and
code will be made public.

1 INTRODUCTION

Deepfake technologies, involving the artificial generation and manipulation of audio-visual content,
have rapidly advanced, significantly complicating the task of distinguishing real media from synthetic
creations. The potential misuse of deepfakes for misinformation, defamation, or impersonation
presents profound societal risks, driving substantial research into their detection. Although initial
deepfake research primarily focused on manipulating individual modalities, audio-only (Todisco et al.,
2019) or video-only (Jiang et al., 2020; Kwon et al., 2021; Li et al., 2020b), recent developments
increasingly consider joint manipulation of audio and visual streams for more realistic synthesis.

A significant gap remains in existing deepfake datasets (Table 1), which largely overlook multilingual
scenarios, particularly code-switching (CSW), despite its global prevalence among bilingual speakers.
In the Arab world, CSW is a prominent feature of daily communication, serving not only as a
linguistic tool but also as a marker of cultural identity and social context (Hamed et al., 2025). Arabic
speakers frequently alternate between Arabic and English within the same sentence, such as:
�
@Yg. ÑêÓ deepfake detection È@ ¨ñ

	
�ñÓ (The topic of deepfake detection is very important).

This challenge is compounded by the diglossic nature of Arabic (Ferguson, 1959), comprising of
two main varieties: Modern Standard Arabic (MSA) and Dialectal Arabic (DA). MSA functions as
a lingua franca across the Arab world and is primarily used in formal settings. DA, belonging to
each country, is used in everyday conversations and informal writing. Given that Arabic is one of
the most widely spoken languages worldwide, ranked fifth by number of Standard Arabic speakers
(Ethnologue, 2025), handling its diglossic variation and code-switching phenomena is essential for
building deepfake detection systems that address the linguistic diversity in real-world media content.

Recent studies provide compelling evidence of how common CSW is among Arabic speakers. The
ZAEBUC-Spoken corpus (Hamed et al., 2024) reveals that approximately 19% of spoken utterances
exhibit CSW, having an average of 44% English words. The corpus also highlights the presence
of diglossic CSW between Arabic variants. Similarly, the ArzEn corpus (Hamed et al., 2020)
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Figure 1: a) We show the data generation pipeline for ArEnAV dataset. In a) input videos are analysed
for audio, face, and text extraction. Using few-shot prompts with GPT-4.1-mini, CSW-based spoken
text manipulation is performed. This is followed by speech and face enactment generation. b-d) The
plots show the data splits and CSW distribution. Here is an example of CSW input and manipulated
text with translations in parentheses: ©	J�	

� hope (“We create hope.”) –> ©
	
J�

	
� fun (“We create fun.”)

demonstrates high CSW frequency, where 63% of utterances involve CSW with approximately 19%
of words being English. These findings highlight the extent to which Arabic-English CSW is not
merely an incidental phenomenon, but a widespread communicative strategy. Despite its ubiquity,
deepfake detection systems remain largely ill-equipped to handle such language alternation, focusing
predominantly on monolingual data. Addressing this important oversight, our work seeks to bridge
this critical gap by introducing the first Arabic-English CSW audio-visual deepfake dataset, thus
advancing the field toward more relevant detection systems. Our core contributions are as follows:

• Introduction of ArEnAV, the first large-scale Arabic-English audio-visual deepfake dataset
featuring intra-utterance code-switching and dialectal variation, including both bilingual and
diglossic switching across Modern Standard Arabic, Egyptian, Levantine, and Gulf dialects,
addressing a critical gap in multilingual deepfake research.

• A novel data generation pipeline tailored to English and Arabic (MSA and dialect-rich
content), integrating four TTS (Text to Speech) and two lip-sync models.

• A comprehensive analysis contrasting our dataset against existing monolingual and multilin-
gual datasets, existing state-of-the-art (SOTA) deepfake detection models, and a detailed
User Study, underscoring its unique difficulty in detection by models and humans alike.

Table 1: Details for publicly available deep-fake datasets in chronologically ascending order.
Cla: Binary classification, SL: Spatial localization, TL: Temporal localization, FS: Face swapping,
RE: Face reenactment, TTS: Text-to-speech, VC: Voice conversion.

Dataset Year Tasks Manip. Modality Method #Total Multilingual Code Switching

Google DFD (Nick & Andrew, 2019) 2019 Cla V FS 3,431 ✗ ✗
DFDC (Dolhansky et al., 2020b) 2020 Cla AV FS 128,154 ✗ ✗
DeeperForensics (Jiang et al., 2020) 2020 Cla V FS 60,000 ✗ ✗
Celeb–DF (Li et al., 2020b) 2020 Cla V FS 6,229 ✗ ✗
KoDF (Kwon et al., 2021) 2021 Cla V FS/RE 237,942 ✗ ✗
FakeAVCeleb (Khalid et al., 2022) 2021 Cla AV RE/FS 25,500+ ✗ ✗
ForgeryNet (He et al., 2021) 2021 SL/TL/Cla V Random FS/RE 221,247 ✗ ✗
ASVSpoof2021DF (Liu et al., 2023) 2021 Cla A TTS/VC 593,253 ✗ ✗
LAV–DF (Cai et al., 2022) 2022 TL/Cla AV Content-driven RE/TTS 136,304 ✗ ✗
DF–Platter (Narayan et al., 2023) 2023 Cla V FS 265 756 ✗ ✗
AV-1M (Cai et al., 2023a) 2023 TL/Cla AV Content-driven RE/TTS 1,146,760 ✗ ✗
PolyGlotFake (Hou et al., 2024) 2024 Cla AV RE/TTS/VC 15,238 ✓ ✗
Illusion (Thakral et al., 2025) 2025 Cla AV FS/RE/TTS 1,376,371 ✓ ✗
ArEnAV (Ours) 2025 Cla/TL AV Content Driven RE/TTS/VC 387,072 ✓ ✓
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2 RELATED WORK

Early deepfake research was predominantly monolingual and modality-specific. Initial significant
contributions included video manipulation techniques such as FaceSwap and Face2Face as introduced
by Thies et al. (2020), which led to seminal datasets like FaceForensics++ (Rössler et al., 2019)
and the DeepFake Detection Challenge (DFDC) (Dolhansky et al., 2020a). These datasets primarily
provided facial manipulations within single-language contexts, focusing largely on visual realism.

Parallel to video deepfake advancements, audio deepfakes evolved rapidly, driven by progress in
text-to-speech (TTS) synthesis, voice conversion, and generative audio models such as Tacotron
(Wang et al., 2017). Datasets like ASVspoof (Wang et al., 2020) and WaveFake (Frank & Schönherr,
2021) contributed significantly by providing benchmarks to evaluate audio manipulation detection
methods, albeit still largely restricted to English.

In recent years, research has expanded towards joint audio-visual deepfake manipulations. Datasets
such as FakeAVCeleb (Khalid et al., 2022) showcased realistic lip-synced speech synthesis in tandem
with facial manipulations. AV-Deepfake1M (Cai et al., 2024a) further advanced this domain by
automating transcript alterations to create nuanced, localized audio-visual deepfakes, highlighting the
necessity of detecting temporally and contextually subtle manipulations.

Recently, there has been increased focus on multilingual audio deepfakes. These efforts have revealed
key limitations in generalizing detection models across languages and proposed new resources to
address these challenges. Marek et al. (2024) conducted a comprehensive study on cross-lingual
deepfake detection, showing that models trained on one language often fail to generalize effectively
to others, underscoring the role of language-specific phonetic and prosodic features in model per-
formance. Multilingual audio-visual datasets emerged even more recently to address the global
dimension of deepfake threats. The PolyGlotFake dataset (Hou et al., 2024) contains audio-visual
deepfakes across seven languages. Although the dataset covers a wide range of language, the size of
the real data is significantly small. Nonetheless, these multilingual datasets remain limited to either
monolingual or monomodal scenarios within each single instance, ignoring the prevalent reality of
intra-utterance language switching.

Our work directly responds to this critical gap. Unlike previous studies, we not only incorporate
multilingual content but also explicitly generate intra-utterance code-switched audio-visual deepfakes.
We leverage SOTA TTS and lip sync methodologies adapted for multilingual use, resulting in realistic,
diverse, and challenging benchmarks.
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Figure 2: Dataset distribution for i) Train, ii) Val and iii) Test split. The outer layer shows the
split between various combinations of Text-to-Speech and Lip-Sync models used for audio-visual
manipulation. The middle layer shows the distribution of language in the original transcript, which is
either Ar (Arabic) or CSW (Code-Switched English-Arabic). The inner layer shows the distribution
of different operations applied to the original transcripts, "meaning only", "dialect+meaning", and
"meaning + translation" (For fine-grained detail about what they entail, refer to Table 16 in Appendix.)

3 ARENAV DATASET

ArEnAV is a large-scale audio-visual deepfake dataset specifically focused on Arabic–English CSW.
Comprising approximately 765 hours of video data sourced from 8,809 unique YouTube videos,
ArEnAV establishes itself as the first and most extensive benchmark for multilingual deepfake
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detection (see Table 1 for dataset comparison). The dataset is constructed to preserve the original
identity and environmental context of the source videos while systematically manipulating the
semantic content to introduce Arabic-English CSW. Following the taxonomy proposed by Cai et al.
(2024a), ArEnAV includes three manipulation strategies: Fake Audio & Fake Video: Both audio and
visual content are synthetically generated, simulating complete audiovisual deepfakes. Fake Audio
& Real Video: The audio track is manipulated to introduce anti-semantic and CSW content while
maintaining the original visual content. Real Audio & Fake Video: The original audio is retained,
while facial movements and lip synchronization are altered to create visually deceptive content.

3.1 DATA COLLECTION

We use the YouTube video links from VisPer’s Arabic Train subset (Narayan et al., 2024). We chose
VisPer because it is the largest publicly available non-English audio-visual corpus, with over 1,200
hours of Arabic alone. Its 200-keyword crawler (“interview,”, “tutorial,” etc.) pulls videos spanning
talk shows, vlogs, documentaries, and lectures, mirroring the broad-coverage strategy that is required
for a fair and diverse representation of a culture-specific deepfake dataset. We first run a scene change
detection model to split the video into clips, and then we use Yolo-v5 to obtain the faces in each
frame as well as track them across frames. Since we did not have ground truth for transcripts for
VisPER, we surveyed state-of-the-art Automatic Speech Recognition (ASR) models for Arabic, based
on the Arabic ASR Leaderboard on HuggingFace. Following a qualitative comparison, we finalized
the Whisper-v2 (finetuned on English-Arabic data) for our method, with the default output language
set to Arabic. Following the transcripts, we apply Forced Alignment between the audio and text,
using a multilingual wav2vec2 model (Baevski et al., 2020) supporting both Arabic and English. This
provides us with word-level timestamps for code-switched Arabic and English data.

3.2 DATA GENERATION PIPELINE

The data generation pipeline roughly consists of three stages: transcript manipulation, audio gen-
eration, and video generation. First, we apply controlled modifications to the transcript. Secondly,
we synthesize new audio for the altered transcript while preserving the speaker’s voice character-
istics. Finally, we render a lip-synced video that matches the new audio, producing a realistically
manipulated video clip. We detail each stage as follows.

3.2.1 TRANSCRIPT MANIPULATION

We leverage GPT-4.1-mini (OpenAI, 2025) to perform content-driven modifications of our multilin-
gual transcripts. We define eight distinct transcript change modes that span both code-switched and
Arabic-only contexts, allowing fine-grained control over how the transcript is altered. These modes
include three main operations: first, meaning only, which only involves changing the meaning of the
word and keeping the language as it is, second, meaning + dialect , which involves changing the
meaning of the word and changing its language to another Arabic variant (either MSA or any dialect),
and lastly, meaning + translation, which asks the model to change the meaning of the word, and then
translate it to English. Table 2 summarizes the eight modification modes with their intended effect.
By categorizing edits in this way, we ensure a controlled and diverse set of manipulations ranging
from subtle word substitutions to introducing or removing CSW instances. Due to the effectiveness
of few-shot prompting, we prompt GPT-4.1-mini with 15 examples, explaining various kinds of
transitions and possible changes. Examples of original and augmented transcripts achieved by these
manipulation rules are shown in Appendix A.5. We provide the prompt in Appendix A.6. We report

Table 2: Transcript manipulation rules in ArEnAV for Arabic (AR) and English (EN) words.

# Original Transcript Original Word Inserted Word Operation

1 CSW EN EN Change meaning only (keep English)
2 CSW AR AR Change meaning only (keep Arabic variant)
3 CSW AR AR Change meaning + change Arabic variant
4 CSW AR AR/EN multi-op; When 2-3 ops → edit 1 EN and 1-2 AR words

5 Arabic AR AR Change meaning only (keep Arabic variant)
6 Arabic AR AR Change meaning + change Arabic variant
7 Arabic AR EN Change meaning + change language to English
8 Arabic AR AR/EN multi-op; Apply all operations on Arabic words
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text manipulations distributions as follows: replacement (94.6%), insertion (5.1%) and deletion
(0.3%). These distributions reflect GPT’s manipulation choices, which were not manually enforced.

iii) Meaning only

i) Total Videos

iv) Meaning + Translation

ii) Dialect + meaning

Entailment Quality MeanEntailment Quality Mean

Number 
of 
Videos

Number 
of 
Videos

a) Entailment Evaluation b) Perplexity Evaluation
i) Jais-3B

ii) Qwen-2.5-7B
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Fake Real Real ReferenceReal FakeFake
Train Val Test

Fake Real Real ReferenceReal FakeFake
Train Val Test

Figure 3: a) Entailment distribution over i) All change modes, ii) Dialect + meaning, iii) Meaning only,
and iv) Meaning + translation. b) Perplexity Evaluation distribution among dataset splits, showing
perplexity calculated using i) Jais-3B, an Arabic-English LLM, and ii) Qwen-2.5-7B. b) Perplexity
calculated using i) Jais-3B ii) Qwen-2.5-7B. Reference in both shows the perplexity calculated on an
Arabic-English CSW text dataset (SDAIANCAI, 2025).

Transcript Quality:

To quantify the impact of our LLM-based manipulations, we employ two complementary metrics:
Bidirectional Entailment Quality Mean: the average of Real→Fake and Fake→Real NLI entailment
scores (1.0 = full semantic entailment; 0.0 = direct contradiction) and Perplexity: how well a language
model predicts a transcript (lower = more fluent/natural). Table 3a shows the distribution of entailment
quality means over different types of perturbations. In every subset, a large fraction of samples lies
below the 0.5 threshold, and many even in the contradiction zone, demonstrating that our pipeline
reliably injects semantic change regardless of language or dialect.

Figure 3b reports average perplexities on real versus fake transcripts under two open-source LLMs;
Jais-3B (Sengupta et al., 2023) and Qwen-2.5-7B (Qwen et al., 2025), across the data splits. The
minimal difference in perplexity shows that our fake transcripts remain fluent and natural, despite
major changes in meaning. This balance between altered content and surface-level fluency is essential
for generating effective audio-visual deepfakes

3.2.2 AUDIO GENERATION

The next step involves generating a synthetic audio track that precisely follows the edited transcript
while maintaining the voice characteristics of the original on-screen speaker. Initially, we segment the
audio into clean speech and background noise using a Denoiser (Defossez et al., 2020). Conventional
zero-shot voice cloning systems, such as YourTTS (Casanova et al., 2023), exhibit strong performance
in English but struggle with Arabic phonetics and cross-lingual synthesis. To address this, we employ
four targeted cloning strategies: a) XTTS-v2 (Casanova et al., 2024): A multilingual, zero-shot
TTS model natively supporting Arabic, English, and code-switching. b) XTTS-v2 (Casanova et al.,
2024) + OpenVoice-v2 (Qin et al., 2024): When a reference voice sample is available, we achieve
higher fidelity by generating the utterance with XTTS-v2 and performing speaker conversion via
OpenVoice-v2. c) Fairseq Arabic TTS (Ott et al., 2019) + OpenVoice-v2 (Qin et al., 2024):
For fully Arabic sentences, we generate audio with the Fairseq Arabic TTS, followed by speaker
conversion using OpenVoice-v2. d) GPT-TTS (OpenAI, 2023) + OpenVoice-v2 (Qin et al., 2024):
We randomly select one voice out of 29, generate the sentence, and then convert the audio to the
target speaker’s voice with OpenVoice-v2.

5
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The audio-generation flow depends on the edit type. For insert or replace operations, we regenerate
the complete sentence and validate the generated audio using Whisper-Turbo (Radford et al., 2022),
retaining only samples that exactly match the intended transcript. This step ensures intelligibility
and accurate timestamp alignment for splicing the segment into the original audio. If validation fails,
we discard the sample. For a delete operation, we remove speech segments entirely, preserving only
background noise. Finally, after each edit, we normalise the loudness of the manipulated segment
relative to the original audio and recombine it with the extracted environment noise.

Audio Quality:

Table 3: Audio quality comparison across
different datasets.
Dataset Language SECS↑ SNR(dB)↑ FAD↓

FakeAVCeleb English 0.543 2.16 6.598
LAV-DF English 0.984 7.83 0.306
AV-Deepfake1M English 0.991 9.39 0.088

ArEnAV Arabic, English 0.990 7.65 0.140

Table 3 presents the comparison of audio quality for
ArEnAV based on speaker similarity, signal quality
and distribution realism with existing audio-visual
deepfake datasets. We report speaker encoder co-
sine similarity (SECS), Signal-to-Noise (SNR) and
Fréchet audio distance (FAD) for recent Audio-Visual
datasets. SECS measures the speaker’s voice similar-
ity between a generated clip and the real reference
(range [−1, 1], higher is better), while FAD evaluates
the distributional distance between the generated audio and real audio (lower is better). The metrics
combined indicate that ArEnAV has high-quality audio samples.

3.3 VISUAL MANIPULATION

For video generation, after extensive experimentation, we chose two diffusion-based lip-sync ap-
proaches: Diff2Lip (Mukhopadhyay et al., 2023) and LatentSync (Li et al., 2025). Both of these
models perform high-quality zero-shot lip-sync and are open-sourced. Using the newly generated
audio and the original video’s frames we generate the fake frames. For replace and insert word
operations, we generate the fake frames for the new word, and for delete word operations, we generate
a face with closed lips i.e., without audio.

Table 4: Visual quality compari-
son across different datasets.

Dataset PSNR(dB)↑ SSIM↑ FID↓

FF++ 24.40 0.812 1.06
DFDC — — 5.69
FakeAVCeleb 29.82 0.919 2.29
LAV-DF 33.06 0.898 1.92
AV-Deepfake1M 39.49 0.977 0.49

ArEnAV 37.70 0.971 0.68

Visual Quality: To evaluate visual quality, we use three stan-
dard metrics: Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index (SSIM), and Fréchet Inception Distance (FID).
Table 4 presents PSNR, SSIM, and FID results for the ArEnAV
dataset. PSNR and SSIM measure pixel-level and structural sim-
ilarity, respectively, between fake and original frames (higher is
better) (ArEnAV lies nearby AV-1M). FID assesses realism by
comparing the distributions of fake and real frames in a learned
image feature space (lower is better) (ArEnAV slightly more
than AV-1M). These scores highlight that ArEnAV attains higher
/ comparable visual quality compared to other deepfake datasets.

Real Perturbations: To mimic real-life video scenarios better, we add localized perturbations to
both the real and the fake videos. We apply 15 different visual filters (eg, salt-pepper noise and
camera shaking) and 10 different audio manipulations (eg, time-stretching, random loudness and
pitch). For each video, we randomly sample one to three instances for visual perturbations and one to
two instances for audio perturbations. Perturbation details are mentioned in Appendix A.4.

3.4 USER STUDY

Table 5: Detection and Localization
results from our User Study.

Method Acc. AP@0.1 AP@0.5 AR@1

ArEnAV 60.00 8.35 0.79 1.38

To investigate whether humans can identify deepfakes in
ArEnAV, we conducted a user study with 19 participants, out
of which, 15 are native Arabic speakers, and 4 have basic
knowledge of Arabic. We randomly sampled 20 videos, with
either 0 or 1 manipulation. Instructions for User Study:
Each participant was asked to 1) watch the video, and 2)
answer 3 questions, i) Is the video real of fake, ii) If it is fake, localize where they think the fake
region is, iii) Whether the given video contains Arabic-English code-switching or not, iv) Give a
reason for labelling the video (if they have) as a deepfake.
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Table 6: Distribution of top reasons for
predicting a video as Fake in our User
Study.
Reason Percentage (%)

Unintelligible speech (weird audio) 36.5
Video/audio mismatch (lip sync is off) 25.1
Audio sounds artificial 24.7
Video looks artificial 8.7
Code-switching is unnatural 3.0
Incoherent sentence 1.9

The results in Table 5 reaffirm our hypothesis that identifying
audiovisual deepfakes in multilingual (specially CSW) and
multimodal settings is a non-trivial task, as even humans
achieve only 60% accuracy, while it is even harder to localize
the deepfakes, with AP@0.5 at 0.79. Further, Table 6 shows
the primary reasons why people classified the videos as fake.
We report that 85% of the users fail to identify deepfakes
when the manipulation happens in the English word, in the
CSW video, which can be attributed to a higher quality of
voice cloning in English as well as the natural change in
tone when a person code-switches, which makes it harder
to detect. Further, localization is very tough due to the very high quality of lip-sync with diffusion
models, as shown in Table 6, where the video being the reason for fake classification is only 8.7%.

3.5 DATASET STATISTICS

Table 7: Data distribution in ArEnAV and comparison with other multilingual datasets.

Subset #Unique
Videos

#Real
Videos

#Fake
Videos

#Non-English
Clips

#CSW
Videos

#Arabic
Videos

Arabic
Variants

PolyGlotFake (Hou et al., 2024) 766 766 14,472 11,941 0 1,403 NA
Illusion (Thakral et al., 2025) – 141,440 1,234,931 4,385 0 – NA

ArEnAV-Train 6,117 67,600 202,800 270,400 69,544 200,856 Egyptian,
ArEnAV-Validation 876 9,560 28,680 38,240 10,416 27,824 MSA,
ArEnAV-Test 1,816 19,608 58,824 78,432 19,832 58,600 Levantine, Gulf

ArEnAV (total) 8,809 96,768 290,304 387,072 99,792 287,280 -

Table 7 compares ArEnAV with other multilingual deepfake detection datasets. Existing multilingual
datasets like PolyGlotFake (Hou et al., 2024) and Illusion (Thakral et al., 2025) have significantly
smaller multilingual content, containing limited Arabic data (1,400 Arabic videos in PolyGlotFake
and minimal in Illusion across 26 languages). ArEnAV includes 387k videos sourced from 8,809
unique YouTube videos, totaling over 765 hours. Videos average approximately 7.7 sec each, with
train, val, and test splits created via multilabel stratified sampling in a 7:1:2 ratio, ensuring no overlap.

Table 8: Fake segment duration comparison between ArEnAV and AV-1M.
Dataset Mean Median Minimum Maximum Video-length Fake ratio Relative length

(s) (s) (s) (s) (s) (%) (×)

ArEnAV 0.696 0.625 0.02 6.16 5.97 12.1 2.1
AV-1M 0.326 — — — 9.07 3.7 1.0

Fake Region Comparison:: In Table 8, we summarize forged-segment duration statistics for
ArEnAV and AV-1M. The Table highlights substantially longer and proportionally larger forged spans
in ArEnAV (Fake segments are 2.1 times longer relative to AV-1M), confirming that performance
drops stem from the intrinsic difficulty of detecting linguistically precise intra-utterance manipulations
rather than from short spans.

Computational Cost: We spent around 50 GPU hours to generate the real transcript using Whisper-
Large-V2 (Radford et al., 2022), 200 dollars worth of OpenAI credits, to generate fake transcripts and
Text-to-Speech model, TTS-1 (OpenAI, 2023), and 650 GPU hours for video generation. Overall, we
needed 800 GPU hours to generate AvEnAV with NVIDIA RTX-6000 GPUs.

4 BENCHMARK AND METRICS

We organize the data into train, validation, and test split. We use multilabel stratified sampling to
divide the data in equal proportions based on the method type, the change mode, and the ground truth
language. We also show evaluation on two subsets, subset V, which excludes videos with audio-only
manipulation, and subset A, which excludes videos with visual-only manipulations. We evaluate
models on two tasks, temporal localization and detection of audio-visual deepfakes. We use average
precision (AP) and average recall (AR) metrics as prior works (He et al., 2021; Cai et al., 2022; 2023a)
for temporal localization. For the task of deepfake detection, we use the standard evaluation protocol
(Rossler et al., 2019; Dolhansky et al., 2020b; Cai et al., 2023a) to report video-level accuracy (Acc.)
and area under the curve (AUC).
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Table 9: Temporal localization results on the test set of ArEnAV.

Set Method Mod. AP@0.5 AP@0.75 AP@0.9 AP@0.95 AR@50 AR@30 AR@20 AR@10 AR@5

Full dataset Meso4 V 0.02 0.01 0.00 0.00 0.09 0.09 0.09 0.09 0.09
– MesoInception V 0.56 0.18 0.04 0.01 4.11 4.11 4.11 4.11 4.08
– Xception V 22.50 10.26 2.29 0.58 19.13 19.13 19.13 19.13 19.13
– BA-TFD (ZS) AV 0.17 0.01 0.00 0.00 9.72 5.20 3.07 1.46 0.73
– BA-TFD+ (ZS) AV 0.11 0.00 0.00 0.00 5.77 2.95 2.09 0.87 0.37
– BA-TFD AV 2.42 0.55 0.01 0.00 22.30 10.31 3.41 2.54 1.67
– BA-TFD+ AV 3.74 1.10 0.06 0.01 30.75 9.42 4.55 3.05 1.83

Set V Meso4 V 0.02 0.01 0.00 0.00 0.10 0.10 0.10 0.10 0.10
– MesoInception V 0.83 0.27 0.05 0.01 5.56 5.56 5.56 5.56 5.53
– Xception V 32.76 14.48 3.30 0.81 27.78 27.78 27.78 27.78 27.78
– BA-TFD (ZS) AV 0.12 0.00 0.00 0.00 8.44 4.34 2.44 1.13 0.49
– BA-TFD+ (ZS) AV 0.07 0.00 0.00 0.00 4.69 2.39 1.65 0.69 0.29
– BA-TFD AV 3.65 0.25 0.01 0.00 25.31 9.03 3.64 2.34 1.64
– BA-TFD+ AV 5.65 1.89 0.08 0.02 31.09 13.21 5.91 3.05 2.05

Set A Meso4 V 0.02 0.01 0.00 0.00 0.08 0.08 0.08 0.08 0.08
– MesoInception V 0.38 0.09 0.01 0.00 3.25 3.25 3.25 3.25 3.22
– Xception V 14.72 3.92 0.29 0.09 11.78 11.78 11.78 11.78 11.78
– BA-TFD (ZS) AV 0.23 0.01 0.00 0.00 12.14 6.46 3.85 1.83 0.95
– BA-TFD+ (ZS) AV 0.14 0.01 0.00 0.00 7.32 3.79 2.69 1.13 0.48
– BA-TFD AV 3.21 0.60 0.02 0.00 24.45 9.26 4.15 2.61 1.93
– BA-TFD+ AV 4.35 1.10 0.10 0.00 28.35 11.23 4.85 3.11 2.00

Table 10: Deepfake detection results on the test set of ArEnAV.

Label Access Pretraining Data Methods Mod. Fullset Subset V Subset A
For Training AUC Acc. AUC Acc. AUC Acc.
Zero-Shot ASVSpoof-19 XLSR-Mamba A 39.19 52.77 52.73 40.68 52.50 42.59
- Internet Scale Video-LLaMA (7B) V 51.48 26.29 51.47 34.21 51.43 34.18
- Internet Scale Video-LLaMA (7B) AV 48.79 59.29 48.71 55.37 48.86 55.26
- AV-1M BA-TFD AV 61.73 26.00 66.42 34.07 59.36 33.97
- AV-1M BA-TFD+ AV 60.96 25.84 64.49 34.28 59.44 33.80

Video Level ArEnAV XLSR-Mamba A 73.00 61.00 57.47 66.16 86.33 78.00
- ArEnAV Meso4 V 49.30 75.00 49.15 66.67 49.30 66.67
- ArEnAV MesoInception4 V 50.34 46.23 50.28 47.48 50.35 47.67
- ArEnAV Xception V 50.05 75.00 49.90 66.67 50.32 66.67

Frame level ArEnAV Meso4 V 49.55 26.60 49.60 34.40 49.53 34.36
- ArEnAV MesoInception4 V 51.14 41.25 50.77 51.84 45.28 44.09
- ArEnAV Xception V 74.21 52.09 85.36 67.22 68.59 51.70
- AV-1M & ArEnAV BA-TFD AV 75.91 44.31 77.64 58.29 72.21 45.21
- AV-1M & ArEnAV BA-TFD+ AV 79.97 27.44 84.20 36.47 72.89 34.56

Implementation Details: We benchmark temporal detection using SOTA models: Meso4, MesoIn-
ception4, Xception, BA-TFD, and BA-TFD+. BA-TFD and BA-TFD+ (Cai et al., 2023b) are
evaluated in their original configurations, both in a zero-shot setting (pre-trained on AV-1M; (Cai
et al., 2023a)) and after fine-tuning on our dataset. For image-based classifiers: Meso4, MesoIn-
ception4 (Afchar et al., 2018); and Xception (Chollet, 2017), we aggregate frame-level predictions
to segments following Cai et al. (2023a). For benchmarking deepfake detection, image-based
models (Meso4, MesoInception4, and Xception) are trained on video frames with corresponding
labels, and predictions are aggregated to video-level using max voting, as suggested by Cai et al.
(2023a). Additionally, we assess zero-shot performance of LLM-based models, VideoLLaMA2 and
VideoLLaMA2.1-AV (Zhang et al., 2023), prompting them to produce a confidence score indicating
the likelihood of a video being a deepfake. We include an audio-only baseline, XLSR-Mamba (Xiao
& Das, 2025), the best open-source audio deepfake detection model on Speech DF Arena (Face,
2025), evaluating it both in zero-shot mode (pre-trained on ASVSpoof-2019 (Wang et al., 2020)) and
after training with video-level labels from our dataset. BA-TFD and BA-TFD+ (Cai et al., 2022) are
also evaluated using segmentation proposals treated as frame-level predictions and aggregated by
max-voting, both pre-trained on AV-1M and fine-tuned on our dataset. For all finetuning runs, we
subsample the frames so as to remove class imbalance.
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Table 11: (a): Temporal localization comparison on ArEnAV, AV-1M and LAVDF. (b): Cross-Dataset
comparison (% AUC) of recent SOTA models.

(a) Cross-dataset Deepfake Localization.

Method Dataset AP@0.5 AP@0.95 AR@50 AR@10

BA-TFD
LAV-DF 79.15 0.24 64.18 58.51
AV-1M 37.37 0.02 45.55 30.66

ArEnAV 2.42 0.01 22.30 2.54

BA-TFD+
LAV-DF 96.30 4.44 80.48 78.75
AV-1M 44.42 0.03 48.86 34.67

ArEnAV 3.74 0.04 30.75 3.05

(b) Cross-dataset deepfake detection. P: DFDC-P set.

Method Venue ArEnAV DFDC FF++ CelebDF
Capsule-v2 ICASSP-19 49.15 – 93.11 –
Face-X-Ray CVPR-20 55.56 80.92 98.52 80.58
LipForensics CVPR-21 49.76 73.50 97.10 82.40
M2TR ICMR-22 50.12 – 99.92 –

LAA-Net CVPR-24 50.04 86.94(P) 99.96 –
ForensicsAdaptor CVPR-25 50.58 88.70 – 94.00

5 RESULTS AND ANALYSIS

Audio-Visual Temporal Deepfake Localization. The results for temporal localization are shown
in Table 9. SOTA methods show significantly lower performance on ArEnAV as compared to other
localization datasets (refer to Table 11a). BA-TFD and BA-TFD+, pretrained on AV-1M, show a
drop in performance of more than 35% for AP@0.5 threshold, compared to evaluation on AV-1M.
The image-based models, Meso4 and MesoInception4, also provide low performance, which can be
attributed to the use of diffusion-based lip-sync models, which have been overlooked in previous
data generation pipelines (Cai et al., 2023a;b). Through this benchmark, we claim that the highly
realistic multimodal multilingual code-switched fake content in ArEnAV will open an avenue for
further research on temporal multilingual deepfake localization methods.

Audio-Visual Deepfake Detection. The detection results are in Table 10. Image based models, that
have access to video-level labels only, perform considerably worse, except XLSR-Mamba, which is
designed to be trained on video-level labels for audio-deepfake detection. The best performing model
is BA-TFD, pretrained on AV-1M and then further fine-tuned on our dataset, with AUC Score of 82%
on the full subset. We also evaluate models on subsets V and A, as described in the implementation
details. The audio-only model, XLSR-Mamba, performs better in the Audio-only subset A, while
the image-only models perform better on Subset V for frame-level labels, compared to the fullset.
XLSR-Mamba performs relatively worst when the audio is code-switched, compared to only Arabic.

Cross-Dataset Comparison for Deepfake Localization. Table 11a shows the performance of
BA-TFD and BA-TFD+ (Pretrained on AV-1M) on LAVDF, AV-1M and ArEnAV datasets. Both
models perform significantly worse on ArEnAV, highlighting the poor generalizability (while it
generalizes to LAV-DF) in multilingual and code-switching settings. BA-TFD and BA-TFD+ fail to
generalize effectively, as the pretrained audio and video encoders struggle with out-of-distribution
data encountered in both modalities of ArEnAV.

Cross-Dataset Comparison for Deepfake Detection. Table 11b shows the cross dataset performance
of recent SOTA deepfake detection models, including Capsule-v2 (Nguyen et al., 2019), Face-X-Ray
(Li et al., 2020a), LipForensics (Haliassos et al., 2021) and M2TR (Wang et al., 2022). All models
were pretrained on FaceForensics++ (Rössler et al., 2019). While models show great cross-dataset
performance on DFDC and CelebDF, they fail to perform better than guessing (50% AUC) on

a) Max-Score: 0.545, correct b) Max-Score: 0.641, correct c) Max-Score: 0.430, wrong d) Max-Score: 0.113, wrong

Figure 4: Different output cases from evaluation of BA-TFD+ after finetuning on ArEnAV. Here,
the ground truth of all samples is FAKE. Max-Score refers to the maximum score assigned to a
candidate range during prediction. Correct means that the predicted class matches the ground truth
class. The green region refers to the ground truth fake-segment, and the red region refers to the
predicted fake-segment, based on the Max Score. a) Shows the model predicting the correct class,
along with some overlap with the ground truth fake segment. b) Shows the model predicting the
correct class, but with no overlap. c) and d) Show the model predicting the wrong class in the output.
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a) Max-Score: 0.543 b) Max-Score: 0.504 c) Max-Score: 0.573 d) Max-Score: 0.618

Figure 5: Different output cases from evaluation of BA-TFD+ after finetuning on ArEnAV. Here,
the ground truth of all samples is REAL. Max-Score refers to the maximum score assigned to a
candidate range during prediction. The green region refers to the code-switching region in the real
video, and the red region refers to the predicted fake-segment. a),b),c),d) All samples show that the
model misclassifies real videos as fakes, specifically at the code-switching regions.

ArEnAV. Even recent SOTA models, such as ForensicsAdaptor (CVPR-25) (Cui et al., 2025b) and
LAA-Net (CVPR-24) (Nguyen et al., 2024), fail to generalize. The demographic and linguistic
homogeneity of existing datasets (FF++, CelebDF, DFDC) limits model robustness. By incorporating
multilingual audio and broader participant diversity, our dataset demonstrates why architectures must
be designed to generalize beyond those biases.

6 QUALITATIVE ANALYSIS

Figures 4 and 5 show qualitative examples for different output cases of BA-TFD+, finetuned on
ArEnAV. Figure 4 illustrates model predictions on fake samples, showing four representative cases
comparing predicted fake segments with ground-truth regions. In some cases, the model correctly
identifies the manipulated class with good temporal overlap, while in others, the predictions are
either misaligned or incorrect. Importantly, these outputs demonstrate that the model’s behavior is
not influenced by any boundary-level artifacts or splicing cues introduced during data generation.
Further, spectrograms from BA-TFD+ outputs show no abrupt energy shifts or discontinuities near
edit boundaries, indicating the absence of splice artifacts at the boundaries of manipulated content.

Figure 5 shows the model’s predictions on real code-switched videos. Here, the model frequently
misclassifies real videos as fake, primarily due to the presence of code-switching between Arabic
and English. The high predicted fake scores at these regions indicate that the model confuses natural
linguistic transitions with synthetic inconsistencies. Together, these qualitative results confirm that
the challenge in ArEnAV arises from the intrinsic complexity of code-switching rather than from
generation artifacts.

7 CONCLUSION

This paper presents ArEnAV, a large multilingual and the first code-switching audio-visual dataset for
temporal deepfake localization and detection. The comprehensive benchmark of the dataset utilizing
SOTA deepfake detection and localization methods, indicates a significant drop in performance
compared to previous monolingual datasets, indicating that the proposed dataset is an important asset
for building the next generation of multilingual deepfake localization methods.

Limitations. Similar to other deepfake datasets, ArEnAV exhibits a misbalance in terms of the number
of fake and real videos. Due to the limited performance of current SOTA Active-Voice-Detection
(Whisper v2) models on Arabic (compared to English), the data generation pipeline can result in a
few noisy transcripts. Due to limited instruction following in code-switching scenarios, LLMs might
not produce the desired results, as visible in Figure 3 "Meaning + Translation Scenario". Compared
to other subsets, Chat-GPT often fails to follow both instructions, making real and fake transcripts
too similar and not always changing their meaning. Also, the dataset is currently limited to two
languages only, where we hope to motivate further research in this direction.

Broader Impact. ArEnAV’s diverse and realistic English-Arabic fake videos will support the devel-
opment of more robust audio-visual deepfake detection and localization models, better equipped to
handle code-switched speech and real-world multilingual scenarios.
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8 ETHICS STATEMENT

Our work on ArEnAV raises important ethical considerations, especially given the sensitivity of deep-
fake research. The dataset is built from publicly available YouTube content, in line with established
practices in benchmarks. Use of such material for non-commercial research is covered under fair
use, and access to ArEnAV is gated by a strict End-User License Agreement (EULA)(Section A.7).
Below, we detail all the ethical considerations regarding our work:

Use of YouTube Videos : The ethical foundation of our data collection does not rely on VisPER but
on established practices in prior peer-reviewed datasets such as LRS3-TED (Afouras et al., 2018b),
VoxCeleb2 (Chung et al., 2018b), and AVSpeech (Ephrat et al., 2018a), which employ the same
keyword-search and face-detection pipeline. We build our dataset from public YouTube videos under
the research-focused “fair use” exception established in peer-reviewed work (e.g., Zhu et al. (2024)).
Access is granted only after users agree to our EULA, which lists the following rules and regulations:

• Access will be granted only to researchers who supply their university IRB application ID,
and every project member must use an individual account, safeguarding traceability and
preventing misuse.

• Users are eligible to conduct independent research at their respective institutions and the
Institution accepts responsibility for its Authorized Investigators’ actions related to the use
of ArEnAV.

• Limits use to academic, non-commercial, not-for-profit research and education.
• Authorizes licensors to modify the data or license at any time and prohibits licensees from

altering the database.
• Forbids any use that could cause subjects embarrassment or mental anguish.

This approach accords with established practice across the community, as evidenced by DF40 (Yan
et al., 2024), which draws real videos and images from FaceForensics++ (Rössler et al., 2019),
Celeb-DF (Li et al., 2020b), CelebA (Liu et al., 2015), FFHQ (Karras et al., 2019), and VFHQ (Xie
et al., 2022); DeepfakeBench (Yan et al., 2023), which relies on FaceForensics++ and Celeb-DF;
FaceForensics++; Celeb-DF; FakeAVCeleb (Khalid et al., 2021), which builds on VoxCeleb2 (Chung
et al., 2018a); AVLIPS (Liu et al., 2024), which sources from LRS3 (Afouras et al., 2018a) and
FaceForensics++; and AV-1M (Cai et al., 2024b), which is derived from VoxCeleb2. Together, these
measures and precedents demonstrate that curating public YouTube content for non-commercial
scientific inquiry is a responsible and widely adopted practice.

Face Detection techniques applied on videos: We acknowledge the risks of working with videos that
contain faces, but face detection is used only as a preprocessing step and not for identification. In line
with recent peer-reviewed works, using videos containing faces, for different research problems that
involve face detection as a common prior step, is a standard practice, e.g.: a) LRS3-TED (Afouras
et al., 2018b), VoxCeleb1 (Nagrani et al., 2017), VoxCeleb2 (Chung et al., 2018b) have been used
for Speaker Identification, Verification, Recognition, and further, for Deepfake benchmark creation
(AV-1M (Cai et al., 2024a) and FakeAVCeleb (Khalid et al., 2022)) b) MultiTalk (Sung-Bin et al.,
2024) uses videos from YouTube for Talking Head generation c) AVSpeech (Ephrat et al., 2018b)
used for Speech Separation d) Hallo3 (Cui et al., 2025a) used for Portrait Image Animation.

Since it is impractical to get individual consent for open-source content, we mitigate misuse by requir-
ing institutional IRB approval, individual researcher accounts for access and a removal mechanism to
request the removal of personal content.

Human Study: Our human study followed university IRB guidelines: participants were over 18
years of age and were approached over email through connections in research groups within the
affiliated universities of the authors. The participation was strictly voluntary and anonymous. All the
details about the research project and conditions for participation in the study were clarified through
an Explanatory Statement at the beginning of the user study form. Thus, the users consented to
participate in the study by filling out and submitting the study form (Google form), and all material
was screened to avoid disturbing content. No personal data were recorded and no compensation was
provided.
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9 REPRODUCIBILITY STATEMENT

Our data will be open-sourced. Data-generation code and evaluation scripts will be made public for
various open-sourced models evaluated.
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A APPENDIX

A.1 IDENTITY ANALYSIS IN ARENAV

We conducted a face analysis using InsightFace and DBSCAN to better understand potential identity
overlaps across dataset splits. While each split (train, validation, and test) already contains indepen-
dent YouTube video IDs, we found a 41.7% identity match between the combined train+val and test
sets at a similarity threshold of 0.7.

To verify whether this overlap influences model performance, we evaluated BA-TFD and BA-TFD+
separately on overlapping and non-overlapping subsets. As shown in Table 12, the results remain
consistent across both groups, indicating that identity overlap does not affect the models’ behavior. We
will release a separate identity-disjoint test set in the final version to further strengthen reproducibility
and fairness.

Table 12: Performance of BA-TFD and BA-TFD+ models on ArEnAV test set. Each column shows
Accuracy@0.5 and AUC, with the number of evaluated videos in parentheses.

Model Overall (78,400) Non-Overlapping (45,512) Overlapping (32,888)
Acc AUC Acc AUC Acc AUC

BA-TFD+ 27.44 79.97 27.58 79.96 27.31 79.99
BA-TFD 44.31 75.91 44.35 75.96 44.27 75.85

A.2 AFFECT OF LIMITED INSTRUCTION FOLLOWING OF GPT-4O-MINI FOR "MEANING +
TRANSLATION" TASK:

In some cases, the “meaning + translation” mode produced sentences that were semantically similar
to the originals. This can be improved by reprocessing the LLM outputs and filtering based on
entailment or cosine distance to enforce greater semantic variation. However, this does not affect our
main conclusions. The detection task in ArEnAV focuses on identifying audio-visual inconsistencies,
not the extent of semantic change.

Only a small fraction of the data (less than 8,000 out of 280,000 samples, and about 2,000 out of 78k
in the test set) (Figure 3a)) has an entailment quality mean > 0.8.

To reaffirm this, we compared the best-performing models across these subsets. As shown in Table
13, the performance remains consistent, indicating that these few cases do not lower the dataset’s
overall difficulty.

Table 13: Performance of BA-TFD and BA-TFD+ models on ArEnAV test set. Each column shows
AUC scores.

Model Overall entailment<0.8 entailment>0.8
BA-TFD+ 79.97 79.96 79.98
BA-TFD 75.91 75.92 75.89

A.3 AFFECT OF DIFFERENT LIP-SYNC AND TTS MODELS ON THE PERFORMANCE:

Table 14 reports model accuracy across four TTS and 2 lip-sync generation methods (finetuned
on ArEnAV). For audio-only detection, XLSR-Mamba achieves the highest accuracy with
Fairseq-OpenVoice (95.8%), indicating that lower-quality TTS outputs are more easily detected.
Higher-fidelity systems such as XTTS-OpenVoice and XTTS-v2 reduce detectability, suggesting
improved synthesis quality. For audio-visual models (BA-TFD and BA-TFD+), both Diff2Lip and
LatentSync yield similar accuracy levels, confirming stable and high-quality visual performance.
Overall, the results show that better generation quality leads to lower detectability, aligning with our
goal of creating challenging, realistic benchmarks.
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Table 14: Accuracy across different Audio and Video generation models used in ArEnAV.

Audio Models (Subset A) Video Models (Subset-V)
Model Type Fairseq-OpenVoice GPT-TTS XTTS-OpenVoice XTTS-v2 Diff2lip Latentsync
XLSR-Mamba 95.8 78.8 19.4 77.9 38.6 42.8
BA-TFD+ 69.5 58.9 7.7 68.9 31.7 32.9
BF-TFD 33.7 32.2 29.3 31.9 58.1 56.2

A.4 REAL PERTURBATIONS

Table 15: List of video and audio perturbation types with descriptions.

Category Perturbation Type Description

Video Perturbations

Gaussian Blur Applies Gaussian smoothing to simulate out-of-focus capture.
Salt and Pepper Noise Random white and black pixel noise, mimicking sensor errors.

Low Bitrate Compression Blocky, artifact-heavy images due to compression.
Gaussian Noise Electronic sensor noise typical in low-light conditions.

Poisson Noise (Shot Noise) Noise from photon-limited imaging environments.
Speckle Noise Multiplicative noise creating granular interference effects.

Color Quantization Banding effects from limited color palettes.
Random Brightness Simulates variations in exposure and lighting.

Motion Blur Imitates camera or object motion during capture.
Rolling Shutter Distortion effects due to CMOS sensor movements.
Camera Shake Minor frame shifts from handheld camera vibrations.
Lens Distortion Optical distortions like barrel or pincushion effects.

Vignetting Darkening of image edges typical of certain lenses.
Exposure Variation Adjusts brightness and contrast, simulating exposure issues.

Chromatic Aberration Color channel shifts causing fringing effects.

Audio Perturbations

Compression Artifacts Quality loss from low bitrate compression.
Pitch/Loudness Distortion Gain or frequency alterations simulating recording issues.

White Noise Constant background electronic interference noise.
Time Stretch Audio speed adjustments without pitch change.
Reverberation Echo and reverb modeling room acoustics.
Ambient Noise Background environmental sounds added.

Clipping Distortion from exceeding audio amplitude limits.
Frequency Filter Filtering effects simulating transmission equipment variations.
Doppler Effect Pitch modulation due to relative motion.

Interference Static-like bursts mimicking external disturbances.
Room Impulse Response Complex echo patterns modeling specific environments.
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A.5 AUGMENTATION EXAMPLES

In Table 16, we provide examples of augmentations achieved through the manipulation rules previ-
ously outlined in Section 3.2.1.

Table 16: Examples of augmentations achieved through the different transcript manipulation rules,
showing the original (orig) and augmented (aug) transcriptions.

Original
Transcription

Original
Word

Inserted
Word Operation Example

Edit: Telephone → Radio 
Telephone اتشغلت الھانم في الـ [orig]

CSW EN EN Change meaning only (The lady got busy on the telephone)
 (keep English) Radio اتشغلت الھانم في الـ [aug]

(The lady got busy with the radio)
Edit: منتشرة (MSA) → محدودة (MSA)

[orig] الـ Mirroring أصبحت أداة منتشرة جداً
CSW AR AR Change meaning only (Mirorring has become a popular tool)

(keep Arabic variant) [aug] الـ Mirroring أصبحت أداة محدودة جداً
(Mirorring has become a limited tool)

Edit: بشكر (MSA) → بكره (Dialectal Arabic)
[orig] بشكر كل ال sponsors اللي موجودین

CSW AR AR Change meaning (I thank all the present sponsors)
 + change Arabic variant [aug] بكره كل ال sponsors اللي موجودین

(I hate all the present sponsors)
Edit: سعید (MSA) → حزین (MSA)

[orig] وھیكون ھذا الشخص راضي وسعید
Arabic AR AR Change meaning only (And this person will be content and happy)

(keep Arabic variant) [aug] وھیكون ھذا الشخص راضي وحزین
(And this person will be content and sad)

Edit: جوھري (MSA) → تافھ (Dialectal Arabic)
[orig] كانت تشترك بعمل أساسي جوھري

Arabic AR AR Change meaning (She was involved in a core and essential task)
 + change Arabic variant [aug] كانت تشترك بعمل أساسي تافھ

(She was involved in a core and non-essential task)
Edit: الناس → friends

[orig]  أنا بروح قابل الناس
Arabic EN EN Change meaning (I go meet people)

 + change language to English friends أنا بروح قابل  [aug]
(I go meet friends)
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A.6 PROMPT FOR TEXT PERTURBATION

Prompt for Fake Transcript Generation.

###SYSTEM MESSAGE###
You are a controlled text-perturbation bot.
Here is the transcript of an audio.
Please use the provided operations to modify
the transcript to change its sentiment.
The operation can be one of `delete`,
`insert` and `replace`.
Please priority modify adjectives and adverbs.
-------------------CHANGE-MODES------------------
• meaning_only

- Change the *meaning* of one word.
- Keep the same language/script and dialect.

• dialect_only
- Swap a word for a dialectal equivalent of *identical meaning*.
- Example: <syArT> → <`rbyT> (Gulf dialect, same meaning).

• dialect_plus_meaning
- Change *both* dialect *and* meaning in a single word.
- Example: <jmyl> (msa, 'nice') → <wH$> (Egyptian, 'awful').

• meaning_plus_translation
- In Arabic-only sentences, pick a word that
is **commonly code-switched

to English** in everyday speech (e.g., <mwbayl>, <syArT>, <Antrnt>).
- Translate that word to English and change the
meaning simultaneously.
Example: <syArT> ('car') → bike.

-------------------CSW MULTI-OP LOGIC-------------------
If language == 'csw':
num = 1 → edit exactly one token matching target_token_script.
num = 2 → edit 1 English + 1 Arabic token.
num = 3 → edit 1 English + 2 Arabic tokens.

-------------------OTHER RULES-------------------
• Only modify tokens that are *commonly code-switched* in real speech

(brand names, technology, everyday nouns, etc.).
• Each operation targets ONE word (delete / insert / replace).
• Number of operations for INSERT, DELETE and REPLACE
should be equal across
the data.
• If sentiment can be changed with INSERT or DELETE,
prefer it over REPLACE.
• When dialect shifts, include original_dialect and new_dialect.
• Never alter tense or add restricted content.
• Return **only** a JSON object that matches the schema.

Figure 6: System prompt for text-perturbation bot
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A.7 END USER LICENSE AGREEMENT (EULA FORM)

End User License Agreement.

End User License Agreement
(Academic, non-commercial, not-for-profit licence)
Copyright (c) 2025 ....[AUTHORS]
All rights reserved.
The goal of the ArEnAV database is to develop new techniques, technology, and algorithms
for multimodal, code-switched deepfake detection and localization, as most of the existing research

focuses on monolingual content, often overlooking the challenges of multilingual and
code-switched speech, where multiple languages are mixed within the same discourse. The licensors
are involved in an ongoing effort to strengthen detection algorithms against highly realistic
deepfakes. The dataset is meant to aid research efforts in the general area of developing,
testing and evaluating algorithms for multilingual code-switched deepfake detection and
localization.

↪→
↪→
↪→
↪→
↪→
↪→

To receive a copy of the dataset, the requester must agree to observe the conditions listed Below.

The goal of the ArEnAV database is to develop new techniques, technology, and
algorithms for predicting and locating (with timestamps) where a video has been
manipulated, particularly when it has Arabic-English code-switching. Use is permitted of the

databases and annotations above in source and binary form, provided that the following↪→
conditions are met:
• The database is provided under the terms of this license strictly for academic,
non-commercial, not-for-profit purposes.
• Requestor needs to supply their university IRB application ID, and every project member must use an

individual account, safeguarding traceability and preventing misuse. Attach the IRB approval in
the email along with the signed EULA form.

↪→
↪→
• Redistribution, republishing, or dissemination in any form, source or binary, is not permitted

without prior written approval by the licensors. Linking to the webpage of the database [WEB LINK
HERE] is permitted.

↪→
↪→
• The names of the licensors may not be used to endorse or promote products
derived from this software without specific prior written permission.
• The licensors reserve the right to modify the data/license at any point.
Modification of the database by licensees is not permitted.
• In no case should the still frames or videos be used in any way that could cause the original

subject embarrassment or mental anguish.↪→
• You understand that the ArEnAV dataset is a deepfake dataset generated based
on VisPer ([2406.00038] ViSpeR: Multilingual Audio-Visual Speech Recognition)
dataset’s Arabic Train subset. You also agree to all agreements of the VisPer
dataset.
• The authors of the dataset make no representations or warranties regarding the
dataset, including but not limited to warranties of non-infringement or fitness for a particular

purpose.↪→
• You accept full responsibility for your use of the dataset and shall defend and
indemnify the Authors of ArEnEV, against any and all claims arising from your use of the dataset,

including but not limited to your use of any copies of copyrighted images that you may create
from the dataset.

↪→
↪→
• Any publications arising from the use of this software, including but not limited to academic

journal and conference publications, technical reports and manuals, must cite the following
works:

↪→
↪→
[CITATION]

THE DATABASE IS PROVIDED BY THE AUTHORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

↪→
↪→
↪→
↪→
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS DATABASE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE PROVIDER OF THE DATABASE
MAKES NO REPRESENTATIONS AND EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED.
THERE ARE NO EXPRESS OR IMPLIED WARRANTIES THAT THE USE OF THE MATERIAL WILL NOT INFRINGE ANY
PATENT, COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS. If you have read and understood the
user agreement and will comply with it.

↪→
↪→
↪→
↪→
↪→
↪→

Signed
______________________________
Print Name
______________________________
Institution Name
______________________________
Date
______________________________
Addition Researcher 1
______________________________
Addition Researcher 2
______________________________

Figure 7: End User License Agreement for accessing ArEnAV.
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A.8 LLM USAGE

Along with the use of Large Language Models (LLMs) as described in our Data-Creation process, we
made limited use of LLMs to enhance the clarity and readability of the text. They were not involved
in the conception of ideas, the design of experiments, analysis, or the production of results.
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