006

009

010 011

012

013

014

015

016

018

019

021

023

025

026027028

029

031

033

038

040

041

042

043 044

045

046

047

048

052

TELL ME HABIBI, IS IT REAL OR FAKE?

Anonymous authorsPaper under double-blind review

ABSTRACT

Deepfake generation methods are evolving fast, making fake media harder to detect and raising serious societal concerns. Most deepfake detection and dataset creation research focuses on monolingual content, often overlooking the challenges of multilingual and code-switched speech, where multiple languages are mixed within the same discourse. Code-switching, especially between Arabic and English, is common in the Arab world and is widely used in digital communication. This linguistic mixing poses extra challenges for deepfake detection, as it can confuse models trained mostly on monolingual data. To address this, we introduce **ArEnAV**, the first large-scale Arabic-English audio-visual deepfake dataset featuring intrautterance code-switching, dialectal variation, and monolingual Arabic content. It contains 387k videos and over 765 hours of real and fake videos. Our dataset is generated using a novel pipeline integrating four Text-To-Speech and two lip-sync models, enabling comprehensive analysis of multilingual multimodal deepfake detection. We benchmark our dataset against existing monolingual and multilingual datasets, state-of-the-art deepfake detection models, and a human evaluation, highlighting its potential to advance deepfake research. The dataset and code will be made public.

1 Introduction

Deepfake technologies, involving the artificial generation and manipulation of audio-visual content, have rapidly advanced, significantly complicating the task of distinguishing real media from synthetic creations. The potential misuse of deepfakes for misinformation, defamation, or impersonation presents profound societal risks, driving substantial research into their detection. Although initial deepfake research primarily focused on manipulating individual modalities, audio-only (Todisco et al., 2019) or video-only (Jiang et al., 2020; Kwon et al., 2021; Li et al., 2020b), recent developments increasingly consider joint manipulation of audio and visual streams for more realistic synthesis.

A significant gap remains in existing deepfake datasets (Table 1), which largely overlook multilingual scenarios, particularly code-switching (CSW), despite its global prevalence among bilingual speakers. In the Arab world, CSW is a prominent feature of daily communication, serving not only as a linguistic tool but also as a marker of cultural identity and social context (Hamed et al., 2025). Arabic speakers frequently alternate between Arabic and English within the same sentence, such as:

The topic of deepfake detection is very important). موضوع ال deepfake detection is very important).

This challenge is compounded by the diglossic nature of Arabic (Ferguson, 1959), comprising of two main varieties: Modern Standard Arabic (MSA) and Dialectal Arabic (DA). MSA functions as a lingua franca across the Arab world and is primarily used in formal settings. DA, belonging to each country, is used in everyday conversations and informal writing. Given that Arabic is one of the most widely spoken languages worldwide, ranked fifth by number of Standard Arabic speakers (Ethnologue, 2025), handling its diglossic variation and code-switching phenomena is essential for building deepfake detection systems that address the linguistic diversity in real-world media content.

Recent studies provide compelling evidence of how common CSW is among Arabic speakers. The ZAEBUC-Spoken corpus (Hamed et al., 2024) reveals that approximately 19% of spoken utterances exhibit CSW, having an average of 44% English words. The corpus also highlights the presence of diglossic CSW between Arabic variants. Similarly, the ArzEn corpus (Hamed et al., 2020)

Figure 1: a) We show the data generation pipeline for ArEnAV dataset. In a) input videos are analysed for audio, face, and text extraction. Using few-shot prompts with GPT-4.1-mini, CSW-based spoken text manipulation is performed. This is followed by speech and face enactment generation. b-d) The plots show the data splits and CSW distribution. Here is an example of CSW input and manipulated text with translations in parentheses: نصنع hope ("We create hope.") -> نصنع fun ("We create fun.")

demonstrates high CSW frequency, where 63% of utterances involve CSW with approximately 19% of words being English. These findings highlight the extent to which Arabic-English CSW is not merely an incidental phenomenon, but a widespread communicative strategy. Despite its ubiquity, deepfake detection systems remain largely ill-equipped to handle such language alternation, focusing predominantly on monolingual data. Addressing this important oversight, our work seeks to bridge this critical gap by introducing the first Arabic-English CSW audio-visual deepfake dataset, thus advancing the field toward more relevant detection systems. Our core contributions are as follows:

- Introduction of ArEnAV, the first large-scale Arabic-English audio-visual deepfake dataset featuring intra-utterance code-switching and dialectal variation, including both bilingual and diglossic switching across Modern Standard Arabic, Egyptian, Levantine, and Gulf dialects, addressing a critical gap in multilingual deepfake research.
- A novel data generation pipeline tailored to English and Arabic (MSA and dialect-rich content), integrating four TTS (Text to Speech) and two lip-sync models.
- A comprehensive analysis contrasting our dataset against existing monolingual and multilingual datasets, existing state-of-the-art (SOTA) deepfake detection models, and a detailed User Study, underscoring its unique difficulty in detection by models and humans alike.

Table 1: **Details for publicly available deep-fake datasets in chronologically ascending order.** Cla: Binary classification, SL: Spatial localization, TL: Temporal localization, FS: Face swapping, RE: Face reenactment, TTS: Text-to-speech, VC: Voice conversion.

Dataset	Year	Tasks	Manip. Modality	Method	#Total	Multilingual	Code Switching
Google DFD (Nick & Andrew, 2019)	2019	Cla	V	FS	3,431	X	Х
DFDC (Dolhansky et al., 2020b)	2020	Cla	AV	FS	128,154	X	X
DeeperForensics (Jiang et al., 2020)	2020	Cla	V	FS	60,000	X	X
Celeb-DF (Li et al., 2020b)	2020	Cla	V	FS	6,229	X	X
KoDF (Kwon et al., 2021)	2021	Cla	V	FS/RE	237,942	X	X
FakeAVCeleb (Khalid et al., 2022)	2021	Cla	AV	RE/FS	25,500+	X	X
ForgeryNet (He et al., 2021)	2021	SL/TL/Cla	V	Random FS/RE	221,247	X	X
ASVSpoof2021DF (Liu et al., 2023)	2021	Cla	A	TTS/VC	593,253	X	X
LAV-DF (Cai et al., 2022)	2022	TL/Cla	AV	Content-driven RE/TTS	136,304	X	X
DF-Platter (Narayan et al., 2023)	2023	Cla	V	FS	265 756	X	X
AV-1M (Cai et al., 2023a)	2023	TL/Cla	AV	Content-driven RE/TTS	1,146,760	X	X
PolyGlotFake (Hou et al., 2024)	2024	Cla	AV	RE/TTS/VC	15,238	/	X
Illusion (Thakral et al., 2025)	2025	Cla	AV	FS/RE/TTS	1,376,371	/	X
ArEnAV (Ours)	2025	Cla/TL	AV	Content Driven RE/TTS/VC	387,072	/	✓

2 RELATED WORK

Early deepfake research was predominantly monolingual and modality-specific. Initial significant contributions included video manipulation techniques such as FaceSwap and Face2Face as introduced by Thies et al. (2020), which led to seminal datasets like FaceForensics++ (Rössler et al., 2019) and the DeepFake Detection Challenge (DFDC) (Dolhansky et al., 2020a). These datasets primarily provided facial manipulations within single-language contexts, focusing largely on visual realism.

Parallel to video deepfake advancements, audio deepfakes evolved rapidly, driven by progress in text-to-speech (TTS) synthesis, voice conversion, and generative audio models such as Tacotron (Wang et al., 2017). Datasets like ASVspoof (Wang et al., 2020) and WaveFake (Frank & Schönherr, 2021) contributed significantly by providing benchmarks to evaluate audio manipulation detection methods, albeit still largely restricted to English.

In recent years, research has expanded towards joint audio-visual deepfake manipulations. Datasets such as FakeAVCeleb (Khalid et al., 2022) showcased realistic lip-synced speech synthesis in tandem with facial manipulations. AV-Deepfake1M (Cai et al., 2024a) further advanced this domain by automating transcript alterations to create nuanced, localized audio-visual deepfakes, highlighting the necessity of detecting temporally and contextually subtle manipulations.

Recently, there has been increased focus on multilingual audio deepfakes. These efforts have revealed key limitations in generalizing detection models across languages and proposed new resources to address these challenges. Marek et al. (2024) conducted a comprehensive study on cross-lingual deepfake detection, showing that models trained on one language often fail to generalize effectively to others, underscoring the role of language-specific phonetic and prosodic features in model performance. Multilingual audio-visual datasets emerged even more recently to address the global dimension of deepfake threats. The PolyGlotFake dataset (Hou et al., 2024) contains audio-visual deepfakes across seven languages. Although the dataset covers a wide range of language, the size of the real data is significantly small. Nonetheless, these multilingual datasets remain limited to either monolingual or monomodal scenarios within each single instance, ignoring the prevalent reality of intra-utterance language switching.

Our work directly responds to this critical gap. Unlike previous studies, we not only incorporate multilingual content but also explicitly generate intra-utterance code-switched audio-visual deepfakes. We leverage SOTA TTS and lip sync methodologies adapted for multilingual use, resulting in realistic, diverse, and challenging benchmarks.

Figure 2: Dataset distribution for i) *Train*, ii) *Val* and iii) *Test* split. The outer layer shows the split between various combinations of Text-to-Speech and Lip-Sync models used for audio-visual manipulation. The middle layer shows the distribution of language in the original transcript, which is either *Ar* (Arabic) or *CSW* (Code-Switched English-Arabic). The inner layer shows the distribution of different operations applied to the original transcripts, "meaning only", "dialect+meaning", and "meaning + translation" (For fine-grained detail about what they entail, refer to Table 12 in Appendix.)

3 ARENAV DATASET

ArEnAV is a large-scale audio-visual deepfake dataset specifically focused on Arabic–English CSW. Comprising approximately 765 hours of video data sourced from 8,809 unique YouTube videos, ArEnAV establishes itself as the first and most extensive benchmark for multilingual deepfake

detection (see Table 1 for dataset comparison). The dataset is constructed to preserve the original identity and environmental context of the source videos while systematically manipulating the semantic content to introduce Arabic-English CSW. Following the taxonomy proposed by Cai et al. (2024a), ArEnAV includes three manipulation strategies: Fake Audio & Fake Video: Both audio and visual content are synthetically generated, simulating complete audiovisual deepfakes. Fake Audio & Real Video: The audio track is manipulated to introduce anti-semantic and CSW content while maintaining the original visual content. Real Audio & Fake Video: The original audio is retained, while facial movements and lip synchronization are altered to create visually deceptive content.

3.1 Data Collection

We use the YouTube video links from VisPer's Arabic Train subset (Narayan et al., 2024). We chose VisPer because it is the largest publicly available non-English audio-visual corpus, with over 1,200 hours of Arabic alone. Its 200-keyword crawler ("interview,", "tutorial," etc.) pulls videos spanning talk shows, vlogs, documentaries, and lectures, mirroring the broad-coverage strategy that is required for a fair and diverse representation of a culture-specific deepfake dataset. We first run a scene change detection model to split the video into clips, and then we use Yolo-v5 to obtain the faces in each frame as well as track them across frames. Since we did not have ground truth for transcripts for VisPER, we surveyed state-of-the-art Automatic Speech Recognition (ASR) models for Arabic, based on the Arabic ASR Leaderboard on HuggingFace. Following a qualitative comparison, we finalized the Whisper-v2 (finetuned on English-Arabic data) for our method, with the default output language set to Arabic. Following the transcripts, we apply Forced Alignment between the audio and text, using a multilingual wav2vec2 model (Baevski et al., 2020) supporting both Arabic and English. This provides us with word-level timestamps for code-switched Arabic and English data.

3.2 Data Generation Pipeline

The data generation pipeline roughly consists of three stages: transcript manipulation, audio generation, and video generation. First, we apply controlled modifications to the transcript. Secondly, we synthesize new audio for the altered transcript while preserving the speaker's voice characteristics. Finally, we render a lip-synced video that matches the new audio, producing a realistically manipulated video clip. We detail each stage as follows.

3.2.1 TRANSCRIPT MANIPULATION

We leverage GPT-4.1-mini (OpenAI, 2025) to perform content-driven modifications of our multilingual transcripts. We define eight distinct transcript change modes that span both code-switched and Arabic-only contexts, allowing fine-grained control over how the transcript is altered. These modes include three main operations: first, *meaning only*, which only involves changing the meaning of the word and keeping the language as it is, second, *meaning + dialect*, which involves changing the meaning of the word and changing its language to another Arabic variant (either MSA or any dialect), and lastly, *meaning + translation*, which asks the model to change the meaning of the word, and then translate it to English. Table 2 summarizes the eight modification modes with their intended effect. By categorizing edits in this way, we ensure a controlled and diverse set of manipulations ranging from subtle word substitutions to introducing or removing CSW instances. Due to the effectiveness of few-shot prompting, we prompt GPT-4.1-mini with 15 examples, explaining various kinds of transitions and possible changes. Examples of original and augmented transcripts achieved by these manipulation rules are shown in Appendix A.2. We provide the prompt in Appendix A.3. We report

Table 2: Transcript manipulation rules in ArEnAV for Arabic (AR) and English (EN) words.

#	Original Transcript	Original Word	Inserted Word	Operation
1	CSW	EN	EN	Change meaning only (keep English)
2	CSW	AR	AR	Change meaning only (keep Arabic variant)
3	CSW	AR	AR	Change meaning + change Arabic variant
4	CSW	AR	AR/EN	multi-op; When 2-3 ops \rightarrow edit 1 EN and 1-2 AR words
5	Arabic	AR	AR	Change meaning only (keep Arabic variant)
6	Arabic	AR	AR	Change meaning + change Arabic variant
7	Arabic	AR	EN	Change meaning + change language to English
8	Arabic	AR	AR/EN	multi-op; Apply all operations on Arabic words

text manipulations distributions as follows: replacement (94.6%), insertion (5.1%) and deletion (0.3%). These distributions reflect GPT's manipulation choices, which were not manually enforced.

Figure 3: a) Entailment distribution over i) All change modes, ii) Dialect + meaning, iii) Meaning only, and iv) Meaning + translation. b) Perplexity Evaluation distribution among dataset splits, showing perplexity calculated using i) Jais-3B, an Arabic-English LLM, and ii) Qwen-2.5-7B. b) Perplexity calculated using i) Jais-3B ii) Qwen-2.5-7B. Reference in both shows the perplexity calculated on an Arabic-English CSW text dataset (SDAIANCAI, 2025).

Transcript Quality:

To quantify the impact of our LLM-based manipulations, we employ two complementary metrics: *Bidirectional Entailment Quality Mean*: the average of Real—Fake and Fake—Real NLI entailment scores (1.0 = full semantic entailment; 0.0 = direct contradiction) and *Perplexity*: how well a language model predicts a transcript (lower = more fluent/natural). Table 3a shows the distribution of entailment quality means over different types of perturbations. In every subset, a large fraction of samples lies below the 0.5 threshold, and many even in the contradiction zone, demonstrating that our pipeline reliably injects semantic change regardless of language or dialect.

Figure 3b reports average perplexities on real versus fake transcripts under two open-source LLMs; Jais-3B (Sengupta et al., 2023) and Qwen-2.5-7B (Qwen et al., 2025), across the data splits. The minimal difference in perplexity shows that our fake transcripts remain fluent and natural, despite major changes in meaning. This balance between altered content and surface-level fluency is essential for generating effective audio-visual deepfakes

3.2.2 AUDIO GENERATION

The next step involves generating a synthetic audio track that precisely follows the edited transcript while maintaining the voice characteristics of the original on-screen speaker. Initially, we segment the audio into clean speech and background noise using a Denoiser (Defossez et al., 2020). Conventional zero-shot voice cloning systems, such as YourTTS (Casanova et al., 2023), exhibit strong performance in English but struggle with Arabic phonetics and cross-lingual synthesis. To address this, we employ four targeted cloning strategies: a) XTTS-v2 (Casanova et al., 2024): A multilingual, zero-shot TTS model natively supporting Arabic, English, and code-switching. b) XTTS-v2 (Casanova et al., 2024) + OpenVoice-v2 (Qin et al., 2024): When a reference voice sample is available, we achieve higher fidelity by generating the utterance with XTTS-v2 and performing speaker conversion via OpenVoice-v2. c) Fairseq Arabic TTS (Ott et al., 2019) + OpenVoice-v2 (Qin et al., 2024): For fully Arabic sentences, we generate audio with the Fairseq Arabic TTS, followed by speaker conversion using OpenVoice-v2. d) GPT-TTS (OpenAI, 2023) + OpenVoice-v2 (Qin et al., 2024): We randomly select one voice out of 29, generate the sentence, and then convert the audio to the target speaker's voice with OpenVoice-v2.

The audio-generation flow depends on the edit type. For *insert* or *replace* operations, we regenerate the complete sentence and validate the generated audio using Whisper-Turbo (Radford et al., 2022), retaining only samples that exactly match the intended transcript. This step ensures intelligibility and accurate timestamp alignment for splicing the segment into the original audio. If validation fails, we discard the sample. For a *delete* operation, we remove speech segments entirely, preserving only background noise. Finally, after each edit, we normalise the loudness of the manipulated segment relative to the original audio and recombine it with the extracted environment noise.

Audio Quality:

Table 3 presents the comparison of audio quality for ArEnAV based on speaker similarity, signal quality and distribution realism with existing audio-visual deepfake datasets. We report speaker encoder cosine similarity (SECS), Signal-to-Noise (SNR) and Fréchet audio distance (FAD) for recent Audio-Visual datasets. SECS measures the speaker's voice similarity between a generated clip and the real reference (range [-1,1], higher is better), while FAD evaluates

Table 3: Audio quality comparison across different datasets.

Dataset	Language	SECS↑	SNR(dB)↑	FAD↓
FakeAVCeleb LAV-DF AV-Deepfake1M	English English English	0.543 0.984 0.991	2.16 7.83 9.39	6.598 0.306 0.088
ArEnAV	Arabic, English	0.990	7.65	0.140

the distributional distance between the generated audio and real audio (lower is better). The metrics combined indicate that ArEnAV has high-quality audio samples.

3.3 VISUAL MANIPULATION

For video generation, after extensive experimentation, we chose two diffusion-based lip-sync approaches: Diff2Lip (Mukhopadhyay et al., 2023) and LatentSync (Li et al., 2025). Both of these models perform high-quality zero-shot lip-sync and are open-sourced. Using the newly generated audio and the original video's frames we generate the fake frames. For *replace* and *insert* word operations, we generate the fake frames for the new word, and for *delete* word operations, we generate a face with closed lips i.e., without audio.

Visual Quality: To evaluate visual quality, we use three standard metrics: Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Fréchet Inception Distance (FID). Table 4 presents PSNR, SSIM, and FID results for the ArEnAV dataset. PSNR and SSIM measure pixel-level and structural similarity, respectively, between fake and original frames (higher is better) (ArEnAV lies nearby AV-1M). FID assesses realism by comparing the distributions of fake and real frames in a learned image feature space (lower is better) (ArEnAV slightly more than AV-1M). These scores highlight that ArEnAV attains higher / comparable visual quality compared to other deepfake datasets.

Table 4: Visual quality comparison across different datasets.

Dataset	PSNR(dB)↑	SSIM↑	FID↓
FF++	24.40	0.812	1.06
DFDC	_	_	5.69
FakeAVCeleb	29.82	0.919	2.29
LAV-DF	33.06	0.898	1.92
AV-Deep fake 1M	39.49	0.977	0.49
ArEnAV	37.70	0.971	0.68

Real Perturbations: To mimic real-life video scenarios better, we add localized perturbations to both the real and the fake videos. We apply 15 different visual filters (eg, salt-pepper noise and camera shaking) and 10 different audio manipulations (eg, time-stretching, random loudness and pitch). For each video, we randomly sample one to three instances for visual perturbations and one to two instances for audio perturbations. Perturbation details are mentioned in Appendix A.1.

3.4 USER STUDY

To investigate whether humans can identify deepfakes in ArEnAV, we conducted a user study with 19 participants, out of which, 15 are native Arabic speakers, and 4 have basic knowledge of Arabic. We randomly sampled 20 videos, with either 0 or 1 manipulation. *Instructions for User Study:* Each participant was asked to 1) watch the video, and 2)

Table 5: Detection and Localization results from our User Study.

Method	Acc.	AP@0.1	AP@0.5	AR@1
ArEnAV	60.00	8.35	0.79	1.38

answer 3 questions, i) Is the video real of fake, ii) If it is fake, localize where they think the fake region is, iii) Whether the given video contains Arabic-English code-switching or not, iv) Give a reason for labelling the video (if they have) as a deepfake.

The results in Table 5 reaffirm our hypothesis that identifying

tone when a person code-switches, which makes it harder

324 325

332

333

334

335

336 337

338 339

340 341 342

349

350

351

352

353

354

355

356

357

358

359 360

361 362

363

364

366

367

368

369

370 371

372

373

374

375

376

377

audiovisual deepfakes in multilingual (specially CSW) and multimodal settings is a non-trivial task, as even humans achieve only 60% accuracy, while it is even harder to localize the deepfakes, with AP@0.5 at 0.79. Further, Table 6 shows the primary reasons why people classified the videos as fake. We report that 85% of the users fail to identify deepfakes when the manipulation happens in the English word, in the CSW video, which can be attributed to a higher quality of voice cloning in English as well as the natural change in

Table 6: Distribution of top reasons for predicting a video as Fake in our User Study.

Reason	Percentage (%)
Unintelligible speech (weird audio)	36.5
Video/audio mismatch (lip sync is off)	25.1
Audio sounds artificial	24.7
Video looks artificial	8.7
Code-switching is unnatural	3.0
Incoherent sentence	1.9

to detect. Further, localization is very tough due to the very high quality of lip-sync with diffusion models, as shown in Table 6, where the video being the reason for fake classification is only 8.7%.

3.5 Dataset Statistics

Table 7: Data distribution in ArEnAV and comparison with other multilingual datasets.

Subset	#Unique	#Real	#Fake	#Non-English	#CSW	#Arabic	Arabic
	Videos	Videos	Videos	Clips	Videos	Videos	Variants
PolyGlotFake (Hou et al., 2024)	766	766	14,472	11,941	0	1,403	NA
Illusion (Thakral et al., 2025)	-	141,440	1,234,931	4,385		-	NA
ArEnAV-Train	6,117	67,600	202,800	270,400	69,544	200,856	Egyptian,
ArEnAV-Validation	876	9,560	28,680	38,240	10,416	27,824	MSA,
ArEnAV-Test	1,816	19,608	58,824	78,432	19,832	58,600	Levantine, Gulf
ArEnAV (total)	8,809	96,768	290,304	387,072	99,792	287,280	-

Table 7 compares ArEnAV with other multilingual deepfake detection datasets. Existing multilingual datasets like PolyGlotFake (Hou et al., 2024) and Illusion (Thakral et al., 2025) have significantly smaller multilingual content, containing limited Arabic data (1,400 Arabic videos in PolyGlotFake and minimal in Illusion across 26 languages). ArEnAV includes 387k videos sourced from 8,809 unique YouTube videos, totaling over 765 hours. Videos average approximately 7.7 seconds each, with train, validation, and test splits created via multilabel stratified sampling in a 7:1:2 ratio, ensuring no overlap.

Computational Cost: We spent around 50 GPU hours to generate the real transcript using Whisper-Large-V2 (Radford et al., 2022), 200 dollars worth of OpenAI credits, to generate fake transcripts and Text-to-Speech model, TTS-1 (OpenAI, 2023), and 650 GPU hours for video generation. Overall, we needed 800 GPU hours to generate AvEnAV with NVIDIA RTX-6000 GPUs.

BENCHMARK AND METRICS

We organize the data into train, validation, and test split. We use multilabel stratified sampling to divide the data in equal proportions based on the method type, the change mode, and the ground truth language. We also show evaluation on two subsets, subset V, which excludes videos with audio-only manipulation, and subset A, which excludes videos with visual-only manipulations. We evaluate models on two tasks, temporal localization and detection of audio-visual deepfakes. We use average precision (AP) and average recall (AR) metrics as prior works (He et al., 2021; Cai et al., 2022; 2023a) for temporal localization. For the task of deepfake detection, we use the standard evaluation protocol (Rossler et al., 2019; Dolhansky et al., 2020b; Cai et al., 2023a) to report video-level accuracy (Acc.) and area under the curve (AUC).

Implementation Details: We benchmark temporal detection using SOTA models: Meso4, MesoInception4, Xception, BA-TFD, and BA-TFD+. BA-TFD and BA-TFD+ (Cai et al., 2023b) are evaluated in their original configurations, both in a zero-shot setting (pre-trained on AV-1M; (Cai et al., 2023a)) and after fine-tuning on our dataset. For image-based classifiers: Meso4, MesoInception4 (Afchar et al., 2018); and Xception (Chollet, 2017), we aggregate frame-level predictions to segments following Cai et al. (2023a). For benchmarking deepfake detection, image-based models (Meso4, MesoInception4, and Xception) are trained on video frames with corresponding labels, and predictions are aggregated to video-level using max voting, as suggested by Cai et al.

Table 8: Temporal localization results on the test set of ArEnAV.

Set	Method	Mod.	AP@0.5	AP@0.75	AP@0.9	AP@0.95	AR@50	AR@30	AR@20	AR@10	AR@5
Full dataset	Meso4	V	0.02	0.01	0.00	0.00	0.09	0.09	0.09	0.09	0.09
-	MesoInception	V	0.56	0.18	0.04	0.01	4.11	4.11	4.11	4.11	4.08
-	Xception	V	22.50	10.26	2.29	0.58	19.13	19.13	19.13	19.13	19.13
-	BA-TFD (ZS)	AV	0.17	0.01	0.00	0.00	9.72	5.20	3.07	1.46	0.73
-	BA-TFD+ (ZS)	AV	0.11	0.00	0.00	0.00	5.77	2.95	2.09	0.87	0.37
_	BA-TFD	AV	2.42	0.55	0.01	0.00	22.30	10.31	3.41	2.54	1.67
	BA-TFD+	AV	3.74	1.10	0.06	0.01	30.75	9.42	4.55	3.05	1.83
Set V	Meso4	V	0.02	0.01	0.00	0.00	0.10	0.10	0.10	0.10	0.10
-	MesoInception	V	0.83	0.27	0.05	0.01	5.56	5.56	5.56	5.56	5.53
-	Xception	V	32.76	14.48	3.30	0.81	27.78	27.78	27.78	27.78	27.78
_	BA-TFD (ZS)	AV	0.12	0.00	0.00	0.00	8.44	4.34	2.44	1.13	0.49
_	BA-TFD+ (ZS)	AV	0.07	0.00	0.00	0.00	4.69	2.39	1.65	0.69	0.29
_	BA-TFD	AV	3.65	0.25	0.01	0.00	25.31	9.03	3.64	2.34	1.64
	BA-TFD+	AV	5.65	1.89	0.08	0.02	31.09	13.21	5.91	3.05	2.05
Set A	Meso4	V	0.02	0.01	0.00	0.00	0.08	0.08	0.08	0.08	0.08
_	MesoInception	V	0.38	0.09	0.01	0.00	3.25	3.25	3.25	3.25	3.22
_	Xception	V	14.72	3.92	0.29	0.09	11.78	11.78	11.78	11.78	11.78
-	BA-TFD (ZS)	AV	0.23	0.01	0.00	0.00	12.14	6.46	3.85	1.83	0.95
_	BA-TFD+ (ZS)	AV	0.14	0.01	0.00	0.00	7.32	3.79	2.69	1.13	0.48
	BA-TFD	AV	3.21	0.60	0.02	0.00	24.45	9.26	4.15	2.61	1.93
	BA-TFD+	AV	4.35	1.10	0.10	0.00	28.35	11.23	4.85	3.11	2.00

Table 9: Deepfake detection results on the test set of ArEnAV.

Label Access	Pretraining Data	Methods	Mod.	Fullset	Subset V	Subset A
For Training				AUC Acc.	AUC Acc.	AUC Acc.
Zero-Shot	ASVSpoof-19	XLSR-Mamba	Α	39.19 52.77	52.73 40.68	52.50 42.59
-	Internet Scale	Video-LLaMA (7B)	V	51.48 26.29	51.47 34.21	51.43 34.18
-	Internet Scale	Video-LLaMA (7B)	AV	48.79 59.29	48.71 55.37	48.86 55.26
-	AV-1M	BA-TFD	AV	61.73 26.00	66.42 34.07	59.36 33.97
-	AV-1M	BA-TFD+	AV	60.96 25.84	64.49 34.28	59.44 33.80
Video Level	ArEnAV	XLSR-Mamba	A	73.00 61.00	57.47 66.16	86.33 78.00
-	ArEnAV	Meso4	V	49.30 75.00	49.15 66.67	49.30 66.67
-	ArEnAV	MesoInception4	V	50.34 46.23	50.28 47.48	50.35 47.67
-	ArEnAV	Xception	V	50.05 75.00	49.90 66.67	50.32 66.67
Frame level	ArEnAV	Meso4	V	49.55 26.60	49.60 34.40	49.53 34.36
-	ArEnAV	MesoInception4	V	51.14 41.25	50.77 51.84	45.28 44.09
-	ArEnAV	Xception	V	74.21 52.09	85.36 67.22	68.59 51.70
-	AV-1M & ArEnAV	BA-TFD	AV	75.91 44.31	77.64 58.29	72.21 45.21
_	AV-1M & ArEnAV	BA-TFD+	AV	79.97 27.44	84.20 36.47	72.89 34.56

(2023a). Additionally, we assess zero-shot performance of LLM-based models, VideoLLaMA2 and VideoLLaMA2.1-AV (Zhang et al., 2023), prompting them to produce a confidence score indicating the likelihood of a video being a deepfake. We include an audio-only baseline, XLSR-Mamba (Xiao & Das, 2025), the best open-source audio deepfake detection model on Speech DF Arena (Face, 2025), evaluating it both in zero-shot mode (pre-trained on ASVSpoof-2019 (Wang et al., 2020)) and after training with video-level labels from our dataset. BA-TFD and BA-TFD+ (Cai et al., 2022) are also evaluated using segmentation proposals treated as frame-level predictions and aggregated by max-voting, both pre-trained on AV-1M and fine-tuned on our dataset.

5 RESULTS AND ANALYSIS

Audio-Visual Temporal Deepfake Localization. The results for temporal localization are shown in Table 8. SOTA methods show significantly lower performance on ArEnAV as compared to other localization datasets (refer to Table 10a). BA-TFD and BA-TFD+, pretrained on AV-1M, show a drop in performance of more than 35% for AP@0.5 threshold, compared to evaluation on AV-1M. The image-based models, Meso4 and MesoInception4, also provide low performance, which can be attributed to the use of diffusion-based lip-sync models, which have been overlooked in previous data generation pipelines (Cai et al., 2023a;b). Through this benchmark, we claim that the highly

Table 10: (a): Temporal localization comparison on ArEnAV, AV-1M and LAVDF. The low performance on ArEnAV demonstrates the data complexity in CSW settings. (b): Cross-Dataset comparison (% AUC) of recent SOTA models.

(a) Cross-dataset Deepfake Localization.

(b) Cross-dataset deepfake detection.

Method	Dataset	AP@0.5	AP@0.95	AR@50	AR@10
	LAV-DF	79.15	0.24	64.18	58.51
BA-TFD	AV-1M	37.37	0.02	45.55	30.66
	ArEnAV	2.42	0.01	22.30	2.54
	LAV-DF	96.30	4.44	80.48	78.75
BA-TFD+	AV-1M	44.42	0.03	48.86	34.67
	ArEnAV	3.74	0.04	30.75	3.05

Method	Venue	ArEnAV	DFDC	FF++	CelebDF
Capsule-v2 Face-X-Ray LipForensics M2TR	ICASSP-19 CVPR-20 CVPR-21 ICMR-22	49.15 55.56 49.76 50.12	80.92 73.50	93.11 98.52 97.10 99.92	80.58 82.40
LAA-Net ForensicsAdaptor	CVPR-24 CVPR-25	50.04 50.58	86.94 88.70	99.96 -	- 94.00

realistic multimodal multilingual code-switched fake content in ArEnAV will open an avenue for further research on temporal multilingual deepfake localization methods.

Audio-Visual Deepfake Detection. The detection results are in Table 9. Image based models, that have access to video-level labels only, perform considerably worse, except XLSR-Mamba, which is designed to be trained on video-level labels for audio-deepfake detection. The best performing model is BA-TFD, pretrained on AV-1M and then further fine-tuned on our dataset, with AUC Score of 82% on the full subset. We also evaluate models on subsets V and A, as described in the implementation details. The audio-only model, XLSR-Mamba, performs better in the Audio-only *subset A*, while the image-only models perform better on *Subset V* for frame-level labels, compared to the *fullset*. XLSR-Mamba performs relatively worst when the audio is code-switched, compared to only Arabic.

Cross-Dataset Comparison for Deepfake Localization. Table 10a shows the performance of BA-TFD and BA-TFD+ on LAVDF, AV-1M and ArEnAV datasets. Both models perform significantly worse on ArEnAV, highlighting the poor generalizability in multilingual and code-switching settings. BA-TFD and BA-TFD+ fail to generalize effectively, as the pretrained audio and video encoders struggle with out-of-distribution data encountered in both modalities of ArEnAV.

Cross-Dataset Comparison for Deepfake Detection. Table 10b shows the cross dataset performance of recent SOTA deepfake detection models, including Capsule-v2 (Nguyen et al., 2019), Face-X-Ray (Li et al., 2020a), LipForensics (Haliassos et al., 2021) and M2TR (Wang et al., 2022). All models were pretrained on FaceForensics++ (Rössler et al., 2019). While models show great cross-dataset performance on DFDC and CelebDF, they fail to perform better than guessing (50% AUC) on ArEnAV. Even recent SOTA models, such as ForensicsAdaptor (CVPR-25) (Cui et al., 2025b) and LAA-Net (CVPR-24) (Nguyen et al., 2024), fail to generalize. The demographic and linguistic homogeneity of existing datasets (FF++, CelebDF, DFDC) limits model robustness. By incorporating multilingual audio and broader participant diversity, our dataset demonstrates why architectures must be designed to generalize beyond those biases.

6 Conclusion

This paper presents ArEnAV, a large multilingual and the first code-switching audio-visual dataset for temporal deepfake localization and detection. The comprehensive benchmark of the dataset utilizing SOTA deepfake detection and localization methods indicates a significant drop in performance compared to previous monolingual datasets, indicating that the proposed dataset is an important asset for building the next-generation of multilingual deepfake localization methods. As future work, we will evaluate VLM-based detectors after fine-tuning them on the dataset.

Limitations. Similar to other deepfake datasets, ArEnAV exhibits a misbalance in terms of the number of fake and real videos. Due to the limited performance of current SOTA Active-Voice-Detection (Whisper v2) models on Arabic (compared to English), the data generation pipeline can result in a few noisy transcripts. Due to limited instruction following in code-switching scenarios, LLMs might not produce the desired results, as visible in Figure 3 "Meaning + Translation Scenario". Compared to other subsets, Chat-GPT often fails to follow both instructions, making real and fake transcripts too similar and not always changing their meaning. Also, the dataset is currently limited to two languages only, where we hope to motivate further research in this direction.

Broader Impact. ArEnAV's diverse and realistic English-Arabic fake videos will support the development of more robust audio-visual deepfake detection and localization models, better equipped to handle code-switched speech and real-world multilingual scenarios.

7 ETHICS STATEMENT

Our work on ArEnAV raises important ethical considerations, especially given the sensitivity of deepfake research. The dataset is built from publicly available YouTube content, in line with established practices in benchmarks. Use of such material for non-commercial research is covered under fair use, and access to ArEnAV is gated by a strict End-User License Agreement (EULA)(Section A.4). Below, we detail all the ethical considerations regarding our work:

Use of YouTube Videos: The ethical foundation of our data collection does not rely on VisPER but on established practices in prior peer-reviewed datasets such as LRS3-TED (Afouras et al., 2018b), VoxCeleb2 (Chung et al., 2018b), and AVSpeech (Ephrat et al., 2018a), which employ the same keyword-search and face-detection pipeline. We build our dataset from public YouTube videos under the research-focused "fair use" exception established in peer-reviewed work (e.g., Zhu et al. (2024)). Access is granted only after users agree to our EULA, which lists the following rules and regulations:

- Access will be granted only to researchers who supply their university IRB application ID, and every project member must use an individual account, safeguarding traceability and preventing misuse.
- Users are eligible to conduct independent research at their respective institutions and the Institution accepts responsibility for its Authorized Investigators' actions related to the use of ArEnAV.
- Limits use to academic, non-commercial, not-for-profit research and education.
- Authorizes licensors to modify the data or license at any time and prohibits licensees from altering the database.
- Forbids any use that could cause subjects embarrassment or mental anguish.

This approach accords with established practice across the community, as evidenced by DF40 (Yan et al., 2024), which draws real videos and images from FaceForensics++ (Rössler et al., 2019), Celeb-DF (Li et al., 2020b), CelebA (Liu et al., 2015), FFHQ (Karras et al., 2019), and VFHQ (Xie et al., 2022); DeepfakeBench (Yan et al., 2023), which relies on FaceForensics++ and Celeb-DF; FaceForensics++; Celeb-DF; FakeAVCeleb (Khalid et al., 2021), which builds on VoxCeleb2 (Chung et al., 2018a); AVLIPS (Liu et al., 2024), which sources from LRS3 (Afouras et al., 2018a) and FaceForensics++; and AV-1M (Cai et al., 2024b), which is derived from VoxCeleb2. Together, these measures and precedents demonstrate that curating public YouTube content for non-commercial scientific inquiry is a responsible and widely adopted practice.

Face Detection techniques applied on videos: We acknowledge the risks of working with videos that contain faces, but face detection is used only as a preprocessing step and not for identification. In line with recent peer-reviewed works, using videos containing faces, for different research problems that involve face detection as a common prior step, is a standard practice, e.g.: a) LRS3-TED (Afouras et al., 2018b), VoxCeleb1 (Nagrani et al., 2017), VoxCeleb2 (Chung et al., 2018b) have been used for Speaker Identification, Verification, Recognition, and further, for Deepfake benchmark creation (AV-1M (Cai et al., 2024a) and FakeAVCeleb (Khalid et al., 2022)) b) MultiTalk (Sung-Bin et al., 2024) uses videos from YouTube for Talking Head generation c) AVSpeech (Ephrat et al., 2018b) used for Speech Separation d) Hallo3 (Cui et al., 2025a) used for Portrait Image Animation.

Since it is impractical to get individual consent for open-source content, we mitigate misuse by requiring institutional IRB approval, individual researcher accounts for access and a removal mechanism to request the removal of personal content.

Human Study: Our human study followed university IRB guidelines: participants were over 18 years of age and were approached over email through connections in research groups within the affiliated universities of the authors. The participation was strictly voluntary and anonymous. All the details about the research project and conditions for participation in the study were clarified through an Explanatory Statement at the beginning of the user study form. Thus, the users consented to participate in the study by filling out and submitting the study form (Google form), and all material was screened to avoid disturbing content. No personal data were recorded and no compensation was provided.

8 REPRODUCIBILITY STATEMENT

Our data will be open-sourced. Data-generation code and evaluation scripts will be made public for various open-sourced models evaluated.

REFERENCES

- Darius Afchar, Vincent Nozick, Junichi Yamagishi, and Isao Echizen. MesoNet: a Compact Facial Video Forgery Detection Network. In 2018 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–7, December 2018. ISSN: 2157-4774.
- Triantafyllos Afouras, Joon Son Chung, and Andrew Zisserman. Lrs3-ted: A large-scale dataset for visual speech recognition. *arXiv preprint*, arXiv:1809.00496, 2018a.
- Triantafyllos Afouras, Joon Son Chung, and Andrew Zisserman. Lrs3-ted: a large-scale dataset for visual speech recognition, 2018b. URL https://arxiv.org/abs/1809.00496.
- Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A framework for self-supervised learning of speech representations, 2020. URL https://arxiv.org/abs/2006.11477.
- Zhixi Cai, Kalin Stefanov, Abhinav Dhall, and Munawar Hayat. Do You Really Mean That? Content Driven Audio-Visual Deepfake Dataset and Multimodal Method for Temporal Forgery Localization. In 2022 International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1–10, Sydney, Australia, November 2022.
- Zhixi Cai, Shreya Ghosh, Aman Pankaj Adatia, Munawar Hayat, Abhinav Dhall, and Kalin Stefanov. AV-Deepfake1M: A Large-Scale LLM-Driven Audio-Visual Deepfake Dataset, November 2023a. arXiv:2311.15308 [cs].
- Zhixi Cai, Shreya Ghosh, Abhinav Dhall, Tom Gedeon, Kalin Stefanov, and Munawar Hayat. Glitch in the matrix: A large scale benchmark for content driven audio—visual forgery detection and localization. *Computer Vision and Image Understanding*, 236:103818, November 2023b. ISSN 1077-3142.
- Zhixi Cai, Abhinav Dhall, Shreya Ghosh, Munawar Hayat, Dimitrios Kollias, Kalin Stefanov, and Usman Tariq. 1m-deepfakes detection challenge, 2024a. URL https://arxiv.org/abs/2409.06991.
- Zhixi Cai, Shreya Ghosh, Aman Pankaj Adatia, Munawar Hayat, Abhinav Dhall, Tom Gedeon, and Kalin Stefanov. Av-deepfake1m: A large-scale llm-driven audio-visual deepfake dataset. In *Proceedings of the 32nd ACM International Conference on Multimedia (MM '24)*, 2024b. doi: 10.1145/3664647.3680795.
- Edresson Casanova, Julian Weber, Christopher Shulby, Arnaldo Candido Junior, Eren Gölge, and Moacir Antonelli Ponti. Yourtts: Towards zero-shot multi-speaker tts and zero-shot voice conversion for everyone, 2023. URL https://arxiv.org/abs/2112.02418.
- Edresson Casanova, Kelly Davis, Eren Gölge, Görkem Göknar, Iulian Gulea, Logan Hart, Aya Aljafari, Joshua Meyer, Reuben Morais, Samuel Olayemi, and Julian Weber. Xtts: a massively multilingual zero-shot text-to-speech model, 2024. URL https://arxiv.org/abs/2406.04904.
- Francois Chollet. Xception: Deep Learning With Depthwise Separable Convolutions. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 1251–1258, 2017.
- Joon Son Chung, Arsha Nagrani, and Andrew Zisserman. Voxceleb2: Deep speaker recognition. In *Interspeech 2018*, pp. 1086–1090, 2018a. doi: 10.21437/Interspeech.2018âĂŚ1929.
- Joon Son Chung, Arsha Nagrani, and Andrew Zisserman. VoxCeleb2: Deep Speaker Recognition. In *Interspeech 2018*, pp. 1086–1090. ISCA, September 2018b.
- Jiahao Cui, Hui Li, Yun Zhan, Hanlin Shang, Kaihui Cheng, Yuqi Ma, Shan Mu, Hang Zhou, Jingdong Wang, and Siyu Zhu. Hallo3: Highly dynamic and realistic portrait image animation with video diffusion transformer, 2025a. URL https://arxiv.org/abs/2412.00733.
- Xinjie Cui, Yuezun Li, Delong Zhu, Jiaran Zhou, Junyu Dong, and Siwei Lyu. Forensics adapter: Unleashing clip for generalizable face forgery detection, 2025b. URL https://arxiv.org/abs/2411.19715.

- Alexandre Defossez, Gabriel Synnaeve, and Yossi Adi. Real time speech enhancement in the waveform domain. In *Interspeech*, 2020.
 - Brian Dolhansky, Joanna Bitton, Ben Pflaum, Jikuo Lu, Russ Howes, Menglin Wang, and Cristian Canton Ferrer. The deepfake detection challenge (dfdc) dataset, 2020a. URL https://arxiv.org/abs/2006.07397.
 - Brian Dolhansky, Joanna Bitton, Ben Pflaum, Jikuo Lu, Russ Howes, Menglin Wang, and Cristian Canton Ferrer. The DeepFake Detection Challenge (DFDC) Dataset, October 2020b. arXiv: 2006.07397 [cs].
 - Ariel Ephrat, Inbar Mosseri, Oran Lang, Tali Dekel, Kevin Wilson, Avinatan Hassidim, William T. Freeman, and Michael Rubinstein. Looking to listen at the cocktail party: a speaker-independent audio-visual model for speech separation. *ACM Transactions on Graphics*, 37(4):1–11, July 2018a. ISSN 1557-7368. doi: 10.1145/3197517.3201357. URL http://dx.doi.org/10.1145/3197517.3201357.
 - Ariel Ephrat, Inbar Mosseri, Oran Lang, Tali Dekel, Kevin Wilson, Avinatan Hassidim, William T. Freeman, and Michael Rubinstein. Looking to Listen at the Cocktail Party: A Speaker-Independent Audio-Visual Model for Speech Separation. *ACM Transactions on Graphics*, 37(4):1–11, August 2018b. ISSN 0730-0301, 1557-7368.
 - Ethnologue: Languages of the world. http://www.ethnologue.com, 2025. Accessed: 2025-09-25.
 - Hugging Face. Speech df arena speech-arena-2025. https://huggingface.co/spaces/ Speech-Arena-2025/Speech-DF-Arena, 2025. Accessed: 2025-05-13.
 - Charles A. Ferguson. Diglossia. *Word*, 15(2):325–340, 1959.
 - Joel Frank and Lea Schönherr. Wavefake: A data set to facilitate audio deepfake detection, 2021. URL https://arxiv.org/abs/2111.02813.
 - Alexandros Haliassos, Konstantinos Vougioukas, Stavros Petridis, and Maja Pantic. Lips don't lie: A generalisable and robust approach to face forgery detection, 2021. URL https://arxiv.org/abs/2012.07657.
 - Injy Hamed, Ngoc Thang Vu, and Slim Abdennadher. ArzEn: A speech corpus for code-switched Egyptian Arabic-English. In Nicoletta Calzolari, Frédéric Béchet, Philippe Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Hélène Mazo, Asuncion Moreno, Jan Odijk, and Stelios Piperidis (eds.), *Proceedings of the Twelfth Language Resources and Evaluation Conference*, pp. 4237–4246, Marseille, France, May 2020. European Language Resources Association. ISBN 979-10-95546-34-4. URL https://aclanthology.org/2020.lrec-1.523/.
 - Injy Hamed, Fadhl Eryani, David Palfreyman, and Nizar Habash. ZAEBUC-Spoken: A multilingual multidialectal Arabic-English speech corpus. In *Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)*, pp. 17770–17782, 2024.
 - Injy Hamed, Caroline Sabty, Slim Abdennadher, Ngoc Thang Vu, Thamar Solorio, and Nizar Habash. A survey of code-switched Arabic NLP: Progress, challenges, and future directions. In *Proceedings of the 31st International Conference on Computational Linguistics*, pp. 4561–4585, 2025.
 - Yinan He, Bei Gan, Siyu Chen, Yichun Zhou, Guojun Yin, Luchuan Song, Lu Sheng, Jing Shao, and Ziwei Liu. ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4360–4369, 2021.
 - Yang Hou, Haitao Fu, Chuankai Chen, Zida Li, Haoyu Zhang, and Jianjun Zhao. Polyglotfake: A novel multilingual and multimodal deepfake dataset, 2024. URL https://arxiv.org/abs/2405.08838.

- Liming Jiang, Ren Li, Wayne Wu, Chen Qian, and Chen Change Loy. DeeperForensics-1.0: A Large-Scale Dataset for Real-World Face Forgery Detection. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 2889–2898, 2020.
 - Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks, 2019. URL https://arxiv.org/abs/1812.04948.
 - Hasam Khalid, Shahroz Tariq, Minha Kim, and Simon S. Woo. Fakeavceleb: A novel audio-video multimodal deepfake dataset. In *Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks* (NeurIPS Datasets and Benchmarks), 2021. arXiv:2108.05080.
 - Hasam Khalid, Shahroz Tariq, Minha Kim, and Simon S. Woo. Fakeavceleb: A novel audio-video multimodal deepfake dataset, 2022. URL https://arxiv.org/abs/2108.05080.
 - Patrick Kwon, Jaeseong You, Gyuhyeon Nam, Sungwoo Park, and Gyeongsu Chae. KoDF: A Large-Scale Korean DeepFake Detection Dataset. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 10744–10753, 2021.
 - Chunyu Li, Chao Zhang, Weikai Xu, Jingyu Lin, Jinghui Xie, Weiguo Feng, Bingyue Peng, Cunjian Chen, and Weiwei Xing. Latentsync: Taming audio-conditioned latent diffusion models for lip sync with syncnet supervision, 2025. URL https://arxiv.org/abs/2412.09262.
 - Lingzhi Li, Jianmin Bao, Ting Zhang, Hao Yang, Dong Chen, Fang Wen, and Baining Guo. Face x-ray for more general face forgery detection, 2020a. URL https://arxiv.org/abs/1912.13458.
 - Yuezun Li, Xin Yang, Pu Sun, Honggang Qi, and Siwei Lyu. Celeb-DF: A Large-Scale Challenging Dataset for DeepFake Forensics. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 3207–3216, 2020b.
 - Weifeng Liu, Tianyi She, Jiawei Liu, Boheng Li, Dongyu Yao, Ziyou Liang, and Run Wang. Lips are lying: Spotting the temporal inconsistency between audio and visual in lip-syncing deepfakes. In *Advances in Neural Information Processing Systems (NeurIPS), Poster / Datasets & Benchmarks Track*, 2024.
 - Xuechen Liu, Xin Wang, Md Sahidullah, Jose Patino, Héctor Delgado, Tomi Kinnunen, Massimiliano Todisco, Junichi Yamagishi, Nicholas Evans, Andreas Nautsch, and Kong Aik Lee. ASVspoof 2021: Towards Spoofed and Deepfake Speech Detection in the Wild. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 31:2507–2522, 2023. ISSN 2329-9304.
 - Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, pp. 3730–3738, 2015.
 - Bartłomiej Marek, Piotr Kawa, and Piotr Syga. Are audio deepfake detection models polyglots?, 2024. URL https://arxiv.org/abs/2412.17924.
 - Soumik Mukhopadhyay, Saksham Suri, Ravi Teja Gadde, and Abhinav Shrivastava. Diff2lip: Audio conditioned diffusion models for lip-synchronization, 2023. URL https://arxiv.org/abs/2308.09716.
 - Arsha Nagrani, Joon Son Chung, and Andrew Zisserman. VoxCeleb: a large-scale speaker identification dataset. *Interspeech 2017*, pp. 2616–2620, August 2017.
 - Kartik Narayan, Harsh Agarwal, Kartik Thakral, Surbhi Mittal, Mayank Vatsa, and Richa Singh. DF-Platter: Multi-Face Heterogeneous Deepfake Dataset. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9739–9748, 2023.
 - Sanath Narayan, Yasser Abdelaziz Dahou Djilali, Ankit Singh, Eustache Le Bihan, and Hakim Hacid. Visper: Multilingual audio-visual speech recognition, 2024. URL https://arxiv.org/abs/2406.00038.

- Dat Nguyen, Nesryne Mejri, Inder Pal Singh, Polina Kuleshova, Marcella Astrid, Anis Kacem, Enjie Ghorbel, and Djamila Aouada. Laa-net: Localized artifact attention network for quality-agnostic and generalizable deepfake detection, 2024. URL https://arxiv.org/abs/2401.13856.
 - Huy H. Nguyen, Junichi Yamagishi, and Isao Echizen. Capsule-forensics: Using Capsule Networks to Detect Forged Images and Videos. In *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 2307–2311, May 2019. ISSN: 2379-190X.
 - Dufou Nick and Jigsaw Andrew. Contributing Data to Deepfake Detection Research, September 2019.
 - OpenAI. Text-to-speech api: tts-1 model. https://platform.openai.com/docs/guides/text-to-speech, 2023. Accessed: 2025-05-13.
 - OpenAI. Introducing gpt-4.1 in the api. https://openai.com/index/gpt-4-1/, 2025. Accessed: 2025-05-13.
 - Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Waleed Ammar, Annie Louis, and Nasrin Mostafazadeh (eds.), *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations)*, pp. 48–53, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-4009. URL https://aclanthology.org/N19-4009/.
 - Zengyi Qin, Wenliang Zhao, Xumin Yu, and Xin Sun. Openvoice: Versatile instant voice cloning, 2024. URL https://arxiv.org/abs/2312.01479.
 - Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL https://arxiv.org/abs/2412.15115.
 - Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever. Robust speech recognition via large-scale weak supervision, 2022. URL https://arxiv.org/abs/2212.04356.
 - Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies, and Matthias Niessner. FaceForensics++: Learning to Detect Manipulated Facial Images. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 1–11, 2019.
 - Andreas Rössler, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies, and Matthias Nießner. Faceforensics++: Learning to detect manipulated facial images, 2019. URL https://arxiv.org/abs/1901.08971.
 - SDAIANCAI. Ar-en code-switching textual dataset. https://huggingface.co/datasets/SDAIANCAI/Ar-En-Code-Switching-Textual-Dataset, 2025. Accessed: 2025-05-13.
 - Neha Sengupta, Sunil Kumar Sahu, Bokang Jia, Satheesh Katipomu, Haonan Li, Fajri Koto, William Marshall, Gurpreet Gosal, Cynthia Liu, Zhiming Chen, Osama Mohammed Afzal, Samta Kamboj, Onkar Pandit, Rahul Pal, Lalit Pradhan, Zain Muhammad Mujahid, Massa Baali, Xudong Han, Sondos Mahmoud Bsharat, Alham Fikri Aji, Zhiqiang Shen, Zhengzhong Liu, Natalia Vassilieva, Joel Hestness, Andy Hock, Andrew Feldman, Jonathan Lee, Andrew Jackson, Hector Xuguang Ren, Preslav Nakov, Timothy Baldwin, and Eric Xing. Jais and jais-chat: Arabic-centric foundation and instruction-tuned open generative large language models, 2023. URL https://arxiv.org/abs/2308.16149.
 - Kim Sung-Bin, Lee Chae-Yeon, Gihun Son, Oh Hyun-Bin, Janghoon Ju, Suekyeong Nam, and Tae-Hyun Oh. Multitalk: Enhancing 3d talking head generation across languages with multilingual video dataset, 2024. URL https://arxiv.org/abs/2406.14272.

- Kartik Thakral, Rishabh Ranjan, Akanksha Singh, Akshat Jain, Richa Singh, and Mayank Vatsa.

 ILLUSION: Unveiling truth with a comprehensive multi-modal, multi-lingual deepfake dataset.

 In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=qnlG3zPQUy.
 - Justus Thies, Michael Zollhöfer, Marc Stamminger, Christian Theobalt, and Matthias Nießner. Face2face: Real-time face capture and reenactment of rgb videos, 2020. URL https://arxiv.org/abs/2007.14808.
 - Massimiliano Todisco, Xin Wang, Ville Vestman, Md Sahidullah, Hector Delgado, Andreas Nautsch, Junichi Yamagishi, Nicholas Evans, Tomi Kinnunen, and Kong Aik Lee. ASVspoof 2019: Future Horizons in Spoofed and Fake Audio Detection, April 2019. arXiv:1904.05441 [cs, eess].
 - Junke Wang, Zuxuan Wu, Wenhao Ouyang, Xintong Han, Jingjing Chen, Ser-Nam Lim, and Yu-Gang Jiang. M2tr: Multi-modal multi-scale transformers for deepfake detection, 2022. URL https://arxiv.org/abs/2104.09770.
 - Xin Wang, Junichi Yamagishi, Massimiliano Todisco, Hector Delgado, Andreas Nautsch, Nicholas Evans, Md Sahidullah, Ville Vestman, Tomi Kinnunen, Kong Aik Lee, Lauri Juvela, Paavo Alku, Yu-Huai Peng, Hsin-Te Hwang, Yu Tsao, Hsin-Min Wang, Sebastien Le Maguer, Markus Becker, Fergus Henderson, Rob Clark, Yu Zhang, Quan Wang, Ye Jia, Kai Onuma, Koji Mushika, Takashi Kaneda, Yuan Jiang, Li-Juan Liu, Yi-Chiao Wu, Wen-Chin Huang, Tomoki Toda, Kou Tanaka, Hirokazu Kameoka, Ingmar Steiner, Driss Matrouf, Jean-Francois Bonastre, Avashna Govender, Srikanth Ronanki, Jing-Xuan Zhang, and Zhen-Hua Ling. Asvspoof 2019: A large-scale public database of synthesized, converted and replayed speech, 2020. URL https://arxiv.org/abs/1911.01601.
 - Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron J. Weiss, Navdeep Jaitly, Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, Quoc Le, Yannis Agiomyrgiannakis, Rob Clark, and Rif A. Saurous. Tacotron: Towards end-to-end speech synthesis, 2017. URL https://arxiv.org/abs/1703.10135.
 - Yang Xiao and Rohan Kumar Das. Xlsr-mamba: A dual-column bidirectional state space model for spoofing attack detection, 2025. URL https://arxiv.org/abs/2411.10027.
 - Liangbin Xie, Xintao Wang, Honglun Zhang, Chao Dong, and Ying Shan. Vfhq: A high-quality dataset and benchmark for video face super-resolution. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)*, pp. 657–666, 2022.
 - Zhiyuan Yan, Yong Zhang, Xinhang Yuan, Siwei Lyu, and Baoyuan Wu. Deepfakebench: A comprehensive benchmark of deepfake detection, 2023. URL https://arxiv.org/abs/2307.01426.
 - Zhiyuan Yan, Taiping Yao, Shen Chen, Yandan Zhao, Xinghe Fu, Junwei Zhu, Donghao Luo, Chengjie Wang, Shouhong Ding, Yunsheng Wu, and Li Yuan. Df40: Toward next-generation deepfake detection, 2024. URL https://arxiv.org/abs/2406.13495.
 - Hang Zhang, Xin Li, and Lidong Bing. Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding, June 2023. arXiv:2306.02858 [cs, eess].
 - Liyun Zhu, Lei Wang, Arjun Raj, Tom Gedeon, and Chen Chen. Advancing video anomaly detection: A concise review and a new dataset, 2024. URL https://arxiv.org/abs/2402.04857.

A APPENDIX

A.1 REAL PERTURBATIONS

Table 11: List of video and audio perturbation types with descriptions.

Category	Perturbation Type	Description			
	Gaussian Blur	Applies Gaussian smoothing to simulate out-of-focus capture.			
	Salt and Pepper Noise	Random white and black pixel noise, mimicking sensor errors.			
	Low Bitrate Compression	Blocky, artifact-heavy images due to compression.			
	Gaussian Noise	Electronic sensor noise typical in low-light conditions.			
	Poisson Noise (Shot Noise)	Noise from photon-limited imaging environments.			
	Speckle Noise	Multiplicative noise creating granular interference effects.			
	Color Quantization	Banding effects from limited color palettes.			
Video Perturbations	Random Brightness	Simulates variations in exposure and lighting.			
	Motion Blur	Imitates camera or object motion during capture.			
	Rolling Shutter	Distortion effects due to CMOS sensor movements.			
	Camera Shake	Minor frame shifts from handheld camera vibrations.			
	Lens Distortion	Optical distortions like barrel or pincushion effects.			
	Vignetting	Darkening of image edges typical of certain lenses.			
	Exposure Variation	Adjusts brightness and contrast, simulating exposure issues.			
	Chromatic Aberration	Color channel shifts causing fringing effects.			
	Compression Artifacts	Quality loss from low bitrate compression.			
	Pitch/Loudness Distortion	Gain or frequency alterations simulating recording issues.			
	White Noise	Constant background electronic interference noise.			
	Time Stretch	Audio speed adjustments without pitch change.			
	Reverberation	Echo and reverb modeling room acoustics.			
Audio Perturbations	Ambient Noise	Background environmental sounds added.			
	Clipping	Distortion from exceeding audio amplitude limits.			
	Frequency Filter	Filtering effects simulating transmission equipment variations.			
	Doppler Effect	Pitch modulation due to relative motion.			
	Interference	Static-like bursts mimicking external disturbances.			
	Room Impulse Response	Complex echo patterns modeling specific environments.			

A.2 AUGMENTATION EXAMPLES

In Table 12, we provide examples of augmentations achieved through the manipulation rules previously outlined in Section 3.2.1.

Table 12: Examples of augmentations achieved through the different transcript manipulation rules, showing the original (orig) and augmented (aug) transcriptions.

Original Transcription	Original Word	Inserted Word	Operation	Example
				Edit: Telephone → Radio
				[orig] اتشغلت الهانم في الـ Telephone
CSW	EN	EN	Change meaning only	(The lady got busy on the telephone)
			(keep English)	[aug] اتشغلت الهانم في الـ Radio
				(The lady got busy with the radio)
				Edit: محدودة (MSA) \rightarrow محدودة (MSA)
				[orig] الـ Mirroring أصبحت أداة منتشرة جداً
CSW	AR	AR	Change meaning only	(Mirorring has become a popular tool)
			(keep Arabic variant)	[aug] الـ Mirroring أصبحت أداة محدودة جدأ
				(Mirorring has become a limited tool)
				Edit: بشکر (MSA) بشکر (Dialectal Arabic)
				[orig] بشكر كل ال sponsors اللي موجودين
CSW	AR	AR	Change meaning	(I thank all the present sponsors)
			+ change Arabic variant	[aug] بكره كل ال sponsors اللي موجودين
				(I hate all the present sponsors)
				Edit: حزین (MSA) \rightarrow دین (MSA)
				[orig] وهيكون هذا الشخص راضي وسعيد
Arabic	AR	AR	Change meaning only	(And this person will be content and happy)
			(keep Arabic variant)	[aug] وهيكون هذا الشخص راضي و حزين
				(And this person will be content and sad)
				Edit: تافه (MSA) \rightarrow تافه (Dialectal Arabic)
				[orig] كانت تشترك بعمل أساسي جو هري
Arabic	AR	AR	Change meaning	(She was involved in a core and essential task)
			+ change Arabic variant	[aug] كانت تشترك بعمل أساسي تافه
				(She was involved in a core and non-essential task)
				Edit: الناس \rightarrow friends
				[orig] أنا بروح قابل ا لناس
Arabic	EN	EN	Change meaning	(I go meet people)
			+ change language to English	[aug] أنا بروح قابل friends
				(I go meet friends)

A.3 PROMPT FOR TEXT PERTURBATION

972

973

1013

```
974
         Prompt for Fake Transcript Generation.
975
976
          ###SYSTEM MESSAGE###
977
         You are a controlled text-perturbation bot.
978
         Here is the transcript of an audio.
         Please use the provided operations to modify
979
         the transcript to change its sentiment.
980
         The operation can be one of 'delete',
981
          `insert` and `replace`.
982
         Please priority modify adjectives and adverbs.
983
          -----CHANGE-MODES-----

    meaning_only

984
               - Change the *meaning* of one word.
985
               - Keep the same language/script and dialect.
986

    dialect_only

987
               - Swap a word for a dialectal equivalent of *identical meaning*.
988
               - Example: <syArT> → <`rbyT> (Gulf dialect, same meaning).
          · dialect_plus_meaning
989
               - Change *both* dialect *and* meaning in a single word.
990
               - Example: <jmyl> (msa, 'nice') → <wH$> (Egyptian, 'awful').
991

    meaning_plus_translation

992
               - In Arabic-only sentences, pick a word that
993
               is **commonly code-switched
         to English** in everyday speech (e.g., <mwbayl>, <syArT>, <Antrnt>).
994
               - Translate that word to English and change the
995
               meaning simultaneously.
996
                Example: \langle syArT \rangle ('car') \rightarrow bike.
997
          If language == 'csw':
998
           num = 1 \rightarrow edit exactly one token matching target_token_script.
999
           num = 2 \rightarrow edit 1 English + 1 Arabic token.
1000
           num = 3 \rightarrow \text{edit 1 English} + 2 \text{ Arabic tokens.}
1001
           -----OTHER RULES-----
1002
          · Only modify tokens that are *commonly code-switched* in real speech
1003
           (brand names, technology, everyday nouns, etc.).
          • Each operation targets ONE word (delete / insert / replace).
          · Number of operations for INSERT, DELETE and REPLACE
1005
         should be equal across
         the data.
1007
         · If sentiment can be changed with INSERT or DELETE,
1008
         prefer it over REPLACE.
          · When dialect shifts, include original_dialect and new_dialect.
1009
         · Never alter tense or add restricted content.
1010
          • Return **only** a JSON object that matches the schema.
1011
1012
```

Figure 4: System prompt for text-perturbation bot

1027

1079

A.4 END USER LICENSE AGREEMENT (EULA FORM)

```
1028
                  End User License Agreement.
1029
1030
                  End User License Agreement
                 (Academic, non-commercial, not-for-profit licence)
Copyright (c) 2025 ....[AUTHORS]
1031
1032
                      rights reserved.
                  The goal of the ArEnAV database is to develop new techniques, technology, and algorithms
1033
                  for multimodal, code-switched deepfake detection and localization, as most of the existing research

→ focuses on monolingual content, often overlooking the challenges of multilingual and
→ code-switched speech, where multiple languages are mixed within the same discourse. The licensors

1034
1035
                      are involved in an ongoing effort to strengthen detection algorithms against highly realistic
                      deepfakes. The dataset is meant to aid research efforts in the general area of developing,
                       testing and evaluating algorithms for multilingual code-switched deepfake detection and
                      localization.
                  To receive a copy of the dataset, the requester must agree to observe the conditions listed Below.
1039
                  The goal of the ArEnAV database is to develop new techniques, technology, and
                 algorithms for predicting and locating (with timestamps) where a video has been manipulated, particularly when it has Arabic-English code-switching. Use is permitted of the
1040
                      databases and annotations above in source and binary form, provided that the following
1041
                 conditions are met:
                  · The database is provided under the terms of this license strictly for academic,
1042
                 non-commercial, not-for-profit purposes.

• Requestor needs to supply their university IRB application ID, and every project member must use an
1043
                 \hookrightarrow individual account, safeguarding traceability and preventing misuse. Attach the IRB approval in \hookrightarrow the email along with the signed EULA form.
                  • Redistribution, republishing, or dissemination in any form, source or binary, is not permitted
1045
                  \hookrightarrow without prior written approval by the licensors. Linking to the webpage of the database [WEB LINK
                      HERE] is permitted.
1046
                 The names of the licensors may not be used to endorse or promote products derived from this software without specific prior written permission.

The licensors reserve the right to modify the data/license at any point. Modification of the database by licensees is not permitted.

In no case should the still frames or videos be used in any way that could cause the original
1047
1048
1049

→ subject embarrassment or mental anguish.

                  • You understand that the ArEnAV dataset is a deepfake dataset generated based
1050
                  on VisPer ([2406.00038] ViSpeR: Multilingual Audio-Visual Speech Recognition)
                  dataset's Arabic Train subset. You also agree to all agreements of the VisPer
1051
                  dataset.
1052
                    The authors of the dataset make no representations or warranties regarding the
                  dataset, including but not limited to warranties of non-infringement or fitness for a particular
1053
                      purpose.
                  • You accept full responsibility for your use of the dataset and shall defend and
1054
                 indemnify the Authors of ArEnEV, against any and all claims arising from your use of the dataset, \hookrightarrow including but not limited to your use of any copies of copyrighted images that you may create
1055
                      from the dataset
1056
                  · Any publications arising from the use of this software, including but not limited to academic
                 \hookrightarrow journal and conference publications, technical reports and manuals, must cite the following
1057
                  [CITATION]
1058
                  THE DATABASE IS PROVIDED BY THE AUTHORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
                      NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT
                      INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
                 → PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
→ STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
1062
                      OF THIS DATABASE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE PROVIDER OF THE DATABASE
1063
                      MAKES NO REPRESENTATIONS AND EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED.
1064
                      THERE ARE NO EXPRESS OR IMPLIED WARRANTIES THAT THE USE OF THE MATERIAL WILL NOT INFRINGE ANY
                      PATENT, COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS. If you have read and understood the user agreement and will comply with it.
1065
                 Signed
1067
                 Print Name
1068
                  Institution Name
1069
                 Date
1070
1071
                  Addition Researcher 1
                  Addition Researcher 2
1075
```

Figure 5: End User License Agreement for accessing ArEnAV.

A.5 LLM USAGE

Along with the use of Large Language Models (LLMs) as described in our Data-Creation process, we made limited use of LLMs to enhance the clarity and readability of the text. They were not involved in the conception of ideas, the design of experiments, analysis, or the production of results.