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ABSTRACT

Mechanistic interpretability aims to attribute high-level model behaviors to spe-
cific, interpretable learned features. It is hypothesized that these features manifest
as directions or low-dimensional subspaces within activation space. Accordingly,
recent studies have explored the identification and manipulation of such subspaces
to reverse-engineer computations, employing methods such as activation patching.
In this work, we demonstrate that naive approaches to subspace interventions can
give rise to interpretability illusions.

Specifically, even if patching along a subspace has the intended end-to-end causal
effect on model behavior, this effect may be achieved by activating a dormant
parallel pathway using a component that is causally disconnected from the model
output. We demonstrate this in a mathematical example, realize the example em-
pirically in two different settings (the Indirect Object Identification (IOI) task and
factual recall), and argue that activating dormant pathways ought to be prevalent
in practice. In the context of factual recall, we further show that the illusion is re-
lated to rank-1 fact editing, providing a mechanistic explanation for previous work
observing an inconsistency between fact editing performance and fact localisation.
However, this does not imply that activation patching of subspaces is intrinsically
unfit for interpretability. To contextualize our findings, we also show what a suc-
cess case looks like in a task (IOI) where prior manual circuit analysis informs
an understanding of the location of a feature. We explore the additional evidence
needed to argue that a patched subspace is faithful.

1 INTRODUCTION

Recently, large language models (LLMs) have demonstrated impressive (Vaswani et al., 2017 |De-
vlin et al.} 2019; OpenAl, 2023; Radford et al.,[2019; |Brown et al.,[2020), and often surprising (Wei
et al., [2022), capability gains. However, they are still widely considered ‘black boxes’: their suc-
cesses — and failures — remain largely a mystery. It is thus an increasingly pressing scientific and
practical question to understand what LLMs learn and how they make predictions.

This question is in the realm of machine learning interpretability, an important but notoriously slip-
pery concept. Desiderata for interpretability are often not stated precisely, and it is easy to develop
an illusory perception of understanding (Lipton, 2016 /Adebayo et al.|[2018;|Bolukbasi et al.,[2021).
Mechanistic interpretability (MI) is a subfield of interpretability that seeks to avoid these pitfalls by
developing a rigorous low-level understanding of the learned algorithms behind a model’s computa-
tions. Specifically, MI frames these computations as collections of narrow, task-specific algorithms
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— circuits (Olah et al., 2020} |Geiger et al.,[2021; Wang et al.,|2023)) — whose operations are grounded
in concrete, atomic building blocks akin to variables in a computer program (Olah, |2022) or causal
model (Vig et al., [2020; |Geiger et al., [2023a). MI has found applications in several downstream
tasks: removing toxic behaviors from a model while otherwise preserving performance by mini-
mally editing model weights (Li et al., 2023b)), changing factual knowledge encoded by models in
specific components to e.g. enable more efficient fine-tuning in a changing world (Meng et al.,
2022a)), improving the truthfulness of LLMs at inference time via efficient, localized inference-time
interventions in specific subspaces (L1 et al., 2023a) and studying the mechanics of gender bias in
language models (Vig et al., [2020).

A central question in MI is: what is the proper definition of ‘building blocks’(Olah, 2022)? Many
initial mechanistic analyses have focused on mapping circuits to collections of model components
(Wang et al., 2023} [Heimersheim & Janiak). A workhorse of these analyses is activation patch-
ing[] (Vig et al. 2020; |Geiger et al., |2020; Meng et al.l 2022a; Wang et al., 2023)), which swaps
component activations between examples and looks for task-relevant changes in model outputs.
However, a plethora of empirical evidence suggests that the features LLMs represent and use lie in
linear subspaces of component activations (Nanda, 2023aj L1 et al., 2021;|Abdou et al.|[2021}; |Grand
et al.l |2018)). Furthermore, phenomena like superposition and polysemanticity (Elhage et al., [2022)
suggest that these subspaces are not easily enumerable, like individual neurons, but can rather be
identified with a continuous space of arbitrary rotations — so searching for them can be non-trivial.
This raises the question: can we carry over the success of activation patching from component-level
analysis to finding the precise subspaces corresponding to features?

Indeed, recent works such as [Geiger et al.| (2023b)); Wu et al.[ (2023)) have begun identifying inter-
pretable subspaces using gradient descent, with training objectives created using subspace activation
patching. While this kind of end-to-end optimization has promise, we show that it is prone to a kind
of interpretability illusion. Specifically, instead of robustly localizing a variable that is used by the
model in a wide range of contexts, setting the value of a subspace can fabricate such a variable by
activating a dormant pathway in the model via exploiting a causally disconnected feature (Figure/T)).
Our results suggest this effect is strongest when overfitting to a small dataset. Our contributions can
be summarized as follows:

* In Section [3] we construct a distilled mathematical example of the illusion;

e In Section we find a realization of this phenomenon ‘in the wild’, in the context of
the indirect object identification task (Wang et al.,2023)), where a 1-dimensional subspace
of MLP activations found using DAS (Geiger et al., |2023b) can seem to encode position
information about names in the sentence;

¢ To contextualize our results, in Section [5] we also show how DAS can be used to find
subspaces that faithfully represent a feature in a model’s computation. Specifically, we
find a 1-dimensional subspace encoding the same position information in the 101 task, and
validate its role in model computations via experiments beyond end-to-end causal effect.
We argue that activation patching on subspaces of the residual stream is safer and less prone
to illusions.

* Going beyond the IOI task, in Section [6] we also exhibit this phenomenon in the setting
of fact editing (Meng et al., [2022a)). We show that 1-dimensional activation patches imply
equivalent rank-1 model edits (Meng et al.l 2022a). In particular, this shows that rank-1
model edits can also be achieved by activating a dormant pathway in the model, without
relying on the presence of a fact in the weight being edited. This suggests a mechanistic
explanation for the observation of (Hase et al., 2023)) that rank-1 model editing works
regardless of whether the fact is present in the weights being edited.

* in Section [/} we end with arguments and evidence for why this interpretability illusion
ought to be prevalent in real-world language models.

2 RELATED WORK

'also known as ‘interchange intervention’ (Geiger et al.l[2020) and related to, but distinct from ‘resample
ablation’ (Chan et al.) or ‘causal tracing’ (Meng et al.|[2022a))
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Discovering and causally intervening on

representations with activation patch- 9
ing. Activation patching (Vig et all 2020;

Geiger et al.| 2020) is a widely used causal

intervention, whereby the model is run

on an input A, but chosen activations are 5
‘patched in’ from input B. Motivated by example to patch from 2
causal mediation analysis (Pearl, 2001), ac- .
tivation patching has been used to localize 0
model components causally involved in var- y
ious behaviors, such as gender bias (Vig
et al.), factual recall (Meng et al.l 2022a)),
multiple choice questions (Lieberum et al.|
2023)), arithmetic (Stolfo et al.l [2023) nat-
ural language reasoning (Geiger et al.

2021 [Wang et al), 2023; |Geiger et all  Fjoyre 1: The key mathematical phenomenon behind
2023b; Wu et al [2023), code (Heimer- ¢ activation patching illusion (see Appendix Figure
sheim & Janiak), and (in certain regimes) pgfor a step-by-step explanation). By setting the pro-
topic/sentiment/style of free-form natural jec(ion of an example’s activation (green, right) along
language (Turner et al., 2023). a vector (red, top-right) to equal another’s (green, left)
Activation patching is an area of active re- projection, we obtain a vector orthogonal to both ac-
search, and many recent works have ex- tivations (blue, down). This can give counterintuitive
tended the method, with patching paths be- results when the original and new directions have fun-
tween components (Goldowsky-Dill et al damentally different roles in a model’s computation.

2023)), automating the finding of sparse sub-

graphs (Conmy et al.| 2023)), fast approxi-

mations (Nanda,2023b), and automating the verification of hypotheses (Chan et al.). In particular, a
wide range of interpretability work (Mikolov et al.,[2013};|Conneau et al., 2018} | Tenney et al., 2019;
Burns et al.,|2022; Nanda et al.|[2023) suggests the linear representation hypothesis: models encode
features as linear subspaces of component activations that can be arbitrarily rotated with respect to
the standard basis (due to phenomena like superposition, polysemanticity (Arora et al.,2018;|Elhage
et al.} 2022) and lack of privileged bases (Smolenskyl |1986} Elhage et al., 2021)). Motivated by this,
recent work such as |Geiger et al. (2023b)); Wu et al.| (2023); [Lieberum et al.| (2023) has general-
ized activation patching to operate only on linear subspaces of features rather than patching entire
components (heads, layers and neurons). Our work contributes to this research direction by demon-
strating both (i) a common illusion to avoid when looking for such subspaces and (ii) a detailed case
study of successfully localizing a binary feature to a 1-dimensional subspace.

dormant direction

example to patch into
>

ausally disconnected direction

yored 9y JQ J[nsaz

Factual recall. A well-studied domain for discovering and intervening on learned representations
is the localization and editing of factual knowledge in language models (Geva et al. [2023; [Meng
et al., 2022b; |Wallat et al., 2020; Dai et al., |2022; |Hernandez et al., 2023). A work of particular
note is Meng et al.| (2022a)), which localizes and edits factual information with a rank-1 intervention
on model weights. However, recent work has shown that rank-1 editing can work even on weights
where the fact supposedly is not encoded (Hase et al.,|2023)), and that editing a single fact often fails
to have its expected common-sense effect on logically related downstream facts (Cohen et al., 2023
Zhong et al.||2023)). We contribute to this line of work by showing a formal and empirical connection
between activation patching along 1-dimensional subspaces and rank-1 model editing. In particular,
rank-1 model edits can work by creating a dormant pathway of an MLP layer, regardless of whether
the fact is stored there. This provides a mechanistic explanation for the discrepancy observed in
Hase et al.| (2023).

Interpretability illusions. Despite the promise of interpretability, a common theme in the field
is identifying ways that techniques may lead to misleading conclusions about of model behavior
(Lipton, 2016)). In computer vision, |Adebayo et al.| (2018)) show that a popular class of pixel attri-
bution methods is not sensitive to whether or not the model used to produce is has actually been
trained or not. In |Geirhos et al.| (2023)), the authors show how a circuit can be hardcoded into a
learned model so that it fools interpretability methods; this bears some similarity to our illusion.
In natural language processing, Bolukbasi et al.| (2021) show that interpreting single neurons with
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maximum activating dataset examples may lead to conflicting results across datasets due to subtle
polysemanticity (Elhage et al., 2022).

3 A CONCEPTUAL VIEW OF THE ILLUSION

Activation patching. Activation patching (Vig et all |2020; |Geiger et al.,[2020; Wang et al., 2023}
Chan et al.) is an interpretability technique that intervenes upon model components, forcing them
to take on values they would have taken if a different input were provided. For instance, consider
a model that has knowledge of the locations of famous landmarks, and completes e.g. the sentence
A = ‘The Eiffel Tower is in” with ‘Paris’. How can we find which component of the model is
responsible for knowing that ‘Paris’ is the right completion? Activation patching approaches this
question by (i) running the model on A, (ii) storing the activation of a chosen component ¢, and (iii)
running the model on e.g. B = ‘The Colosseum is in’, but with the activation of ¢ taken from A. If
we find that the model outputs ‘Paris’ instead of ‘Rome’ in step (iii), this suggests that component ¢
is important for the task of recalling the location of a landmark.

Subspace Activation Patching. The linear representation hypothesis proposes that linear subspaces
of vectors will be the most interpretable model components. To search for such subspaces, we can
adopt a natural generalization of full component activation patching which only patches the values
of a subspace U (while leaving the projection on its orthogonal complement U+ unchanged). This
was proposed in |Geiger et al.| (2023b)), and closely related variants appear in [Turner et al.| (2023);
Nanda et al.|(2023)); |Lieberum et al.| (2023)).

For the purposes of exposition, we now restrict our discussion to activation patching of a 1-
dimensional subspace (i.e. a direction) represented by a unit vector v. In this case, the subspace
U is the 1-dimensional subspace spanned by the vector If acty, actg € R? are the activations
of a model component C on examples A, B and p4 = v'acts,pp = v'actp are their projections
along v, patching from A into B along v results in the patched activation

actl;gtched =actg + (pa — pB)V (D

Intuition. When will the update in equation [I]change the model’s output in the intended way? Intu-
itively, two properties are necessary: v must be activated differently by the two prompts (otherwise
pa ~ pp and the patch has no effect), and v must be causally connected to the model’s outputs
(otherwise, if e.g. v is in the nullspace of downstream model components, changing the activation
along v won’t change model predictions). A direction v faithful to the model’s computation will
simultaneously have these two properties.

The crux of the illusion is that v may obtain each of the two properties from two unrelated directions
in activation space, as shown in Figure Specifically, we can form v = Vgisconnected + Vdormant> Where
Udisconnected distinguishes between the two prompts, but is in the nullspace of all downstream model
components; and Vqormane Can in principle steer the model in the way intended by the patch, but is
not activated differently by the two prompts. By patching along the sum of these directions, the
variation in the disconnected part activates the dormant part, which then achieves the causal effect;
this is illustrated in Figure|If]

Formalization. Let M : X — O be a machine learning model that on input z € X outputs a
vector y € O of probabilities over a set of output classes. Let D be a distribution over X, and C
be a component of M, such that for = ~ D the hidden activation of C is a vector ¢, € R%. For a
subspace Uz C RY, we let u, be the orthogonal projection of ¢, onto Uc. Finally, let My, ()
be the result of running M with the input x and setting the subspace U¢ patched to u,,.

We say U is causally disconnected if My, () = M(z) for all v’ € U. In other words, setting
the value of a causally disconnected subspace to any vector has no effect on model outputs. We say
U is dormant if My, (x) = M(z) with high probability over 2,y ~ D, but given z ~ D,
there exists u such that My, () % M(x). In other words, a dormant subspace is approximately

>We remark that the illusion also applies to higher-dimensional subspaces (see Appendixfor details).

3By contrast, patching along either of the two components individually has no effect: setting only the
projection along vdisconnected t0 any value has no effect on outputs by definition; and patching only along vdormant
will have a weak effect because both examples activate it similarly.
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160 Input
Emm ABB (no intervention)
140 BAB (no intervention)
mmm patch BAB -> ABB
mmm patch ABB -> BAB

6w Patching FLDD Interchange
g 10 subspace accuracy

5w full MLP 8% 0.0%

L'a 0 VMLP 46.7% 4.2%

5 VMLp rowspace 13.5% 0.2%

g w vmrp nullspace 0% 0.0%

Z full residual stream 123.6% 54.8%

Viesid 140.7% 74.8%

° 100 -75 -50 -25 00 25 50 75 Viesid TOWSpace 127.5% 63.1%

Vresid NUllspace 13.9% 0.4%

Activation projection Vgrad 111.5% 45.1%

Vgrad TOWSpace 106.47 40.6%

Figure 3: Projections of the output of the Vgrad NUllSpace 2.2% 0.0%

MLP layer on the gradient direction vgraq
before (blue/orange) and after (green/red) Table 1: Effects of activation patching of full compo-
the activation patch along vy p. Here and nents and 1-dimensional subspaces on the IOl task:

elsewhere, ‘ABB’ denotes prompts where fractional logit diff (higher means less successful
the IO name comes first, and ‘BAB’ de- patch; 100% means no change) and interchange ac-
notes prompts where the S name comes curacy (fraction of predictions flipped; higher means
first. more successful patch).

causally disconnected on the data distribution, but can have substantial causal effect if set to out of
distribution values. We present a minimal concrete example of the illusion in the language of these
concepts in Appendix [A.3] where we also discuss a concrete hypothesis to test for the illusion.

4 THE ILLUSION IN THE INDIRECT OBJECT IDENTIFICATION TASK

4.1 PRELIMINARIES

In|Wang et al.|(2023)), the authors analyze how the decoder-only transformer language model GPT-2
Small (Radford et al., [2019) performs the indirect object identification task. In this task, the model
is required to complete sentences of the form ‘When Mary and John went to the store, John gave a
bottle of milk to’ (with the intended completion in this case being * Mary’). We refer to the repeated
name (John) as S, the subject, and the non-repeated name (Mary) as IO, the indirect object. We
use the same model GPT-2 Small, with a dataset that spans 216 names, 144 objects (e.g., ‘bottle of
milk’) and 75 places (e.g., ‘store’) and three templates, split equally between a train and test set (see
Appendix [B] for more details).

‘Wang et al.| (2023) suggest the model uses the algorithm ‘Find the two names in the sentence, detect
the repeated name, and predict the non-repeated name’ to do this task. In particular, they find a set
of four heads in layers 7 and 8 — the S-Inhibition heads — that output the signal responsible for
not predicting the repeated name. The dominant part of this signal is of the form ‘Don’t attend to
the name in first/second position in the first sentence’ depending on where the S name appears (see
Appendix A in|Wang et al.|(2023) for details). This signal is added to the residual streanﬁlzlt the last
token position, and is then picked up by another class of heads in layers 9, 10 and 11 — the Name
Mover heads — which incorporate it in their queries to shift attention to the IO name and copy it to
the last token position, so that it can be predicted (Appendix Figure [21)).

“We follow the conventions of [Elhage et al|(2021) when describing internals of transformer models. The
residual stream at layer k is the sum of the output of all layers up to k — 1, and is the input into layer k.



Published as a conference paper at ICLR 2024

4.2 FINDING SUBSPACES MEDIATING NAME POSITION INFORMATION

Given these findings, a natural next question is: how, precisely, do the S-Inhibition heads commu-
nicate the positional signal to the name mover heads? In particular, ‘don’t attend to the first/second
name’ is plausibly a binary feature represented by a 1-dimensional subspace. In this subsection, we
present several methods to look for such a subspace.

Gradient of name mover attention scores. The three name mover heads identified in Wang et al.
(2023)) will attend to one of the names, and the model will predict whichever name is attended to.
The position feature matters mechanistically by determining whether they attend to IO over S. So we
can take the gradient of the difference of attention scores of these heads on the S and IO names. For
a given IOI example, we expect this gradient will encode the position signal, and some of the name
signal. By averaging gradients over the entire distribution, we expect the name signal to average out,
and the position signal to be reinforced. Motivated by this, we compute a direction vg,q as follows.
We take the average gradient of the difference of attention scores of the three name mover heads
between the positions where the S and IO names are, average this over 2000 samples from our test
distribution, and normalize the resulting vector to have unit £5 norm.

Distributed alignment search. Instead of taking the gradient in specific attention heads informed
by previous work, we can also directly optimize for a direction that mediates the position signal. This
is the approach taken by DAS (Geiger et al.,[2023b). In our context, DAS optimizes for an activation
subspace which, when activation patched from prompt B into prompt A, makes the model behave
as if the relative position of the IO and S names in the sentence is as in prompt B. Specifically,
we train DAS to maximize the difference between the logits of the name that should be predicted
if this patch succeeded, and the other name. We find that relatively small sample sizes (e.g., 500)
are sufficient. This approach is based purely on whether the model outputs the correct answer, and
does not make any assumptions about the role of name mover heads. We let vy p and Vviesiq be
1-dimensional subspaces found by DAS in the layer 8 MLP activations and layer 8 residual stream
output at the last token, respectively.

4.3 DEMONSTRATING THE ILLUSION FOR THE vy p DIRECTION

Methodology. In this section, we perform all patches between examples that only differ in the
variable we want to localize in the model, i.e. the position of the S and IO names in the first
sentence. That is, we patch from e.g. “Then, Mary and John went to the store. John gave a book to’
into ‘Then, John and Mary went to the store. John gave a book to’, and vice-versa. We report all
metrics on a test set that is not used to train the interventions that require training. We consider the
following activation patching interventions:

e full MLP: patching the hidden activation of the 8-th MLP layer at the last token.
* vprp: patching along the direction vy p found in Subsection

* vyp hullspace: patching along the causally disconnected component of vy p. This is the

orthogonal projection v 7 of vyp on the nullspace ker W,,,; of the down-projection

Wt of the MLP layer.
* vyLp rowspace: patching along the causally relevant component of vyyp. This is the

orthogonal projection vy p - of vmLp on the rowspace of W,,;. Note that we have the

s __ . nullspace rowspace
orthogonal decomposition Vmip = Vygp  + Vyrp -

* full residual stream: patching the entire activation of the residual stream at the last token
after layer 8 of the model. This is indicated as the location of Viegq in Figure 21}

All activation patches have the goal of making the model output the S name instead of the IO
name. Accordingly, we use the logit difference between the logits assigned to the IO and S names
to measure how well a patch performs. Formally, let logit;g () , logitg (z) denote the last-token
logits output by the model for the IO and S names respectively on input . The logit difference
logitdiff (x) := logityo () — logitg () measures the confidence of the model for the IO name
over the S name (it is the log-odds between the two names assigned by the model). It averages
~ 3.3 over the IOl distribution, and is positive for almost all examples (99%+). Similarly, for
an activation patching intervention P, let logitje (), logitd () be the corresponding logits when
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run on z with P applied, with logitdiff” (z) := logitig () — logits (). Our main metric is the
average fractional logit difference decrease (FLDD) due to a patching intervention P, given by

FLDD? (z) = 1 — %. This metric is zero when the patch has no effect on the logit
difference on average, and values above 100% suggest that the patch more often than not makes the
model prefer the S name over the I0 name. We also report the interchange accuracy, which is
the fraction of prompts for which the IO name is assigned a higher logit than the S name, but the

intervention P reverses this.

Results. Metrics are shown in Table [l Through these metrics and additional experiments, we
exhaustively confirm the mechanics of the illusion.

THE CAUSALLY DISCONNECTED COMPONENT OF vyLp DRIVES THE EFFECT. While patching the
vmep direction has a significant effect on the FLDD metric (46.7%), this effect is greatly diminished
when we remove the component of vyp in ker W,,; whose activations are (provably) causally
disconnected from model predictions (13.5%), or when we patch the entire MLP activation (—8%,
actually increasing confidence). By contrast, performing analogous ablations on vi.q leads to very
similar numbers (140.7%/127.5%/123.6%; we refer the reader to Section for details on the Vieq
experiments). This confirms our hypothesis from Section 4]

PATCHING vpLp ACTIVATES A DORMANT PATHWAY THROUGH THE MLP. To corroborate these
findings, in Figure |3} we plot the projection of the MLP layer’s contribution to the residual stream
on the gradient direction vg,q before and after patching, in order to see how it contributes to the
attention of name mover heads. We observe that in the absence of intervention, the MLP output is
weakly sensitive to the name position information, whereas after the patch this changes significantly.

FURTHER VALIDATIONS OF THE ILLUSION. We observe that the disconnected-dormant decom-
position from the illusion approximately holds: the causally disconnected component of vy p (the
one in ker W,,;) is significantly more activated by the position information than the component in
(ker Wout)J‘, which is the one driving the causal effect (Appendix Figure ; in this sense, the
causally relevant component is ‘dormant’ relative to the causally diconnected one. While the contri-
bution of the vy p patch to logit difference may appear relatively small, in Appendix [B.4] we argue
that this is significant for a single component. Finally, in Appendix [B.5] we show that we can find
a direction within the post-gelu activations that has an even stronger effect on the model’s behavior,
even when we replace the MLP weights with random matrices.

5 FINDING AND VALIDATING A FAITHFUL DIRECTION MEDIATING NAME
POSITION IN THE IOI TASK

As a counterpoint to the illusion, in this section we demonstrate a success case for subspace acti-
vation patching and DAS by revisiting the directions Vg and Viesq defined in Subsection and
arguing they are faithful to the model’s computation to a high degree. Specifically, we subject these
directions to the same tests we used for the illusory direction v p and arrive at significantly dif-
ferent results. Through this and additional validations, we demonstrate that these directions possess
the necessary and sufficient properties of a successful activation patch — being both correlated with
input variation and causal for the targeted behavior — in an irreducible way.

Ruling out the illusion. Let V7™ ™" € R768%192 be the stacked query matrices of the name
mover heads. We use this matrix as a proxy to determine the causally disconnected subspace of
the 768-dimensional residual stream. In Table|l} we show the fractional logit difference and inter-
change accuracy when patching Viesia and Virad, as well as their components along ker W gime moves
(denoted ‘nullspace’) and its orthogonal complement (denoted ‘rowspace’). We observe that the
non-nullspace metrics are broadly similar; in particular, removing the causally disconnected compo-
nent of v,e5iq does not greatly diminish the effect of the patch in terms of the logit difference metrics
(as it does for vy p). We also find that v g is predominantly in (ker Wé‘j‘me m"vers)J- (and 80 1S Vgrag,
but this is to be expected by its definition).

Importantly, since the residual stream activation where Vg and vg,q are patched is a full bottleneck
for the model’s computation, it is not possible for these directions to be causal but dormant (in the
sense of Section [3): there can be no earlier model component that activates this direction in a way
that avoids the patch via a skip connection (unlike for the vy p direction). Indeed, in Figure [/]in
Appendix [C]we show that the vyeiq direction gets written to by the S-Inhibition heads, and in Figure
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in Appendix we show they strongly discriminate between the prompts where the IO name
comes first/second. See[C|for additional experiments validating these subspaces.

6 FACTUAL RECALL

Given a fact expressed as a subject-relation-object triple (s,r,0) (e.g., s = °‘Eiffel Tower’,r =
‘isin’,0 = ‘Paris’), we say that a model M ‘recalls’ the fact (s,r,0) if M completes a prompt
expressing just the (s, r) pair (e.g., “The Eiffel Tower is in”) with o. In this section, we show that
the interpretability illusion can also be exhibited for the factual recall capability of language models,
a much broader setting than the IOI task. In particular, we can fit DAS to any such pair of facts
and perform an activation patch that changes recall. We further show that the illusory subspace is
equivalent to a rank one edit to the weights that changed the recalled fact.

6.1 FINDING ILLUSORY 1-DIMENSIONAL PATCHES FOR FACTUAL RECALL

Let us be given two facts (s,7,0) and
(s',r,0') for the same relation that a

0.

ES

More precisely, we patch from the last token

model recalls correctly, with correspond- e — DA Method
ing factual prompts A expressing (s,r) Full MLP patch
and B expressing (5'7 7/-) (e_g_’ r = 0.8 mmm DAS rowspace component
‘isin’, A = ‘The Eiffel Towerisin’, B =
of s’ in B to the last token of s in A (prior
work has shown that the fact is retrieved on |,L
0 5 10 15 20

‘The Colosseum is in’). In this subsection, 0.6
we patch from B into A, with the goal of
changing the model’s output from o to o'. *

L.
s (Geva et al. [2023) ), and we again use 25 30 35 40
DAS |Geiger et al| (2023b) to optimize for Intervention layer
a direction that maximizes the logit differ-
ence between o’ and 0. We use the first 1000 Figure 4: Fraction of successful fact patches un-
examples from the COUNTERFACT dataset  der three interventions: patching along the direction
(Meng et al., 2022a), and filter from them  found by DAS (blue), patching the component of the

40 pairs of facts across 8 relations that the DAS direction in the rowspace of W,,; (green), and

model recalls correctly. We use GPT-2 XL patching the entire hidden MLP activation (orange).
(1.5B parameters) for experiments.

0.2

Fraction of facts changed

0.0
45

Similar to Section[d] we compare the effect

of these patches to a full MLP patch, and a patch of only the rowspace component. Results are shown
in figure ] We find a stronger version of the same qualitative phenomena we observed with the 101
illusory direction: (i) the directions we find have a strong causal effect (successfully changing o
to o), but (ii) this effect disappears when we ablate the component in the nullspace of W,,;, and
(iii) patching the entire MLP activation instead has a negligible effect on the difference in logits
between the correct and incorrect objects. We further observe that the difference in last-token subject
activations is significantly aligned with the causally disconnected component of the subspaces found
(cosine similarity ~ 0.9, Appendix Figure [12). This implies that it is weakly aligned with the
rowspace component (cosine similarity ~ 0.4); hence, the rowspace component is relatively dormant
compared to the causally disconnected component. Further experiments confirming the illusion are

in Appendix[D.2]
6.2 1-DIMENSIONAL FACT PATCHES IMPLY EQUIVALENT RANK-1 FACT EDITS

Finally, we show that the existence of an activation patch as in Subsection [6.1)implies the existence
of a seemingly different intervention with similar effect: a rank-one model edit to the weights of the
MLP layer. Proposed in Meng et al.| (2022a)), rank-1 editing modifies the W,,,; weight of a single
MLP layer to make a model that recalls (s, r, o) recall (s, r, o') instead, while minimally modifying
the model otherwise. This finding suggests a mechanistic explanation for the discrepancy between
fact localization and fact editing observed in prior work (Hase et al., [2023). Namely, illusory sub-
spaces where fact editing can ‘work’ may exist even in layers not storing the fact, by virtue of the
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residual stream containing a causally disconnected but sensitive to the subject direction and a causal
for the object direction to be combined in an MLP layer.

In more detail, Meng et al.| (2022a)) propose a specific rank-1 model edit, ROME, which takes as
input a vector k € R¥MLP representing the subject (e.g. an average of last-token representations
of the subject) and a vector v € R%medel which, when output by the MLP layer, will cause the
model to predict a new object for the factual prompt. ROME modifies the MLP weight by setting

Lt = Wour+abT, where a € Rdmodet h € RIMLP are chosen so that W,k = v, and the MLP’s
output is otherwise minimally changed. Without loss of generality, the first condition implies that
a = v — Wyyk and bk = 1; the second condition is then modeled by minimizing the variance
of b"x when z ~ N(0, X)) for an empirical estimate . € R¥rXdmLr of the covariance of MLP

activations (see Lemma[D.I]in Appendix [D]for details and a proof).

Intuitively, a fact patch as in subsection [6.1] should have a corresponding ROME edit with the same
effect. Specifically, suppose that we are in the setup of and u 4, up are the last subject token
post-GELU activations for prompts A and B; then u 4 takes the role of &, and the patched output
of the MLP layer takes the role of v. Indeed, in Appendix [D.4] we show that, for any direction
v € RIMLP in the MLP’s activation space, there exists a rank-1 edit W/, = W, + ab" which
results in the same output for the MLP layer at the last subject token of A as activation-patching from
up into uy along v; the formal statement and proof are given in[D.4] where we also derive how to

make such an edit minimally change the model, following the optimization objective of ROME.

While this shows that the patch implies a rank-1 edit with the same behavior at the token being
patched, the rank-1 edit is applied permanently to the model, which means that it (unlike the activa-
tion patch) applies to every token. Thus, it is not a priori obvious whether the rank-1 edit will still
succeed in making the model predict o’ instead of o. To this end, in Appendix we evaluate em-
pirically how using the rank-1 edit from Lemma [D.2]instead of the activation patch changes model
predictions, and we find negligible differences.

7 DISCUSSION AND CONCLUSION

Do we expect this illusion to be prevalent? We only exhibit our illusion empirically in two settings,
IOI and factual recall, but we believe it is likely prevalent in practice. We do not prove this, but hope
to illustrate it with an informal argument. Specifically, we expect the illusion to occur whenever
we have an MLP M which is not used in the model’s computation on a given task, but is between
two components A and B which are used and compose with each other via some direction v in
the residual stream (i.e., v is communicated via the skip connections of intervening layers). This is
a common structure that has been frequently observed in the mechanistic interpretability literature
(Lieberum et al [2023; [Wang et al.| [2023; |Olsson et al.l [2022; |Geva et al., [2021): circuits contain
components composing with each other separated by multiple layers, and circuits have often been
observed to be sparse, with most components (including most MLP layers) not playing a significant
role.

An empirically informed mechanistic argument for the illusion. The MLP M between A and
B (MLP-in-the-middle) set up leads to the existence of both a dormant causal direction vgormant
and a correlated yet causally disconnected direction vg;sconnected, as follows. A vector u € RémLp
in the MLP’s activation space will be causally relevant if W,,;u = v; since the internal dimension
of the MLP layer is larger than that of the residual stream (4x for popular architectures), Wy, is
typically full rank (see Appendix [E.T|for empirical evidence), and such a u will exist. In particular,
we can take Viormant = W;;tv, and since we assume M is not a part of the computation, this
direction should not be significantly correlated with the feature being patched. A vector u € RIMLP
will be correlated if it can linearly recover the concept in question from the MLP’s activations
gelu(Wi, Tresia). Because M occurs after A, the feature is linearly recoverable from Z;.¢s;q by
using v as a probe, and hence is recoverable from W;,, x,s:q as well (again, empirically W;,, is full-
rank). In theory, the gelu non-linearity could completely destroy the information, but empirically
(see Appendix[E.TJand[E.2), it seems to merely add noise, so the feature remains linearly recoverable,

gIVINg US Vdjsconnected-

Takeaways and recommendations. As we have seen, optimization-based methods using subspace
activation patching can find both faithful and illusory features with respect to the model’s computa-
tion. We recommend running such methods in activation bottlenecks such as the residual stream, as
well as using validations beyond end-to-end evaluation to ascertain the precise role of such features.
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A ADDITIONAL DETAILS FOR SECTION

A.1 THE ILLUSION FOR HIGHER-DIMENSIONAL SUBSPACES

In the main text, we mostly discuss the illusion for activation patching of 1-dimensional subspaces
for ease of exposition. Here, we develop a more complete picture of the mechanics of the illusion
for higher-dimensional subspaces.

Let C be a model component taking values in R?, and let U C R be a linear subspace. Let V be a
matrix whose columns form an orthonormal basis for U. If the C activations for examples A and B
are acta, actg € RY respectively, patching U from A into B gives the patched activation

act%amhed —actg + VV ' (acty —actg) = (I — VV Nactg + VV Tacty

For intuition, note that V'V T is the orthogonal projection on U, so this formula says to replace the
orthogonal projection of actp on U with that of act 4, and keep the rest of actp the same.

Generalizing the discussion from Section [3] for the illusion to occur for subspace .S, we need S to
be sufficiently aligned with a causally disconnected subspace Vy;sconnected that is correlated with
the feature being patched, and a dormant but causal subspace Vjormant Which, when set to out of
distribution values, can achieve the wanted causal effect. For example, a particularly simple way in
which this could happen is if we have let Vy;sconnecteds Vaormant b€ 1-dimensional subspaces (like
in the setup for the 1-dimensional illusion), and we form S by combining Vy;sconnected + Viormant
with a number of orthogonal directions that are approximately constant on the data with respect to
the feature we are patching. These extra directions effectively don’t matter for the patch (because
they are cancelled by the act4 — actp term). Given a specific feature, it is likely that such weakly-
activating directions will exist in a high-dimensional activation space. Thus, if the 1-dimensional
illusion exist, so will higher-dimensional ones.

A.2 ILLUSORY 1-DIMENSIONAL PATCHES ARE APPROXIMATELY EQUAL PARTS CAUSALLY
DISCONNECTED AND DORMANT

In this subsection, we prove a quantitative corollary of the model of our illusion that suggests that
we should expect illusory patching directions to be of the form v = % (Vdisconnected + Vdormant)

for unit vectors ||Vgisconnected||2 = ||Vdormant|l2 = 1. In other words, we expect the best illusory
patches to be formed by combining a disconnected and illusory direction with equal coefficients,
like depicted in Figure

Lemma A.l. Suppose we have two distributions of input prompts D 4, Dpg. In the terminology
of Section let Vgisconnected L Vdormant be unit vectors such that the subspace spanned by
Vdisconnected 18 @ causally disconnected subspace, and the subspace spanned by Vqormant IS Strongly
dormant, in the sense that the projections of the activations of all examples D source U Dpase onto
VUdormant are equal to some constant c.

Suppose we form v = Vgisconnected COS & + Udormant SIN & as a unit-norm linear combination of
the two directions. Then the magnitude of the expected change in projection along Viormant When
patching from x 4 ~ D4 into xp ~ Dp is maximized when o = %, i.e. cosa =sina = %

Proof. Recall that the patched activation from x 4 into x g along v is
act%atChed =actp + (pa — pB)v (2)

where p4 = v'acty,pg = v'actp are the projections of the two examples’ activations on v. The
change along vgormant 1S thus

atched
acthy T

Vo rmmant ( - actB> = (pa — pp)sina = (v'acty — v ' actp)sin o

_ T
= Udisconnected

: T _ T
yvhere we used the assumption that v, .aCtas = Vg onnecteqdts. Hence, the expected change
is

(acty — actp) cosasin o

- T
COs x S1n & UdisconnectedEANDA ,B~Dp [aCtA - aCtB} :

The function f(a) = cosasina for a € [0,7/2] is maximized for &« = m/4, concluding the

proof.
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A.3 CONCRETE MATHEMATICAL EXAMPLE OF THE ILLUSION

A Toy Illusion. For a distilled example of the illusion, consider a network A that takes in a real
valued input z € R, computes a three dimensional hidden representation » = W z, and then a
real valued output y = Wi h. In this example, we consider the network’s hidden layer to be a
single ‘component’, represented as a 3-dimensional vector space of activations. Define the weights
tobe Wy =[1 0 1]and W5 =[0 —2 1] and observe that the network computes the identity
function (see Figure [I8]in Appendix [F] for an illustration). While the 3rd hidden neuron clearly
mediates this effect, surprisingly, patching the direction along the sum of the first two neurons does
as well, despite the fact that the 1st neuron is causally disconnected, and the 2nd is dormant.

Consider Figure [I8] It should be obvious that the hidden unit Hs fully mediates the information
flow from input to output, and that H, is dormant while Hj is disconnected. However, it may

be surprising that the linear subspace of H; and H» defined by the unit vector [%, f%] also

fully mediates the information flow, despite it consisting of dormant and disconnected directions.
Activation patching on this subspace leverages the information stored in the disconnected subspace
in order to activate the dormant subspace by fixing it to an out of distribution value. In this way,
activation patching on a subspace can activate a ‘dormant parallel circuit’.

A concrete hypothesis. Based on this discussion, we can also postulate a specific hypothesis we
can test for. Specifically, our hypothesis is that there exist pre-trained transformer language models
M, pairs of distributions Dygs. and Dypyree Over inputs to M (with associated ground-truth next-
word predictions for inputs in Dpgse U Dsouree), and 1-dimensional subspaces S of post-GELU
activations of MLP layers in these models, such that activation patching from Zsource ~ Dsource
into Tpgse ~ Dpase along S has a strong effect of shifting probability from the expected completion
of Zpgse to that of spyrce, but this effect is significantly diminished when activation patching is
performed along the component of S orthogonal to the nullspace of the down-projection W,,; of
the MLP layer. In this example, the nullspace component of S is the causally disconnected subspace,
and we hypothesise it is possible the remaining component is dormant.

B ADDITIONAL DETAILS FOR SECTION

B.1 DATASET, MODEL AND EVALUATION DETAILS FOR THE IOl TASK

We use GPT2-Small for the IOI task, with a dataset that spans 216 single-token names, 144 single-
token objects and 75 single-token places, which are split 1 : 1 across a training and test set. Every
example in the data distribution includes (i) an initial clause introducing the indirect object (10, here
‘Mary’) and the subject (S, here ‘John’), and (ii) a main clause that refers to the subject a second
time. Beyond that, the dataset varies in the two names, the initial clause content, and the main clause
content. Specifically, use three templates as shown below:

Then, [ ] and [ ] had a long and really crazy argument. Afterwards, [ ] said to
Then, [ ] and [ ] had lots of fun at the [place]. Afterwards, [ ] gave a [object] to
Then, [ ] and [ ] were working at the [place]. [ ] decided to give a [object] to

and we use the first two in training and the last in the test set. Thus, the test set relies on unseen
templates, names, objects and places. We used fewer templates than the IOI paper |Wang et al.
(2020) in order to simplify tokenization (so that the token positions of our names always align), but
our results also hold with shifted templates like in the IOI paper.

On the test partition of this dataset, GPT2-Small achieves an accuracy of ~ 91%. The average
difference of logits between the correct and incorrect name is ~ 3.3, and the logit of the correct
name is greater than that of the incorrect name in = 99% of examples. Note that, while the logit
difference is closely related to the model’s correctness, it being > 0 does not imply that the model
makes the correct prediction, because there could be a third token with a greater logit than both
names.
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B.2 DETAILS FOR COMPUTING THE GRADIENT DIRECTION Vggrap

For a given example from the test distribution and a given name mover head, we compute the gra-
dient of the difference of attention scores from the final token position to the 3rd and 5th token in
the sentence (where the two name tokens always are in our data). We then average these gradients
over a large sample of the full test distribution and over the three name mover heads, and finally
normalize the resulting vector to have unit /5 norm.

We note that there is a ‘closed form” way to compute approximately the same quantity that requires
no optimization. Namely, for a single example we can collect the keys kg, k7o to the name mover
heads at the first two names in the sentence (the S and IO name). Then, for a single name mover
head with query matrix Wy, a maximally causal direction v in the residual stream at the last token
position after layer 8 will be one such that Ww is in the direction of kg — k1o, because the attention
score is simply the dot product between the keys and queries. We can use this to ‘backpropagate’
to v by multiplying with the pseudoinverse Wg . This is slightly complicated by the fact that we
have been ignoring layer normalization, which can be approximately accounted for by estimating
the scaling parameters (which tend to concentrate well) from the IOI data distribution. We note that
this approach leads to broadly similar results.

B.3 TRAINING DETAILS FOR DAS

To train DAS, we always sample examples from the training IOI distribution as described in Ap-
pendix [B] We sample equal amounts of pairs of base (which will be patched into) and source (where
we take the activation to patch in from) prompts where the two names are the same between the
prompts, and pairs of prompts where all four names are distinct. We optimize DAS to maximize
the logit difference between the name that should be predicted if the position information from the
source example is correct and the other name.

For training, we use a learned rotation matrix as in the original DAS paper (Geiger et al.
2023b), parametrized with torch.nn.utils.parametrizations.orthogonal. We use
the Adam optimizer and minibatch training over a training set of several hundred patching pairs. We
note that results remain essentially the same when using a higher number of training examples.

B.4 DISCUSSION OF THE MAGNITUDE OF THE ILLUSION

While the contribution of the vy p patch to logit difference may appear relatively small, we note
that this is the result of patching a direction in a single model component at a single token position.
Typical circuits found in real models (including the IOI circuit from Wang et al.| (2023))) are often
composed of multiple model components, each of which contribute. In particular, the position
signal itself is written to by 4 heads, and chiefly read by 3 other heads. As computation tends to
be distributed, when patching an individual component accuracy may be a misleading metric (eg
patching 1 out of 3 heads is likely insufficient to change the output), and a fractional logit diff
indicates a significant contribution. By contrast, patching in the residual stream is a more potent
intervention, because it can affect all information accumulated in the model that is communicated
to downstream components.

B.5 RANDOM ABLATION OF MLP WEIGHTS

How certain are we that MLP8 doesn’t actually matter for the IOI task? While we find the IOI paper
analysis convincing, to make our results more robust to the possibility that it does matter, we also
design a further experiment.

Given our conceptual picture of the illusion, the computation performed by the MLP layer where
we find the illusory subspace does not matter as long as it propagates the correlational information
about the position feature from the residual stream to the hidden activations, and as long as the
output matrix W, is full rank (also, see the discussion in[7). Thus, we expect that if we replace the
MLP weights by randomly chosen ones with the same statistics, we should still be able to exhibit
the illusion.
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Specifically, we randomly sampled MLP weights and biases such that the norm of the output acti-
vations matches those of MLP8. As random MLPs might lead to nonsensical text generation, we
don’t replace the layer with the random weights, but rather train a subspace using DAS on the MLP
activations, and add the difference between the patched and unpatched output of the random MLP
to the real output of MLP8. This setup finds a subspace that reduces logit difference even more than
the vyp direction.

This suggests that the existence of the vy p subspace is less about what information MLPS contains,
and more about where MLPS is in the network.

C ADDITIONAL DETAILS FOR SECTION

Which model components write to the v,q direction? To test how every attention head and MLP
contributes to the value of projections on vy p, we sampled activations from head and MLP outputs
at the last token position of IOI prompts, and calculated their dot product with v..;q (Figure[7). We
found that the dot products of most heads and MLPs was low, and that the S-inhibition heads were
the only heads whose dot product differed between different patterns ABB and BAB. This shows
that only the S-inhibition heads write to the v,eq direction (as one would hope). Importantly, this
test separates V,..s;q from the interpretability illusion v, p. While patching vy pg also writes to
Viesids (-6 VMLPs Wout = Viesiag), the MLP layer does not write this subspace on the 10l task (see
Figure [3). This further supports the observation that the vy p patch activates a dormant pathway in
the model.

Generalization beyond the IOI distribution. We also investigate how the subspace generalizes.
We sample prompts from OpenWebText-10k and look at those with particularly high and low ac-
tivations in vgnnip. Representative examples are shown in Figure E] together with the name movers
attention at the position of interest, how the probability changes after subspace ablation, and how
the name movers attention changes.

Stability of found solution. Finally, we note that solutions found by DAS in the residual stream are
stable, including when trained on a subset of S-inhibition heads (see Figure [3).

Cosine similarity of learned position directions

0.10 0.04

Figure 5: Cosine Similarity between learned position subspaces in the S-inhibition heads is high
even when using only a subset of S-inhibition heads for training
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Figure 6: The IOl position subspace activates at words that predict a repeated name. S-inhibition
subspace activations for different IOI prompts per position
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Figure 7: S-Inhibition heads but not MLPS write to the position subspace in the residual stream that
is causally connected to the name movers on the IO] task

D ADDITIONAL DETAILS FOR SECTIONI6]

D.1 TRAINING DETAILS FOR FACT PATCHING (SECTION[6.1)

We use the first 1000 examples from the COUNTERFACT dataset (Meng et all [2022a). We filter
the facts which GPT2-XL correctly recalls. Out of the remaining facts, for each relation we form
all pairs of distinct facts, and we sample 5 such pairs from each relation with at least 5 facts. This
results in a collection of 40 facts spanning 8 different relations.

To train DAS, due to the computational difficulty of the problem, instead of optimizing a rotation
matrix like in [Geiger et al| (2023b), we directly optimize for a single unit vector using projected
gradient descent, where after each gradient update we normalize the vector to have unit norm again.

D.2 ADDITIONAL FACT PATCHING EXPERIMENTS

In figure[TT] we show the distribution of the fractional logit difference metric (see Subsection4.2]for
a definition) when patching between facts as described in Subsection[6.1] Like in the related Figure
[l we observe that, while patching along the directions found by DAS achieves strongly negative
values (indicating that the facts are very often successfully changed by the patch), the interventions
that replace the entire MLP layer or only the causally relevant component of the DAS directions
have no such effect.

Next, we observe that the nullspace component of the patching direction is the one similar to the
variation in the inputs (difference of last-token activations at the two subjects). Specifically, in
Figure[T2] we plot the (absolute value of the) cosine similarity between the difference in activations
for the two last subject tokens, and the nullspace component of the DAS direction. We note that
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this similarity is consistently significantly high (note that it can be at most 1, which would indicate
perfect alignment).

Finally, we observe that the nullspace component of the patching direction is a non-trivial part of
the direction in Figure [13] where we plot the distribution of the ¢2 norm of this component.

D.3 RANK-1 MODEL EDITING AS AN OPTIMIZATION PROBLEM

We now review the ROME method from |Meng et al.| (2022a)) and show how it can be characterized
as the solution of a simple optimization problem. Following the terminology of [6.2] let us have an
MLP layer with an output projection W, a key vector k € R?~” and a value vector v € R¥modet,

In Meng et al.|(2022a), equation 2, the formula for the rank-1 update to W,,,; is given by

ETyt

Ty —1 @)
K'Yk

where . is an empirical estimate of the uncentered covariance of the pre-W,,,; activations. We derive
the following equivalent characterization of this solution (which may be of independent interest):

Wéut == Wout + (U - Woutk)

Lemma D.1. Given a matrix Wy, € Rémederxdmrr g key vector k € RéMLP gnd g value vector
v € Rdmodet et ) = 0, € RIMLrXdumir pe q positive definite matrix (specifically, the uncentered
empirical covariance), and let x ~ N (0, ) be a normally distributed random vector with zero mean
and covariance X.. Then, the ROME weight update is W, = Wy + ab’ where a € Rmodel b
RIMLE solve the optimization problem

migl trace(Covy [W,,,,@ — Wowx])  subjectto W,k =v.
a,

In other words, the ROME update is the update that causes W, to output v on input k, and
minimizes the total variance of the extra contribution of the update in the output of the MLP layer
under the assumption that the pre-W,,; activations are normally distributed with covariance Eﬁ,

Proof. Using E,[zx "] = ¥ and the cyclic property of the trace, we see that
trace(Cov,, [W/ & — Wou]) = ||al|3bT Zb

(e}

We must have ab " k = v— Wk, so without loss of generality we can rescale a, b so thata = v—Wk.
Then, we want to solve the problem

mbin b'Yb subjectto b'k=1
which we can solve using Lagrange multiplies. The Lagrangian is
1
L(b,\) = §bTEb — Mk

and the derivative w.r.t. bis b — Ak = 0, which tells us that b is in the direction of E_lkz. Then the
constraint b k = 1 forces the constant of proportionality, and we arrive at b = kkTEE e O
D.4 STATEMENT AND PROOF FOR DERIVING RANK-1 EDITS FROM SUBSPACE PATCHES

Lemma D.2. Given prompts A and B, two token positions t 4, tg, and an MLP layer with output
projection weight W, € RmeactXdMLP oty 4 up € RIMLP be the respective (post-nonlinearity)
activations at these token positions in this layer. If v is a direction in the activation space of the MLP
layer, then there exists a ROME edit W), ., = Wy + ab’ such that the activation patch from up into

ua along v and the edit result in equal outputs of the MLP layer at token t o when run on prompt A.
Moreover, the ROME edit is given by

a= ((uB — uA)Tv) Wouv  and any b that satisfies b uy = 1.

Choosing b = TE% minimizes the change to the model (in the sense of |Meng et al.| (2022a))

over all such rank 1 edits.

>Note that in practice W+ may be singular or poorly conditioned, because the layer normalization encour-
ages features to sum to zero, which could to some extent also persist after a non-linearity. If this is the case, all
our results apply with = instead of 3.
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Proof. The activation after patching from B into A along v is vy = ua + ((up — ua) "v)v, which
means that the change in the output of the MLP layer at this token will be

Wourty — Wourtia = ((up — ta) " 0)Wourv
The change introduced by a fact edit at this token is
W ua — Wourug = ab uy = (bTuA) ((up — uA)Tv) W otV
and the two are equal because b uy = 1.

To find the b that minimizes the change to the model, we minimize the variance of bz when
r ~ N(0,%) subject to b"us = 1. The variance is equal to b' Xb, so we have a constrained
(convex) minimization problem

1
min ibTEb subjectto b'uy =1

The rest of the proof is the same as in Lemma[D.1] Namely, we can solve this optimization problem
using Lagrange multiplies. The Lagrangian is

1
L(b,\) = 5szb — b uy

and the derivative w.r.t. bis b — Aus = 0, which tells us that b is in the direction of ¥~ ' 4. Then
the constraint b " u 4 = 1 forces the constant of proportionality. O

In this appendix, we collect some useful notes on the rank-1 model editing (ROME) method from
Meng et al.[(2022a).

Lemma D.3 (Alternative characterization of rank-1 model editing via variance minimization).

D.5 ADDITIONAL EXPERIMENTS COMPARING FACT PATCHING AND RANK-1 EDITING

In Figure [T4] we plot the distributions of the logit difference between the correct object for a fact
and the object we are trying to substitute when patching the 1-dimensional subspaces found by DAS,
and performing the equivalent rank-1 weight edit according to Lemma[D.2] We observe that the two
metrics quite closely track each other, indicating that the additional effects of using a weight edit (as
opposed to only intervening at a single token) are negligible.

Similarly, in Figure [I5] we show the success rate of the the two methods in terms of making the
model output the object of the fact we are patching from. Again, we observe that they quite closely
track each other.

E  WHY DO WE EXPECT THE ILLUSION TO BE PREVALENT IN PRACTICE?

E.1 MLP WEIGHTS ARE FULL-RANK MATRICES

In figure[T6] we plot the 100 smallest singular values of the MLP weights in GPT2-Small for all 12
layers. We observe that they the vast majority are bounded well away from 0. This confirms that
both MLP weights are full-rank transformations.

E.2 FEATURES IN THE RESIDUAL STREAM PROPAGATE TO HIDDEN MLP ACTIVATIONS

Intuition. Suppose we have two classes of examples that are linearly separable in the residual
stream. The transformation from the residual stream to the hidden MLP activations is a linear map
followed by a nonlinearity, specifically x — gelu(W;,x). As we observed in the W;,, matrix
is full-rank, meaning that all the information linearly present in z will also be so in W;,z. Even
better, since W;,, maps = from a d,,,q4.;-dimensional space to a dy;r,p = 4dy04ei-dimensional
space, this should intuitively make it much easier to linearly separate the points, because in a higher-
dimensional space there are many more linear separators. On the other hand, the non-linearity has an
opposite effect: by compressing the space of activations, it makes it harder for points to be separable.
So it is a priori unclear which intuition is decisive.
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Empirical validation. However, it turns out that empirically this is not such a problem. To test this,
we run the model GPT2-Small on random samples from its data distribution (we used OpenWebText-
10k), and extract 2000 activations of an MLP-layer after the non-linearity. We train a linear regres-
sion with /5-regularization to recover the dot product of the residual stream immediately before the
MLP-layer of interest and a randomly chosen direction. We repeat this experiment with different
random vectors and for each layer. We observe that all regressions are better than chance and explain
a significant amount of variance on the held-out test set (R? = 0.71+0.17, MSE = 0.31£0.18,p <
0.005). Results are shown in Figure|17| (right) (every marker corresponds to one regression model
using a different random direction).

The position information in the IOI task is really a binary feature, so we are also interested in
whether binary information in general is linearly recoverable from the MLP activations. To test this,
we sample activations from the model run on randomly-sampled prompts. This time however, we
add or subtract a multiple of a random direction v to the residual stream activation u, and calculate
the MLP activations using this new residual stream vector u’:

w =u+yxzx|ulsxv

where y € {—1,1} is uniformly random, z is a scaling factor we manipulate, and v is a randomly
chosen direction of unit norm. For each classifier, we randomly sample a direction v that we either
add or subtract (using y) from the residual stream. The classifier is trained to predict y. We rescale
v to match the average norm of a residual vector and then scale it with a small scalar z.

Then, a logistic classifier is trained on 1600 samples. Again, we repeat this experiment for different
v and z, and for each layer. We observe that the classifier works quite well across layers even with
very small values of z (still, accuracy drops for z = 0.0001). Results are shown in Figure [I7] (right),
and Table[2

Table 2: Mean Accuracy for Different Values of z

z Mean Accuracy
0.0001 0.69
0.001 0.83
0.01 0.87
0.1 0.996

F SUPPLEMENTARY FIGURES

F.1 ADDITIONAL FIGURES FOR SECTION[3]

F.2 ADDITIONAL FIGURES FOR SECTION[4]
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Figure 21: Schematic of the IOI circuit and interven-
tions. GPT2-small predicts the correct name by S-
inhibition heads writing positional information to the
residual stream which is used by the name movers to
copy the non-duplicated name (green arrows). Lo-
cation of subspace interventions Vg and vyp are
marked. Patching the illusory subspace vy p adds a
new path (red) along the established one that is used
to flip positional information when patched.
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Figure 11: Fractional logit difference distributions under three interventions: patching along the
direction found by DAS (blue), patching the component of the DAS direction in the rowspace of
Wout (green), and patching the entire hidden MLP activation (orange).
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Figure 12: Distribution of the absolute value of the cosine similarity between the nullspace compo-
nent of the DAS fact patching directions and the difference in activations of the last tokens of the
two subjects.

1.0

0.8

0.6 ’?’QO*QQ
0.4’

0.2

Norm of nullspace component

0 5 10 15 20 25 30 35 40 45

Intervention layer

Figure 13: Distribution of the norm of the nullspace component of the DAS direction across inter-
vention layers.
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Figure 15: Comparison of fact editing success rate between 1-dimensional fact patches and their
derived rank-1 model edits
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in GPT2-Small
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Figure 17: Recovering residual stream features linearly from hidden MLP activations: classification
(left) and regression (right).

XeR

(a) The network A that computes the iden-
tity function. The hidden unit H3 stores the
value of the input and passes this to the out-
put, while the unit Hs is dormant and H3

(b) The network A except the weights have
been transformed such that the hidden units
H> and Hj are viewed under the coordinate

1 1 1 1
is disconnected. However, the linear sub- vectors [\/5 ’ \/5] j‘md [\/5 ’ \/5] When
space of H and Hs defined by the unit vec- we generalize activation patching to arbitary
tor [%’ _%] fully mediates the informa- subspaces, we are forced to co.n51der. this
tion flow from input to output just like the tfansformed network to be analytically iden-
unit Hs tical to.A.

Figure 18: Diagrams of small linear networks illustrating a concrete instantiation of the interpretabil-
ity illusio, alongside a subspace faithful to a model’s computation.
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Figure 19: Projections of dataset examples’ activations in the residual stream after layer 8 onto the
Viesig direction found by DAS and the vgoq direction which is the gradient for difference in attention

of the name mover heads to the two names.
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Figure 20: Projections of dataset examples onto the two components of the illusory patching di-
rection found in MLPS: the nullspace (irrelevant) component (left), and the rowspace (dormant)

component (right).
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dormant direction

dormant directiop

example to patch from example to patch into

>
causally disconnected direction

Figure 22: Consider a 2-dimensional subspace
of model activations, with an orthogonal ba-
sis where the x-axis is causally disconnected
(changing the activation along it makes no dif-
ference to model outputs) and values on the y
axis are always zero for examples in the data
distribution (a specical case of a dormant di-
rection).

dormant direction

% .
example to patch from &) example to patch into

usally disconnécted direction

Figure 24: To patch along v from the left into
the right example, we match the value along v
from the left one, and leave the value along vt
unchanged. In other words, we take the com-
ponent of the left example along v (D) and
sum it with the v component (Q)) of the orig-
inal activation.

causally disconnected direction

Figure 23: Suppose we have two examples
(green) which differ in their projection on the
causally disconnected direction (and have zero
projection on the dormant direction, by defini-
tion). Let’s consider what happens when we
patch from the example on the left into the
example on the right along the 1-dimensional
subspace v spanned by the vector (1, 1) (red)

dormant directiop

example to patch into
usally disconnécted direction

yored oy 1q nsax

Figure 25: This results in the patched activa-
tion D +@), which points completely along the
dormant direction. In this way, the variation of
activations along the causally disconnected z-
axis results in activations along the previously
dormant y-axis

Figure 26: A step-by-step illustration of the phenomenon shown in Figure
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