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Abstract Although Reinforcement Learning (RL) has shown to be capable of producing impressive
results, its use is limited by the impact of its hyperparameters on performance. This often
makes it difficult to achieve good results in practice. Automated RL (AutoRL) addresses this
difficulty, yet little is known about the dynamics of the hyperparameter landscapes which
hyperparameter optimization (HPO) methods traverse in search of optimal configurations. In
view of existing AutoRL approaches dynamically adjusting hyperparameter configurations,
we propose an approach to build and analyze these hyperparameter landscapes not just
for one point in time but at multiple points in time throughout training. Addressing an
important open question on the legitimacy of such dynamic AutoRL approaches, we provide
thorough empirical evidence that the hyperparameter landscapes strongly vary over time
across representative algorithms from RL literature (DQN, PPO, and SAC) in different kinds
of environments (Cartpole, Bipedal Walker and Hopper). This supports the theory that
hyperparameters should be dynamically adjusted during training and shows the potential
for more insights on AutoRL problems that can be gained through landscape analyses. Our
code can be found at https://github.com/automl/AutoRL-Landscape

1 Introduction

The combination of RL techniques with the power of function approximation inherent in Deep
Learning has led to several impressive successes (Silver et al., 2016; Zhou et al., 2017; Bellemare
et al., 2020; Badia et al., 2020; Lee et al., 2020; Degrave et al., 2022). As research in RL soars and
the field targets increasingly harder learning-based optimization and control problems, extracting
good performance out of ever more complicated pipelines becomes the need of the hour. Thus,
techniques in Automated Reinforcement Learning (AutoRL; Parker-Holder et al. (2022)) have started
to automate the design of RL approaches.

One goal of AutoRL is hyperparameter optimization (HPO), whereby AutoRL determines
hyperparameter configurations that can help an RL agent achieve the best performance. However,
the distribution shift induced by the RL agent generating its own learning data via interactions
with the environment leads to non-stationarity in the learning process. Consequently, RL pipelines
can be very sensitive to hyperparameter configuration (Henderson et al., 2018; Parker-Holder et al.,
2022), making it difficult to find an optimal static configuration at the beginning of the training.
Thus, Parker-Holder et al. (2022) argue for the necessity to adjust hyperparameters throughout the
training process in RL. Although several AutoRL approaches (Li et al., 2019; Parker-Holder et al.,
2020; Dalibard and Jaderberg, 2021; Wan et al., 2022) try to exploit this property, to date, there is no
thorough study validating this hypothesis. In our search for better AutoRL methods, we provide
insightful evidence of how the hyperparameter landscape changes throughout time. To this end,
we propose a structured approach to collect performance data per time and landscape analysis
methods.

Contributions. (i) We introduce a pipeline for creating hyperparameter landscapes of dynamic
configurations at multiple discrete time steps throughout training (see Figure 1). (ii) We delineate
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Figure 1: An overview of our hyperparameter landscape creation and analysis pipeline. With an RL
algorithm, environment, and the hyperparameter search space, we collect performance data
for hyperparameters covering the search space at multiple time steps throughout training
(Section 4.1). The gathered data relates algorithm performance to the algorithm configuration,
which we use for modeling the landscapes (Section 4.2).

methods with which the landscapes can be inspected for traits such as their general structure,
configuration stability, and hyperparameter importance. (iii) We demonstrate the insights generated
by our extensive study pipeline with DQN (Silver et al., 2016), PPO (Schulman et al., 2017) and
SAC (Haarnoja et al., 2018) on Cartpole, Bipedal Walker and Hopper (Brockman et al., 2016a)
environments.

2 Related Work

To the best of our knowledge, our work is the first to address and inspect hyperparameter landscapes
in RL. Our study also sheds light on the properties of hyperparameter values that are specific to
the RL pipeline.

Automated Reinforcement Learning (AutoRL). The goal of AutoRL is to facilitate deploying well-
performing RL pipelines by making the process of designing RL algorithms data-driven. Parker-
Holder et al. (2022) categorize AutoRL approaches on the basis of four major design decisions: task
design, algorithm selection, the architecture of the policy network, and hyperparameters. Our
work specifically focuses on analyzing the impact of hyperparameters across different types of
algorithms on environments with different dynamics. Islam et al. (2017) analyze multiple static
hyperparameters of two RL algorithms and two environments, noting that differences exist over the
different RL contexts. Shala et al. (2022) created a tabular benchmark to compare the reward curves
of well-established RL methods across multiple environments and hyperparameter configurations.
Our work adds principle to this process by visualizing hyperparameter landscapes at different
points in time.

Landscape Analyses. Landscape analyses have traditionally been a part of the optimization litera-
ture (Pitzer and Affenzeller, 2012) where the quality of different search solutions is measured using
a fitness function. In HPO, hyperparameter landscapes are closely related to a given performance
metric (e.g., the validation loss of a neural net in supervised learning, or the evaluation return in RL)
by mapping hyperparameter configurations to the performance metric. Landscapes additionally
require a notion of a neighborhood or distance to be able to relate and interpolate between different
hyperparameter configurations (Stadler, 2002).

Through their structured view of the model’s performance, hyperparameter landscapes provide
a perspective on the central subject of HPO, and analysis can reveal how to search for optima
efficiently. Pimenta et al. (2020) analyze hyperparameter landscapes for highly nested search spaces.
Pushak and Hoos (2022) show that AutoML loss landscapes are often much more structured than
assumed, allowing for cheap, independent optimization of the hyperparameters. In algorithm
configuration, Pushak and Hoos (2020) showed that benign characteristics of configuration land-
scapes (Pushak and Hoos, 2018) can be exploited for efficient optimizers. Further, Malan (2021)
provide an overview of a wide range of landscape analysis techniques.
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Dynamic Configurations. While dynamic configurations can already be advantageous for station-
ary problems (Jaderberg et al., 2017; Chen et al., 2023), the non-stationary of RL can give them an
even bigger edge over static configurations (Li et al., 2019; Parker-Holder et al., 2020; Dalibard and
Jaderberg, 2021; Wan et al., 2022; Parker-Holder et al., 2022). Adriaensen et al. (2022) expands on the
use of both RL and other optimization techniques for inferring configuration schedules, showing
that these schedules can outperform static configurations for algorithms from multiple artificial
intelligence disciplines (though not including RL). RL itself can also be used to find optimized
configuration schedules (Biedenkapp et al., 2020). Our work adds to this line of work by providing
insights into the impact of dynamic configurations of RL hyperparameters.

3 Preliminaries

In the following, we summarize the main background necessary for our approach to studying the
properties of AutoRL landscapes.

3.1 Reinforcement Learning

Reinforcement Learning (RL) deals with sequential decisions making problems, where an agent
interacts with an environment. One way to model such scenarios is by using a Markov Decision
Process (MDP), represented as a 5-tupleM = ⟨S,A, 𝑃, 𝑅, 𝜌⟩.

The environment is in some state 𝑠 ∈ S . The agent takes an action 𝑎 ∈ A that results in a
transition of the environment from the current state 𝑠 to the next state 𝑠′ ∈ S . The transition
function 𝑃 : S ×A → Δ(S) governs this transition by taking a state 𝑠 and action 𝑎 as inputs and
outputting a probability distribution Δ(·) over the next states, from which 𝑠′ can be sampled. For
each transition, the agent receives a reward according to a reward function 𝑅 : S ×A × S → R.
Each of these sequences, represented as the tuple (𝑠, 𝑎, 𝑟, 𝑠′), is also referred to as an experience.
The initial state 𝑠0 is sampled from the distribution 𝜌 .

The agent selects actions using a policy 𝜋 : S → Δ(A) that produces a probability distribution
over actions given a state. This definition also encompasses deterministic policies that output a
single action given a state by using a delta distribution. At each timestep, the agent acts according
to its policy 𝜋 to generate a trajectory of experiences 𝜏 = (𝑠0, 𝑎1, 𝑟1, . . . , 𝑠𝑇 ) for a horizon 𝑇 . In this
work, we focus on episodic settings where the returns are accumulated till the end of episodes
before the optimization is performed. Additionally, we use the common practice of discounting
the returns subsequent to the starting state with a factor 𝛾 ∈ [0, 1] (Discounted RL; Dewanto and
Gallagher (2022)). The expected sum of these rewards is called a return

𝐺 (𝜋, 𝑠) = E(𝑠0=𝑠,𝑎1,𝑟1,...,𝑠𝑇 )∼𝜋

[ 𝑇−1∑︁
𝑡=1

𝛾𝑡−1𝑟𝑡

]
. (1)

The agent’s objective is to learn an optimal policy 𝜋∗ ∈ Π that maximizes 𝐺 (𝑠)

𝜋∗ ∈ argmax
𝜋∈Π

E𝑠0∼𝜌
[
𝐺 (𝜋, 𝑠0)

]
. (2)

It is important to note that our approach does not depend on the setting being episodic and
discounted and can be extended to Continual (Khetarpal et al., 2022) and Average Reward (Dewanto
et al., 2020) settings. However, we leave such analyses to future work.

3.2 The Learning Process

In Deep RL, a policy is a Deep Neural Network parameterized by 𝜽 ∈ R𝑛 . Improving or learning
the policy entails rolling out the current policy 𝜋𝜽 for a number of steps on an MDP M, and
collecting the experiences in a trajectory 𝜏 . Using the collected experiences, the policy is improved
by minimizing an appropriate objective 𝐽 (𝜽 ), which either reflects a form of TD-Learning (Sutton,
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1988) or utilizes the Policy Gradient (Sutton et al., 1999). We consider J to be the set of possible
objectives.

In addition to M, learning also depends on the seed 𝑑 ∈ N controlling the initial state dis-
tribution 𝜌 and the randomness within the policy improvement procedure, as well as a set of
hyperparameters 𝝀 ∈ 𝚲 that control the learning algorithm. This usually includes quantities like
the discount factor 𝛾 or the learning rate 𝛼 .

We begin the characterization of the learning process by subsuming all the factors that affect
learning into the notion of an algorithm. Thus, an algorithm 𝑍 takes all of these as input and
produces a new set of weights 𝜽 ′ = 𝑍 (𝜽 ,M, 𝑑,𝝀, 𝐽 (𝜽 )). With a slight abuse of notation, we can
subsume 𝜽 into the policy definition since its usage is tightly coupled with the policy. Additionally,
we do not consider settings involving Transfer Learning (Zhu et al., 2020) and Generalization (Kirk
et al., 2023) in this work, leading to theMDPs in our case differing only in the initial state distribution
conditioned on the seed 𝜌 (𝑑), and the transition operator 𝑃 (𝑑). These are already included by
explicitly conditioning 𝑍 on 𝑑 . Consequently, we can remove M from this definition as well,
allowing us to rewrite the algorithm definition as the mapping

𝑍 : Π ×N × 𝚲 × J → Π 𝜋 ′ = 𝑍 (𝜋,𝑑,𝝀, 𝐽 ) (3)

We characterize the performance of𝑍 by looking at the distribution of (undiscounted) evaluation
returns E𝑠0∼𝜌𝐺 (𝜋𝑍 , 𝑠0) of policy 𝜋𝑍 obtained by 𝑍 from a starting state 𝑠0. In practice, we can only
approximate this distribution through either modeling or sampling.

3.3 Fitness Landscapes

Fitness functions guide the optimization process to solve an objective by measuring the quality of
solutions being generated. Given a fitness measure, potential solutions can be compared based on
their values measured by the fitness function. The fitness function can further be extended into a
fitness landscape by introducing some form of topology onto the search space.

Malan (2021) define a landscape on the basis of three elements: (i) A set 𝑿 of configurations
(i.e., solutions to the problem). (ii) A notion of neighborhood, nearness, distance, or accessibility on
𝑿 . (iii) A fitness function 𝑓 : 𝑿 → R that maps this configurations to a fitness value.

The notion of the algorithm introduced in Equation (3) can now be used to create a landscape
by considering 𝑿 to be the set of hyperparameter values 𝝀, and 𝐺 (𝜋𝑍 , 𝑠0) - policy obtained from
applying𝑍 to a starting state 𝑠0 - to be the fitness of the algorithm that depends on this configuration.
Hence, by sampling multiple hyperparameter configurations and measuring the fitness of the
algorithms that use these configurations, we can create a landscape by plotting the topology
resulting from aggregating the return distributions.

4 Method

We propose a systematic approach for studying RL hyperparameter landscapes with two objectives:
(i) what are the properties of these landscapes (e.g., convexity or modality), following ideas from
AutoML landscapes (Pushak and Hoos, 2022), and (ii) how do these landscapes change during the
training process, following the assumption of dynamic configuration (Li et al., 2019; Parker-Holder
et al., 2020; Dalibard and Jaderberg, 2021; Wan et al., 2022). In order to efficiently build our RL
hyperparameter landscape at different points in time during training, we need a good data collection
process and a method to model the landscape. We describe both of these in the following sections.

It is important to note that for collecting the data for the hyperparameter landscapes, we take
a greedy approach and try to imitate an optimizer that would always go for the best possible
hyperparameter configuration schedule. So, we are not interested in all possible landscape changes
but only in those that are relevant for building successful AutoRL approaches.
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Figure 2: Overview of the data collection process for landscapes with three configurations 𝝀 and
three phases. We initialize the process by training a random RL policy 𝜋𝑟𝑎𝑛𝑑𝑜𝑚 on each
configuration 𝜆 ∈ 𝝀. The three configurations run till the first landscape point 𝑡𝑙𝑠 (1) which
forms the first landscape dataset 𝐷𝑙𝑠 (1) . The policies are snapshotted at this point, and
the policy for the next phase is selected based on the final performance, indicated by the
continuation of the blue points. The selected configuration is shown with orange circles.
This process is repeated for two more phases to create landscape datasets 𝐷𝑙𝑠 (1) and 𝐷𝑙𝑠 (3) .
The end of the final phase 𝑡𝑙𝑠 (3) corresponds to the final training point 𝑡𝑓 𝑖𝑛𝑎𝑙

4.1 Data Collection

Figure 2 outlines the overview of our data collection process. Given a training environmentM,
we divide the learning timeframe into different phases 0 < 𝑡𝑙𝑠 (1) < · · · < 𝑡𝑓 𝑖𝑛𝑎𝑙 , where 𝑡 = 𝑡𝑙𝑠 (𝑖 ) (𝑙𝑠
denoting landscape) denotes the time point for collecting landscape data, and 𝑡 = 𝑡𝑓 𝑖𝑛𝑎𝑙 is at the
end of training. Each phase entails using a checkpoint from the last phase to initialize algorithms
differentiated by their seeds and HP configurations. At the end of the phase, we evaluate the fitness
through the returns 𝐺𝑧 . We explain this process further in the following paragraphs.

Sampling Configurations. At the start of each phase 𝑖 , we consider a set of hyperparameters 𝝀 ∈ 𝚲

that can characterize 𝚲 by providing sufficient coverage of the areas that we are interested in. We
sample values of 𝝀 using a scrambled Sobol sampling strategy (Sobol, 1967; Joe and Kuo, 2008),
which mitigates the inefficiency of grid search and the issue of sufficient search-space coverage of
the random search.

Notion of Distance. The codomain [0, 1]𝑛 of the Sobol sampler additionally acts as a normalized
view of the search space, and thus, a distance metric in this space can additionally map to 𝚲. We
model this using a monotone function 𝑢 : [0, 1]𝑛 → 𝚲.

Training and Evaluation. For each sampled configuration 𝝀, we consider a set of seeds 𝐷 and
instantiate an algorithm for each seed-configuration combination while keeping the objective 𝐽

constant, thus, resulting in |𝐷 | × |𝝀 | algorithms. The input policy for all the algorithms is the best
policy from the last phase 𝜋∗

𝑖−1.
Each of the instantiated algorithms is then run till the end of the phase, and the returns are

collected into a datasetD𝑙𝑠 (𝑖 ) which signifies the fitness of each algorithm. The returns are computed
across all the |𝐷 | seeds. Thus, each element of the dataset contains fitness evaluations of a tuple
𝑪 = {𝝀1, . . . ,𝝀 |𝐷 |}. This gives us a new set of policies of the current phase Π𝑖 ⊂ Π.

Our next task is to select the best policy 𝜋∗ ∈ Π𝑖 . Since early performances do not accurately
reflect final performances in RL (Shala et al., 2022), we select policies based on their final perfor-
mances instead. For this, we train the algorithms till the final timestep 𝑡𝑓 𝑖𝑛𝑎𝑙 and then evaluate
them. To mitigate the noise in the final evaluation, we aggregate evaluations conducted at 0.95𝑡𝑓 𝑖𝑛𝑎𝑙 ,
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0.975𝑡𝑓 𝑖𝑛𝑎𝑙 , and 𝑡𝑓 𝑖𝑛𝑎𝑙 steps into a mean value and use this as a fitness value. This constitutes the
dataset D𝑓 𝑖𝑛𝑎𝑙 (𝑖 ) .

Snapshots and Configuration Selection. We save the intermediate policies in each phase as
snapshots of the network parameters. We then choose one of these snapshots in the final phase
based on D𝑓 𝑖𝑛𝑎𝑙 (𝑖 ) . To perform this selection, we first choose the configuration set with the highest
Interquartile Mean (IQM) and then the initialize configuration by a seed corresponding to the
highest IQM in the selected set. IQM as an aggregation mechanism allows us to mitigate the outlier
bias prevalent in mean aggregation while incorporating more data in our evaluation than median
aggregation (Agarwal et al., 2021). With 𝝀∗ and 𝑑∗ selected from this phase, we can train the
algorithms in the next phase by providing these and the previous best policy 𝜋∗

𝑖−1 to the respective
algorithm. The output of the algorithm gives us the best policy for the next stage.

4.2 Landscape Modeling and Analysis

We estimate the approximate statistics of the landscapes using D𝑙𝑠 (𝑖 ) of each phase. Since the
performance of different seeds can be very different, just getting the mean and standard deviation
of the distribution is not very insightful. Instead, we model three variants of the landscape to take
the behavior of dynamic AutoRL approaches into account. We first calculate the mean IQM of
the landscape, which describes the typical performance expected from the algorithm. We then
calculate the upper and lower quantiles encompassing 95% of the samples1. A landscape model
then encompasses three functions 𝑓{upper,mean,lower} : Λ → R that use these statistics to map out
the hyperparameter landscape over the search space. We call these functions the upper, mean, and
lower surfaces. Each surface is independently modeled from either the IQM or the quantiles of the
return distribution of each configuration.

Landscape Models. Given the notion of distance defined in the codomain of the sampler [0, 1]𝑛 , we
first map the surfaces to a unit hypercube by 𝑓 ′{upper,mean,lower} : [0, 1]

𝑛 → [0, 1], and then interpret
it using the distance transformation 𝑢.

We use two models of the landscape. The first is Interpolated Landscape Models (ILM). We
leverage RBF interpolation with a linear Kernel to construct a continuous surface over the search
space from the given samples. This surface meets every input point without any filtering or
generalizing being applied. The second model family is Independent Gaussian Process Regressors
(IGPRs). Although Gaussian Processes (GPs) can inherently model uncertainty which could be
used to fully model lower and upper quantiles as well as the mean of normal distributions, we
instead use just the mean of the GP to model the surfaces independently. We use an RBF kernel
and optimize parameters and length scales with scipy’s L-BFGS-B optimizer. Unlike the ILMs, the
IGPRs do generalize over the input samples, presenting a different view of the underlying data and,
based on our experiments, leading to smoother landscapes that show more global patterns.

Landscape Analysis. Inspired by Pushak and Hoos (2022), we use Individual Conditional Expecta-
tion (ICE) curves (Goldstein et al., 2015) tomodel one-dimensional slices through the hyperparameter
landscape. Specifically, we create one curve for each choice of the fixed hyperparameters. By
showing individual effects, these curves can be used to compare the isolated effects of individual
hyperparameters to one another.

Modality. Modality of cost distributions in Safe-RL has been shown to be an interesting property
(Yang et al., 2023). Unimodal distributions lead to conservative and stable approximations at the cost
of expressivity, while multimodal distributions add expressivity at the cost of stability. We visualize
the degree to which configurations produce unimodal performance distributions by analyzing

1Precisely, the mean 𝑘% of samples are encompassed by the
(
0 + 100−𝑘

2

)
-quantile and the

(
100 − 100−𝑘

2

)
-quantile.
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the collected performance samples of each configuration. To decide whether a set of samples is
unimodal, we employ the folding test of unimodality by Siffer et al. (2018). Intuitively, the test
looks at a data distribution and tries to find a pivot point around which the distribution can be
folded to reduce the variance. Thus, if a data distribution is multi-modal, then folding will result
in a high variance reduction, while this would not be the case for distributions that are unimodal.
The test outputs a folding statistic Φ, which is the ratio of the variance after folding to the initial
variance. Thus, Φ ≥ 1 signifies that the distribution is rather unimodal while Φ < 1 signifies that
the distribution is rather multimodal. We filter out results where 𝑝 ≥ 𝛼 with 𝛼 = 0.05.

5 Experiments

We first present a general overview of our experimental setup, and then the hyperparameter
landscapes of the phases through visualizations of demonstrative landscape surfaces. We then
review our results for per-configuration unimodality. Please refer to Appendix A for full plots.

5.1 Experimental Setup

We construct the hyperparameter landscapes for DQN (Mnih et al., 2015) on gym’s Cartpole (Brock-
man et al., 2016b), SAC (Haarnoja et al., 2018) on gym’s Hopper-v3, and PPO (Schulman et al., 2017)
on Bipedal-Walker-v2 (Brockman et al., 2016b). These combinations ensure (i) diverse environments
dynamics, since the two selected environments vary by a great degree in their physical dynamics
and convergence requirements; (ii) coverage of both kinds of policy objectives, since DQN uses
TD-error while SAC uses policy loss and (iii) diverse exploration strategies, since DQN and SAC
follow two very distinct archetypes of exploration strategies in RL (Amin et al., 2021)

We sample 128 configurations and train them with 5 different environment seeds. We addition-
ally use two separate seeds, one for sampling the configurations and the other for evaluating the
configurations. Table 1 shows the hyperparameters considered in our landscape analysis for DQN
and SAC. We consider three phases for DQN at 50000, 100000, 150000 timesteps, four phases for
SAC at 125000, 250000, 375000, 500000, and three phases for PPO (at steps 50000, 100000, 150000).
Find our code here: https://anon-github.automl.cc/r/autorl_landscape-F04D.

DQN SAC PPO
HP Range Scale HP Range Scale HP Range Scale

Learning rate 𝛼 [1𝑒−4, 0.1] Log Learning rate 𝛼 [1𝑒−4, 0.1] Log Learning rate 𝛼 [1𝑒−4, 0.1] Log
Discount Factor 𝛾 [0.8, 0.9999] Log Discount Factor 𝛾 [0.8, 0.9999] Log Discount factor 𝛾 [0.8, 0.9999] Log
Final Epsilon 𝜖𝑓 [0.01, 1] Linear Polyak Update 𝜏 [1𝑒−4, 0.2] Log Generalized advantage estimate 𝜆𝑔𝑎𝑒 [0.8, 0.9999] Log

Table 1: Hyperparameters considered as part of 𝝀 in DQN, SAC and PPO

5.2 Landscape Inspection

Figure 3 shows the mean surface of the IGPR plots for DQN, while Figure 4 shows the same for
SAC and Figure 5 for PPO. As can be seen, the landscapes strongly vary in their structure over
the phases. Thus, they confirm that throughout training, the effect of hyperparameters as well as
their optimal settings vary in this experiment. In this sense, the results promote the use of dynamic
configurations, setting a precedent for research on other RL contexts. A deeper look at the plots
shows that the performance peaks move strongly for different hyperparameters, indicative of both
the environment complexity and optimization procedure.

In the case of DQN, we see that the peak occurs in a narrow region for both learning rate 𝛼
and discount factor 𝛾 around the final phase. However, the variation is stronger across the range of
𝛾 while almost negligible in the case of 𝛼 , indicating that 𝛾 largely influences the scores on its own
with peaks around 0.984 in the final phase. For SAC, on the other hand, the behavior is variably
different. The peak performance region remains in between [0.9841, 9.9984] for 𝛾 throughout, while
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Figure 3: IGPR plots of the mean surfaces for learning rate and discount factor for DQN across three
phases of the RL training process. The local minima are represented by the inverted triangle
and the maxima by the normal triangle. The configuration selected for the next stage is
represented by a star
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Figure 4: IGPR plots for learning rate and discount factor for SAC across phases

around the final phase, we see an increasing number of values for 𝛼 producing near maximum
performance. This indicates that in a significantlymore complex environment, SAC is able to explore
more efficiently with the right range of 𝛾 and thus, requires fewer variations in hyperparameter
schedules, which corroborates with the advantage of soft updates and entropy-based exploration
inherent in SAC. Consequently, potential HP schedules for 𝛼 and 𝛾 would have a greater impact on
the learning of TD-based off-policy algorithms such as DQN, something that could be potentially
attributed to the learning dynamics of TD-algorithms themselves (Lyle et al., 2022).

For PPO, from the IGPR approximations of the mean surface in Figure 5 we see that there is
one region with a high performance whose location also changes over the phases. This implies
that PPO is less robust to HP decisions in general. In addition, we investigated the model fit with
cross-validation and see that the different model types, ILM and IGPR, fit very similarly. They both
fit the performance data of PPO and DQN quite well whereas there are higher errors on SAC. For
more details see Appendix B.

Overall, these landscapes provide an overview of the way the performance of RL algorithms
behaves and these depend very much on the context in which HPO is being applied. The dynamic
nature is not just related to the hyperparameter configuration but also to the optimization problem
at hand. Thus, HPO should not just be focused on static configurations, but additional properties of
the optimization process should be incorporated to discover suitable HPO schedules, where needed.

5.3 Per-configuration modality

Figure 6 and Figure 7 show the discretized modality analysis of our collected data, mapped over the
search space for learning rate 𝛼 and discount factor 𝛾 . Additionally, Table 2 presents the overall
sizes of the three categories (unimodal, multimodal, and uncategorized). We regard configurations
that produce unimodal return distributions to be more stable than those which produce multimodal
ones.

Generally, more return distributions are categorized as multimodal rather than unimodal. This
is especially true for the last phase, where we find 49.22% of configurations to be multimodal for
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(b) Phase 2
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(c) Phase 3

Figure 5: IGPR plots of the mean surfaces for learning rate and discount factor for PPO across three
phases of the RL training process.
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Figure 6: Discretized modality plots for learning rate and discount factor for DQN across phases

DQN, 60.94% configurations for SAC, and 80.47% for PPO. Although there are some configurations
in this area that are classified as unimodal, their return distributions are otherwise not that optimal
with their IQMs being dominated by other configurations that are not classified as unimodal.
We additionally see that the unimodal configurations are almost double for DQN as compared
to SAC and PPO, which correlates with the more complicated optimization problem of Hopper
and BipedalWalker as compared to CartPole. While further analyses are necessary to ablate the
various factors that impact modality, these observations contradict previous observations on benign
landscapes of static algorithm configuration and AutoML (Pushak and Hoos, 2018, 2022; Schneider
et al., 2022).

6 Conclusion

We presented a pipeline for data collection, landscape modeling, and landscape analysis, introducing
hyperparameter landscape analysis in the domain of AutoRL. Our multiphase approach gathers
performance data at distinct points of training, which we subsequently used to build different
landscape models. We further outlined how the landscapes can be analyzed to gather insights about
hyperparameter optimization in the context of AutoRL.

We applied the discussed approach to the training of DQN on Cartpole, PPO on Bipedalwalker,
and SAC on Hopper, where we found drastic changes in the hyperparameter landscape over time,
suggesting that the use of dynamic configurations in RL may be well-motivated. We additionally
showed that the stability of configurations is rather unpredictable depending on a context that is
informed jointly by the learning dynamics of the algorithm and the exploration problem. However,

Category DQN SAC PPO
Phase 1 Phase 2 Phase 3 Phase 1 Phase 2 Phase 3 Phase 4 Phase 1 Phase 2 Phase 3

% Unimodal 19.53 13.28 15.62 19.53 09.37 06.25 07.81 12.5 10.94 8.59
% Multimodal 40.63 60.94 60.16 49.22 53.90 57.81 60.94 67.18 60.16 80.47

% Uncategorized 39.84 22.66 22.66 28.90 30.47 24.22 27.34 20.31 28.90 10.94

Table 2: Percentages of configurations assigned to each of the classes from the modality analysis.
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Figure 7: Discretized modality plots for learning rate and discount factor for SAC across phases

0.8
0.9841

0.9987
0.9999

ls.gamma

0.0001

0.001

0.01

0.1

ls.
le

ar
ni

ng
_r

at
e

MM

N/A

UM

0.8
0.9841

0.9987
0.9999

ls.gamma

0.0001

0.001

0.01

0.1

ls.
le

ar
ni

ng
_r

at
e

MM

N/A

UM

0.8
0.9841

0.9987
0.9999

ls.gamma

0.0001

0.001

0.01

0.1

ls.
le

ar
ni

ng
_r

at
e

MM

N/A

UM

Figure 8: Discretized modality plots for learning rate and discount factor for PPO across phases

comparisons between algorithms could be made based on this fact to inform algorithm selection
and algorithm creation. Consequently, we hypothesize that current multi-fidelity approaches
using learning curves of RL training cannot factor in the dynamic hyperparameter landscape and
thus might not be optimal for RL. Finally, we examined the modality of the return distributions
and determined that only a small fraction ends up being unimodal, in contrast to the recent
observations of benign landscapes in AutoML and algorithm configuration (Pushak and Hoos, 2020,
2022; Schneider et al., 2022). This shows that the dynamic configuration of RL agents poses a much
harder problem than classical static AutoML addresses so far and calls for new and specialized
AutoRL methods.

7 Limitations and Future Work

Our method of creating HP landscapes opens up a gateway to more principled analyses of HP
configurations in AutoRL, which we consider highly important for deriving HP schedules that
are more informed by the learning dynamics of the algorithm and the nature of the optimization
problem. Currently, our method works only for continuous HPs and on a limited number of
phases. A natural extension of our approach is incorporating other types of HPs in RL, albeit with
the appropriate distance between categorial HPs being a central question. We see the usage of
quasi-distance via the performance space as a potential direction for such work. Another major
extension is to capture the change of the landscape in a function from which we can derive dynamic
optimizers for RL.
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A Full Plots

In the following sections, we present the full plots generated by our landscape data, which include
Combined Landscape plots, IGPR Maps, IGPR ICE curves, ILM Maps, ILM ICE curves, Modality
plots.

The data has been presented across phases, with the initial phase at the bottom of the page and
the final page at the top. For the Maps, the upper triangles represent local maxima, while the lower
ones represent local minima. Additionally, for SAC since the variation between the first and the
second phases was low, we presented results second phase onwards.

B Model Fit

In order to gain insight into how well the IGPR model fits the data, we calculate the mean squared
error and the mean absolute error on a 5-fold cross-validation procedure. For fitting the model the
performance data is normalized to the range [0, 1]. In Table 3 we see that the IGPR model is able
to fit the performance data of DQN and PPO quite well whereas it shows higher errors for SAC.
Compared with ILM, Table 4, we see very similar fits.

SAC DQN PPO
Mean squared error Mean squared error Mean squared error

Phase

1 0.5160 ± 0.3325 0.0055 ± 0.0012 0.0027 ± 0.0007
2 2.5027 ± 0.8373 0.0564 ± 0.0229 0.0078 ± 0.0039
3 2.6486 ± 0.4524 0.0648 ± 0.0329 0.0212 ± 0.0050
4 2.8879 ± 0.2562 NaN NaN

Table 3: IGPR Model Fit

SAC DQN PPO
Mean squared error Mean squared error Mean squared error

Phase

1 0.4764 ± 0.3680 0.0044 ± 0.0008 0.0028 ± 0.0006
2 2.3295 ± 0.6123 0.0466 ± 0.0187 0.0076 ± 0.0034
3 2.0241 ± 0.4517 0.0587 ± 0.0281 0.0211 ± 0.0059
4 2.1405 ± 0.3728 NaN NaN

Table 4: ILM Model Fit
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D DQN IGPR ICE curves
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E DQN ILM Maps
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F DQN ILM ICE curves
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G DQN Modalities
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H SAC IGPR Maps

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.8
0.9

84
1

0.9
98

7
0.9

99
9

ls.
ga

m
m

a

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

upper - lower

0.8
0.9

84
1

0.9
98

7
0.9

99
9

ls.
ga

m
m

a

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

upper - lower

0.0
00

1
0.0

01
0.0

1
0.1

ls.
le

ar
ni

ng
_r

at
e

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

upper - lower

Ph
as

e 
1

ls.
ga

m
m

a

0.
8 0.

98
41 0.

99
87 0.

99
99

ls.l
ea

rni
ng

_ra
te

0.
00

010.
00

10.
010.

1

ls_eval/returns

0
10

00
20

00
30

00
40

00
50

00

ls.
ga

m
m

a

0.
8 0.

98
41 0.

99
87 0.

99
99

ls.t
au

0.
00

010.
00

130.
01

590.
2

ls_eval/returns

0
10

00
20

00
30

00
40

00
50

00

ls.
le

ar
ni

ng
_r

at
e

0.
00

01 0.
00

1
0.

01
0.

1

ls.t
au

0.
00

010.
00

130.
01

590.
2

ls_eval/returns

0
10

00
20

00
30

00
40

00
50

00

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.8
0.9

84
1

0.9
98

7
0.9

99
9

ls.
ga

m
m

a

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

upper - lower

0.8
0.9

84
1

0.9
98

7
0.9

99
9

ls.
ga

m
m

a

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

upper - lower

0.0
00

1
0.0

01
0.0

1
0.1

ls.
le

ar
ni

ng
_r

at
e

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

upper - lower

Ph
as

e 
2

ls.
ga

m
m

a

0.
8 0.

98
41 0.

99
87 0.

99
99

ls.l
ea

rni
ng

_ra
te

0.
00

010.
00

10.
010.

1

ls_eval/returns

0
10

00
20

00
30

00
40

00
50

00

ls.
ga

m
m

a

0.
8 0.

98
41 0.

99
87 0.

99
99

ls.t
au

0.
00

010.
00

130.
01

590.
2

ls_eval/returns

0
10

00
20

00
30

00
40

00
50

00

ls.
le

ar
ni

ng
_r

at
e

0.
00

01 0.
00

1
0.

01
0.

1

ls.t
au

0.
00

010.
00

130.
01

590.
2

ls_eval/returns

0
10

00
20

00
30

00
40

00
50

00

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.8
0.9

84
1

0.9
98

7
0.9

99
9

ls.
ga

m
m

a

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

upper - lower

0.8
0.9

84
1

0.9
98

7
0.9

99
9

ls.
ga

m
m

a

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

upper - lower

0.0
00

1
0.0

01
0.0

1
0.1

ls.
le

ar
ni

ng
_r

at
e

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

upper - lower

Ph
as

e 
3

ls.
ga

m
m

a

0.
8 0.

98
41 0.

99
87 0.

99
99

ls.l
ea

rni
ng

_ra
te

0.
00

010.
00

10.
010.

1

ls_eval/returns

0
10

00
20

00
30

00
40

00
50

00

ls.
ga

m
m

a

0.
8 0.

98
41 0.

99
87 0.

99
99

ls.t
au

0.
00

010.
00

130.
01

590.
2

ls_eval/returns

0
10

00
20

00
30

00
40

00
50

00

ls.
le

ar
ni

ng
_r

at
e

0.
00

01 0.
00

1
0.

01
0.

1

ls.t
au

0.
00

010.
00

130.
01

590.
2

ls_eval/returns

0
10

00
20

00
30

00
40

00
50

00

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.8
0.9

84
1

0.9
98

7
0.9

99
9

ls.
ga

m
m

a

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

upper - lower

0.8
0.9

84
1

0.9
98

7
0.9

99
9

ls.
ga

m
m

a

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

upper - lower

0.0
00

1
0.0

01
0.0

1
0.1

ls.
le

ar
ni

ng
_r

at
e

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

upper - lower

Ph
as

e 
4

ls.
ga

m
m

a

0.
8 0.

98
41 0.

99
87 0.

99
99

ls.l
ea

rni
ng

_ra
te

0.
00

010.
00

10.
010.

1

ls_eval/returns

0
10

00
20

00
30

00
40

00
50

00

ls.
ga

m
m

a

0.
8 0.

98
41 0.

99
87 0.

99
99

ls.t
au

0.
00

010.
00

130.
01

590.
2

ls_eval/returns

0
10

00
20

00
30

00
40

00
50

00

ls.
le

ar
ni

ng
_r

at
e

0.
00

01 0.
00

1
0.

01
0.

1

ls.t
au

0.
00

010.
00

130.
01

590.
2

ls_eval/returns

0
10

00
20

00
30

00
40

00
50

00

Co
m

bi
ne

d 
La

nd
sc

ap
e 

M
od

el

Up
pe

r S
ur

fa
ce

M
id

dl
e 

Su
rfa

ce

Lo
we

r S
ur

fa
ce

In
te

rq
ua

nt
ile

 S
pa

ce
 H

ei
gh

t

lo
ca

l m
in

im
a

lo
ca

l m
ax

im
a

be
st

 c
on

fig
ur

at
io

n

21



I SAC IGPR ICE curves

0

10
00

20
00

30
00

40
00

50
00

ls_eval/returns

av
er

ag
e

av
er

ag
e

av
er

ag
e

0

10
00

20
00

30
00

40
00

50
00

ls_eval/returns

av
er

ag
e

av
er

ag
e

av
er

ag
e

0.8
0.9

84
1

0.9
98

7
0.9

99
9

ls.
ga

m
m

a

0

10
00

20
00

30
00

40
00

50
00

ls_eval/returns

av
er

ag
e 0.0

00
1

0.0
01

0.0
1

0.1

ls.
le

ar
ni

ng
_r

at
e

av
er

ag
e 0.0

00
1

0.0
01

3
0.0

15
9

0.2

ls.
ta

u

av
er

ag
e

Ph
as

e 
1

0

10
00

20
00

30
00

40
00

50
00

ls_eval/returns

av
er

ag
e

av
er

ag
e

av
er

ag
e

0

10
00

20
00

30
00

40
00

50
00

ls_eval/returns

av
er

ag
e

av
er

ag
e

av
er

ag
e

0.8
0.9

84
1

0.9
98

7
0.9

99
9

ls.
ga

m
m

a

0

10
00

20
00

30
00

40
00

50
00

ls_eval/returns

av
er

ag
e 0.0

00
1

0.0
01

0.0
1

0.1

ls.
le

ar
ni

ng
_r

at
e

av
er

ag
e 0.0

00
1

0.0
01

3
0.0

15
9

0.2

ls.
ta

u

av
er

ag
e

Ph
as

e 
2

0

10
00

20
00

30
00

40
00

50
00

ls_eval/returns

av
er

ag
e

av
er

ag
e

av
er

ag
e

0

10
00

20
00

30
00

40
00

50
00

ls_eval/returns

av
er

ag
e

av
er

ag
e

av
er

ag
e

0.8
0.9

84
1

0.9
98

7
0.9

99
9

ls.
ga

m
m

a

0

10
00

20
00

30
00

40
00

50
00

ls_eval/returns

av
er

ag
e 0.0

00
1

0.0
01

0.0
1

0.1

ls.
le

ar
ni

ng
_r

at
e

av
er

ag
e 0.0

00
1

0.0
01

3
0.0

15
9

0.2

ls.
ta

u

av
er

ag
e

Ph
as

e 
3

0

10
00

20
00

30
00

40
00

50
00

ls_eval/returns

av
er

ag
e

av
er

ag
e

av
er

ag
e

0

10
00

20
00

30
00

40
00

50
00

ls_eval/returns

av
er

ag
e

av
er

ag
e

av
er

ag
e

0.8
0.9

84
1

0.9
98

7
0.9

99
9

ls.
ga

m
m

a

0

10
00

20
00

30
00

40
00

50
00

ls_eval/returns

av
er

ag
e 0.0

00
1

0.0
01

0.0
1

0.1

ls.
le

ar
ni

ng
_r

at
e

av
er

ag
e 0.0

00
1

0.0
01

3
0.0

15
9

0.2

ls.
ta

u

av
er

ag
e

Ph
as

e 
4

Up
pe

r S
ur

fa
ce

M
id

dl
e 

Su
rfa

ce

Lo
we

r S
ur

fa
ce

22



J SAC ILM Maps

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.8
0.9

84
1

0.9
98

7
0.9

99
9

ls.
ga

m
m

a

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

upper - lower

0.8
0.9

84
1

0.9
98

7
0.9

99
9

ls.
ga

m
m

a

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

upper - lower

0.0
00

1
0.0

01
0.0

1
0.1

ls.
le

ar
ni

ng
_r

at
e

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

upper - lower

Ph
as

e 
1

ls.
ga

m
m

a

0.
8 0.

98
41 0.

99
87 0.

99
99

ls.l
ea

rni
ng

_ra
te

0.
00

010.
00

10.
010.

1

ls_eval/returns

0
10

00
20

00
30

00
40

00
50

00

ls.
ga

m
m

a

0.
8 0.

98
41 0.

99
87 0.

99
99

ls.t
au

0.
00

010.
00

130.
01

590.
2

ls_eval/returns

0
10

00
20

00
30

00
40

00
50

00

ls.
le

ar
ni

ng
_r

at
e

0.
00

01 0.
00

1
0.

01
0.

1

ls.t
au

0.
00

010.
00

130.
01

590.
2

ls_eval/returns

0
10

00
20

00
30

00
40

00
50

00

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.8
0.9

84
1

0.9
98

7
0.9

99
9

ls.
ga

m
m

a

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

upper - lower

0.8
0.9

84
1

0.9
98

7
0.9

99
9

ls.
ga

m
m

a

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

upper - lower

0.0
00

1
0.0

01
0.0

1
0.1

ls.
le

ar
ni

ng
_r

at
e

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

upper - lower

Ph
as

e 
2

ls.
ga

m
m

a

0.
8 0.

98
41 0.

99
87 0.

99
99

ls.l
ea

rni
ng

_ra
te

0.
00

010.
00

10.
010.

1

ls_eval/returns

0
10

00
20

00
30

00
40

00
50

00

ls.
ga

m
m

a

0.
8 0.

98
41 0.

99
87 0.

99
99

ls.t
au

0.
00

010.
00

130.
01

590.
2

ls_eval/returns

0
10

00
20

00
30

00
40

00
50

00

ls.
le

ar
ni

ng
_r

at
e

0.
00

01 0.
00

1
0.

01
0.

1

ls.t
au

0.
00

010.
00

130.
01

590.
2

ls_eval/returns

0
10

00
20

00
30

00
40

00
50

00

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.8
0.9

84
1

0.9
98

7
0.9

99
9

ls.
ga

m
m

a

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

upper - lower

0.8
0.9

84
1

0.9
98

7
0.9

99
9

ls.
ga

m
m

a

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

upper - lower

0.0
00

1
0.0

01
0.0

1
0.1

ls.
le

ar
ni

ng
_r

at
e

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

upper - lower

Ph
as

e 
3

ls.
ga

m
m

a

0.
8 0.

98
41 0.

99
87 0.

99
99

ls.l
ea

rni
ng

_ra
te

0.
00

010.
00

10.
010.

1

ls_eval/returns

0
10

00
20

00
30

00
40

00
50

00

ls.
ga

m
m

a

0.
8 0.

98
41 0.

99
87 0.

99
99

ls.t
au

0.
00

010.
00

130.
01

590.
2

ls_eval/returns

0
10

00
20

00
30

00
40

00
50

00

ls.
le

ar
ni

ng
_r

at
e

0.
00

01 0.
00

1
0.

01
0.

1

ls.t
au

0.
00

010.
00

130.
01

590.
2

ls_eval/returns

0
10

00
20

00
30

00
40

00
50

00

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

ls_eval/returns

0.8
0.9

84
1

0.9
98

7
0.9

99
9

ls.
ga

m
m

a

0.
00

01

0.
00

1

0.
010.
1

ls.learning_rate

010
00

20
00

30
00

40
00

50
00

upper - lower

0.8
0.9

84
1

0.9
98

7
0.9

99
9

ls.
ga

m
m

a

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

upper - lower

0.0
00

1
0.0

01
0.0

1
0.1

ls.
le

ar
ni

ng
_r

at
e

0.
00

01

0.
00

13

0.
01

590.
2

ls.tau

010
00

20
00

30
00

40
00

50
00

upper - lower

Ph
as

e 
4

ls.
ga

m
m

a

0.
8 0.

98
41 0.

99
87 0.

99
99

ls.l
ea

rni
ng

_ra
te

0.
00

010.
00

10.
010.

1

ls_eval/returns

0
10

00
20

00
30

00
40

00
50

00

ls.
ga

m
m

a

0.
8 0.

98
41 0.

99
87 0.

99
99

ls.t
au

0.
00

010.
00

130.
01

590.
2

ls_eval/returns

0
10

00
20

00
30

00
40

00
50

00

ls.
le

ar
ni

ng
_r

at
e

0.
00

01 0.
00

1
0.

01
0.

1

ls.t
au

0.
00

010.
00

130.
01

590.
2

ls_eval/returns

0
10

00
20

00
30

00
40

00
50

00

Co
m

bi
ne

d 
La

nd
sc

ap
e 

M
od

el

Up
pe

r S
ur

fa
ce

M
id

dl
e 

Su
rfa

ce

Lo
we

r S
ur

fa
ce

In
te

rq
ua

nt
ile

 S
pa

ce
 H

ei
gh

t

be
st

 c
on

fig
ur

at
io

n

23



K SAC ILM ICE curves
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M PPO Results

We also evaluated PPO (Schulman et al., 2017) with three phases on Bipedal-Walker-v2 (Brockman
et al., 2016b). We vary the hyperparameters learning rate, discount factor (gamma) and the gen-
eralized advantage estimate factor (gae_lambda) with the ranges specified in Table 5. From the
IGPR approximations of the mean surface in Figure 9 we see that there is one region with high
performance whose location also change over the phases. This implies that PPO is less robust
to HP decisions in general. In addition, if we regard multi-fidelity optimization (Li et al., 2018)
lower fidelities might not be good proxies for the target fidelity. Similar to DQN PPO has more
multimodal configurations, with a high number of 80% for the last phase, see Table 6 underlining the
volatile learning behavior of PPO. We attribute this partially to the learning dynamics of PPO (Lyle
et al., 2022). This corroborates with the ICE curves in the final phase for all three hyperparameters
in Figure 10. Across all phases, for the learning rate we see the same tendency of performance but
not so for the discount factor and gae_lambda.

PPO
HP Range Scale

Learning rate 𝛼 [1𝑒−4, 0.1] Log
Discount factor 𝛾 [0.8, 0.9999] Log

Generalized advantage estimate 𝜆𝑔𝑎𝑒 [0.8, 0.9999] Log

Table 5: Hyperparameters considered as part of 𝝀 in PPO
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Figure 9: IGPR plots of the middle surfaces for learning rate and discount factor for PPO across three
phases of the RL training process.
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Category PPO
Phase 1 Phase 2 Phase 3

% Unimodal 12.5 10.94 8.59
% Multimodal 67.18 60.16 80.47

% Uncategorized 20.31 28.90 10.94

Table 6: Percentages of configurations assigned to each of the classes from the modality analysis
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Figure 10: ICE curves for the middle surfaces for PPO across three phases of the RL training process
(gae_lambda, gamma and learning rate)
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