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Abstract— Most autonomous navigation systems assume
wheeled robots are rigid bodies and their 2D planar workspaces
can be divided into free spaces and obstacles. However, recent
wheeled mobility research, showing that wheeled platforms have
the potential of moving over vertically challenging terrain (e.g.,
rocky outcroppings, rugged boulders, and fallen tree trunks),
invalidate both assumptions. Navigating off-road vehicle chassis
with long suspension travel and low tire pressure in places
where the boundary between obstacles and free spaces is blurry
requires precise 3D modeling of the interaction between the
chassis and the terrain, which is complicated by suspension and
tire deformation, varying tire-terrain friction, vehicle weight
distribution and momentum, etc. In this paper, we present a
learning approach to model wheeled mobility, i.e., in terms
of vehicle-terrain forward dynamics, and plan feasible, stable,
and efficient motion to drive over vertically challenging terrain
without rolling over or getting stuck. We present physical
experiments on two wheeled robots and show that planning
using our learned model can achieve up to 60% improvement
in navigation success rate and 46% reduction in unstable chassis
roll and pitch angles.

I. INTRODUCTION

Wheeled robots, arguably the most commonly used mobile
robot type, have autonomously moved from one point to
another in a collision-free and efficient manner in the real
world, e.g., transporting materials in factories or warehouses,
vacuuming our homes or offices, and delivering food or
packages on sidewalks. Thanks to their simple motion mech-
anism, most wheeled robots are treated as rigid bodies
moving through planar workspaces. After tessellating their
2D workspaces into obstacles and free spaces, classical
planning algorithms plan feasible paths in the free spaces
that are free of collisions with the obstacles.

However, recent advances in wheeled mobility have shown
that even conventional wheeled robots (i.e., without extensive
hardware modification such as active suspensions or adhesive
materials) have previously unrealized potential to move over
vertically challenging terrain (e.g., in mountain passes with
large boulders or dense forests with fallen trees), where
vehicle motion is no longer constrained to a 2D plane
(Fig. 1). In those environments, neither assumptions of rigid
vehicle chassis and clear delineation between obstacles and
free spaces in a simple 2D plane are valid. Thanks to the
long suspension travel and reduced tire pressure, off-road
vehicle chassis are able to drive over obstacles (rather than
to avoid them) and experience significant deformation to
conform with the irregular terrain underneath the robot,
which will be otherwise deemed as non-traversable according
to conventional navigation systems. Therefore, autonomously
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Fig. 1: Front and side view (1st and 2nd row) of a wheeled
robot navigating vertically challenging terrain: (from left to
right) large roll angle, stable chassis, suspended wheel, roll-
over, and get-stuck.

navigating wheeled robots in vertically challenging terrain
without rolling over or getting stuck requires a precise
understanding of the 3D vehicle-terrain interaction.

In this paper, we develop a learning approach to model
3D vehicle-terrain interactions and plan vehicle trajectories
to drive wheeled robots on vertically challenging terrain.
Considering the difficulty in analytically modeling and com-
puting vehicle poses using complex vehicle dynamics in
real time, we adopt a data-driven approach to model the
forward vehicle-terrain dynamics based on terrain eleva-
tion maps along potential future trajectories. We develop a
Wheeled Mobility on Vertically Challenging Terrain (WM-
VCT) planner, which uses our learned model’s output in
a novel cost function in 3D and produces feasible, stable,
and efficient motion plans to autonomously navigate wheeled
robots on vertically challenging terrain. We present extensive
physical experiment results on two wheeled robot platforms
and compare our learning approach against four existing
baselines and show that our learned model can achieve up
to 60% improvement in navigation success rate and 46%
reduction in unstable chassis roll and pitch angles.

II. APPROACH

The difficulties in navigating a wheeled mobile robot
on vertically challenging terrain are two fold: (1) the high
variability of vehicle poses due to the irregular terrain
underneath the robot may overturn the vehicle (rolling-over,
4th column in Fig. 1); (2) not being able to identify that a
certain terrain patch is beyond the robot’s mechanical limit
and therefore needs to be circumvented may get the robot
stuck (immobilization, 5th column in Fig. 1). Therefore, this
work takes a structured learning approach to address both
challenges by learning a vehicle-terrain forward dynamics
model based on the vertically challenging terrain underneath



the vehicle, using it to rollout sampled receding-horizon
trajectories, and minimizing a cost function to reduce the
chance of rolling-over and immobilization and to move the
vehicle toward the goal.

A. Motion Planning Problem Formulation

Consider a discrete vehicle dynamics model of the form
xt+1 = f(xt,ut), where xt ∈ X and ut ∈ U denote
the state and input space respectively. In the normal case
of 2D navigation planning (Fig. 2 left), X ⊂ SE(2) and
X = Xfree ∪Xobs, where Xfree and Xobs denote free spaces
and obstacle regions. xt includes the translations along the
x and y axis (x and y) and the rotation along the z = x×y
axis (yaw) of a fixed global coordinate system. For input,
ut = (vt, ωt) ∈ U ⊂ R2, where vt and ωt are the linear
and angular velocity. Finally, let Xgoal ⊂ X denote the goal
region. The motion planning problem for the conventional
2D navigation case is to find a control function u : {t}T−1

t=0 →
U that produces an optimal path xt ∈ Xfree,∀t ∈ {t}Tt=0

from an initial state x0 = xinit to the goal region xT ∈ Xgoal
that follows the system dynamics f(·, ·) and minimizes a
given cost function c(x), which maps from a state trajectory
x : {t}Tt=0 → X to a positive real number. In many cases,
c(x) is simply the total time step T to reach the goal.
Considering the difficulty in finding the absolute minimal-
cost state trajectory, many mobile robots use sampling-based
motion planners to find near-optimal solutions.

Conversely, in our case of wheeled mobility on vertically
challenging terrain, vehicle state X ⊂ SE(3) (i.e., trans-
lations and rotations along the x, y, and z axis) with the
same input ut = (vt, ωt) ∈ U ⊂ R2. The system dynamics
enforces that xt is always “on top of” a subset of Xobs (i.e.,
vertically challenging terrain underneath and supporting the
robot) or some boundary of X (i.e., on a flat ground) due
to gravity, requiring a 3D, 6-DoF vehicle-terrain dynamics
model in SE(3) (Fig. 2 right).

B. Vehicle-Terrain Dynamics Model Learning

Compared to the simple 2D vehicle dynamics in SE(2),
our non-rigid vehicle-terrain dynamics on vertically chal-
lenging terrain in SE(3) becomes more difficult to model,
considering the complex interaction between the terrain and
chassis via the long suspension travel and deflated tire
pressure of off-road vehicles to assure adaptivity and traction
(Fig. 1). Therefore, this work adopts a data-driven approach
to learn the vehicle-terrain dynamics model, which can be
used to rollout trajectories for subsequent planning.

To be specific, xt = (xt, yt, zt, rt, pt, ϕt), where the first
and last three denote the translational (x, y, z) and rotational
(roll, pitch, yaw) component respectively along the x, y, and
z axis. Note that unlike most 2D navigation problems in
which the next vehicle state xt+1 only relies on the current
vehicle state xt and input ut alone, our next vehicle state
is additionally affected by the vertically challenging terrain
underneath and in front of the vehicle in the current time
step, denoted as mt. Therefore, the forward dynamics on

vertically challenging terrain can be formulated as

xt+1 = fθ(xt,ut,mt), (1)

which is parameterized by θ and will be learned in a data-
driven manner. Training data of size N can be collected by
driving a wheeled robot on different vertically challenging
terrain and recording the current and next state, current
terrain, and current input: D = {⟨xt,xt+1,mt,ut⟩Nt=1}.
Then we learn θ by minimizing a supervised loss function:

θ∗ = argmin
θ

∑
(xt,xt+1,mt,ut)∈D

∥fθ(xt,ut,mt)− xt+1∥H ,

(2)
where ||v||H = vTHv is the norm induced by a positive
definite matrix H , used to weigh the learning loss of the
different dimensions of the vehicle state xt. The learned
vehicle-terrain forward dynamics model fθ(·, ·, ·) can then be
used to rollout future trajectories for minimal-cost planning.

C. Sampling-Based Receding-Horizon Planning

We adopt a sampling-based receding-horizon planning
paradigm, in which the planner first uniformly samples input
sequences up until a short horizon H , uses the learned model
fθ to rollout state trajectories, evaluates their cost based on a
pre-defined cost function, finds the minimal-cost trajectory,
executes the first input, replans, and thus gradually moves
the horizon closer to the final goal. In this way, the modeling
error can be corrected by frequent replanning. However, an
under-actuated wheeled robot, i.e., using ut = (vt, ωt) ∈
U ⊂ R2 to actuate xt = (xt, yt, zt, rt, pt, ϕt) ∈ X ⊂ SE(3)
subject to fθ, may easily end up in many terminal states
outside of Xgoal, which the vehicle cannot escape and recover
from, i.e., rolling over or immobilization (getting stuck) due
to excessive roll and pitch angles, irregular terrain geometry,
and large height change, e.g., on a large rock. Therefore,
while our goal is still to minimize the traversal time T
leading to Xgoal, for our receding-horizon planner, we seek
to optimize five cost terms on a state trajectory x0:H =
{xt}Ht=0, s.t.,xt+1 = fθ(xt,ut,mt),∀t < H , which starts
at the current time 0 and ends at the horizon H , to avoid
these two types of terminal states on vertical challenging
terrain and also move the robot towards the goal:

c(x0:H) = w1crp(x0:H) + w2ctg(x0:H) + w3chc(x0:H)

+w4cmb(x0:H) + w5cest(xH),
(3)

where crp(·), ctg(·), and chc(·) denote the cost corresponding
to the robot’s (extensive) roll and pitch angle, (irregular) un-
derneath terrain geometry, and (large) terrain height change
respectively; cmb(·) is the cost of moving out of the observ-
able map boundary; cest(·) is the estimated cost to reach
the final goal region Xgoal from the state on the horizon
xH , which can be computed by the Euclidean distance
cest(xH) = ||xH −xG||2, where xG is any state inside Xgoal.
w1 to w5 are corresponding weights for the cost terms.



Fig. 2: 2D navigation in SE(2) vs. 3D, 6-DoF navigation on vertically challenging terrain in SE(3).

D. Modeling Rolling-Over and Immobilization

Vehicle roll-over is often associated with large roll and
pitch angles, which we therefore seek to minimize along the
state trajectory. Note that roll rt and pitch pt are part of
the vehicle state xt. Therefore, we design a cost term that
considers the absolute values of roll and pitch:

crp(x0:H) = w1,1

H∑
t=0

|rt|+ w1,2

H∑
t=0

|pt|, (4)

where w1,1 and w1,2 weigh the effect of the absolute value
of roll and pitch.

Similarly, vehicle immobilization often happens when the
vehicle state does not change from time to time due to
irregular underneath terrain geometry. Therefore, trajectories
on which vehicle state significantly changes, especially along
the translational dimension x and y, are encouraged:

ctg(x0:H) = −w2,1

H∑
t=1

|xt−xt−1|−w2,2

H∑
t=1

|yt−yt−1|, (5)

where w2,1 and w2,2 weigh the effect of the displacement
along x and y direction.

Furthermore, the vehicle should prefer gentle slope rather
than large height change to avoid immobilization, so we
encourage small displacement in the z direction along the
trajectory:

chc(x0:H) =

H∑
t=1

|zt − zt−1|. (6)

With the cost function (Equation (3)) and cost terms (Equa-
tion (4), (5), and (6)) defined, we can use any motion planner
to find the minimal-cost 6-DoF state trajectory x0:H (see
details in Section III).

III. IMPLEMENTATION

We present implementation details of our WM-VCT navi-
gation planner onboard two physical wheeled vehicles.

A. Physical Robots and Vertically Challenging Testbed

We implement our WM-VCT planner on two open-source
wheeled robot platforms, the Verti-Wheelers (VWs), one
with six wheels (V6W, 0.863m × 0.249m × 0.2m) and the

other with four wheels (V4W, 0.523m × 0.249m × 0.2m).
Both robots are equipped with a Microsoft Azure Kinect
RGB-D camera with a 1-DoF gimbal actuated by a servo to
fixate the field of view on the terrain in front of the vehicle
regardless of chassis pose. NVIDIA Jetson computers (ORIN
and Xavier for V6W and V4W respectively) provide onboard
computation. We use low-gear and lock both front and rear
differentials to improve mobility on vertically challenging
terrain. Both robots are tested on a 3.1m × 1.3m rock
testbed (with the highest vertical point of Xobs reaching
0.6m) composed of hundreds of rocks and boulders of an
average size of 30cm, similar to the size of the robots
(Fig. 1). The rocks and boulders on the testbed are shuffled
many times during experiments. The vehicle state estimation
for xt is provided by an online Visual Inertia Odometry
system provided by the rtabmap ros package. In order to
represent mt, we process the RGB-D input into an elevation
map, a 2D grid where each pixel (8mm resolution) indicates
the height of the terrain at that point.

B. WM-VCT Planner Implementation

1) Dynamics Model Decomposition: We decompose
the full 6-DoF vehicle-terrain dynamics model xt+1 =
(xt+1, yt+1, zt+1, rt+1, pt+1, ϕt+1) = fθ(xt,ut,mt) into
three parts: We utilize a planar Ackermann-steering model to
obtain approximate (xt+1, yt+1, ϕt+1) based on (xt, yt, ϕt)
and ut; zt+1 is determined by the value of the elevation
map mt at (xt+1, yt+1) (line 9); We use a neural network to
predict the roll rt+1 and pitch pt+1 angles based on mt, rt,
and pt (line 11, potentially with additional history values).
In practice, we find such a decomposition very efficient and
sufficiently accurate in capturing the 6-DoF vehicle dynamics
with a very small amount of training data (approximately 30
minutes) and leave learning the full dynamics model as future
work. We use two 40×100 (0.32m×0.8m) elevation maps
centered at both the robot’s current and next position and
aligned with the current and next yaw angle, i.e., underneath
(xt, yt)/(xt+1, yt+1) and aligned with ϕt/ϕt+1 (line 10).
In our neural network model, a fully connected sequential
head (8000-64-32-8 neurons) processes the 2 × 40 × 100
elevation maps into a 8-dimensional embedding, which is
then concatenated with the 8-dimensional embedding from



Fig. 3: Physical Experiments: The V6W (top middle) navigates through a vertical challenging environment (front and top
view of the elevation map shown in top left and top right with the planned 6-DoF vehicle poses and trajectory in black);
roll and pitch values of two successful WM-VCT trials (green lines at the bottom) are shown, while BC suffers from larger
values in the first (red lines bottom left) and fails the second (red lines bottom right).

the last and current roll and pitch angles, rt−1, rt, pt−1, and
pt, and fed into two more fully connected layers (16-8-2),
before finally producing the next roll rt+1 and pitch pt+1

values. To train the model for each vehicle, we use 43161
data frames for V6W and 41367 for V4W in the open-source
Verti-Wheelers datasets, roughly 30 minutes of data each
demonstrating both VWs crawling over different vertically
challenging testbeds.

2) Sampling and Roll-Out: For the sampling-based
receding-horizon planner, we keep the linear velocity v
constant (0.1m/s) and sample 11 angular velocities ω, or in
our case, steering curvatures evenly from [−0.78rad, 0.78rad]
(line 1). With a step size of 1 second, we roll out our vehicle
dynamics model with the 11 (v, ω) pairs five times (roll-
out horizon Hr, lines 7-17), evaluate the trajectory costs
(Equation (3) to (6), line 18), and expand the search tree
again from the 3rd state (update horizon Hu, lines 21-23) on
the lowest-cost trajectory using the same 11 velocity pairs.
We repeat this process ten times (max iteration I) and find
the overall minimal-cost trajectory of horizon 30 (x0:30).

3) Motion Controller: We implement a low-level con-
troller operating at a frequency of 30Hz, with the objec-
tive of tracking the trajectory that incurs the lowest cost.
Specifically, aiming to reach the next state xt+1 from the
current state xt, the linear velocity controller determines the
throttle command (ranging from [−1.0, 1.0]) by considering
the current pitch angle pt: the controller switches throttle
command among three intervals, i.e., 0.15 for pitch less than
-5°, 0.20 for pitch from -5° to 5°, and 0.30 for pitch greater
than 5°. Such a mechanism approximately maintains constant
velocity with respect to changing terrain. The steering angle
is calculated by measuring the angle between the current
yaw angle ϕt and the line connecting the current 2D position
(xt, yt) to the next position (xt+1, yt+1). Meanwhile, while
the receding-horizon planner constantly replans at 2Hz, the

controller will also trigger instant replanning when the dis-
tance between the robot and the planned trajectory exceeds
a predefined threshold (0.4m).

IV. EXPERIMENTS

Our proposed WM-VCT navigation planner is compared
against four baselines. The three baseline algorithms de-
veloped with the open-source Verti-Wheelers project, i.e.,
Open-Loop (OL), Rule-Based (RB), and Behavior Cloning
(BC), are implemented on our robots and compared against
WM-VCT. Please visit our project website for the experimen-
tal results and videos https://cs.gmu.edu/˜xiao/
Research/Verti-Wheelers/

V. CONCLUSIONS

We present a learning approach to enable wheeled mobility
on vertically challenging terrain. Going beyond the current
2D motion planning assumptions of rigid vehicle bodies
and 2D planar workspaces which can be divided into free
spaces and obstacles, our WM-VCT planner first learns to
model the non-rigid vehicle-terrain forward dynamics in
SE(3) based on the current vehicle state, input, and un-
derlying terrain. Leveraging the trajectory roll-outs under
a sampling-based receding-horizon planning paradigm using
the learned vehicle-terrain forward dynamics, WM-VCT con-
structs a novel cost function in 3D to prevent the vehicle from
rolling-over and immobilization when facing previously non-
traversable obstacles. We show that our WM-VCT planner
can produce feasible, stable, and efficient motion plans to
drive robots over vertically challenging terrain toward their
goal and outperform several state-of-the-art baselines on two
physical wheeled robot platforms.

https://cs.gmu.edu/~xiao/Research/Verti-Wheelers/
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