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Abstract

Recent advances in pre-trained code models,
like CodeBERT and Codex, have demonstrated
remarkable performance across diverse tasks.
However, the accurate and clear use of APIs
is vital for optimal program functionality, ne-
cessitating a deep understanding of API fully
qualified names both structurally and semanti-
cally. Despite their prowess, current models of-
ten falter in suggesting appropriate APIs during
code generation, with the underlying reasons
remaining largely unexplored. To bridge this
gap, we leverage the knowledge probing tech-
nique and employ cloze-style tests to gauge
the knowledge embedded within these mod-
els. Our in-depth analysis assesses a model’s
grasp of API fully qualified names from two
angles: API call and API import. The results
shed light on the strengths and weaknesses of
existing pre-trained code models. We posit that
integrating API structure during pre-training
can enhance API usage and code representa-
tion. This research aims to steer the evolution
of code intelligence and set the course for sub-
sequent investigations.

1 Introduction

Recent advances in code intelligence have incor-
porated pre-training techniques, where models are
pre-trained on large-scale unlabeled source code
corpora to learn the code’s representation and se-
mantics. The pre-trained code models, such as
CodeBERT (Feng et al., 2020) and GraphCode-
BERT (Guo et al., 2021), can be fine-tuned for
various downstream code tasks, such as code com-
pletion and translation (Allamanis et al., 2018; Xu
et al., 2022; Niu et al.). Despite the improvement,
there is still a significant performance gap between
their performance and that of human developers
when it comes to using APIs correctly. For in-
stance, several studies have demonstrated that even
state-of-the-art pre-trained code models, such as
Codex (Chen et al., 2021) and GPT-4 (OpenAl,
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Figure 1: An example of module design of <numpy>
library.

2023), inevitably hallucinate or misuse the APIs
during code generation (Lai et al., 2022; Yu et al.,
2023; Zhong and Wang, 2023). However, few stud-
ies have investigated the reasons behind these mod-
els’ poor API usage performance.

Basically, correct API usage depends on two
types of knowledge: (1) how to invoke an API,
and (2) which API to invoke, with the former be-
ing a fundamental step towards the latter. To in-
voke an API, one must have knowledge of the code
grammar of importing libraries and composing the
correct API name based on the import and call
statements. However, code models are not explic-
itly instructed by code grammar. Although we
often assume that the models can learn to use APIs
effectively by observing a large number of exam-
ples, this assumption has been poorly validated.
Therefore, we pose the following question: Do
Pre-trained Code Models Possess Knowledge of
Correct API Names?

APIs are often identified by their fully qualified
names, encompassing the function name and its as-
sociated package, module, or class. For simplicity,
we will use “module” to denote all these entities.
Libraries structure APIs into hierarchical modules
to guide developers in comprehending the available
features. This hierarchy is such that higher-level
modules act as parents to their direct sub-modules,
with APIs as the terminal nodes. The full name of
an API is derived by traversing this hierarchy from
the root to the terminal node, connecting each name
with dots. How an API name is invoked depends on



the module’s level of import and potential aliasing.
While intuitive for developers, this convention can
be intricate for code models to grasp.

Furthermore, the structure of API names offers
insights into code modularization and namespace
design. If models can effectively represent these
names, they might aid in refining API namespace
design by suggesting more accurate and relevant op-
tions. Take, for instance, the Python library numpy
for array and matrix operations. As depicted in
Figure 1, numpy has modules like 1inalg for linear
algebra functions such as multi_dot, cholesky,
and gr, and ma for masked array operations. This
namespace design can inform the creation of re-
lated or analogous libraries in other languages.

In our study, we target the interpretability of
code models, introducing a probing task for fully
qualified API names. We unveil INK, an automated
framework, to assess code models using cloze-style
quizzes derived from commonly used source code
corpora. We ensure models are tested on familiar
knowledge, reflecting their training constraints. We
then craft import and API call statements, mask-
ing tokens at module levels. For example, with
the <multi_dot> module in Figure 1, we gener-
ate quizzes like <numpy.[MASKJalg.multi_dot>
from the API call (<numpy.linalg.multi_dot>)
and its import (<from numpy.linalg import
multi_dot>). The goal is for models to predict the
masked token. To further understand pre-trained
code models’ proficiency in API names, we outline
research questions (RQs) to guide future advance-
ments:

« RQ1: How well do code models understand
API calls and imports? The code models are
assessed on their prediction of masked import or
API call statements. The findings can help iden-
tify areas where code models may struggle and
guide improvements in their API name learning
via the understanding of this question.

* RQ2: Do code models understand API import
aliases? This RQ further assesses code models’
understanding of APl import aliases. The quizzes
are designed based on an alias-defining import
statement followed by an API call based on the
imported module. Tokens are selectively masked
out for the statements.

* RQ3: How well can code models memorize
and generalize on API names? We divide APIs
into two groups based on whether they are seen

during the training phase. The outcomes indicate
if the code models possess robust generalization
capabilities and appropriate memorization skills.
Models’ ability to apply learned knowledge to
unseen APIs would be helpful for API namespace
design.

For the evaluation, we construct the first bench-
mark on Python API name knowledge, PyINK, and
analyze 10 pre-trained code models, including the
variants of CodeBERT (Feng et al., 2020), Graph-
CodeBERT (Guo et al., 2021), PLBART (Ahmad
et al., 2021). Our work is complementary to the de-
velopment of more advanced techniques for model-
ing API representations in code, thereby enhancing
the efficiency and accuracy of code models. Ad-
ditionally, the insights gained from this work can
pave the way for a deeper understanding of how
pre-training impacts the performance of code mod-
els, facilitating more informed design decisions in
this domain. In summary, our main contributions
include!:

* A cloze-style evaluation framework INK, to
probe and benchmark the knowledge of API
names in pre-trained code models.

* An implementation of INK, which lowers the
bar for designing probing techniques on API
name knowledge.

e An evaluation dataset based on INK, PyINK,
containing diverse API name cloze-style pop
quizzes.

* A comprehensive study on understanding the
Python API name knowledge of pre-trained
code models via PyINK.

2 Background and Related Work

This section provides a comprehensive overview
of the background and related work that form the
foundation of our research.

2.1 Pre-trained Code Models

Pre-trained language models like BERT (Devlin
et al., 2019) have revolutionized natural language
processing tasks by transferring knowledge from
vast corpora (Qiu et al., 2020). Similarly, the
software domain has benefited from models such
as CodeBERT, GraphCodeBERT, and PLBART,

'Resources are available at https: //anonymous. 4open.
science/r/API-Name-Probing.
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which harness software’s inherent naturalness (Hin-
dle et al., 2016). These models are adept at tasks
ranging from code completion to code summariza-
tion.

2.2 Knowledge Probing

The evaluation of internal representations and
knowledge of language models is a fundamental
and critical process, which involves the technique
of knowledge probing (Liu et al., 2023). This ap-
proach entails presenting a set of questions or state-
ments to the model to assess its understanding of
specific concepts or relationships. The inputs are
typically presented as cloze sentences with partic-
ular concepts or relationships masked as discrete
prompts to test the model’s performance. We for-
malize the knowledge probing approach by consid-
ering the input cloze sentence, denoted as .S, where
“Alan Turing was born in [MASK]” is an example.

Formally, we define the knowledge probing ap-
proach as follows,

S|

1
5] > log(P(t)]S;6), t, € V(6) (1)
=1

f(8) =
where 6 represents the model parameters, V(0)
denotes the vocabulary learned by the language
model, and ¢;. is a token inside the model’s vocab-
ulary V(0). The contextualized likelihood f(.S)
represents the possibility of replacing [MASK] with
the token ¢j as per the model’s prediction. The
final prediction corresponds to the token % that
maximizes f(S).

2.3 Generation-based API Recommendation

API recommendation, which suggests specific APIs
from natural language (NL) queries, has been ap-
proached in two primary ways: (1) Rank-based
and (2) Generation-based recommendations. The
former leverages knowledge graphs or bases to
identify suitable APIs by interpreting the semantic
content of the NL query (Huang et al., 2018; Rah-
man et al., 2016; Thung et al., 2013). In contrast,
the latter, more aligned with our work, employs
deep learning to generate API sequences from NL
queries.

DeepAPI (Gu et al., 2016) pioneered this by
treating it as a machine translation challenge, us-
ing an end-to-end supervised model. Later studies
explored fine-tuning pre-trained code models for
this task (Martin and Guo, 2022; Hadi et al., 2022).
While these models show improved performance,

they have limitations: (1) They are fine-tuned on
limited APIs, hindering generalization. (2) The
fine-tuning process lacks transparency in capturing
API knowledge. (3) The task relies on NL inputs,
which only gauge the semantic understanding of
API sequence use. (4) Evaluation is predominantly
through the BLEU score (Papineni et al., 2002),
which assesses similarity but not necessarily syn-
thesis accuracy.

3 INK: An evaluation framework of API
Name Knowledge

3.1 Motivation

Previous research in natural language process-
ing has utilized cloze sentences for token predic-
tion as a means of interpreting the knowledge en-
coded by pre-trained language models. Building
upon this work, we examine probing API name
knowledge in CodeBERT-MLM - a variant of
CodeBERT pre-trained solely on mask language
modeling - with cloze-style sentences serving as
pop quizzes, as depicted in Figure 2. We use
<tensorflow.compat.v2.boolean

_mask> as an example and transform it into a cloze-
style pop quiz, as shown in Figure 2. In this study,
we define the API module levels as each hierar-
chical level within the fully qualified name, sepa-
rated by a period. There are four module levels in
the API call statement: (1) <tensorflow> repre-
senting the top module level, (2) <compat> as the
second module level, (3) <v2> as the third module
level, and (4) <boolean_mask> as the last call level.
For each level, we request CodeBERT-MLM to fill
in the blank via first token prediction, as deter-
mined by its tokenizer. As our results demonstrate,
CodeBERT-MLM correctly predicts the masked
token on the first attempt, except for the third level
of <v2>. We contend that code models, such as
CodeBERT-MLM, can learn API names during
function pre-training.

Given that <tensorflow.compat.v2.boolean
_mask> can be reconstituted to the form of API
import statement, we then investigate how well
CodeBERT-MLM understands the API import
statements. As demonstrated in Figure 2, we trans-
form the API import statement into four cloze tem-
plates by masking the first token of each module
level, similar to the ones of the API call. From
the results illustrated in Figure 2, we discover that
predicting some API modules at the first shot is
challenging for CodeBERT-MLM, unlike the case
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Figure 2: API fully qualified names such as <tensorflow.compat.v2.boolean_mask> can be formalized into the
cloze-style tests from two perspectives, API calls and API imports. The example shows the top-% predictions of
CodeBERT-MLM model for each test. Note that the dialogues are for illustration only.

of API call probing. This behavior suggests that
code models possess varying degrees of knowledge
in API import and API call statements.

Having identified several potential patterns from
our preliminary knowledge probing study, which
provides clues to API name knowledge, we find
it necessary to further explore this phenomenon
through quantitative analysis and systematic eval-
uation. Motivated by the aforementioned observa-
tions, this paper investigates whether pre-trained
code models learn the API names and to what ex-
tent they store API name knowledge, by conducting
knowledge probing as the pop quiz. Specifically,
we analyze two perspectives of API names, i.e.,
API call and API import, within the purview of
code models.

3.2 API Name Knowledge Probing Template

We consider three main types of transformation of
evaluating API name knowledge: API calls, API
imports and API import aliases. As aforemen-
tioned in Section 3.1, cloze-style pop quizzes are
structured based on each call level split by the de-
limiters of “.”, “from” and “import”. To benchmark
models fairly, we construct pop quizzes by unify-
ing the entire vocabulary of each model. For all the
evaluation, we follow previous work of knowledge
probing in language models (Petroni et al., 2019)
and choose to evaluate the prediction of a single
token masking in the pop quiz. We provide the
detailed design of each process as follows.

3.2.1 Evaluation Design on API Call
We treat each API call as a modular pattern on the

basis of each module level. To formalize the pop
quiz construction on API calls, an example of API

call <A.B.C> and a code model M are given to
demonstrate the workflow. The model M firstly
tokenizes the API as follows,

M(<A.B.C>) —

{{t{‘,tg‘, N T S (e OUIIE A L

{t?,tg,...,t%c}}

where each t represents the token produced by the
model M, and N represents the length of tokens in
each level. For each level, the tokens are grouped
by {...}. When converting the tokenized API to
the pop quiz, we mask a specific token by replacing
t with a “[MASK]” in each level. To visualize the
pop quiz input, we mask the last token in the second
module level of <A.B.C> as follows:

<A.B.C> — <A.B’[MASK].C> — <A.B’__.C>

where B’ is the concatenation of {t{,...,t5 _}.
We prompt the model M to fill in the blank of
<A.B’__.C> via mask prediction.

3.2.2 Evaluation Design on API Import

We explore the evaluation design on the API import
statement of “from...import ...”. Similarly, we
consider the example of <from A.B import C>.
Using the model M to tokenize the API import,
we can devise the following tokens:

M(<from A.B import C>) —

{tfmm, (e, 4, . e, 3 1,

(BT, 4By, oot (€ S ,tgc}}
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Figure 3: An overview of the INK framework.

We visualize an example of API import quiz, where
the first token in the bottom level of <from A.B
import C> is masked:

<from A.B import C>
— <from A.B import [MASK]C’>

— <from A.B import C’>

where C’ is the concatenation of {t$', ..., t%c }.
We probe the model M to fill in the blank of <from
A.B import _ C’> via mask prediction.

3.2.3 Evaluation Design on API Import Alias

We note that import aliases are supported in
some programming languages, such as Python. For
example, “import .. ” and “from...import

...as ...” are the typlcal import ahas syntax.
Therefore, we further examine pre-trained code
model’s understanding of the aliases of API calls
after packages and libraries imports. We illustrate
the design choice via the example of <import A
as K \n K.B.C>, where <K> is the alias and K.B.C
is the API call statement. After being tokenized
by the model M, the example is formalized as

follows:

M(<import A as K \n K.B.C>) —

{timpm“t,{tf,tg‘,.. T TR Uit S S i

tnewline’ {t{(, t£(7 o 7t§a}7 tdot7
{245, R 1t (201 ,tgc}}

We then convert the example to the following
API alias pop quiz with the masked last token of
<C>:

<import A as K \n K.B.C>
— <import A as K \n K.B.C’[MASK]>
— <import A as K \n K.B.C’ >

where C” is the concatenation of {t, ... ,tgc_l}.
We probe the model M to fill in the blank of

<import A as K \n K.B.C’_ > via mask pre-
diction. Note that we only mask the tokens in the
part of the API call after the alias name.

3.2.4 Evaluation of Code Models: A Unified
Vocabulary Approach

Code models may tokenize the same API call or
import statement differently due to variations in
their respective vocabularies. For example, an API
call such as <A.B.C> may be tokenized as a sin-
gle token by one model M 4 with vocabulary V4,
while another model M g with vocabulary Vg may
tokenize it into multiple tokens. To ensure a fair
comparison, we generate models over a unified
vocabulary that is the intersection of the vocabu-
laries of all considered code models. We define
the unified vocabulary as the set of tokens that are
presented in the vocabularies of all considered code
models.

To evaluate the performance of code models on
this unified vocabulary, we categorize the evalua-
tion of each name level into two types: (1) partial
module masking and (2) full module masking. For
the former, we tokenize the API call and import
statements into multiple tokens and mask only one
of the tokens. In contrast, when code models seg-
ment the entire module level as a single token, we
denote it as the full module masking.

3.2.5 Benchmarking Code Models via
Knowledge Probing

We utilize the knowledge probing technique to eval-
uate and assess the performance of code models
effectively. The primary objective of this approach
is to delve into the code models’ comprehension
of API names and their proficiency in generat-
ing precise and contextually fitting tokens within
those names. To achieve this, we present cloze-
style quizzes where certain tokens are intentionally
masked, prompting the code model to predict the



tokens for the masked positions. To gauge the accu-
racy of these predictions, we compare them against
the ground-truth tokens in the API names. This
benchmarking process allows us to determine the
correctness of predictions.

4 Experiment Setup
We introduce the basic experimental setup about

the datasets and models, and the evaluation metrics
used throughout the evaluation.

4.1 PyINK: Evaluation on Python API Name

Knowledge
First Token | Last Token | Full Total
API Call 108,863 111,373 69,349 | 289,585
API Import 108,863 111,373 69,349 | 289,585
API Import Alias 7,385 7,122 3,464 17,971

Table 1: Overview of the number of pop quizzes in
PYINK.

We adopt the widely-used pre-training corpus,
CSNet (Husain et al., 2019), which is a collection
of datasets and benchmarks for semantic code re-
trieval, containing functions and their correspond-
ing comments of six programming languages ex-
tracted from GitHub repositories, to evaluate the
API name knowledge of code models. We focus
on Python set, which contains 457,461 functions.
To extract Python APIs from CSNet, we use our
proposed INK framework, which leverages static
analysis on the entire file to extract API usage, fol-
lowing the method described in (Wang et al., 2021).
To achieve this, we clone all repositories corre-
sponding to the functions in CSNet and analyze the
API usage in each function. This process results in
a new benchmark, denoted as PyINK, which is de-
signed to evaluate the name knowledge of Python
APIs. PyINK contains 597,141 main pop quizzes
for evaluation, and we only consider full module
masking, or partial masking of the first and last to-
kens of each module level to maintain consistency.

Our approach successfully extracts 79,754
unique APIs from 8,294 Python libraries in 13,519
repositories, indicating the diverse usage of Python
APIs. Moreover, to ensure a fair comparison, we
unify the vocabularies in the considered code mod-
els, resulting in 289,585, 289,585, and 17,971 sam-
ples for API call, import, and import with aliases
statements, respectively, in the benchmark.

4.2 Code Models

We conduct extensive studies on ten selected mod-
els from the variants of CodeBERT, GraphCode-
BERT and PLBART. The description of each model
is summarized in Table 2.

Model pre-trained Dataset Objective #Param Fine-tuned
MLM CSNet MLM 125M X
CodeBERT 1 M-Python | CSNet+CodeParrot*  MLM 125M X
GraphCodeBERT MLM CSNet MLM* 125M X
Base N/A DAE 140M X
Large N/A DAE 406M X
CSNet CSNet DAE 140M X

PLBART  ---=g == =1-""~ NA T DAE oM T Ve
Gen N/A DAE 140M v
MT N/A DAL 140M v

Table 2: The overview of selected code models for evalu-
ation. Note that only the train split of CSNet is used dur-
ing pre-training. MLM: Masked Language Modeling.
DAE: Denoising Auto-Encoding. CodeBERT-MLM-
Python uses the Python split of CodeParrot (Wolf et al.,
2020) for continuous pre-training. PLBART-Sum and
PLBART-Gen are the PLBART-Base model fine-tuned
on CSNet Python code summarization and code genera-
tion tasks, respectively. PLBART-MT adopts multitask
learning and is fine-tuned on both tasks that the previous
two models use.

4.3 Evaluation Metric

We present an evaluation methodology based on
rank-based metrics in the context of APl name
prediction. Our approach involves computing re-
sults per test sample and means across pop quizzes,
utilizing the mean precision at k (PQk) metric.
Specifically, PQFk is computed as 1 if the target
object is ranked among the top k results, and O
otherwise.

5 Results

5.1 RQ1: How well do code models
understand API calls and imports?

Our evaluation assesses the capability of pre-
trained code models to encode knowledge of
Python API names for both API calls and imports.
We computed PQF scores for each masking strat-
egy and present the results in Table 4. In addition,
we provide a few examples in Table 3. Firstly, we
have observed that the relative performances of dif-
ferent code models remain consistent when we vary
the value of k in the PQF metric. Secondly, as & in-
creases, the improvement in performance for each
model becomes less significant. These observations
provide strong evidence to support the effective-
ness of the PyINK benchmark. When comparing
among the model variants, our analysis reveals that
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GraphCodeBERT-MLM
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Table 3: Examples of prediction for CodeBERT-MLM-Python and GraphCodeBERT-MLM on API calls and imports.
The last two columns reports the top five tokens generated together with the associated probabilities (in square

brackets).

Pal{ ] Pa51 | Pal0] | Pa207 | Pas0f | Pado 1 [ Paso |

CodeBERT MLM 2390 | 4234 | 5028 | 3817 | 6275 | 6387 | 6828

odeBl MLM-Python | 2935 | 4751 | 5567 | 63.61 | 68.06 | 7106 | 73.33

GraphCodeBERT | MLM 2589 | 4330 | 5074 | 5828 | 6273 | 6587 | 68.26

= Base 165 | 658 | 1043 | 1571 | 1940 | 2244 | 24.99

© Large 229 | 863 | 1322 | 1862 | 2219 | 2502 | 27.40

)

% CSNet 2555 | 2876 | 3141
PLBART T Sum T 723537 [ 26217 | 2846

Gen 3127 | 3423 | 3659

MT 3483 | 3810 | 4067

MLM 6289 | 6585 | 68.16

CodeBERT |\ M-Python 6834 | 7123 | 7339

_ [ GraphCodeBERT | MLM 66.68 | 6955 | 7173

g Base 3322 | 3690 | 39.83

E Large 3908 | 4260 | 4544

) CSNet 3579 | 3986 | 43.11
< PLBART "7 Sum T 730447 3361 | 36187

Ger 3772 | 4138 | 4425

MT 4165 | 4533 | 48.16

Table 4: PQE scores on selected code models, focusing
API calls and API imports.

PQl{] Pa51 [ Pal01 [ PG201 | Pa301 | Pad0 1| PG50t
Alias 1583 | 3254 | 4040 | 4846 | 5350 | 5693 | 5988
Adv. Alias | 14.10 | 29.84 | 37.66 | 4589 | 5086 | 5437 | 57.16
Alias | 24.07 | 4230 | 50.19 | 58.02 | 62.68 | 66.05 | 68.37
Adv. Alias | 2035 | 3730 | 4533 | 5342 | 5822 | 6172 | 6437
Alias 891 | 3685 | 4399 | 51.66 | 56.18 | 5958 | 62.17
Adv. Alias | 1689 | 33.63 | 40.88 | 4848 | 53.12 | 5644 | 59.09
Alias 084 | 420 | 805 1456 | 1934 | 2346 | 2684
Adv. Alias | 038 | 2.62 | 5.60 1081 | 1499 | 1845 | 2147
Alias 336 | 1164 | 1834 | 2615 | 3088 | 3471 | 3738
Adv Alias | 149 | 7.19 | 1270 | 19.63 | 2392 | 27.08 | 29.69
Alias 175 | 786 | 1237 | 1859 | 2293 | 2687 | 30.56
Adv. Alias | 168 | 663 | 1039 | 1548 | 1930 | 2245 | 2521
Alias 120 | 493 | 844 1420 | 1814 | 2150 | 2421
Adv. Alias | 102 | 375 | 636 1043 | 1374 | 1655 | 1895
Alias 343 | 1287 | 1929 | 2685 | 3166 | 3505 | 37.61
Adv. Alias | 213 | 854 | 1355 | 1979 | 2389 | 27.08 | 29.67
Alias 336 | 1168 | 1861 | 2642 | 3135 | 3480 | 3782
Adv. Alias | 239 | 808 | 1298 | 1972 | 2447 | 2803 | 3094

MLM
CodeBERT

MLM-Python

GraphCodeBERT MLM

Base

Large

PLBART

API Call With Alias

Table 5: Comparison of PQF scores on API import
alias quizzes among selected code models.

CodeBERT-MLM-Python and GraphCodeBERT-
MLM demonstrate superior performance on API
calls and imports compared to other models. How-
ever, their overall precision of 30% measured by
P@1 falls short of perfection, indicating a lack
of knowledge about API names. While we ex-
pected GPT-3.5-turbo to have a better understand-
ing of API names, it shows that the model performs
slightly worse than CodeBERT-MLM.

Additionally, our comparison shows that
PLBART variants perform much worse on under-
standing Python API name knowledge than BERT-
like models, which can be explained by the pre-
training objectives of PLBART. PLBART-Large
consistently outperforms other variants, indicating
that model size may be an important factor in the
amount of stored API name knowledge. However,
this finding should be interpreted in light of the scal-

ing law of mixed-modal language models (Agha-
janyan et al., 2023), which suggests that larger
models are likely to achieve better performance
on downstream tasks, such as code generation. Fi-
nally, we find that pre-trained data can influence
the understanding of API names to some extent, as
shown by the performance gap between PLBART-
Base and PLBART-CSNet. Our results indicate
that fine-tuning on code generation tasks can im-
prove the performance of pre-trained models, while
text generation tasks may negatively impact them.

Takeaways:  Although CodeBERT-MLM-
Python and GraphCodeBERT-MLM show superior
performance on API call and import name knowl-
edge among code models, there is a significant
margin for the improvement.

5.2 RQ2: Do code models understand API
import aliases?

In order to assess the code models on the knowl-
edge of API import aliases, we pair the 17,971 API
import alias quizzes with the adversarial examples
designed to test the models’ robustness. To con-
struct the adversarial set, we randomly selected 10
distinct aliases that are used in other modules and
replaced the original aliases in the quizzes with
these new aliases. For example, “import numpy
as np \n np.load (7 will be transformed to
“import numpy as pmd \n pmd.load_ (” via
the replacement of “np”. To the end, we collect
179,710 adversarial quizzes.

We report PQK results of ten models in Ta-
ble 5 and illustrate examples in Appendix B.
Based on the comparison, CodeBERT-MLM-
Python consistently outperforms GraphCodeBERT-
MLM, achieving higher PQ1 scores of up to
24.17% for Alias scenarios compared to 18.91%.
CodeBERT variants also show better overall per-
formance with P@50 scores ranging from 59.88%
to 68.37%, while GraphCodeBERT-MLM ranges
from 59.09% to 62.17%. Our initial finding sug-



gests that code models have a weaker understand-
ing of API aliases compared to API calls and im-
ports, as shown in Table 4. This indicates that cur-
rent code models encode little knowledge of import
aliases. Based on the performance of the GPT-3.5-
turbo model on 1,000 randomly sampled quizzes,
we can infer that it has a greater capability to un-
derstand API import aliases. When comparing the
results of the original API import alias quizzes with
those of the adversarial aliases, we found only mi-
nor discrepancies, indicating that these code mod-
els have strong robustness in understanding API
import aliases. We further analyze the distribution
of the API import aliases and find that an API is
paired with 1.16 aliases on average, and 8% of
APIs have more than 1 alias. We hypothesize that
these code models are able to learn the composi-
tional patterns of these APIs via different aliases,
and thus manage to generalize to adversarial import
aliases.

Takeaways: Although code models show ro-
bustness in understanding API import aliases, their
encoding of API knowledge is limited to partial
information.

5.3 RQ3: How well can code models
memorize and generalize on API names?

PQL1 [ Pa51 | PGl01 | P@201 | PG301 | P@401 | P@so0
Seen | 2396 | 4242 | 5038 | 5826 | 6284 | 6596 | 6839
Unseen | 21.54 39.42 46.62 54.92 59.60 62.63 64.35

CodeBERT

API C:

PLBART

Unseen | 2.00 8.31 12.80 18.38 21.94 24.52 27.32
Seen 26.49 | 4401 51.34 58.80 63.06 66.03 68.35

CodeBERT

PLBART

API Import
o)
2
E
S
Q
I
g
5
==}
S
5

Table 6: Comparison of PQFk scores on seen and un-
seen API name quizzes among selected code models.

We evaluate whether code models demon-
strate a deeper understanding of the names of
seen APIs during pre-training than the unseen
ones by conducting experiments on CodeBERT-
MLM, GraphCodeBERT-MLM, and PLBART-
CSNet, which were pre-trained on the train set
of CSNet. To create our PyINK-Mem version, we
take all APIs appearing during training (train set)
as the seen split and the remaining (test set) APIs as
the unseen split. We filter out all the APIs belong-
ing to the seen libraries in the unseen split. The
PyINK-Mem seen split contained 281,945 quizzes
for API calls and 281,945 quizzes for API imports.
The unseen split had 7,640 API call quizzes and
7,640 API import quizzes. We note that the se-

lected models do not memorize any structures of
the open-source repositories, due to the function-
level pre-training objective.

In Table 6, we measure the model performance
via PQFk up to P@50. Our inspection of the results
on API call pop quizzes suggests there are slight dif-
ferences between seen and unseen sets, indicating
the strong generalization ability of these code mod-
els to new APIs. Among the three models we eval-
uated, CodeBERT-MLM demonstrates the most ro-
bust performance, while GraphCodeBERT-MLM
demonstrates a greater ability to memorize API
names during pre-training. Surprisingly, we found
that there were 1,288 and 5,468 distinct ground-
truth tokens in the seen and unseen splits for API
calls, respectively, and 1,257 tokens (97.59% of
the unseen split) were overlapped. This indicates
that the API namespace designs share unexpected
commonalities.

Takeaways: Code models demonstrate impres-
sive generalization abilities in predicting the names
of programming functions for new domains and
reasonable memorizations of APIs from the train-
ing data.

6 Conclusion

In this paper, we have explored the interpretabil-
ity of code models for source code (CodeBERT,
GraphCodeBERT and PLBART). We conduct a
thorough API name knowledge analysis based on a
large-scale benchmark, PyINK, from the following
four aspects, aiming to give an interpretation of
code models. Firstly, we determine the API name
knowledge stored by code models from two per-
spectives, API call and API import. Secondly, we
investigate whether code models can robustly un-
derstand API import aliases. Thirdly, we revisit the
settings in deep API learning and assess if provid-
ing additional natural language context can help
code model retrieve more precise API name knowl-
edge. Fourthly, we examine the memorization and
generalization of code models on API names. The
analysis in this paper has revealed several inter-
esting findings that can inspire future studies on
code representation learning and interpretation of
knowledge encoded by code models.

Limitations

The possible limitations lie in the choice of eval-
uation data. While we use a widely-used cor-
pus, CSNet, which covers a substantial number



of Python APIs, it is important to acknowledge
that there are additional resources, such as Stack
Overflow?, that may contain more Python APIs.
Moreover, CSNet was proposed in 2019, and new
APIs may have been developed since then. We con-
tend that our evaluation of PyINK using CSNet is
statistically significant, but we also acknowledge
the limitations of this corpus. Furthermore, code
models may exhibit different behaviors when eval-
uated with APIs in other programming languages,
such as Java and C. To address this threat to validity,
we can enhance the completeness of our evaluation
by incorporating more programming languages on
which these code models are trained. By evalu-
ating the code models in a broader range of pro-
gramming languages, we can better ensure their
robustness and generalizability to real-world pro-
gramming tasks.
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A Experiment Details

We conduct extensive studies on ten selected mod-
els from the variants of CodeBERT, GraphCode-
BERT and PLBART on A100 GPUs. We also in-
clude GPT-3.5-turbo for the assessment, though it
is not specifically trained with mask prediction. We
instruct GPT-3.5-turbo to predict top-20 masked
tokens for each test of 1,000 randomly selected
samples on API calls and imports, respectively. To
guide GPT-3.5-turbo to correctly perform the pre-
diction task, we prompt it with the instruction of
“Predict top-20 answers of <mask> part of the fol-
lowing Python API fully qualified name, pay atten-
tion to the connected characters right after <mask>.
Note the number of masked characters is at least
one. Print each of 20 answers per line with index ™.

B Examples of RQ2

We present examples in Table 7.

C Furture Study on The Effect of Natural
Language Context on Knowledge
Probing

We further examine the impact of natural language
(NL) context on a code model’s ability to compre-
hend API names. To build a dataset of API-related
NL context, we utilize the NL queries designed for
Python API sequence usages in the work of (Martin
and Guo, 2022). For example, <os.path.isfile>
is paired with “file directory check”. We selected
queries containing API sequences containing the
PyINK API and transformed them into API pop
quizzes. As some of the NL queries are long and
infeasible for code models to process, we only
choose the 10 shortest ones among these satisfied
NL queries, and filter out the cases where the length
is no more than 512 tokens determined by the Code-
BERT tokenizer. At the end, we collected 56,645
pop quizzes for API calls, and 56,644 for API im-
ports. We compute the average PQFk on each API
name pop quiz with the group of NL queries con-
catenated ahead. We compare them with the overall
results without adding NL context at the beginning
in Figure 4.

Our results show that incorporating natural lan-
guage queries led to a 2% improvement in prob-
ing API call name knowledge, although we con-
tend that this may be due to their non-API-focused
design, as they were initially created for API se-
quences rather than individual API calls (Martin

11

and Guo, 2022). In addition, the relative perfor-
mances among code models do not change before
and after adding NL context, suggesting PyINK is
robust for API name evaluation. We anticipate that
incorporating API-focused natural language con-
text will yield more substantial gains.
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Table 7: Examples of prediction for CodeBERT-MLM-Python and GraphCodeBERT-MLM on API import aliases
and their adversarial samples. The last two columns reports the top five tokens generated together with the associated
probabilities (in square brackets).
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Figure 4: Comparisons of PQ1, PQ5, PQ10 and P@20 scores of selected code models. w/o NL: No natural
language context is provided along with pop quizzes. w/ NL: Mean performances when natural language context is
provided along with pop quizzes.
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