
Probing API Name Knowledge in Pre-trained Code Models

Anonymous ACL submission

Abstract

Recent advances in pre-trained code models,001
like CodeBERT and Codex, have demonstrated002
remarkable performance across diverse tasks.003
However, the accurate and clear use of APIs004
is vital for optimal program functionality, ne-005
cessitating a deep understanding of API fully006
qualified names both structurally and semanti-007
cally. Despite their prowess, current models of-008
ten falter in suggesting appropriate APIs during009
code generation, with the underlying reasons010
remaining largely unexplored. To bridge this011
gap, we leverage the knowledge probing tech-012
nique and employ cloze-style tests to gauge013
the knowledge embedded within these mod-014
els. Our in-depth analysis assesses a model’s015
grasp of API fully qualified names from two016
angles: API call and API import. The results017
shed light on the strengths and weaknesses of018
existing pre-trained code models. We posit that019
integrating API structure during pre-training020
can enhance API usage and code representa-021
tion. This research aims to steer the evolution022
of code intelligence and set the course for sub-023
sequent investigations.024

1 Introduction025

Recent advances in code intelligence have incor-026

porated pre-training techniques, where models are027

pre-trained on large-scale unlabeled source code028

corpora to learn the code’s representation and se-029

mantics. The pre-trained code models, such as030

CodeBERT (Feng et al., 2020) and GraphCode-031

BERT (Guo et al., 2021), can be fine-tuned for032

various downstream code tasks, such as code com-033

pletion and translation (Allamanis et al., 2018; Xu034

et al., 2022; Niu et al.). Despite the improvement,035

there is still a significant performance gap between036

their performance and that of human developers037

when it comes to using APIs correctly. For in-038

stance, several studies have demonstrated that even039

state-of-the-art pre-trained code models, such as040

Codex (Chen et al., 2021) and GPT-4 (OpenAI,041

numpy

all any malinalg

getmaskarray make_maskmulti_dot cholesky qr

...

...

Figure 1: An example of module design of <numpy>
library.

2023), inevitably hallucinate or misuse the APIs 042

during code generation (Lai et al., 2022; Yu et al., 043

2023; Zhong and Wang, 2023). However, few stud- 044

ies have investigated the reasons behind these mod- 045

els’ poor API usage performance. 046

Basically, correct API usage depends on two 047

types of knowledge: (1) how to invoke an API, 048

and (2) which API to invoke, with the former be- 049

ing a fundamental step towards the latter. To in- 050

voke an API, one must have knowledge of the code 051

grammar of importing libraries and composing the 052

correct API name based on the import and call 053

statements. However, code models are not explic- 054

itly instructed by code grammar. Although we 055

often assume that the models can learn to use APIs 056

effectively by observing a large number of exam- 057

ples, this assumption has been poorly validated. 058

Therefore, we pose the following question: Do 059

Pre-trained Code Models Possess Knowledge of 060

Correct API Names? 061

APIs are often identified by their fully qualified 062

names, encompassing the function name and its as- 063

sociated package, module, or class. For simplicity, 064

we will use “module” to denote all these entities. 065

Libraries structure APIs into hierarchical modules 066

to guide developers in comprehending the available 067

features. This hierarchy is such that higher-level 068

modules act as parents to their direct sub-modules, 069

with APIs as the terminal nodes. The full name of 070

an API is derived by traversing this hierarchy from 071

the root to the terminal node, connecting each name 072

with dots. How an API name is invoked depends on 073

1

the module’s level of import and potential aliasing.074

While intuitive for developers, this convention can075

be intricate for code models to grasp.076

Furthermore, the structure of API names offers077

insights into code modularization and namespace078

design. If models can effectively represent these079

names, they might aid in refining API namespace080

design by suggesting more accurate and relevant op-081

tions. Take, for instance, the Python library numpy082

for array and matrix operations. As depicted in083

Figure 1, numpy has modules like linalg for linear084

algebra functions such as multi_dot, cholesky,085

and qr, and ma for masked array operations. This086

namespace design can inform the creation of re-087

lated or analogous libraries in other languages.088

In our study, we target the interpretability of089

code models, introducing a probing task for fully090

qualified API names. We unveil INK, an automated091

framework, to assess code models using cloze-style092

quizzes derived from commonly used source code093

corpora. We ensure models are tested on familiar094

knowledge, reflecting their training constraints. We095

then craft import and API call statements, mask-096

ing tokens at module levels. For example, with097

the <multi_dot> module in Figure 1, we gener-098

ate quizzes like <numpy.[MASK]alg.multi_dot>099

from the API call (<numpy.linalg.multi_dot>)100

and its import (<from numpy.linalg import101

multi_dot>). The goal is for models to predict the102

masked token. To further understand pre-trained103

code models’ proficiency in API names, we outline104

research questions (RQs) to guide future advance-105

ments:106

• RQ1: How well do code models understand107

API calls and imports? The code models are108

assessed on their prediction of masked import or109

API call statements. The findings can help iden-110

tify areas where code models may struggle and111

guide improvements in their API name learning112

via the understanding of this question.113

• RQ2: Do code models understand API import114

aliases? This RQ further assesses code models’115

understanding of API import aliases. The quizzes116

are designed based on an alias-defining import117

statement followed by an API call based on the118

imported module. Tokens are selectively masked119

out for the statements.120

• RQ3: How well can code models memorize121

and generalize on API names? We divide APIs122

into two groups based on whether they are seen123

during the training phase. The outcomes indicate 124

if the code models possess robust generalization 125

capabilities and appropriate memorization skills. 126

Models’ ability to apply learned knowledge to 127

unseen APIs would be helpful for API namespace 128

design. 129

For the evaluation, we construct the first bench- 130

mark on Python API name knowledge, PyINK, and 131

analyze 10 pre-trained code models, including the 132

variants of CodeBERT (Feng et al., 2020), Graph- 133

CodeBERT (Guo et al., 2021), PLBART (Ahmad 134

et al., 2021). Our work is complementary to the de- 135

velopment of more advanced techniques for model- 136

ing API representations in code, thereby enhancing 137

the efficiency and accuracy of code models. Ad- 138

ditionally, the insights gained from this work can 139

pave the way for a deeper understanding of how 140

pre-training impacts the performance of code mod- 141

els, facilitating more informed design decisions in 142

this domain. In summary, our main contributions 143

include1: 144

• A cloze-style evaluation framework INK, to 145

probe and benchmark the knowledge of API 146

names in pre-trained code models. 147

• An implementation of INK, which lowers the 148

bar for designing probing techniques on API 149

name knowledge. 150

• An evaluation dataset based on INK, PyINK, 151

containing diverse API name cloze-style pop 152

quizzes. 153

• A comprehensive study on understanding the 154

Python API name knowledge of pre-trained 155

code models via PyINK. 156

2 Background and Related Work 157

This section provides a comprehensive overview 158

of the background and related work that form the 159

foundation of our research. 160

2.1 Pre-trained Code Models 161

Pre-trained language models like BERT (Devlin 162

et al., 2019) have revolutionized natural language 163

processing tasks by transferring knowledge from 164

vast corpora (Qiu et al., 2020). Similarly, the 165

software domain has benefited from models such 166

as CodeBERT, GraphCodeBERT, and PLBART, 167

1Resources are available at https://anonymous.4open.
science/r/API-Name-Probing.

2

https://anonymous.4open.science/r/API-Name-Probing
https://anonymous.4open.science/r/API-Name-Probing

which harness software’s inherent naturalness (Hin-168

dle et al., 2016). These models are adept at tasks169

ranging from code completion to code summariza-170

tion.171

2.2 Knowledge Probing172

The evaluation of internal representations and173

knowledge of language models is a fundamental174

and critical process, which involves the technique175

of knowledge probing (Liu et al., 2023). This ap-176

proach entails presenting a set of questions or state-177

ments to the model to assess its understanding of178

specific concepts or relationships. The inputs are179

typically presented as cloze sentences with partic-180

ular concepts or relationships masked as discrete181

prompts to test the model’s performance. We for-182

malize the knowledge probing approach by consid-183

ering the input cloze sentence, denoted as S, where184

“Alan Turing was born in [MASK]” is an example.185

Formally, we define the knowledge probing ap-186

proach as follows,187

f(S) =
1

|S|

|S|∑
k=1

log(P (tk)|S; θ), tk ∈ V(θ) (1)188

where θ represents the model parameters, V(θ)189

denotes the vocabulary learned by the language190

model, and tk is a token inside the model’s vocab-191

ulary V(θ). The contextualized likelihood f(S)192

represents the possibility of replacing [MASK] with193

the token tk as per the model’s prediction. The194

final prediction corresponds to the token tk that195

maximizes f(S).196

2.3 Generation-based API Recommendation197

API recommendation, which suggests specific APIs198

from natural language (NL) queries, has been ap-199

proached in two primary ways: (1) Rank-based200

and (2) Generation-based recommendations. The201

former leverages knowledge graphs or bases to202

identify suitable APIs by interpreting the semantic203

content of the NL query (Huang et al., 2018; Rah-204

man et al., 2016; Thung et al., 2013). In contrast,205

the latter, more aligned with our work, employs206

deep learning to generate API sequences from NL207

queries.208

DeepAPI (Gu et al., 2016) pioneered this by209

treating it as a machine translation challenge, us-210

ing an end-to-end supervised model. Later studies211

explored fine-tuning pre-trained code models for212

this task (Martin and Guo, 2022; Hadi et al., 2022).213

While these models show improved performance,214

they have limitations: (1) They are fine-tuned on 215

limited APIs, hindering generalization. (2) The 216

fine-tuning process lacks transparency in capturing 217

API knowledge. (3) The task relies on NL inputs, 218

which only gauge the semantic understanding of 219

API sequence use. (4) Evaluation is predominantly 220

through the BLEU score (Papineni et al., 2002), 221

which assesses similarity but not necessarily syn- 222

thesis accuracy. 223

3 INK: An evaluation framework of API 224

Name Knowledge 225

3.1 Motivation 226

Previous research in natural language process- 227

ing has utilized cloze sentences for token predic- 228

tion as a means of interpreting the knowledge en- 229

coded by pre-trained language models. Building 230

upon this work, we examine probing API name 231

knowledge in CodeBERT-MLM - a variant of 232

CodeBERT pre-trained solely on mask language 233

modeling - with cloze-style sentences serving as 234

pop quizzes, as depicted in Figure 2. We use 235

<tensorflow.compat.v2.boolean 236

_mask> as an example and transform it into a cloze- 237

style pop quiz, as shown in Figure 2. In this study, 238

we define the API module levels as each hierar- 239

chical level within the fully qualified name, sepa- 240

rated by a period. There are four module levels in 241

the API call statement: (1) <tensorflow> repre- 242

senting the top module level, (2) <compat> as the 243

second module level, (3) <v2> as the third module 244

level, and (4) <boolean_mask> as the last call level. 245

For each level, we request CodeBERT-MLM to fill 246

in the blank via first token prediction, as deter- 247

mined by its tokenizer. As our results demonstrate, 248

CodeBERT-MLM correctly predicts the masked 249

token on the first attempt, except for the third level 250

of <v2>. We contend that code models, such as 251

CodeBERT-MLM, can learn API names during 252

function pre-training. 253

Given that <tensorflow.compat.v2.boolean 254

_mask> can be reconstituted to the form of API 255

import statement, we then investigate how well 256

CodeBERT-MLM understands the API import 257

statements. As demonstrated in Figure 2, we trans- 258

form the API import statement into four cloze tem- 259

plates by masking the first token of each module 260

level, similar to the ones of the API call. From 261

the results illustrated in Figure 2, we discover that 262

predicting some API modules at the first shot is 263

challenging for CodeBERT-MLM, unlike the case 264

3

_?_ensorflow.compat.v2.boolean_mask

tensorflow.compat.v2.boolean_mask
✅

tensorflow.compat._?_2.boolean_mask

tensorflow.compat.py2.boolean_mask
❌

tensorflow.compat.v2.boolean_mask
✅

tensorflow.compat.v2._?_olean_mask

tensorflow.compat.v2.boolean_mask
✅

tensorflow.compat.v2.boolean_mask
✅

tensorflow._?_at.v2.boolean_mask

<tensorflow>

from _?_ensorflow.compat.v2
import boolean_mask

from tensensorflow.compat.v2
import boolean_mask

<v2>

<compat> <boolean_mask>

from Tensorflow.compat.v2
import boolean_mask

from tensorflow.compat.v2
import boolean_mask

from tensorflow._?_at.v2
import boolean_mask

from tensensorflow.compat.v2
import boolean_mask ✅

from tensorflow.compat.v2
import _?_olean_mask

from tensorflow.compat.v2
import olean_mask

from tensorflow.compat.v2
import boolean_mask

from tensorflow.compat.v2
import _?_olean_mask

from tensensorflow.compat.v2
import boolean_mask

✅

✅

✅

❌

❌

❌

<tensorflow>

<compat> <boolean_mask>

<v2>

INK

INK

INK

INK

INK

INK

INK

INK

A
PI

 C
al

l

A
PI

 Im
po

rt

Figure 2: API fully qualified names such as <tensorflow.compat.v2.boolean_mask> can be formalized into the
cloze-style tests from two perspectives, API calls and API imports. The example shows the top-k predictions of
CodeBERT-MLM model for each test. Note that the dialogues are for illustration only.

of API call probing. This behavior suggests that265

code models possess varying degrees of knowledge266

in API import and API call statements.267

Having identified several potential patterns from268

our preliminary knowledge probing study, which269

provides clues to API name knowledge, we find270

it necessary to further explore this phenomenon271

through quantitative analysis and systematic eval-272

uation. Motivated by the aforementioned observa-273

tions, this paper investigates whether pre-trained274

code models learn the API names and to what ex-275

tent they store API name knowledge, by conducting276

knowledge probing as the pop quiz. Specifically,277

we analyze two perspectives of API names, i.e.,278

API call and API import, within the purview of279

code models.280

3.2 API Name Knowledge Probing Template281

We consider three main types of transformation of282

evaluating API name knowledge: API calls, API283

imports and API import aliases. As aforemen-284

tioned in Section 3.1, cloze-style pop quizzes are285

structured based on each call level split by the de-286

limiters of “.”, “from” and “import”. To benchmark287

models fairly, we construct pop quizzes by unify-288

ing the entire vocabulary of each model. For all the289

evaluation, we follow previous work of knowledge290

probing in language models (Petroni et al., 2019)291

and choose to evaluate the prediction of a single292

token masking in the pop quiz. We provide the293

detailed design of each process as follows.294

3.2.1 Evaluation Design on API Call295

296

We treat each API call as a modular pattern on the297

basis of each module level. To formalize the pop298

quiz construction on API calls, an example of API299

call <A.B.C> and a code model M are given to 300

demonstrate the workflow. The model M firstly 301

tokenizes the API as follows, 302

M(<A.B.C>) → 303{
{tA1 , tA2 , . . . , tANa

}, tdot, {tB1 , tB2 , . . . , tBNb
}, tdot, 304

{tC1 , tC2 , . . . , tCNc
}
}

305

where each t represents the token produced by the 306

model M, and N represents the length of tokens in 307

each level. For each level, the tokens are grouped 308

by {. . . }. When converting the tokenized API to 309

the pop quiz, we mask a specific token by replacing 310

t with a “[MASK]” in each level. To visualize the 311

pop quiz input, we mask the last token in the second 312

module level of <A.B.C> as follows: 313

<A.B.C> → <A.B’[MASK].C> → <A.B’ .C> 314

where B′ is the concatenation of {tB1 , . . . , tBNb−1}. 315

We prompt the model M to fill in the blank of 316

<A.B’ .C> via mask prediction. 317

3.2.2 Evaluation Design on API Import 318

319

We explore the evaluation design on the API import 320

statement of “from . . .import . . . ”. Similarly, we 321

consider the example of <from A.B import C>. 322

Using the model M to tokenize the API import, 323

we can devise the following tokens: 324

M(<from A.B import C>) → 325{
tfrom, {tA1 , tA2 , . . . , tANa

}, tdot, 326

{tB1 , tB2 , . . . , tBNb
}, timport, {tC1 , tC2 , . . . , tCNc

}
}

327

4

Step 2:
Unification Step 3: API

pop quizzes

RQ1:
API Call & API Import

Source Code
Copurs

Unified API Fully
Qualified Names

Code Model

Step 4:
Benchmarking

 Model Vocabularies
Step 1: API
Extraction

API Fully
Qualified Names

RQ2:
API Import Alias

RQ3:
Memorization &
Generalization

Figure 3: An overview of the INK framework.

We visualize an example of API import quiz, where328

the first token in the bottom level of <from A.B329

import C> is masked:330

<from A.B import C>331

→ <from A.B import [MASK]C’>332

→ <from A.B import C’>333

where C ′ is the concatenation of {tC2 , . . . , tCNc
}.334

We probe the model M to fill in the blank of <from335

A.B import C’> via mask prediction.336

3.2.3 Evaluation Design on API Import Alias337

We note that import aliases are supported in338

some programming languages, such as Python. For339

example, “import . . . as . . . ” and “from . . . import340

. . . as . . . ” are the typical import alias syntax.341

Therefore, we further examine pre-trained code342

model’s understanding of the aliases of API calls343

after packages and libraries imports. We illustrate344

the design choice via the example of <import A345

as K \n K.B.C>, where <K> is the alias and K.B.C346

is the API call statement. After being tokenized347

by the model M, the example is formalized as348

follows:349

M(<import A as K \n K.B.C>) →350 {
timport, {tA1 , tA2 , . . . , tANa

}, tas, {tK1 , tK2 , . . . , tKNa
},351

tnewline, {tK1 , tK2 , . . . , tKNa
}, tdot,352

{tB1 , tB2 , . . . , tBNb
}, tdot, {tC1 , tC2 , . . . , tCNc

}
}

353

We then convert the example to the following354

API alias pop quiz with the masked last token of355

<C>:356

<import A as K \n K.B.C>357

→ <import A as K \n K.B.C’[MASK]>358

→ <import A as K \n K.B.C’ >359

where C ′ is the concatenation of {tC1 , . . . , tCNc−1}.360

We probe the model M to fill in the blank of361

<import A as K \n K.B.C’ > via mask pre- 362

diction. Note that we only mask the tokens in the 363

part of the API call after the alias name. 364

3.2.4 Evaluation of Code Models: A Unified 365

Vocabulary Approach 366

367

Code models may tokenize the same API call or 368

import statement differently due to variations in 369

their respective vocabularies. For example, an API 370

call such as <A.B.C> may be tokenized as a sin- 371

gle token by one model MA with vocabulary VA, 372

while another model MB with vocabulary VB may 373

tokenize it into multiple tokens. To ensure a fair 374

comparison, we generate models over a unified 375

vocabulary that is the intersection of the vocabu- 376

laries of all considered code models. We define 377

the unified vocabulary as the set of tokens that are 378

presented in the vocabularies of all considered code 379

models. 380

To evaluate the performance of code models on 381

this unified vocabulary, we categorize the evalua- 382

tion of each name level into two types: (1) partial 383

module masking and (2) full module masking. For 384

the former, we tokenize the API call and import 385

statements into multiple tokens and mask only one 386

of the tokens. In contrast, when code models seg- 387

ment the entire module level as a single token, we 388

denote it as the full module masking. 389

3.2.5 Benchmarking Code Models via 390

Knowledge Probing 391

392

We utilize the knowledge probing technique to eval- 393

uate and assess the performance of code models 394

effectively. The primary objective of this approach 395

is to delve into the code models’ comprehension 396

of API names and their proficiency in generat- 397

ing precise and contextually fitting tokens within 398

those names. To achieve this, we present cloze- 399

style quizzes where certain tokens are intentionally 400

masked, prompting the code model to predict the 401

5

tokens for the masked positions. To gauge the accu-402

racy of these predictions, we compare them against403

the ground-truth tokens in the API names. This404

benchmarking process allows us to determine the405

correctness of predictions.406

4 Experiment Setup407

We introduce the basic experimental setup about408

the datasets and models, and the evaluation metrics409

used throughout the evaluation.410

4.1 PyINK: Evaluation on Python API Name411

Knowledge412

First Token Last Token Full Total
API Call 108,863 111,373 69,349 289,585

API Import 108,863 111,373 69,349 289,585
API Import Alias 7,385 7,122 3,464 17,971

Table 1: Overview of the number of pop quizzes in
PyINK.

We adopt the widely-used pre-training corpus,413

CSNet (Husain et al., 2019), which is a collection414

of datasets and benchmarks for semantic code re-415

trieval, containing functions and their correspond-416

ing comments of six programming languages ex-417

tracted from GitHub repositories, to evaluate the418

API name knowledge of code models. We focus419

on Python set, which contains 457,461 functions.420

To extract Python APIs from CSNet, we use our421

proposed INK framework, which leverages static422

analysis on the entire file to extract API usage, fol-423

lowing the method described in (Wang et al., 2021).424

To achieve this, we clone all repositories corre-425

sponding to the functions in CSNet and analyze the426

API usage in each function. This process results in427

a new benchmark, denoted as PyINK, which is de-428

signed to evaluate the name knowledge of Python429

APIs. PyINK contains 597,141 main pop quizzes430

for evaluation, and we only consider full module431

masking, or partial masking of the first and last to-432

kens of each module level to maintain consistency.433

Our approach successfully extracts 79,754434

unique APIs from 8,294 Python libraries in 13,519435

repositories, indicating the diverse usage of Python436

APIs. Moreover, to ensure a fair comparison, we437

unify the vocabularies in the considered code mod-438

els, resulting in 289,585, 289,585, and 17,971 sam-439

ples for API call, import, and import with aliases440

statements, respectively, in the benchmark.441

4.2 Code Models 442

We conduct extensive studies on ten selected mod- 443

els from the variants of CodeBERT, GraphCode- 444

BERT and PLBART. The description of each model 445

is summarized in Table 2. 446

Model pre-trained Dataset Objective #Param Fine-tuned

CodeBERT
MLM CSNet MLM 125M ✗

MLM-Python CSNet+CodeParrot* MLM 125M ✗

GraphCodeBERT MLM CSNet MLM* 125M ✗

PLBART

Base N/A DAE 140M ✗

Large N/A DAE 406M ✗

CSNet CSNet DAE 140M ✗

Sum N/A DAE 140M ✓

Gen N/A DAE 140M ✓

MT N/A DAE 140M ✓

Table 2: The overview of selected code models for evalu-
ation. Note that only the train split of CSNet is used dur-
ing pre-training. MLM: Masked Language Modeling.
DAE: Denoising Auto-Encoding. CodeBERT-MLM-
Python uses the Python split of CodeParrot (Wolf et al.,
2020) for continuous pre-training. PLBART-Sum and
PLBART-Gen are the PLBART-Base model fine-tuned
on CSNet Python code summarization and code genera-
tion tasks, respectively. PLBART-MT adopts multitask
learning and is fine-tuned on both tasks that the previous
two models use.

4.3 Evaluation Metric 447

We present an evaluation methodology based on 448

rank-based metrics in the context of API name 449

prediction. Our approach involves computing re- 450

sults per test sample and means across pop quizzes, 451

utilizing the mean precision at k (P@k) metric. 452

Specifically, P@k is computed as 1 if the target 453

object is ranked among the top k results, and 0 454

otherwise. 455

5 Results 456

5.1 RQ1: How well do code models 457

understand API calls and imports? 458

Our evaluation assesses the capability of pre- 459

trained code models to encode knowledge of 460

Python API names for both API calls and imports. 461

We computed P@k scores for each masking strat- 462

egy and present the results in Table 4. In addition, 463

we provide a few examples in Table 3. Firstly, we 464

have observed that the relative performances of dif- 465

ferent code models remain consistent when we vary 466

the value of k in the P@k metric. Secondly, as k in- 467

creases, the improvement in performance for each 468

model becomes less significant. These observations 469

provide strong evidence to support the effective- 470

ness of the PyINK benchmark. When comparing 471

among the model variants, our analysis reveals that 472

6

Test Answer CodeBERT-MLM-Python GraphCodeBERT-MLM
A

PI
C

al
l

stsci.tools.fileutil.buildFITS (Name file [0.10], File [0.06], Image [0.04], image [0.03], Data [0.02])\ [0.42],): [0.08], () [0.06],); [0.05],) [0.04]
win32 .QueryServiceStatusEx(service api [0.59], gui [0.25], service [0.04], security [0.02], com [0.01] service [0.33], Service [0.09], net [0.08], api [0.06], API [0.05]
demand .bdew.ElecSlp(lib 2 [0.12], lib [0.09], 1 [0.07], 3 [0.03], py [0.02] com [0.47], org [0.17], google [0.16], com [0.03], org [0.02]
cltk.prosody.latin.string_ .move_consonant_right(utils left [0.02], table [0.02], translation [0.02], char [0.02], right [0.02] utils [0.28], list [0.16], selection [0.10], table [0.08], util [0.04]

fuzz.rand.randint(gram \n [0.40], # [0.34], py [0.09], ## [0.02], . [0.01] # [0.26], ˆ [0.05], open [0.05], ! [0.03], test [0.03]

A
PI

Im
po

rt from stsci.tools.fileutil import buildFITS Name \n [0.94], \n\n [0.03], File [0.00], file [0.00], _ [0.00] File [0.38], file [0.23], Filename [0.02], Tools [0.02], Files [0.01]
from win32 import QueryServiceStatusEx service api [0.43], service [0.07], query [0.07], security [0.06], db [0.04] service [0.35], file [0.22], net [0.19], db [0.02], security [0.02]
from demand .bdew import ElecSlp lib er [0.03], 1 [0.03], y [0.02], en [0.02], 2 [0.02] igo [0.05], y [0.02], com [0.02], en [0.02], ache [0.02]
from cltk.prosody.latin.string_ import move_consonant_right utils move [0.14], right [0.08], tools [0.04], translation [0.03], left [0.03] utils [0.56], selection [0.10], util [0.06], list [0.03], table [0.02]
from fuzz.rand import randint gram py [0.29], sk [0.06], fuzzy [0.05], core [0.03], ham [0.03] ham [0.43], exp [0.12], math [0.05], http [0.04], easy [0.03]

Table 3: Examples of prediction for CodeBERT-MLM-Python and GraphCodeBERT-MLM on API calls and imports.
The last two columns reports the top five tokens generated together with the associated probabilities (in square
brackets).

P@1 ↑ P@5 ↑ P@10 ↑ P@20 ↑ P@30 ↑ P@40 ↑ P@50 ↑

A
PI

C
al

l

CodeBERT
MLM 23.90 42.34 50.28 58.17 62.75 65.87 68.28

MLM-Python 29.35 47.51 55.67 63.61 68.06 71.06 73.33
GraphCodeBERT MLM 25.89 43.30 50.74 58.28 62.73 65.87 68.26

PLBART

Base 1.65 6.58 10.43 15.71 19.40 22.44 24.99
Large 2.29 8.63 13.22 18.62 22.19 25.02 27.40
CSNet 2.57 10.78 15.57 21.49 25.55 28.76 31.41
Sum 2.11 9.65 14.46 19.98 23.53 26.21 28.46
Gen 4.31 14.51 20.69 27.21 31.27 34.23 36.59
MT 4.79 15.80 22.71 30.27 34.83 38.10 40.67

A
PI

Im
po

rt

CodeBERT
MLM 26.33 43.87 51.19 58.63 62.89 65.85 68.16

MLM-Python 29.67 49.26 56.82 64.18 68.34 71.23 73.39
GraphCodeBERT MLM 30.76 48.24 55.35 62.50 66.68 69.55 71.73

PLBART

Base 2.64 12.96 20.12 28.21 33.22 36.90 39.83
Large 5.66 18.03 25.72 34.20 39.18 42.69 45.44
CSNet 3.44 14.90 21.95 30.31 35.79 39.86 43.11
Sum 2.88 12.26 18.90 26.09 30.44 33.61 36.18
Gen 3.83 15.25 23.59 32.52 37.72 41.38 44.25
MT 4.92 19.16 28.02 36.65 41.65 45.33 48.16

Table 4: P@k scores on selected code models, focusing
API calls and API imports.

P@1 ↑ P@5 ↑ P@10 ↑ P@20 ↑ P@30 ↑ P@40 ↑ P@50 ↑

A
PI

C
al

lW
ith

A
lia

s

CodeBERT
MLM

Alias 15.83 32.54 40.40 48.46 53.50 56.93 59.88
Adv. Alias 14.10 29.84 37.66 45.89 50.86 54.37 57.16

MLM-Python
Alias 24.17 42.30 50.19 58.02 62.68 66.05 68.37

Adv. Alias
:::::
20.35

:::::
37.30

:::::
45.33

:::::
53.42

:::::
58.22

:::::
61.72

:::::
64.37

GraphCodeBERT MLM
Alias 18.91 36.85 43.99 51.66 56.18 59.58 62.17

Adv. Alias 16.89 33.63 40.88 48.48 53.12 56.44 59.09

PLBART

Base
Alias 0.84 4.20 8.05 14.56 19.34 23.46 26.84

Adv. Alias 0.38 2.62 5.60 10.81 14.99 18.45 21.47

Large
Alias 3.36 11.64 18.34 26.15 30.88 34.71 37.58

Adv. Alias 1.49 7.19 12.70 19.63 23.92 27.08 29.69

CSNet
Alias 1.75 7.86 12.37 18.59 22.93 26.87 30.56

Adv. Alias 1.68 6.63 10.39 15.48 19.30 22.45 25.21

Sum
Alias 1.21 4.93 8.44 14.20 18.14 21.50 24.21

Adv. Alias 1.02 3.75 6.36 10.43 13.74 16.55 18.95

Gen
Alias 3.43 12.87 19.29 26.85 31.66 35.05 37.61

Adv. Alias 2.13 8.54 13.55 19.79 23.89 27.08 29.67

MT
Alias 3.56 11.68 18.61 26.42 31.35 34.80 37.82

Adv. Alias 2.39 8.08 12.98 19.72 24.47 28.03 30.94

Table 5: Comparison of P@k scores on API import
alias quizzes among selected code models.

CodeBERT-MLM-Python and GraphCodeBERT-473

MLM demonstrate superior performance on API474

calls and imports compared to other models. How-475

ever, their overall precision of 30% measured by476

P@1 falls short of perfection, indicating a lack477

of knowledge about API names. While we ex-478

pected GPT-3.5-turbo to have a better understand-479

ing of API names, it shows that the model performs480

slightly worse than CodeBERT-MLM.481

Additionally, our comparison shows that482

PLBART variants perform much worse on under-483

standing Python API name knowledge than BERT-484

like models, which can be explained by the pre-485

training objectives of PLBART. PLBART-Large486

consistently outperforms other variants, indicating487

that model size may be an important factor in the488

amount of stored API name knowledge. However,489

this finding should be interpreted in light of the scal-490

ing law of mixed-modal language models (Agha- 491

janyan et al., 2023), which suggests that larger 492

models are likely to achieve better performance 493

on downstream tasks, such as code generation. Fi- 494

nally, we find that pre-trained data can influence 495

the understanding of API names to some extent, as 496

shown by the performance gap between PLBART- 497

Base and PLBART-CSNet. Our results indicate 498

that fine-tuning on code generation tasks can im- 499

prove the performance of pre-trained models, while 500

text generation tasks may negatively impact them. 501

Takeaways: Although CodeBERT-MLM- 502

Python and GraphCodeBERT-MLM show superior 503

performance on API call and import name knowl- 504

edge among code models, there is a significant 505

margin for the improvement. 506

5.2 RQ2: Do code models understand API 507

import aliases? 508

In order to assess the code models on the knowl- 509

edge of API import aliases, we pair the 17,971 API 510

import alias quizzes with the adversarial examples 511

designed to test the models’ robustness. To con- 512

struct the adversarial set, we randomly selected 10 513

distinct aliases that are used in other modules and 514

replaced the original aliases in the quizzes with 515

these new aliases. For example, “import numpy 516

as np \n np.load (” will be transformed to 517

“import numpy as pmd \n pmd.load (” via 518

the replacement of “np”. To the end, we collect 519

179,710 adversarial quizzes. 520

We report P@K results of ten models in Ta- 521

ble 5 and illustrate examples in Appendix B. 522

Based on the comparison, CodeBERT-MLM- 523

Python consistently outperforms GraphCodeBERT- 524

MLM, achieving higher P@1 scores of up to 525

24.17% for Alias scenarios compared to 18.91%. 526

CodeBERT variants also show better overall per- 527

formance with P@50 scores ranging from 59.88% 528

to 68.37%, while GraphCodeBERT-MLM ranges 529

from 59.09% to 62.17%. Our initial finding sug- 530

7

gests that code models have a weaker understand-531

ing of API aliases compared to API calls and im-532

ports, as shown in Table 4. This indicates that cur-533

rent code models encode little knowledge of import534

aliases. Based on the performance of the GPT-3.5-535

turbo model on 1,000 randomly sampled quizzes,536

we can infer that it has a greater capability to un-537

derstand API import aliases. When comparing the538

results of the original API import alias quizzes with539

those of the adversarial aliases, we found only mi-540

nor discrepancies, indicating that these code mod-541

els have strong robustness in understanding API542

import aliases. We further analyze the distribution543

of the API import aliases and find that an API is544

paired with 1.16 aliases on average, and 8% of545

APIs have more than 1 alias. We hypothesize that546

these code models are able to learn the composi-547

tional patterns of these APIs via different aliases,548

and thus manage to generalize to adversarial import549

aliases.550

Takeaways: Although code models show ro-551

bustness in understanding API import aliases, their552

encoding of API knowledge is limited to partial553

information.554

5.3 RQ3: How well can code models555

memorize and generalize on API names?556

P@1 ↑ P@5 ↑ P@10 ↑ P@20 ↑ P@30 ↑ P@40 ↑ P@50 ↑

A
PI

C
al

l

CodeBERT
Seen 23.96 42.42 50.38 58.26 62.84 65.96 68.39

Unseen 21.54
:::::
39.42

:::::
46.62

:::::
54.92

:::::
59.60

:::::
62.63

:::::
64.35

GraphCodeBERT
Seen 26.00 43.45 50.91 58.45 62.89 66.02 68.42

Unseen
:::::
21.86 37.42 44.44 51.89 56.97 60.26 62.36

PLBART
Seen 2.83 11.24 16.09 22.08 26.20 29.45 32.10

Unseen 2.00 8.31 12.80 18.38 21.94 24.52 27.32

A
PI

Im
po

rt CodeBERT
Seen 26.49 44.01 51.34 58.80 63.06 66.03 68.35

Unseen 20.46
:::::
38.83

:::::
45.82 52.58 56.49 58.94 61.08

GraphCodeBERT
Seen 30.99 48.51 55.61 62.74 66.92 69.79 71.96

Unseen
:::::
22.37 38.41 45.81

:::::
53.69

:::::
57.83

:::::
60.78

:::::
63.16

PLBART
Seen 3.64 15.29 22.39 30.80 36.29 40.37 43.63

Unseen 2.17 9.96 16.42 23.97 29.08 32.59 35.65

Table 6: Comparison of P@k scores on seen and un-
seen API name quizzes among selected code models.

We evaluate whether code models demon-557

strate a deeper understanding of the names of558

seen APIs during pre-training than the unseen559

ones by conducting experiments on CodeBERT-560

MLM, GraphCodeBERT-MLM, and PLBART-561

CSNet, which were pre-trained on the train set562

of CSNet. To create our PyINK-Mem version, we563

take all APIs appearing during training (train set)564

as the seen split and the remaining (test set) APIs as565

the unseen split. We filter out all the APIs belong-566

ing to the seen libraries in the unseen split. The567

PyINK-Mem seen split contained 281,945 quizzes568

for API calls and 281,945 quizzes for API imports.569

The unseen split had 7,640 API call quizzes and570

7,640 API import quizzes. We note that the se-571

lected models do not memorize any structures of 572

the open-source repositories, due to the function- 573

level pre-training objective. 574

In Table 6, we measure the model performance 575

via P@k up to P@50. Our inspection of the results 576

on API call pop quizzes suggests there are slight dif- 577

ferences between seen and unseen sets, indicating 578

the strong generalization ability of these code mod- 579

els to new APIs. Among the three models we eval- 580

uated, CodeBERT-MLM demonstrates the most ro- 581

bust performance, while GraphCodeBERT-MLM 582

demonstrates a greater ability to memorize API 583

names during pre-training. Surprisingly, we found 584

that there were 1,288 and 5,468 distinct ground- 585

truth tokens in the seen and unseen splits for API 586

calls, respectively, and 1,257 tokens (97.59% of 587

the unseen split) were overlapped. This indicates 588

that the API namespace designs share unexpected 589

commonalities. 590

Takeaways: Code models demonstrate impres- 591

sive generalization abilities in predicting the names 592

of programming functions for new domains and 593

reasonable memorizations of APIs from the train- 594

ing data. 595

6 Conclusion 596

In this paper, we have explored the interpretabil- 597

ity of code models for source code (CodeBERT, 598

GraphCodeBERT and PLBART). We conduct a 599

thorough API name knowledge analysis based on a 600

large-scale benchmark, PyINK, from the following 601

four aspects, aiming to give an interpretation of 602

code models. Firstly, we determine the API name 603

knowledge stored by code models from two per- 604

spectives, API call and API import. Secondly, we 605

investigate whether code models can robustly un- 606

derstand API import aliases. Thirdly, we revisit the 607

settings in deep API learning and assess if provid- 608

ing additional natural language context can help 609

code model retrieve more precise API name knowl- 610

edge. Fourthly, we examine the memorization and 611

generalization of code models on API names. The 612

analysis in this paper has revealed several inter- 613

esting findings that can inspire future studies on 614

code representation learning and interpretation of 615

knowledge encoded by code models. 616

Limitations 617

The possible limitations lie in the choice of eval- 618

uation data. While we use a widely-used cor- 619

pus, CSNet, which covers a substantial number 620

8

of Python APIs, it is important to acknowledge621

that there are additional resources, such as Stack622

Overflow2, that may contain more Python APIs.623

Moreover, CSNet was proposed in 2019, and new624

APIs may have been developed since then. We con-625

tend that our evaluation of PyINK using CSNet is626

statistically significant, but we also acknowledge627

the limitations of this corpus. Furthermore, code628

models may exhibit different behaviors when eval-629

uated with APIs in other programming languages,630

such as Java and C. To address this threat to validity,631

we can enhance the completeness of our evaluation632

by incorporating more programming languages on633

which these code models are trained. By evalu-634

ating the code models in a broader range of pro-635

gramming languages, we can better ensure their636

robustness and generalizability to real-world pro-637

gramming tasks.638

References639

Armen Aghajanyan, Lili Yu, Alexis Conneau, Wei-640
Ning Hsu, Karen Hambardzumyan, Susan Zhang,641
Stephen Roller, Naman Goyal, Omer Levy, and642
Luke Zettlemoyer. 2023. Scaling laws for genera-643
tive mixed-modal language models. arXiv preprint644
arXiv:2301.03728.645

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and646
Kai-Wei Chang. 2021. Unified pre-training for pro-647
gram understanding and generation. In Proceedings648
of the 2021 Conference of the North American Chap-649
ter of the Association for Computational Linguistics:650
Human Language Technologies, pages 2655–2668.651

Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu,652
and Charles Sutton. 2018. A survey of machine learn-653
ing for big code and naturalness. ACM Computing654
Surveys (CSUR), 51(4):1–37.655

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming656
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-657
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,658
Greg Brockman, et al. 2021. Evaluating large659
language models trained on code. arXiv preprint660
arXiv:2107.03374.661

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and662
Kristina Toutanova. 2019. Bert: Pre-training of deep663
bidirectional transformers for language understand-664
ing. In Proceedings of the 2019 Conference of the665
North American Chapter of the Association for Com-666
putational Linguistics: Human Language Technolo-667
gies, Volume 1 (Long and Short Papers), pages 4171–668
4186.669

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-670
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,671

2https://stackoverflow.com/

Ting Liu, Daxin Jiang, et al. 2020. Codebert: A 672
pre-trained model for programming and natural lan- 673
guages. In Findings of the Association for Computa- 674
tional Linguistics: EMNLP 2020, pages 1536–1547. 675

Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and 676
Sunghun Kim. 2016. Deep api learning. In Proceed- 677
ings of the 2016 24th ACM SIGSOFT international 678
symposium on foundations of software engineering, 679
pages 631–642. 680

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, 681
Duyu Tang, Shujie LIU, Long Zhou, Nan Duan, 682
Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, 683
Shao Kun Deng, Colin Clement, Dawn Drain, Neel 684
Sundaresan, Jian Yin, Daxin Jiang, and Ming Zhou. 685
2021. Graphcode{bert}: Pre-training code represen- 686
tations with data flow. In International Conference 687
on Learning Representations. 688

Mohammad Abdul Hadi, Imam Nur Bani Yusuf, Ferdian 689
Thung, Kien Gia Luong, Jiang Lingxiao, Fatemeh H 690
Fard, and David Lo. 2022. On the effectiveness of 691
pretrained models for api learning. In Proceedings 692
of the 30th IEEE/ACM International Conference on 693
Program Comprehension, pages 309–320. 694

Abram Hindle, Earl T Barr, Mark Gabel, Zhendong Su, 695
and Premkumar Devanbu. 2016. On the naturalness 696
of software. Communications of the ACM, 59(5):122– 697
131. 698

Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, 699
and Xinyu Wang. 2018. Api method recommenda- 700
tion without worrying about the task-api knowledge 701
gap. In Proceedings of the 33rd ACM/IEEE Interna- 702
tional Conference on Automated Software Engineer- 703
ing, pages 293–304. 704

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis 705
Allamanis, and Marc Brockschmidt. 2019. Code- 706
searchnet challenge: Evaluating the state of semantic 707
code search. arXiv preprint arXiv:1909.09436. 708

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, 709
Ruiqi Zhong, Luke Zettlemoyer, Scott Wen-tau Yih, 710
Daniel Fried, Sida Wang, and Tao Yu. 2022. Ds-1000: 711
A natural and reliable benchmark for data science 712
code generation. arXiv preprint arXiv:2211.11501. 713

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, 714
Hiroaki Hayashi, and Graham Neubig. 2023. Pre- 715
train, prompt, and predict: A systematic survey of 716
prompting methods in natural language processing. 717
ACM Computing Surveys, 55(9):1–35. 718

James Martin and Jin LC Guo. 2022. Deep api learning 719
revisited. In Proceedings of the 30th IEEE/ACM In- 720
ternational Conference on Program Comprehension, 721
pages 321–330. 722

Changan Niu, Chuanyi Li, Bin Luo, and Vincent Ng. 723
Deep learning meets software engineering: A survey 724
on pre-trained models of source code. 725

OpenAI. 2023. Gpt-4 technical report. Preprint, 726
arXiv:2303.08774. 727

9

https://stackoverflow.com/
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://arxiv.org/abs/2303.08774

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-728
Jing Zhu. 2002. Bleu: a method for automatic evalu-729
ation of machine translation. In Proceedings of the730
40th annual meeting of the Association for Computa-731
tional Linguistics, pages 311–318.732

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,733
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and734
Alexander Miller. 2019. Language models as knowl-735
edge bases? In Proceedings of the 2019 Confer-736
ence on Empirical Methods in Natural Language Pro-737
cessing and the 9th International Joint Conference738
on Natural Language Processing (EMNLP-IJCNLP),739
pages 2463–2473.740

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao,741
Ning Dai, and Xuanjing Huang. 2020. Pre-trained742
models for natural language processing: A survey.743
Science China Technological Sciences, 63(10):1872–744
1897.745

Mohammad Masudur Rahman, Chanchal K Roy, and746
David Lo. 2016. Rack: Automatic api recommenda-747
tion using crowdsourced knowledge. In 2016 IEEE748
23rd International Conference on Software Analysis,749
Evolution, and Reengineering (SANER), volume 1,750
pages 349–359. IEEE.751

Ferdian Thung, Shaowei Wang, David Lo, and Ju-752
lia Lawall. 2013. Automatic recommendation of753
api methods from feature requests. In 2013 28th754
IEEE/ACM International Conference on Automated755
Software Engineering (ASE), pages 290–300. IEEE.756

Jiawei Wang, Li Li, and Andreas Zeller. 2021. Restor-757
ing execution environments of jupyter notebooks.758
In 2021 IEEE/ACM 43rd International Conference759
on Software Engineering (ICSE), pages 1622–1633.760
IEEE.761

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien762
Chaumond, Clement Delangue, Anthony Moi, Pier-763
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,764
et al. 2020. Transformers: State-of-the-art natural765
language processing. In Proceedings of the 2020 con-766
ference on empirical methods in natural language767
processing: system demonstrations, pages 38–45.768

Frank F. Xu, Bogdan Vasilescu, and Graham Neubig.769
2022. In-ide code generation from natural language:770
Promise and challenges. ACM Trans. Softw. Eng.771
Methodol., 31(2).772

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang,773
Yuchi Ma, Guangtai Liang, Ying Li, Tao Xie, and774
Qianxiang Wang. 2023. Codereval: A benchmark775
of pragmatic code generation with generative pre-776
trained models. arXiv preprint arXiv:2302.00288.777

Li Zhong and Zilong Wang. 2023. A study on robust-778
ness and reliability of large language model code779
generation. arXiv preprint arXiv:2308.10335.780

10

https://doi.org/10.1145/3487569
https://doi.org/10.1145/3487569
https://doi.org/10.1145/3487569

A Experiment Details781

We conduct extensive studies on ten selected mod-782

els from the variants of CodeBERT, GraphCode-783

BERT and PLBART on A100 GPUs. We also in-784

clude GPT-3.5-turbo for the assessment, though it785

is not specifically trained with mask prediction. We786

instruct GPT-3.5-turbo to predict top-20 masked787

tokens for each test of 1,000 randomly selected788

samples on API calls and imports, respectively. To789

guide GPT-3.5-turbo to correctly perform the pre-790

diction task, we prompt it with the instruction of791

“Predict top-20 answers of <mask> part of the fol-792

lowing Python API fully qualified name, pay atten-793

tion to the connected characters right after <mask>.794

Note the number of masked characters is at least795

one. Print each of 20 answers per line with index ”.796

B Examples of RQ2797

We present examples in Table 7.798

C Furture Study on The Effect of Natural799

Language Context on Knowledge800

Probing801

We further examine the impact of natural language802

(NL) context on a code model’s ability to compre-803

hend API names. To build a dataset of API-related804

NL context, we utilize the NL queries designed for805

Python API sequence usages in the work of (Martin806

and Guo, 2022). For example, <os.path.isfile>807

is paired with “file directory check”. We selected808

queries containing API sequences containing the809

PyINK API and transformed them into API pop810

quizzes. As some of the NL queries are long and811

infeasible for code models to process, we only812

choose the 10 shortest ones among these satisfied813

NL queries, and filter out the cases where the length814

is no more than 512 tokens determined by the Code-815

BERT tokenizer. At the end, we collected 56,645816

pop quizzes for API calls, and 56,644 for API im-817

ports. We compute the average P@k on each API818

name pop quiz with the group of NL queries con-819

catenated ahead. We compare them with the overall820

results without adding NL context at the beginning821

in Figure 4.822

Our results show that incorporating natural lan-823

guage queries led to a 2% improvement in prob-824

ing API call name knowledge, although we con-825

tend that this may be due to their non-API-focused826

design, as they were initially created for API se-827

quences rather than individual API calls (Martin828

and Guo, 2022). In addition, the relative perfor- 829

mances among code models do not change before 830

and after adding NL context, suggesting PyINK is 831

robust for API name evaluation. We anticipate that 832

incorporating API-focused natural language con- 833

text will yield more substantial gains. 834

11

Test Answer CodeBERT-MLM-Python GraphCodeBERT-MLM

A
PI

A
lia

s

import weka.flow.conversion as conversion
Pass pass [0.50], Pass [0.17], run [0.05], Go [0.02], Run [0.01] pass [0.66], Pass [0.15], cycle [0.08], write [0.04], walk [0.01]

conversion.<mask>Through(
import memote.support.helpers as helpers

find test [0.29], get [0.10], load [0.08], check [0.07], create [0.05] start [0.27], allow [0.14], stop [0.08], try [0.04], begin [0.04]
helpers.<mask>_converting_reactions(
import pandas as pd

Store Store [0.35], 5 [0.30], S [0.11], Parser [0.04], 4 [0.04] 5 [0.34], 4 [0.15], 3 [0.07], 0 [0.06], s [0.05]pd.HDF<mask>(
import numpy as np

ar ar [0.39], g [0.05], n [0.04], cal [0.04], b [0.03] ar [0.94], eu [0.03], ar [0.02], g [0.00], e [0.00]
np.<mask>ccos(

A
PI

A
dv

.A
lia

s

import weka.flow.conversion as ip
Pass pass [0.51], run [0.08], Pass [0.06], connect [0.02], import [0.02] pass [0.69], Pass [0.20], cycle [0.06], write [0.01], run [0.01]

ip.<mask>Through(
import memote.support.helpers as hermite

find test [0.27], get [0.13], check [0.09], load [0.05], create [0.04] start [0.41], stop [0.15], try [0.04], begin [0.03], allow [0.03]
hermite.<mask>_converting_reactions(
import pandas as IT

Store 5 [0.61], S [0.13], Store [0.11], 4 [0.03], Frame [0.01] 5 [0.27], 3 [0.12], s [0.11], 0 [0.10], 4 [0.07]IT.HDF<mask>(
import numpy as simplejson

ar py [0.09], simple [0.04], g [0.04], cal [0.03], fun [0.03] ar [0.28], eu [0.21], g [0.09], e [0.08], ce [0.06]
simplejson.<mask>ccos(

Table 7: Examples of prediction for CodeBERT-MLM-Python and GraphCodeBERT-MLM on API import aliases
and their adversarial samples. The last two columns reports the top five tokens generated together with the associated
probabilities (in square brackets).

0

20

40

60

80

100

AP
I C

al
l

Precision@1

0

20

40

60

80

100
Precision@5

0

20

40

60

80

100
Precision@10

0

20

40

60

80

100
Precision@20

CodeBERT-MLM

CodeBERT-MLM-Python

GraphCodeBERT-MLM
PLBART-Base

PLBART-Large

PLBART-CSNet
PLBART-Sum

PLBART-Gen
PLBART-MT

0

20

40

60

80

100

AP
I I

m
po

rt

CodeBERT-MLM

CodeBERT-MLM-Python

GraphCodeBERT-MLM
PLBART-Base

PLBART-Large

PLBART-CSNet
PLBART-Sum

PLBART-Gen
PLBART-MT

0

20

40

60

80

100

CodeBERT-MLM

CodeBERT-MLM-Python

GraphCodeBERT-MLM
PLBART-Base

PLBART-Large

PLBART-CSNet
PLBART-Sum

PLBART-Gen
PLBART-MT

0

20

40

60

80

100

CodeBERT-MLM

CodeBERT-MLM-Python

GraphCodeBERT-MLM
PLBART-Base

PLBART-Large

PLBART-CSNet
PLBART-Sum

PLBART-Gen
PLBART-MT

0

20

40

60

80

100

w/o NL w/ NL (mean)

Figure 4: Comparisons of P@1, P@5, P@10 and P@20 scores of selected code models. w/o NL: No natural
language context is provided along with pop quizzes. w/ NL: Mean performances when natural language context is
provided along with pop quizzes.

12

	Introduction
	Background and Related Work
	Pre-trained Code Models
	Knowledge Probing
	Generation-based API Recommendation

	INK: An evaluation framework of API Name Knowledge
	Motivation
	API Name Knowledge Probing Template
	Evaluation Design on API Call
	Evaluation Design on API Import
	Evaluation Design on API Import Alias
	Evaluation of Code Models: A Unified Vocabulary Approach
	Benchmarking Code Models via Knowledge Probing

	Experiment Setup
	PyINK: Evaluation on Python API Name Knowledge
	Code Models
	Evaluation Metric

	Results
	RQ1: How well do code models understand API calls and imports?
	RQ2: Do code models understand API import aliases?
	RQ3: How well can code models memorize and generalize on API names?

	Conclusion
	Experiment Details
	Examples of RQ2
	Furture Study on The Effect of Natural Language Context on Knowledge Probing

