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Abstract

Out-of-distribution (OOD) generalization on graphs aims at dealing with scenarios where the
test graph distribution differs from the training graph distributions. Compared to i.i.d. data
like images, the OOD generalization problem on graph-structured data remains challenging
due to the non-i.i.d. property and complex structural information on graphs. Recently,
several works on graph OOD generalization have explored extracting invariant subgraphs
that share crucial classification information across different distributions. Nevertheless,
such a strategy could be suboptimal for entirely capturing the invariant information, as the
extraction of discrete structures could potentially lead to the loss of invariant information or
the involvement of spurious information. In this paper, we propose an innovative framework,
named Generative Risk Minimization (GRM), designed to generate an invariant subgraph
for each input graph to be classified, instead of extraction. To address the challenge of
optimization in the absence of optimal invariant subgraphs (i.e., ground truths), we derive
a tractable form of the proposed GRM objective by introducing a latent causal variable,
and its effectiveness is validated by our theoretical analysis. We further conduct extensive
experiments across a variety of real-world graph datasets for both node-level and graph-level
OOD generalization, and the results demonstrate the superiority of our framework GRM.
Our code is provided at https://github.com/SongW-SW/GRM.

1 Introduction

In recent years, it has become increasingly crucial to develop machine learning models that can handle tasks
with test data distributions differing from training data, commonly referred to as out-of-distribution (OOD)
generalization (Mansour et al., 2009; Blanchard et al., 2011; Muandet et al., 2013; Beery et al., 2018; Recht
et al., 2019; Su et al., 2019). Such disparities, termed as distribution shifts, can substantially undermine the
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efficacy of the empirical risk minimization (ERM) paradigm, which presumes consistency in data distribution
across training and test phases (Quinonero-Candela et al., 2008; Lazer et al., 2014; Zhang et al., 2018). While
there exist numerous works (Hu et al., 2018; Krueger et al., 2021; Chang et al., 2020; Sagawa et al., 2020;
Koh et al., 2021) on OOD generalization for i.i.d. (independent and identically distributed) data (e.g.,
images), few have focused on graph-structured data, despite the prevalence of distribution shifts in real-
world graphs (Fakhraei et al., 2015; Gui et al., 2022; Yu et al., 2023). For instance, in citation networks (Hu
et al., 2020), the distribution of paper topics (i.e., node labels) may considerably change over time, leading to
differences in graph structures. However, Graph Neural Networks (GNNs) (Kipf & Welling, 2017; Hamilton
et al., 2017; Xu et al., 2019; Zhou et al., 2020; You et al., 2020), despite being the de facto choice to model
graphs, often fall short in addressing the challenge of distribution shifts on OOD graph data (AlBadawy
et al., 2018; Dai & Van Gool, 2018; Li et al., 2022a; Tan et al., 2022a; Zhang et al., 2024).

Existing works for OOD generalization primarily focus on identifying invariant relationships across diverse
data distributions, generally referred to as environments (or domains) (Arjovsky et al., 2019; Chang et al.,
2020; Ahuja et al., 2020). They typically aim to identify this invariant relationship, which maps input
invariant features to the outputs (e.g., labels), through robust optimization or learning an invariant fea-
ture space (Creager et al., 2021; Krueger et al., 2021). Regarding OOD generalization on graphs, existing
works (Chen et al., 2022; Miao et al., 2022; Chen et al., 2023; Tan et al., 2023; Wang et al., 2024) primarily
aim to identify an invariant subgraph Gc from a given graph G for predictions. However, such an extraction
strategy could be subpar for completely capturing the invariant information, which could be mixed with
spurious information in a graph and could not be distinctly separated (Bevilacqua et al., 2021). For exam-
ple, due to the complicated interactions (as edges) of atoms (as nodes) in a molecule graph, extracting a
node may inevitably incorporate both invariant and spurious information, thus failing to achieve a precise
invariant subgraph (Gui et al., 2022). Concretely, the strategy of extracting (discrete) structures may not
extract invariant information on graphs.

To deal with this, we propose an innovative framework, named Generative Risk Minimization (GRM), to
fully exploit invariant information on graphs. Different from the distinct extraction of invariant subgraphs
used in existing works (Chen et al., 2023; 2022), the core idea of GRM is to generate the invariant subgraphs
in a continuous manner. In particular, the generated invariant subgraph preserves the same set of nodes as
the input G, while possessing continuous edge weights and node representations. This design allows us to
flexibly preserve the invariant information without the need for extracting discrete structures, which could
potentially lead to loss of invariant information. To ensure that the generated subgraphs contain sufficient
invariant information, our proposed GRM framework involves two objectives: (1) generation objective, which
aims to generate precise subgraphs with continuous edge weights and node representations, and (2) invariant
objective, which ensures the independence of the invariant subgraph and the domains.

Although the above two objectives are straightforward and intuitive, it is challenging to directly optimize
them, especially when the domain labels are unavailable (Wu et al., 2022b). Therefore, we transform our
GRM objective into three correlated losses that could be used for optimization, based on our theoretical
analysis. In particular, our GRM framework achieves two attractive properties for OOD generalization. (1)
Maximally involving invariant information. We introduce a variational approximation of the latent causal
variable Z to both the generation objective and the invariant objective. Our derivation results ensure that
the learned latent representation of Z involves minimal loss of invariant information. (2) Minimally involving
spurious information. Our GRM framework could directly minimize the mutual information between the
invariant subgraph and the domains when combined with our generation objective, based on our theoretical
analysis. The derived loss forces the generator to focus less on domain-related information and thereby
reduces the incorporation of spurious information. In summary, our contributions are as follows:

• We develop the Generative Risk Minimization (GRM) framework, a novel approach that aims to generate
invariant subgraphs for graph OOD generalization.

• We provide a theoretical analysis that ensures the effectiveness of the generated subgraphs and sheds
light on the rationales of GRM and its validity in graph OOD generalization tasks.

• We evaluate GRM through extensive experiments on various real-world datasets that cover multiple types
of distribution shifts. The results validate the superiority of GRM over state-of-the-art baselines.
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Figure 2: The overall framework of GRM. Each input graph G is processed by the encoder of our generator
to learn the latent variable Z. Then we extract the most influential nodes from the domain and learn a
domain-specific representation for each node in G. These domain-specific representations will be used in the
invariance loss. We further classify the output invariant subgraph with a classifier to obtain the predictions.
The regularization loss is calculated for Z and the invariant subgraph.

2 Preliminaries

Figure 1: The SCMs with distribution shift (left)
and without distribution shifts (right).

In this section, we provide the formulation for our stud-
ied graph OOD generalization problem. We start by
representing a graph (or a local subgraph of a node in
node-level tasks) as G = (V, E , X), where V and E are
the node set and the edge set, respectively. Moreover,
X ∈ R|V|×dx is a feature matrix, where the j-th row vec-
tor (dx-dimensional) represents the attribute of the j-th
node. We can define the distribution of a graph and its
label from domain Di as (G, Y ) ∼ P (G, Y |Di), where
Y ∈ Y is the label of G. Here Y is the label space shared
across domains. We further denote the training and test
domains (i.e., graphs) as Dtr = {D1, D2, . . . , D|Dtr|} and
Dte = {D1, D2, . . . , D|Dte|}, respectively. Generally, existing works for OOD generalization on graphs pri-
marily rely on the Structural Causal Models (SCMs), as shown in Fig. 1, to interpret distribution shifts on
graphs (Chen et al., 2022; 2023). Specifically, the observed graphs G and labels Y are affected by the latent
causal variable Z and a spurious variable S, which decide the underlying invariant subgraph Gc and the
spurious subgraph Gs, respectively. As the spurious variable S is related to the domain D, existing works
aim to identify the invariant subgraph Gc for the precise prediction of its label Y , without the effect of S.
Specifically, the goal is to develop an invariant GNN, represented as M := fc ◦ g. This model comprises:
1) an extractor g : G → Gc that identifies the invariant subgraph Gc, and 2) a classifier f : Gc → Y that
predicts the label Y using the extracted Gc, where Gc denotes the space of subgraphs within G. However, the
extractor g in existing works could only output a discrete invariant subgraph Ĝc, which is a subset of edges
and nodes in the input graph G. As a result, the invariant information and spurious information cannot be
entirely separated when a node or edge consists of both types of information.

3 Methodology

In this section, we elaborate on our proposed Generative Risk Minimization (GRM) framework, which aims
to tackle the graph OOD generalization problem by generating invariant subgraphs instead of extraction. In
the following, we first derive our proposed GRM objective and then introduce specific designs to optimize
the objective in a generative manner. The overall process of our GRM framework is illustrated in Fig. 2.
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3.1 GRM Objective

In our GRM framework, we propose to learn a classifier f(·) and a generator g(·), such that the generator
g(·) will output an invariant subgraph for each input graph. Considering a graph input G = (V, E , X), the
generator aims to outputs the invariant subgraph Ĝc = (V̂, Ê , X̂) for classification.

To ensure that the obtained subgraph is maximally invariant across domains while preserving the causal
information, we consider the following learning objective for f and g, which is adopted in existing works (Chen
et al., 2022; 2023):

max I(Ĝc; Y ), s.t. Ĝc ⊥ D, Ĝc = g(G). (1)

However, it is difficult to directly optimize this objective. Generally, the optimization objective of the
generator is to maximize the log-likelihood term log P (Ĝc|G). Combining this term, we propose a more
feasible objective for Eq. (1):

max E
[
log P (Ĝc|G)

]
− I(Ĝc; D), (2)

which is referred to as our proposed GRM objective. Although the GRM objective is straightforward, it is
intractable due to the lack of ground truth, i.e., Gc, for the generated invariant subgraph Ĝc. Alternatively,
based on the SCMs on distribution shifts as illustrated in Fig. 1, we propose to model the causal variable Z
as a latent variable for graph generation. By introducing the latent causal variable Z, we are able to derive
the following theorem that allows for an end-to-end optimization for our objective in Eq. (2).
Theorem 3.1. An evidence lower bound (ELBO) for optimization of the GRM objective, by introducing a
latent causal variable Z and variational approximations Q(Z) and Q(Ĝc), is as follows:

max E
[
log P (Ĝc|G, Z)

]
− KL(Q(Z)∥P (Z|G)) − E[KL(P (Ĝc|D, Z)∥Q(Ĝc))] + E

[
log P (Z|D, Ĝc)

]
. (3)

The proof is provided in Appendix A.1. KL(·∥·) denotes the Kullback-Leibler (KL) divergence. Based on
the above objective, we could devise specific losses for optimization of the classifier and generator.

3.2 Generator Implementation

Before we derive the detailed optimization losses based on Theorem 3.1, we first introduce the implementation
of our generator. In particular, we aim to model Q(Z) using the generator g, which uses any graph G as
input. However, it remains challenging to model Z with a suitable architecture of the generator g in the
absence of the ground truth Ĝc. In particular, we propose to leverage the Variational Graph Auto-Encoder
(VGAE) (Kipf & Welling, 2016; Simonovsky & Komodakis, 2018) for the generation of invariant subgraphs.
This is because the optimization objective of VGAE involves a latent variable Z and aligns with the first
term of the GRM objective. As such, we propose to implement the generator g(·) as a VGAE.

Following the VGAE architecture, our generator consists of an encoder and a decoder. Given a graph input
G, the encoder maps it into a latent space and outputs the latent variable Z ∈ R|V|×dz . Here dz is the
dimension size of Z. Moreover, Z involves |V| latent representations, i.e., Z = {z1, z2, . . . , z|V|}, which
means we learn a latent representation for each node in G, and thus the number of nodes in Ĝc equals that
in G. For each node vi, where i ∈ {1, 2, . . . , |V|}, we learn its representation as follows:

zi ∼ N (z|µi, diag(σ2
i )), where µi = GNNµ(V, E , X)i and log σi = GNNσ(V, E , X)i. (4)

To generate node features of the invariant subgraph, i.e., X̂ ∈ R|V|×dx , we leverage the obtained latent
variable Z along with a linear projection layer fx(·):

X̂ = {fx(z1), fx(z2), . . . , fx(z|V|)}, where fx(zi) = Wxzi + bx. (5)

Here Wx ∈ Rdx×dz is the weight of the projection layer, and bx ∈ Rdx is the bias. Then we further generate
edges from the latent variables zi as follows:

Ê = {êij |i, j = 1, 2, . . . , |V|}, where êij = σ(f⊤
e (zi) · fe(zj)) and fe(zi) = Wezi + be. (6)
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Here We ∈ Rde×dz is the weight of the projection layer, and be ∈ Rde is the bias. de is the dimension
size of fe(zi). σ(x) = 1/(1 + exp(−x)) is the sigmoid function. Notably, unlike traditional graph generation
tasks (De Cao & Kipf, 2018; Jin et al., 2018), here we keep the continuous values of êij as the edge weight and
do not sample discrete edges. This is because we aim to generate precise subgraphs that maximally preserve
the invariant information, and sampling discrete edges could potentially incorporate spurious information or
cause the loss of invariant information. Through the above steps, we could generate an invariant subgraph
Ĝc = (V̂, Ê , X̂), given an input graph G.

3.3 Optimization based on GRM

In this subsection, we introduce the detailed process to optimize our framework based on the GRM objective
derived in Theorem 3.1. In particular, we design three different losses for the terms in the derivation result.

Supervision Loss. For the supervision loss, we first consider the term E[log(P (Ĝc|G, Z))]. As the ground
truth Gc is unobserved, the common choice of reconstruction loss in VGAE is unavailable. Therefore, we
propose to adopt the label Y of G as a proxy for Gc, based on the intuition that the optimal Gc should
maximally reflect the information of the label Y . In this manner, we could formalize the supervision loss as
follows:

Ls = −
∑
y∈Y

p(y|G) log p(y|Ĝc), where p(y|Ĝc) = fy(Ĝc) and Ĝc = g(G). (7)

In the above loss, p(y|Ĝc) is obtained by taking Ĝc as input to the classifier f(·), and fy(·) denotes the
output class probability regarding class y. Moreover, we set p(y|G) = 1 if y is the label of G, and p(y|G) = 0,
otherwise. The above supervision loss could be interpreted as a cross-entropy classification loss for Ĝc.

Regularization Loss. Generally, KL-divergence terms act as regularization in variational generation (Kipf
& Welling, 2016; Kingma et al., 2019; Simonovsky & Komodakis, 2018). In our derivation of the GRM
objective in Theorem 3.1, the two KL-divergence terms −KL(Q(Z)∥P (Z|G)) and −KL(P (Ĝc|D, Z)∥Q(Ĝc))
represent the differences between the distributions of Z (given D) and Q(Z), as well as between the dis-
tributions of Ĝc (given D and Z) and Q(Ĝc). Notably, the derived result is applicable for any Q(Z) and
Q(Ĝc). Specifically, we first define Q(Z) as a Gaussian distribution N (0, I), where I ∈ Rdz×dz is the identity
matrix. In this way, we could directly regularize the learned µ and log of Z, as P (Z|G) is also a Gaussian
distribution, and thus we could explicitly derive the KL-divergence between it and N (0, I). For the second
KL-divergence term, i.e., −KL(P (Ĝc|D, Z)∥Q(Ĝc)), we first formulate Q(Ĝc) as Q(Ĝc) = Q(X̂) · Q(Ê). In
this manner, we could obtain:

−KL(P (Ĝc|D, Z)∥Q(Ĝc)) = −KL(P (X̂|D, Z)∥Q(X̂)) − KL(P (Ê |D, Z)∥Q(Ê)). (8)

Notably, as X̂ is the linear projection of Z, the term −KL(P (X̂|D, Z)∥Q(X̂)) could also use Z for calculating
the regularization loss in a similar way to −KL(Q(Z)∥P (Z|G)). For another term −KL(P (Ê |D, Z)∥Q(Ê)),
we could decompose Q(Ê) into multiple independent Bernoulli distributions as êij ∼ Bernoulli(θ), where
θ ∈ [0, 1] is a controllable hyper-parameter. In this manner, we could consider the learned edge weight êij

as the parameter in a Bernoulli distribution and compute its KL-divergence with Q(Ê). In concrete, we
formulate the regularization loss as follows:

Lr =
dz∑

i=1

(
1
2(σ2

i + µ2
i ) − log σi

)
+

|V|∑
i=1

|V|∑
j=1

(r(αij , θ) + r(1 − αij , 1 − θ)) , (9)

where r(α, θ) = α log(α/θ). The first term is calculated from the KL-divergence of the two Gaussian
distributions, which is KL(P (X̂|D, Z)∥Q(X̂)). The second term is calculated from KL-divergence between
the two Bernoulli distributions, which is KL(P (Ê |D, Z)∥Q(Ê)). Particularly, this loss regularizes the learning
process of latent variable Z and the generation process of invariant subgraph Ĝc, such that the obtained Ĝc

is more generalizable to various domains.

Invariance Loss. Finally, we consider the thrid term derived in Theorem 3.1, i.e., E[log P (Z|D, Ĝc)].
Intuitively, this term aims to derive the correct latent variable Z given the generated invariant subgraph Ĝc
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and domain D. However, the ground truth of Z is unavailable during. Thus, we propose to use the latent
variable Z generated from Ĝc in Eq. (4) as the proxy and minimize the discrepancy between Z and another
set of latent variable H = {h1, h2, . . . , h|V|} learned from the domain D. We refer to H as the domain-
specific latent variable. In this manner, optimizing this term could make the learned latent variable Z less
vulnerable to the effect of domain-specific information, thereby enhancing the invariance of Z. Specifically,
we aim to precisely capture the domain information that is maximally related to nodes in V. Due to the
diversity of nodes within each domain, the useful domain information can be different for various nodes in
G and also distributed across the entire graph (Gui et al., 2022). Therefore, we propose to learn hi by
considering nodes that are influential on vi. Specifically, we construct a subgraph from these influential
nodes for vi and learn hi from this subgraph. To effectively select influential nodes, we consider both the
shortest path distance and the number of shortest paths. In practice, we choose the one-hop neighboring
node set Ni of vi and select nodes that are most influential to Ni to maximally capture domain information.
Notably, we select the one-hop neighboring node set because according to Theorem 1 in (Huang & Zitnik,
2020), the influence of one node on another decreases exponentially as the distance between the two nodes
increases. As a result, to determine the nodes from the domain that are most influential for a specific node,
it is logical to prioritize nodes with the smallest distances. To summarize, we can represent the selected
nodes for learning the domain-specific representation hi of node vi (the i-th node in V) as follows:

VD
i = {u|LS(u, Ni) ≤ L∗, P̃S(u, Ni) ≥ P ∗, }, where i = 1, 2, . . . , |V|. (10)

Here L∗ ∈ R and P ∗ ∈ R are hyper-parameters that control the number of selected nodes for learning domain
representations based on LS and P̃S , respectively. Ni is the set of one-hop neighboring nodes of vi, and V
is the node set of G. In this way, we can learn the domain-specific representation hi of node vi as follows:

hi = Mean
(
GNNµ(XD

i , VD
i , ED

i )
)

, where ED
i = {(va, vb)|va, vb ∈ VD

i }. (11)

Here, XD
i and ED

i are the corresponding node features and edge set of VD
i , respectively. hi is achieved by

mean-pooling over learned representations of nodes in VD
i , learned by the same GNN enocder in Eq. (4).

Then we could achieve the invariance loss for optimizing the term E[log P (Z|D, Ĝc)] in Theorem 3.1 as
follows:

Ld = 1
|V|

|V|∑
i=1

∥hi − zi∥2, where zi ∼ N (z|µi, diag(σ2
i )). (12)

Here zi is obtained in the same way as in Eq. (4). As such, the invariance loss could be used to alleviate the
domain influence on learned Z, which may involve spurious information.

Optimization. With our derived losses, the overall GRM objective for optimization is formulated as follows:

L = E(G,Y )∼P(G,Y |D)ED∈Dtr [Ls(G, Y )+ αLr(G) + βLd(G, D)] , (13)

where α and β are two hyper-parameters to control the weight of Lr and Ld, respectively. In this way, we
can effectively optimize our proposed GRM objective to tackle the OOD generalization on graph data.

3.4 Complexity Analysis

In this subsection, we analyze the time complexity of our framework. Particularly, the time complexity of our
framework is primarily determined by the GNN encoder and the VGAE generator module, along with the
three losses. Therefore, we first break down the complexity by considering the GNN and VGAE separately,
then combining their contributions. Note that the time complexity of the GNN encoder is O(|V|d2 + |E|d).
For the VGAE complexity, the module (1) encodes each node’s representation and (2) reconstructs the node’s
representation. For each node, the VAE in VGAE performs operations involving encoding and decoding,
which typically, and thus the time complexity for each node’s VAE operation is proportional to d2. Thus,
for all nodes, the VAE complexity is O(|V|d2). Note that this process already involves the time complexity
of the regularization loss. For the remaining two losses, the supervision loss and the invariance loss, we
compute the time complexity as follows. First, since we are using the cross-entropy loss as the supervision
loss, the time complexity is O(|V|d). The invariance loss involves computing the Euclidean distance between
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Table 1: Statistics of six out-of-distribution node classification datasets.

Shift Type Dataset # Nodes # Edges # Classes # Domains Metric
Artificial Cora 2,703 5,278 10 1/1/8 Accuracy

Transformation Photo 7,650 119,081 10 1/1/8 Accuracy
Cross-Domain Twitch 1,912 - 9,498 31,299 - 153,138 2 1/1/5 ROC-AUC

Transfers FB-100 769 - 41,536 16,656 - 1,590,655 2 3/2/3 Accuracy
Temporal Elliptic 203,769 234,355 2 5/5/9 F1 Score
Evolution Arxiv 169,343 1,166,243 40 1/1/3 Accuracy

Table 2: The graph OOD generalization results (test accuracy in % for Cora, Photo, FB-100, and ROC-AUC
in % for Twitch). The best results are in bold.

Dataset Cora Photo FB-100 Twitch
Method Min. Avg. Min. Avg. Min. Avg. Min. Avg.
ERM 65.0±1.5 68.2±0.4 84.4±1.5 88.6±1.3 50.5±0.4 52.8±0.6 49.7±1.1 52.2±0.9

DRNN 56.4±1.4 74.8±1.2 76.7±1.5 77.1±1.2 48.0±1.0 51.4±0.7 44.0±0.5 48.1±1.4

MMD 52.4±1.5 75.8±0.6 82.1±1.1 84.8±0.6 51.4±0.9 53.3±0.7 42.8±0.6 49.1±0.9

ARM 60.6±1.1 62.9±1.4 58.3±1.1 74.6±0.7 50.7±1.3 54.5±0.9 43.2±1.5 48.5±1.3

EERM 68.0±0.6 70.5±1.0 90.8±0.5 91.8±0.9 50.9±0.4 54.3±1.4 51.6±0.8 54.1±0.9

LiSA 71.1±1.5 76.7±0.8 90.3±1.2 91.5±1.5 48.8±1.2 54.2±1.0 48.6±1.2 55.8±2.2

IS-GIB 71.3±1.9 78.6±1.5 87.2±0.6 90.2±0.9 49.6±1.6 54.6±1.2 51.2±1.9 56.0±1.2

MARIO 70.8±1.3 76.1±1.0 88.6±0.8 89.4±1.4 50.3±1.9 53.9±1.4 50.7±2.0 55.1±1.9

GRM 74.2±1.2 81.2±1.5 91.3±0.9 92.7±1.6 52.0±1.3 55.1±1.1 52.5±1.7 56.7±1.0

two embeddings of each node, averaging across the graph. Therefore, the time complexity is O(|V|2d). In
conclusion, the overall time complexity is calculated as

O(|V|d2 + |E|d + |V|d2 + |V|d + |V|2d). (14)

By simplifying the above time complexity, we can obtain the final time complexity as

O(|V|d2 + |E|d + |V|2d). (15)

4 Experiments

4.1 Experimental Setup

Datasets. In our node-level OOD generalization experiments, we evaluate GRM and other state-of-the-
art baselines on six real-world datasets that cover different topics and tasks, following EERM (Wu et al.,
2022a). We summarize the statistics of these datasets in Table 1. Specifically, we use datasets that involve
three different types of distribution shifts: (1) “Artificial Transformation” denotes that synthetic spurious
features are added to these datasets; (2) “Cross-Domain Transfers” means that each domain in the datasets
corresponds to a graph distinct from each other; (3) “Temporal Evolution” means that the datasets are
dynamic with evolving nature. Each type includes two datasets. More details about these datasets can be
found in Appendix B.

Baselines. We evaluate our GRM framework in comparison to two sets of baselines. The general OOD
generalization methods include ERM, DRNN (Koh et al., 2021), MMD (Li et al., 2018), and ARM (Zhang
et al., 2021). The state-of-the-art graph OOD generalization methods include EERM (Wu et al., 2022a),
IS-GIB (Yang et al., 2023), MARIO (Zhu et al., 2023), and LiSA (Yu et al., 2023). We provide more details
and the parameter settings of these baselines in Appendix C.3.
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Table 3: The graph OOD generalization results (test accuracy in % for Arxiv and F1 score in % for Elliptic).
The best results are in bold.

Dataset Elliptic Arxiv
Method T1 T2 T3 Avg. T1 T2 T3 Avg.
ERM 59.6±1.4 63.5±1.3 61.7±0.6 61.6±1.1 47.6±0.9 45.5±1.4 41.4±1.0 44.8±1.4

DRNN 73.2±1.4 71.4±0.7 70.6±0.3 71.8±0.8 46.8±0.5 44.7±1.1 40.5±1.3 44.0±1.0

MMD 71.9±0.7 70.1±0.4 69.9±0.8 70.6±0.8 44.6±1.3 42.4±0.7 38.9±1.0 42.0±0.5

ARM 72.1±1.5 69.7±0.7 67.9±1.4 69.9±1.3 44.9±0.7 42.3±0.6 39.7±0.8 42.3±1.0

EERM 66.3±0.4 63.8±0.6 55.5±0.6 61.9±1.1 50.3±1.4 48.3±0.4 44.7±1.4 47.8±1.4

LiSA 68.8±0.9 65.6±0.7 69.3±1.0 67.9±0.8 45.9±0.6 42.3±0.5 46.1±0.8 44.7±0.6

IS-GIB 71.2±1.1 70.0±1.0 70.4±1.2 70.5±1.1 49.3±0.8 46.6±0.9 50.5±1.3 48.8±0.7

MARIO 69.8±1.9 72.8±2.4 71.1±1.4 71.2±2.0 48.8±2.3 50.1±2.4 49.2±2.4 49.4±2.8

GRM 89.4±1.5 85.5±1.1 89.1±1.5 88.0±1.4 52.2±0.9 52.6±1.4 56.1±1.4 53.6±1.2

GRM Settings. In this subsection, we introduce the detailed parameter settings in our framework GRM.
Specifically, we use the Adam optimizer (Kingma & Ba, 2015) for training. The dropout rate is set as
0.3, and the weight decay rate is 0.001. The learning rate is set as 0.01. Given an input graph, we utilize
two 2-layer GCNs (Kipf & Welling, 2017), with a hidden dimension size of 128, to learn domain-specific
representations and node representations. Then we concatenate these two representations as the input
of our VAE-based generator. The encoder of the generator is also implemented as a 2-layer GCN. The
dimension of latent variables (i.e., dz) is set as 128. For the specific values of L∗ and P ∗ in selecting nodes
for learning domain-specific representations, we set them as 3 and 1.5, respectively. For the neighborhood
size of the computation graph G of node v, i.e., L, we set it as 2. In other words, two-hop neighbors will
be included in the computation graph G. We run 5 times for this process and aggregate the classification
results. We provide our code in the supplementary materials. During training, we conduct all experiments
on one NVIDIA A6000 GPU with 48GB of memory. We adopt the same GNN encoder for all baselines,
i.e., a 2-layer GCN (Kipf & Welling, 2017). Notably, since DRNN and MMD are not designed for scenarios
with only one training domain, we use the interpolated domains generated by EERM as training domains
for these two methods.

4.2 Comparative Results on Node-Level Tasks

To comprehensively demonstrate the effectiveness of GRM, we evaluate its performance on six node-level
datasets with different types of distribution shifts and provide results in Table 2 and Table 3. We report the
worst case result (Min.) and average result (Avg.) for the first four datasets since they consist of multiple
(larger than three) test domains. The detailed results on each test domain are provided in Appendix D.
From the results, we summarize the observations as follows:

• Across all datasets with various types of distribution shifts, GRM consistently outperforms all other
baselines on both the worst case (Min.) and average (Avg.) results, which validates the superiority of
GRM on graph OOD generalization of node classification tasks.

• The performance improvement of GRM over other baselines is substantially larger on Elliptic. This
is because it contains a large number of test domains, leading to difficulties in generalizing to various
test domains. Nevertheless, our GRM framework optimized with the invariance loss will provide better
performance in this situation.

• The performance variances of GRM across test domains are lower on Photo and Arxiv compared to
other baselines. These datasets preserve greater node degrees (i.e., more complex structures) and a
larger class set. Our generative framework can learn more precise invariant subgraphs with the designed
regularization loss.
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4.3 Effect under Distribution Shifts
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Figure 3: The results of various methods on dataset
Cora-Mix with different degrees of distribution shifts.

In this subsection, we evaluate the effectiveness of
GRM under various degrees of distribution shift on
the Cora dataset. We introduce artificial distribu-
tion shifts on Cora by mixing node features gener-
ated from labels and domain IDs (details are pro-
vided in Appendix E), and we refer to the modified
dataset as Cora-Mix. We systematically evaluate
our framework and other baselines on Cora-Mix un-
der different spurious feature ratios and present the
results in Fig. 3. The results show that the perfor-
mance of all methods drops significantly when the
bias ratio increases. The performance drop is partic-
ularly sharp when the bias ratio increases from 0 to
0.1, indicating that spurious features can adversely
affect all models even with a small ratio. Moreover, our proposed framework GRM consistently outperforms
other baselines, especially when the bias ratio is relatively large (e.g., 0.5 ∼ 0.9). This demonstrates that
GRM can effectively alleviate the adverse impact of spurious information by generating invariant subgraphs
for classification.

4.4 Ablation Study
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Figure 4: Ablation study of our framework GRM with
different variants evaluated on six real-world datasets.

In this subsection, we perform a series of ablations
studies to evaluate the efficacy of different compo-
nents in our framework GRM. Specifically, we com-
pare our proposed framework GRM with three de-
generate versions: (1) GRM without the regular-
ization loss, denoted as GRM\R; (2) GRM with-
out the invariance loss. We denote this variant as
GRM\I; (3) GRM without the VGAE-based gener-
ator, which means we remove the stochastic sam-
pling of Z during generation, denoted as GRM\V.
From the results presented in Fig. 4, we obtain fol-
lowing insights. (1) GRM consistently outperforms
its variants with different components removed, in-
dicating that each module in GRM plays a vital role
in handling distribution shifts. (2) Deprecating the
invariance loss greatly reduces the performance on
Twitch and FB-100 with a limited number of do-
mains. This result implies that the invariance loss is crucial for datasets with few domains for existing works
to learn invariant representations. (3) The performance decreases differently by removing the VGAE module
or the regularization loss. Specifically, removing the regularization loss typically leads to a more significant
performance drop, as it is more challenging to generate precise invariant subgraphs without regularization.
Namely, the potential risk of overfitting is detrimental to performance. (4) From a broader perspective, the
invariance loss generally plays a more critical role than the other two components, as its removal causes a
larger performance drop. This is because learning invariant subgraphs is essential for addressing distribu-
tion shifts, as it directly impacts the effectiveness of a classifier trained on a domain different from the test
domain. (5) Moreover, the regularization loss and the VGAE module contribute in complementary ways.
The regularization loss prevents the generated graphs from deviating from a specific distribution, while the
VGAE module introduces randomness during generation. Both are crucial for maintaining the diversity and
robustness of the generated subgraphs. In summary, these components work together to enable GRM to
achieve robust generalization across diverse datasets and distribution shifts.
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4.5 Comparative Results on Graph-Level Tasks

Table 4: The OOD graph classification results (ROC-
AUC for Molhiv and accuracy in % for other datasets)
of various methods on four datasets, with the best re-
sults in bold.

Method SP-Motif MNIST G-SST2 Molhiv
DIR 39.87 20.36 83.29 77.05
GIL 46.04 21.94 83.44 79.08

CIGA 64.01 25.29 81.02 79.75
GALA 64.54 26.09 83.79 80.53
GRM 65.05 26.53 83.86 81.02

Although we focus on the node classification task,
our method is also applicable to graph classifica-
tion, i.e., graph-level out-of-distribution generaliza-
tion. In the setting for graph-level tasks, the domain
information exists in other graphs and thus could
not directly calculate the node influence. Thus,
we still use the nodes in the input graph G to
learn domain-specific representations H. Notably,
as these nodes will not cover the entire graph G,
the learned H will not be trivial, i.e., the same
for all nodes in G. For graph-level experiments,
We consider four prevalent datasets, namely SP-
Motif (Ying et al., 2019), MNIST-75sp (Knyazev
et al., 2019), G-SST2 (Graph-SST2) (Socher et al.,
2013), and Molhiv (OGBG-Molhiv) (Hu et al., 2020), with detailed provided in Appendix B.4. For base-
lines, we consider four state-of-the-art methods: DIR (Wu et al., 2022b), GIL (Li et al., 2022b), CIGA (Chen
et al., 2022), and GALA (Chen et al., 2023). From the results presented in Table 4, we observe that GRM
still exhibits competitive performance on OOD graph classification. Specifically, it achieves the best results
over other baselines on all four datasets. The performance improvement is better on the dataset Molhiv with
a larger graph size, thereby providing richer domain knowledge for our GRM to learn invariant information.

5 Related Works

5.1 Out-of-Distribution (OOD) Generalization

OOD Generalization aims to learn a model that can generalize to an unseen test domain, given several
different but related training domain(s). Prior invariant methods (Ganin & Lempitsky, 2015; Li et al., 2018;
Arjovsky et al., 2019) genreally focus on learning invariant features (Sun et al., 2016; Peng et al., 2019) or
optimizing for the worst-case group performance (Hu et al., 2018; Sagawa et al., 2020). Recent works for OOD
generalization on graphs (Chen et al., 2022; Li et al., 2022b; Wang et al., 2024) could be typically categorized
into two classes: invariant learning and graph augmentation (Li et al., 2022a). Among invariant learning
methods, CIGA (Chen et al., 2022) proposes to extract subgraphs that maximally preserve the invariant
intra-class information based on causality. DIR (Wu et al., 2022b) uses a set of graph representations
as the invariant rationales to create additional distributions. GIL (Li et al., 2022b) identifies invariant
subgraphs via a GNN-based generator. More recently, MARIO (Zhu et al., 2023) utilizes the Information
Bottleneck (IB) principle to learn invariant information. Among augmentation methods, LiSA (Yu et al.,
2023) proposes to leverage graph augmentation to obtain more diverse training data for learning invariant
information. EERM (Wu et al., 2022a) generates domains by maximizing the loss variance between domains
in an adversarial manner, such that the obtained domains could aid in learning invariant representations.

5.2 Graph Generative Models

In recent years, numerous works have been proposed for graph generation (You et al., 2018; Grover
et al., 2019). Specifically, GraphVAE (Simonovsky & Komodakis, 2018) proposes a framework based on
VAE (Kingma & Welling, 2013) to generate graphs by encoding existing graphs. GraphRNN (You et al.,
2018) generates graphs through a sequence of node and edge formations. Moreover, several methods (Jin
et al., 2018; Preuer et al., 2018) focus on generating graphs based on specific knowledge. For example,
MolGAN (De Cao & Kipf, 2018) adapts the framework of Generative Adversarial Networks (GANs) (Good-
fellow et al., 2014) to operate directly on graph-structured data with a reinforcement learning objective.
Note that although these methods leverage different information for generating graphs, they are not explic-
itly proposed for handling the distribution shift problem on graphs. In contrast, our framework GRM aims
to utilize domain information to generate graphs that are suitable for a trained classifier.
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6 Conclusion

In this paper, we propose a novel framework, namely Generative Risk Minimization (GRM), to generate
invariant subgraphs for each input graph to tackle the OOD generalization problem on graphs. Instead of
extracting structures that may cause the loss of invariant information, we propose our GRM objective that
incorporates a generation term and a mutual information term. We derive three types of losses to enable
the optimization of our GRM objective in the absence of ground truths for the invariant subgraphs. The
effectiveness of GRM is validated by our theoretical analysis and also the extensive experiments across both
node-level and graph-level OOD generalization tasks. The results indicate the superiority of GRM over other
state-of-the-art baselines.
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A Theoretical Analysis

A.1 Theorem 3.1 and Proof

In this section, we provide proof for Theorem 3.1.
Theorem 3.1. An evidence lower bound (ELBO) for optimization of the GRM objective, by introducing a
latent causal variable Z and a variational approximation Q(Ĝc), is as follows:

max E
[
log P (Ĝc|G, Z)

]
− KL(Q(Z|G)∥P (Z|G))

− E[KL(P (Ĝc|D, Z)∥Q(Ĝc))] + E
[
log P (Z|D, Ĝc)

]
,

(16)

Proof. We first present the GRM objective:

max E
[
log P (Ĝc|G)

]
− I(Ĝc; D). (17)

We first derive the ELBO for the generation objective, which is a standard derivation for the variational
auto-enocder (VAE):

log P (Ĝc|G)

= log
∫

Z

P (Ĝc, Z|G)dZ

= log
∫

Z

Q(Z|G)P (Ĝc, Z|G)
Q(Z|G) dZ

(using Jensen’s Inequality)

≥
∫

Z

Q(Z|G) log P (Ĝc, Z|G)
Q(Z|G) dZ

= EQ[log P (Ĝc, Z|G)
Q(Z|G) ]

(using the property of conditional probabilities)

= EQ[log P (Ĝc|Z, G) · P (Z|G)
Q(Z|G) ]

= EQ[log P (Ĝc|Z, G)] − EQ[log Q(Z|G)
P (Z|G) ]

(using the definition of KL-divergence)

= EQ[log P (Ĝc|G, Z)] − KL(Q(Z|G)∥P (Z|G)).

(18)

Then we decompose the second term −I(Ĝc; D) of our GRM objective as follows, based on the definition of
mutual information:

−I(Ĝc; D) = I(Ĝc; Z|D) − I(Ĝc; D, Z) (19)

We first decompose the first term:

I(Ĝc; Z|D) = E

[
log P (Ĝc|D, Z)

P (Ĝc|D)

]

= E

[
log P (Z|D, Ĝc)

P (Z|D)

]
= E

[
log P (Z|D, Ĝc)

]
+ H(Z|D)

(20)
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We consider P (Z|D) as a deterministic distribution for each D, and thus it could be ignored for optimization.

Then we dereive the lower bound for the second term:

−I(Ĝc; D, Z) = −E
Ĝc,D

[
log
(

P (Ĝc|D, Z)
P (Ĝc)

)]

= −E
Ĝc,D

[
log
(

P (Ĝc|D, Z)
Q(Ĝc)

)]
+ KL(P (Ĝc)∥Q(Ĝc))

≥ −E
Ĝc,D

[
log
(

P (Ĝc|D, Z)
Q(Ĝc)

)]
= −EG[KL(P (Ĝc|D, Z)∥Q(Ĝc))]

(21)

Finally, we could combine the above three derivation results to achieve the final evident lower bound for
optimization of the GRM objective:

max E
[
log P (Ĝc|G, Z)

]
− KL(Q(Z|G)∥P (Z|G))

− E[KL(P (Ĝc|D, Z)∥Q(Ĝc))] + E
[
log P (Z|D, Ĝc)

]
,

(22)

B Datasets in Experiments

In this section, we provide further details on the six datasets used in our experiments: Cora, Photo, Twitch,
FB-100, Elliptic, and Arxiv. Note that the datasets are originally processed by EERM (Wu et al., 2022a).
We follow the same dataset setting and splitting to keep consistency. Additionally, in Sec. 4.2, we report the
Min. and Avg. performance on four datasets, and further detailed results of these datasets are presented in
Appendix D.

B.1 Artificial Distribution Shifts on Cora and Photo

Cora and Photo are two popular benchmark datasets used for node classification tasks and are also widely
adopted to assess the effectiveness of GNN models. Specifically, these datasets are of moderate size, con-
taining thousands of nodes (2,703 and 7,650, respectively). The data statistics are provided in Table 1. In
particular, Cora is a citation network, where nodes represent papers and edges indicate the citation relation-
ship between them. On the other hand, Photo is a co-purchasing network, with nodes representing specific
goods and edges denoting frequent co-purchases of two goods. In the original dataset, the provided node
features exhibit a strong correlation with node labels. Following EERM (Hamilton et al., 2017), in order
to assess the model performance for graph OOD generalization under various distributions, we manually
introduce distribution shifts into the training and testing data.

More specifically, we construct node labels and spurious domain-sensitive attributes from node features.
Given the node features as X1, we start by randomly initializing a Graph Neural Network (GNN) with X1
as input and an adjacency matrix to generate node labels Y . To obtain the one-hot label vectors, we perform
an argmax operation in the output layer. Then, we randomly initialize another GNN with the concatenation
of Y and a domain ID as input to generate spurious node features X2. The next step is to concatenate
these two sets of node features, i.e., X = [X1, X2], to create new node features for training and test data.
This process is performed ten times for each dataset, resulting in ten graphs with different domain IDs.
For training and validation, we utilize one graph each, while the classification accuracy is reported on the
remaining graphs.
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B.2 Cross-Domain Transfers on Twitch and FB-100

Cross-domain transfers are a common occurrence in scenarios involving distribution shifts on graphs. In
various real-world situations, multiple observed graphs are available, each belonging to a specific domain.
For instance, in social networks, domains can be defined based on where or when the networks are collected.
Similarly, in protein networks, distinct species may have their own observed graph data, such as protein-
protein interactions, representing separate domains. The key point is that graph data typically captures
relational structures among specific entities, which often exhibit unique characteristics for different entity
groups. As a result, the data-generating distributions can vary across these groups, leading to domain shifts.

However, in order to facilitate transfer learning across graphs, it is necessary for the graphs within a dataset
to share the same input feature space and output space. To achieve this requirement, we utilize two publicly
available datasets, Twitch and FB-100, which satisfy these conditions.

Specifically, the Twitch dataset consists of seven networks, where nodes and edges represent Twitch users
and their mutual friendships, respectively. These networks are collected from different regions, namely DE,
ENGB, ES, FR, PTBR, RU, and TW. Although these networks have similar sizes, they exhibit variations
in terms of density and maximum node degrees, as presented in Table 5.

The FB-100 dataset comprises 100 snapshots of Facebook friendship networks from 2005. Here each network
contains nodes that represent Facebook users from a specific American university. In our experiments, we
utilize fourteen networks: John Hopkins, Caltech, Amherst, Bingham, Duke, Princeton, WashU, Brandeis,
Carnegie, Cornell, Yale, Penn, Brown, and Texas. These graphs exhibit significant variations in terms of
sizes, densities, and degree distributions, indicating that the model capability in handling different graph
structures becomes crucial for this dataset.

B.3 Temporal Evolution on Dynamic Graph Data: Elliptic and Arxiv

The distribution shift problem can also occur in temporal graphs that dynamically change over time. The
evolution of these graphs can be generally categorized into two types. In the first type, there exist multiple
snapshots of the graph, with each snapshot captured at a specific time. As time progresses, a sequence of
graph snapshots is generated, which may exhibit variations in terms of node sets and data distributions. For
example, financial networks capture the payment flows among transactions within different time intervals and
thus result in different domains. In the second type, there exists only one single graph that evolves through
the addition or deletion of nodes and edges. This type is commonly seen in large-scale real-world graphs,
such as social networks and citation networks. In these graphs, the distribution of node features, edges, and
labels often exhibit a strong correlation with time at different scales. For our graph OOD generalization
experiments, we utilize two public real-world datasets, namely Elliptic and Arxiv. These datasets are
suitable for exploring node classification tasks within the context of evolving temporal graphs.

The Elliptic dataset consists of a series of 49 graph snapshots, where each snapshot represents a network
of Bitcoin transactions. Specifically, each node corresponds to a transaction and each edge represents a
payment flow. Within these transactions, approximately 20% are labeled as either licit or illicit, with the
objective being to identify illicit transactions within future networks. In the original dataset, the first six
graph snapshots contain highly imbalanced classes, with the number of illicit transactions being less than 10
among thousands of nodes. Consequently, we exclude these snapshots and focus on the 7th to 11th, 12th to
17th, and 17th to 49th snapshots for training, validation, and testing, respectively. Furthermore, due to the
low positive label rate observed in each graph snapshot, we organize the 33 testing graph snapshots into 9
distinct test sets based on their chronological order. The dataset also requires the framework to effectively
handle diverse label distributions encountered during the transition from training to testing data.

The Arxiv dataset comprises 169,343 Arxiv CS papers covering 40 subject areas, along with their citation
relationships. The objective is to predict the subject area of a given paper. In (Hu et al., 2020), the papers
published before 2017, in 2018, and since 2019 were utilized for training, validation, and testing, respectively.
They employed a transductive learning setting (Tan et al., 2022c; Dolz et al., 2020; Mathavan et al., 2023),
wherein the nodes in the validation and test sets were also present in the training graph. Instead, Arxiv
adopts an inductive learning setting, which better reflects real-world scenarios. Here, the nodes in the
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validation and test sets are unseen during training, introducing a greater level of novelty. Specifically, the
dataset consists of papers published before 2011 for training, papers from 2011 to 2014 for validation, and
papers after 2014 for testing. Such a splitting strategy introduces a distribution shift between the training
and testing data, as specific latent influential factors (such as research topic popularity) in data generation
would change over time.

Table 5: Statistics of Twitch dataset.

Domain # Nodes # Edges Density Avg. Degree Max. Degree
DE 9,498 153,138 0.0033 16 3,475

ENGB 7,126 35,324 0.0013 4 465
ES 4,648 59,382 0.0054 12 809
FR 6,549 112,666 0.0052 17 1,517

PTBR 1,912 31,299 0.0171 16 455
RU 4,385 37,304 0.0038 8 575
TW 2,772 63,462 0.0165 22 1,171

B.4 Graph Classification Datasets for Out-of-Distirbution Generalization

Here we introduce the four datasets used in our experiments in Sec. 4.5, focusing on graph classification
tasks. In particular, we leverage the following datasets:

• SP-Motif (Ying et al., 2019): The SP-Motif dataset, comprising 18,000 synthetic graphs, is constructed
by combining a base graph (denoted by Tree, Ladder, or Wheel, represented as S = 0, 1, 2 respectively)
with a motif (Cycle, House, or Crane, denoted as C = 0, 1, 2 respectively). The label Y of each graph
is exclusively determined by its motif C. In the construction of the training set, deliberate spurious
correlations between the base S and the label Y are introduced. These correlations are quantified by the
formula P (S) = b × I(S = C) + (1 − b)/2 × I(S ̸= C), where the motif follows a uniform distribution, and
the base’s distribution is contingent on the motif. The parameter b is varied to produce different levels of
bias within the Spurious-Motif datasets. The testing set features randomly combined motifs and bases,
including graphs with larger bases, to accentuate the distributional disparities. In our experiments, we
set the value of b as 0.9.

• MNIST-75sp (Knyazev et al., 2019): This dataset transforms MNIST images into 70,000 graphs, each
comprising up to 75 superpixels. These superpixels, which serve as graph nodes, are interconnected based
on their spatial proximity, forming the graph edges. Each graph is categorized into one of 10 classes.
Notably, the testing set is augmented with random noise in the node features to introduce variability.

• Graph-SST2 (Socher et al., 2013; Yuan et al., 2022): This dataset includes graphs labeled according
to sentence sentiment, with nodes representing tokens and edges reflecting the syntactic relationships
between them. The graphs in this dataset are partitioned into different subsets based on their average
node degree, thereby creating dataset shifts.

• Molhiv (OGBG-Molhiv) (Wu et al., 2018; Hu et al., 2020): Designed for the task of molecular property
prediction, the Molhiv dataset encompasses graphs that represent molecules, where nodes correspond to
atoms and edges denote chemical bonds. Each graph is labeled based on its efficacy in inhibiting HIV
replication.

C Implementation Details

C.1 Baseline Settings

In this subsection, we introduce the detailed settings for baseline methods used in our experiments.
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• ERM: ERM denotes Empirical Risk Minimization, which conducts learning across domains without
designs for distribution shifts. This baseline acts as a vanilla comparison where no specific techniques are
employed for OOD generalization. We use the same GNN encoder as our framework and set the learning
rate as 0.001.

• EERM (Wu et al., 2022a): EERM denotes Explore-to-Extrapolate Risk Minimization, which minimizes
the mean and variance of risks from multiple domains that are simulated by adversarial context genera-
tors. For the parameter setting, we follow the choice in the original paper and search the hyper-parameters
with grid search on the validation dataset. Specifically, the learning rate for GNN is chosen from
{0.0001, 0.0002, 0.001, 0.005, 0.01}, the learning rate for graph editers is from {0.0001, 0.001, 0.005, 0.01},
and the weight for combination is chosen from {0.2, 0.5, 1.0, 2.0, 3.0}.

• ARM (Zhang et al., 2021): ARM denotes Adaptive Risk Minimization, which adapts the model parame-
ters to various domains based on a small batch of data from the domain. The ARM framework consists
of three variants: ARM-CML, ARM-BN, and ARM-LL. In our experiments, we compare the variant of
ARM-CML, which significantly outperforms all variants. Since ARM is not explicitly designed for graph
data, we employ the identical GNN architecture to our framework as the encoder and randomly select
nodes from each domain for adaptation. Following the original setting in the paper, we set the learning
rate as 0.0001, the weight decay rate as 0.0001, and the support size as 50. Furthermore, for ARM-CML,
the number of context channels is set as three.

• DRNN (Koh et al., 2021): DRNN aims to tackle the distribution shift problem by ensuring that the
distribution minority receives sufficient training. Following the setting in ARM, we set the learning rate
as 0.0001 and the robust step size as 0.01.

• MMD (Li et al., 2018): MMD aims to maximize the mean discrepancy across domains. For the parameter
setting, we set the learning rate as 0.0001 and the gamma value as 1. The support size is set the same as
ARM as 50.

• IS-GIB (Yang et al., 2023): IS-GIB aims to discard spurious features while learning invariant features
from a high-order perspective via preserving class relationships under various distribution shifts. We
follow the parameter setting in their code and set the learning rate as 0.01.

• MARIO (Zhu et al., 2023): MARIO proposes to simultaneously achieve generalizable representations
while obtaining invariant representations via adversarial data augmentations, based on graph contrastive
learning strategies (Oord et al., 2018; Khosla et al., 2020; Tan et al., 2022b; Wang et al., 2023). The
learning rate is set as 0.001.

• LiSA (Yu et al., 2023): LiSA proposes to leverage variational subgraph generators to extract locally
predictive patterns that could be used for constructing label-invariant subgraphs. These subgraphs are
then used to create augmented environments with enhanced diversity.

We adopt the same GNN encoder for all baselines, i.e., a 2-layer GCN (Kipf & Welling, 2017). Since DRNN
and MMD are not designed for scenarios with only one training domain, we use the interpolated domains
generated by EERM as training domains for these two methods.

C.2 Training Details

During training, we conduct all experiments on one NVIDIA A6000 GPU with 48GB of memory. The
package requirements of our experiments are listed below.

• Python == 3.7.10

• torch == 1.8.1

• numpy == 1.18.5

• scipy == 1.5.3
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• networkx == 2.5.1

• scikit-learn == 0.24.1

• pandas == 1.2.3

C.3 Training Time and Memory Usage

In this subsection, we provide the time/memory of all experiments conducted on one NVIDIA A6000 GPU
with 48GB of memory in Table 6.

Table 6: Training time and memory usage for different datasets.

Dataset Total Training Time (s) Time Per Epoch (s) Memory Usage (MB)
Cora 1,782.96 3.91 1,329
Photo 3,504.65 24.50 6,255
Twitch 1,156.37 7.93 3,011
FB-100 5,902.70 44.05 30,387
Elliptic 539.43 16.19 4,103
Arxiv 4,355.21 4.50 5,505

From the results, we observe that all training times and memory usages are within a controllable range,
demonstrating that our method is applicable to a wide variety of scenarios with different types of distribution
shifts. Moreover, the training time per epoch is particularly higher for Elliptic, as graphs in this dataset
contain significantly larger numbers of nodes and edges. Nevertheless, the total training time remains
reasonable, indicating that our method is scalable to large datasets.

D Detailed Results

In this section, we provide detailed results for the specific test domains on Cora (8 test domains), Photo (8
test domains), FB-100 (3 test domains), and Twitch (5 test domains). The results are provided in Table 7,
Table 8, and Table 9.

E Created Datasets with Different Degrees of Distribution Shifts

In this section, we introduce the details of the dataset Cora-Mix used in Sec. 4.3. Specifically, we aim to
manually control the degree of distribution shifts across different domains. However, the original dataset Cora
provided in EERM (Wu et al., 2022a) creates distribution shifts via the concatenation of domain-sensitive
features and label-related features, which means the degree of distribution shifts cannot be easily quantified.
Therefore, we propose to mix up these two types of features with a weight to control the distribution shift
degree. In particular, we follow the same strategy of generating these features, except that we changed their
dimensions to be equal. In this manner, we can perform mix-up on them with a specific weight, i.e., the bias
ratio. We also keep the domain split setting of 1/1/8 for training, validation, and test, respectively.

F Limitations

Despite its superior performance, our framework still possesses several limitations. For example, our GRM
framework involves the learning of domain information from other nodes or graphs in the domain. However,
in practice, the available graphs in each domain may not be sufficient. As a result, the performance of our
framework may be impacted. In addition, although our GRM framework is validated in both node-level and
graph-level tasks, its performance on edge-level tasks is not evaluated.
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Table 7: The graph OOD generalization results on Cora.

Method T1 T2 T3 T4 T5 T6 T7 T8
ERM 67.86 65.03 71.25 66.28 70.34 66.72 70.53 67.58

DRNN 76.62 73.63 83.09 56.35 78.18 78.47 79.84 72.49
MMD 75.30 86.23 82.87 52.44 82.02 77.70 80.61 69.05
ARM 62.22 64.25 62.74 62.27 64.11 62.92 60.64 64.40

EERM 70.09 70.99 72.55 71.13 71.03 68.04 71.29 68.88
LiSA 76.05 74.39 81.26 71.08 78.56 79.98 81.27 71.15

IS-GIB 75.67 76.41 84.61 74.07 82.90 80.79 82.74 71.32
MARIO 73.50 71.01 80.59 70.84 78.68 80.90 78.94 74.42
GRM 74.92 84.95 89.15 76.83 79.74 85.04 84.63 74.23

Table 8: The graph OOD generalization results on Photo.

Method T1 T2 T3 T4 T5 T6 T7 T8
ERM 84.35 89.57 89.39 90.14 87.63 90.08 87.34 90.04

DRNN 77.08 77.28 76.71 76.86 77.33 77.33 77.01 77.18
MMD 83.83 82.09 86.26 85.50 83.90 84.98 86.78 84.80
ARM 82.05 69.62 74.03 77.23 86.18 58.33 69.49 79.59

EERM 92.70 92.18 92.20 90.78 92.14 91.46 91.11 91.80
LiSA 92.01 92.14 90.88 90.26 91.62 91.09 92.24 91.71

IS-GIB 89.92 92.47 90.38 90.08 93.21 90.24 87.15 88.33
MARIO 91.18 89.24 89.37 88.34 89.81 88.87 88.57 90.10
GRM 93.37 92.53 91.91 93.86 94.33 91.56 91.30 92.42

Table 9: The graph OOD generalization results on FB-100 and Twitch.

Dataset FB-100 Twitch

Method T1 T2 T3 T1 T2 T3 T4 T5
ERM 50.48 54.53 53.23 54.20 55.20 50.41 51.58 49.73

DRNN 49.56 56.76 47.98 50.92 53.33 43.98 45.87 46.47
MMD 51.35 57.00 51.58 53.94 54.13 42.81 48.30 46.30
ARM 50.73 56.64 56.11 52.18 49.49 43.24 50.21 47.13

EERM 50.85 56.73 55.39 57.19 55.17 51.61 52.54 53.79
LiSA 59.13 48.83 54.73 63.04 57.94 48.58 54.45 55.13

IS-GIB 49.55 53.25 60.87 61.23 57.08 51.69 54.50 55.36
MARIO 50.33 55.73 55.57 59.45 56.81 53.57 50.67 54.98
GRM 51.95 56.11 57.33 61.45 56.82 60.25 52.52 52.64
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