

000 ISOLATED AGGREGATORS: TOWARDS FORGETTING- 001 FREE CONTINUAL VISUAL PLACE RECOGNITION 002 WITH FAST ADAPTATION 003

004
 005
 006 **Anonymous authors**
 007
 008
 009

010 ABSTRACT 011

012 Visual Place Recognition (VPR), the task of identifying revisited places by a
 013 query image, suffers significant degradation in long-term deployment due to non-
 014 stationary distribution shifts. Existing methods mainly rely on regularization-
 015 and/or replay-based continual learning strategies to address this challenge. How-
 016 ever, regularization remains vulnerable to catastrophic forgetting under strong do-
 017 main shifts, while replay introduces additional storage and latency costs and raises
 018 privacy concerns, making online adaptation impractical. To this end, we propose
 019 Isolated Aggregators, a new paradigm where each new environment is assigned
 020 an independent aggregator following a shared, frozen backbone. By design, pa-
 021 rameters for the backbone and all previously learned aggregators are frozen, pro-
 022 viding a structural guarantee against catastrophic forgetting. Meanwhile, fine-
 023 tuning only the new, lightweight aggregator for the current domain enables fast,
 024 privacy-preserving online adaptation to new environments without replay. We fur-
 025 ther maintain domain descriptors that allow the model to automatically select the
 026 appropriate aggregator during inference, ensuring robust continual VPR across di-
 027 verse environments. Extensive experiments show that our method achieves both
 028 zero forgetting and fast adaptation, improving Recall@1 by +9.9% (city-like to
 029 nature) and +3.5% (nature to indoor) and within just around 30 and 90 seconds
 030 of single-epoch and single-pass training on an NVIDIA RTX 4090. Code will be
 031 publicly available.

032 1 INTRODUCTION 033

034 Visual Place Recognition (VPR) is the task of identifying previously visited locations from a
 035 database given a query image. It is a fundamental problem in both computer vision and robotics,
 036 supporting core applications such as Structure-from-Motion (SfM) Schönberger & Frahm (2016);
 037 Schönberger et al. (2016), visual localization Sarlin et al. (2019), and Simultaneous Localization and
 038 Mapping (SLAM) Mur-Artal et al. (2015); Mur-Artal & Tardós (2017). Despite substantial progress
 039 in recent years, a critical challenge emerges in real-world deployments, where performance often
 040 degrades during domain shifts Lowry et al. (2015), for example when moving from urban to indoor
 041 environments, from daytime to nighttime, or across seasons from spring to winter.

042 Existing work incorporates continual learning into VPR via regularization or replay to address this
 043 challenge. An ideal continual VPR system should retain knowledge acquired from previous domains
 044 while rapidly adapting to new environments. Regularization-based methods Gao et al. (2022); Ming
 045 et al. (2024) penalize updates to parameters deemed important for previously learned domains. How-
 046 ever, under strong domain shifts, regularization faces a stability–plasticity dilemma: strong penalties
 047 hinder adaptation, whereas relaxed penalties lead to catastrophic forgetting De Lange et al. (2021).
 048 Replay-based methods Yin et al. (2023) store and reuse samples from prior domains during training.
 049 While effective at mitigating forgetting, replay requires memory that grows with the number of envi-
 050 ronments, increases data-loading and training latency, which is impractical for resource-constrained
 051 robots. It also raises privacy concerns.

052 Moreover, both methods are less effective with powerful Vision Transformer (ViT) backbones such
 053 as DINOv2 Oquab et al. (2023). With transformers, self-attention mixes information across the
 whole image, making “important” parameters harder to pinpoint. Even tiny updates may spread

widely through the network and cause severe catastrophic forgetting Chefer et al. (2021); Voita et al. (2019). At the same time, stronger backbones improve feature robustness, shifting the main bottleneck from feature extraction to the aggregation module. We find that the aggregation parameters (e.g., soft-assignment score-projection and cluster centroids in NetVLAD Arandjelovic et al. (2016) and score-projection in SALAD Izquierdo & Civera (2024)) remain highly sensitive to domain distribution. Consequently, the key challenge is not only to extract consistent cross-domain features, but also to learn domain-specific aggregations that maintain past-domain performance while adapting quickly to new environments.

Building on these observations, we propose Isolated Aggregators (IA), a framework that freezes a shared backbone and learns an independent, domain-specific aggregator for each new environment. Freezing the backbone preserves base task knowledge and provides a stable feature space for both past and new domains. Adaptation is confined to a new, lightweight aggregator, which is trained from scratch. Since the aggregator contains significantly fewer parameters than the backbone, it converges rapidly, enabling fast and effective adaptation to new environments. To avoid forgetting, we retain all domain-specific aggregators and automatically select the appropriate one at inference. This is achieved by comparing a routing descriptor computed from the current backbone features with each aggregator’s learned domain descriptor. The closest match is chosen. By design, our method structurally resolves the stability-plasticity dilemma while incurring substantially lower computational and memory overhead than regularization- or replay-based alternatives, as it updates only a small parameter set and requires no replay buffer. It also avoids the storage growth, latency overhead, and privacy concerns.

In conclusion, our contributions are threefold:

- We identify that for recent VPR models employing powerful foundation backbones like DINov2 Oquab et al. (2023), the continual VPR bottleneck lies in the aggregator rather than the backbone, and we further explain this aggregator sensitivity theoretically in Section 4.1.
- Accordingly, we introduce the first parameter-isolation continual learning framework for VPR, Isolated Aggregators (IA). IA freezes a shared backbone and learns an independent, domain-specific aggregator for each new environment. All aggregators are retained and automatically selected at inference. This design structurally prevents catastrophic forgetting while enabling fast adaptation to new environments.
- We demonstrate through extensive experiments that IA achieves both zero forgetting and rapid adaptation, improving Recall@1 by +9.9% (from city-like to nature) and +3.5% (from nature to indoor) within around 30 s and 90 s of training on an NVIDIA RTX 4090.

2 RELATED WORKS

2.1 VISUAL PLACE RECOGNITION

The evolution of Visual Place Recognition (VPR) has centered on the aggregator’s design, with the consistent goal of converting local/patch features into compact, distinctive global descriptors that remain robust across changing domains Lowry et al. (2015). Classical VPR relied on statistical aggregators to pool hand-crafted local features into a global representation. Prominent example is the Vector of Locally Aggregated Descriptors (VLAD) Jégou et al. (2010), which accumulates the residuals between local features and their assigned visual words.

CNN-based NetVLAD Arandjelovic et al. (2016) is a milestone, which ushered in the data-driven era by introducing a learnable, end-to-end trainable VLAD layer featuring learnable cluster centroids and a soft-assignment mechanism. However, both the learned cluster centroids and the soft-assignment are inherently sensitive to their training distribution, causing significant performance degradation under domain shifts Arandjelovic & Zisserman (2013). Subsequent methods, such as DINov2-based SALAD Izquierdo & Civera (2024), SuperVLAD Lu et al. (2024) and BoQ Ali-Bey et al. (2024), have attempted to enhance robustness by using various strategies to mitigate the reliance on fixed, learned cluster centroids. Nevertheless, they continue to depend on the domain-sensitive soft-assignment mechanism. This leaves a critical research gap for a long-term, deployable aggregation strategy that is robust by design.

108
109

2.2 CONTINUAL VISUAL PLACE RECOGNITION

110
111
112
113
114
115
116
117
118

Continual VPR methods have primarily followed two strategies: regularization and replay. Regularization-based approaches, such as AirLoop Gao et al. (2022) and VIPeR Ming et al. (2024), penalize updates to critical network parameters. While effective for CNNs, these methods fail to adequately constrain modern, large-scale Vision Transformers (ViTs), leading to a poor trade-off between forgetting and adaptation. Replay-based methods, such as BioSLAM Yin et al. (2023), achieve strong memory retention by storing and reusing past data. However, this comes at the cost of high computational overhead, storage requirements, and potential privacy issues, making them impractical for resource-constrained robotic applications. Neither approach offers a scalable continual VPR solution for the era of foundation models, motivating the need for a new paradigm.

119

2.3 PARAMETER-ISOLATION-BASED CONTINUAL LEARNING

120

121
122
123
124
125
126
127
128
129

A third paradigm for continual learning, parameter-isolation, offers an architectural solution to catastrophic forgetting by allocating distinct parameters for each new task. A prominent example of this is Parameter-Efficient Fine-Tuning (PEFT) Houlsby et al. (2019), using techniques like adapters Gao et al. (2024); Zhou et al. (2024) or prompts Wang et al. (2022a;b). These methods freeze the vast majority of the backbone’s parameters and insert small, trainable modules, such as adapters between its layers or prompts in the input space, for each new task. While highly successful in general Computer Vision (CV) and Natural Language Processing (NLP) tasks, this paradigm has been underexplored in VPR. Our work, Isolated Aggregators (IA), is the first to apply this parameter-isolation strategy to the VPR aggregator, addressing a key gap in the literature.

130

131
132

3 PROBLEM FORMULATION

133
134
135
136
137

Visual place recognition. Given a query image I_q and a reference database $\mathcal{D} = \{I_r\}_{r=1}^N$, a VPR model maps each image I to a global descriptor $z = f(I) \in \mathbb{R}^d$, which is ℓ_2 -normalized. During training, $f(\cdot)$ is optimized with the multi-similarity loss Wang et al. (2019) over mini-batches labeled by place IDs, pulling same-place pairs together and pushing different-place pairs apart:

138
139
140
141

$$\mathcal{L}_{MS} = \frac{1}{N} \sum_{i=1}^N \left\{ \frac{1}{\alpha} \log \left[1 + \sum_{j \in \mathcal{P}_i} e^{-\alpha(s_{ij} - m)} \right] + \frac{1}{\beta} \log \left[1 + \sum_{k \in \mathcal{N}_i} e^{\beta(s_{ik} - m)} \right] \right\}, \quad (1)$$

142
143
144
145

where \mathcal{P}_i and \mathcal{N}_i denote the positive and negative index sets for anchor i , respectively; s_{ij} is the cosine similarity between descriptors z_i and z_j (equal to $z_i^\top z_j$ after ℓ_2 normalization); and α , β , and m are hyperparameters controlling the sharpness and margin.

146
147
148
149
150
151
152

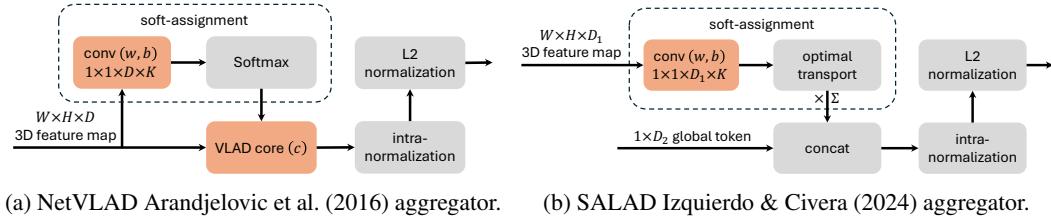
Continual learning setting. We train across a sequence of environments (domains) $t = 1, \dots, T$ with non-stationary data. At environment t , the available training set is $\mathcal{D}^t = \{(x_j^t, y_j^t)\}_{j=1}^{N_t}$, where each image x_j^t is associated with a place identity $y_j^t \in \mathcal{C}^t$. Images arrive sequentially and each sample is only seen once (single-pass). Data in environment t may induce appearance and condition shifts (e.g., illumination, season, weather). During training at environment t , the model has access only to \mathcal{D}^t and labels y_j^t ; past data and labels $\mathcal{D}^{0:t-1}$ and $\mathcal{C}^{0:t-1}$ are inaccessible.

153
154

4 REVISITING MODERN VPR PIPELINES

155
156
157
158
159
160
161

To map each image to a global descriptor, a single-stage Visual Place Recognition (VPR) model is composed of two main components: a backbone and an aggregator. Commonly used backbones include classical models like ResNet He et al. (2016), as well as the latest Vision Transformers (ViT) Dosovitskiy et al. such as DINOv2 Oquab et al. (2023). The backbone acts as a feature extractor, transforming the raw image into a high-dimensional, spatially rich, and semantically meaningful feature map. The following aggregator processes these feature maps (local descriptors) to produce a compact, highly discriminative global descriptor.



(a) NetVLAD Arandjelovic et al. (2016) aggregator. (b) SALAD Izquierdo & Civera (2024) aggregator.

Figure 1: Overview of state-of-the-art aggregators in modern VPR pipelines. Orange blocks indicate components with learnable parameters.

4.1 AGGREGATORS

VLAD Jégou et al. (2010) aggregates the residuals of each local descriptor with respect to a set of clustered centers. This approach captures richer statistical information about the feature distribution, providing a more robust and discriminative descriptor.

Given N local descriptors $\{x_i\} \in \mathbb{R}^D$, and K cluster centers $\{c_k\}$, the handcrafted VLAD representation is constructed as a $K \times D$ matrix. For each descriptor, the nearest cluster center is identified, and the distance between the descriptor and that center is accumulated into the corresponding column of the matrix. Mathematically, this can be expressed as:

$$V(j, k) = \sum_{i=1}^N a_k(x_i)(x_i(j) - c_k(j)), \quad (2)$$

where $a_k(x_i) = 1$ if the descriptor x_i is assigned to cluster c_k , and 0 otherwise. Each column therefore encodes the sum of residuals of descriptors associated with one cluster center.

NetVLAD Arandjelovic et al. (2016) extends this concept by introducing a trainable and differentiable version of VLAD. Rather than hard assignment (each local descriptor assigned to its nearest cluster), NetVLAD uses soft assignment, so each local descriptor contributes to multiple clusters with learnable weights produced by a 1×1 convolution:

$$\bar{a}_k(x_i) = \sum_{i=1}^N \frac{e^{w_k^T x_i + b_k}}{\sum_{k'} e^{w_{k'}^T x_i + b_{k'}}}. \quad (3)$$

As shown in Figure 1a, the soft-assignment score-projection weights w_k , bias b_k , and cluster centers c_k are trainable parameters, allowing the aggregation to be optimized jointly with the backbone through end-to-end learning.

While NetVLAD significantly advanced handcrafted VLAD by enabling supervised, end-to-end training, it remains inherently susceptible to domain shifts. This limitation arises because the parameters learned from the training domain A may not align well with the feature space encountered in a new inference domain B Arandjelovic & Zisserman (2013). This mismatch can be formally described by the residual aggregation in the following equation:

$$V(j, k) = \sum_{i=1}^N \frac{e^{w_k^T x_i^B + b_k^A}}{\sum_{k'} e^{w_{k'}^T x_i^B + b_{k'}^A}} (x_i^B(j) - c_k^A(j)), \quad (4)$$

where w_k^A , b_k^A , and c_k^A are learned from the **training domain A**, while x_i^B represents the feature maps generated from the backbone in the **unseen inference domain B**. In this case, the residual aggregation becomes biased toward mismatched centroids, causing the resulting representation to emphasize irrelevant variations. This fundamentally weakens the model's robustness under domain shifts, highlighting a key challenge for real-world, long-term deployment.

SALAD Izquierdo & Civera (2024) mitigates these issues by aggregating features via weighted summation rather than residuals to cluster centroids (see Figure 1b). However, it is not entirely cluster-independent: the score-projection layer used for feature-to-cluster assignment remains sensitive to domain shifts Lu et al. (2024).

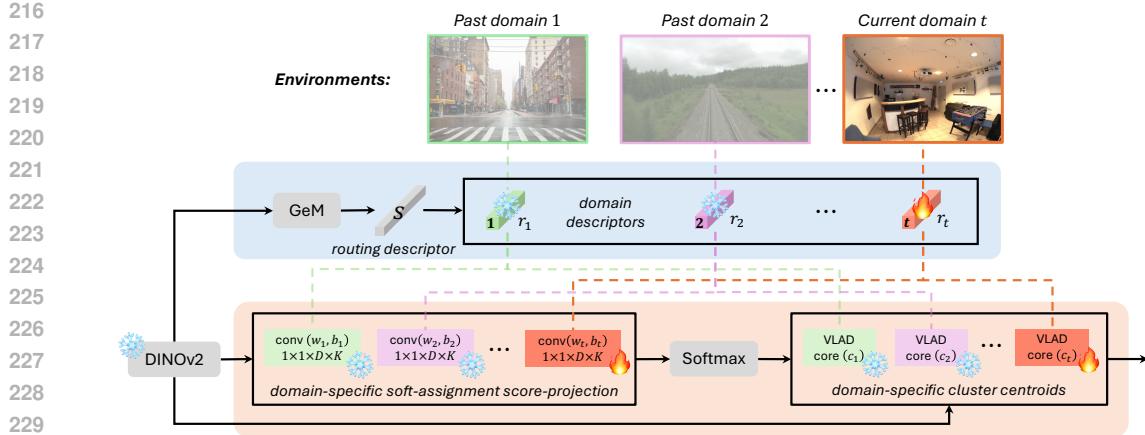


Figure 2: **Overview of our Isolated Aggregators framework with NetVLAD (NetVLAD-IA).** A frozen DINOv2 backbone produces local descriptors. For each environment, we maintain a lightweight, domain-specific aggregator consisting of a 1×1 score-projection convolutional layer and cluster centroids. When a new domain t arrives, only the new aggregator is trained; the backbone and all previous aggregators remain frozen. A bank of domain descriptors $\{r_i\}$ is trained and used to choose the appropriate aggregator at inference.

5 ISOLATED AGGREGATORS

5.1 FAST AND EFFECTIVE DOMAIN ADAPTATION

In Section 4.1, we analyze that NetVLAD and SALAD are vulnerable to domain shifts because their soft-assignment score-projection layer and cluster centroids are learned on the training distribution, leading to misalignment with backbone features extracted in novel environments.

To address this limitation, as shown in Figure 2, we freeze the backbone parameters and learn domain-specific aggregator parameters, i.e., score-projection weights w_k , biases b_k , and cluster centroids c_k , for each newly encountered domain. This ensures that w_k , b_k , c_k , and local descriptors x_i are aligned within the same domain B . The VLAD residual for cluster k (at dimension j) is then

$$V(j, k) = \sum_{i=1}^N \frac{e^{w_k^T x_i^B + b_k^B}}{\sum_{k'} e^{w_{k'}^T x_i^B + b_{k'}^B}} (x_i^B(j) - c_k^B(j)). \quad (5)$$

As a result, the adapted soft-assignment layer can accurately associate local descriptors with the correct clusters, enabling a precise computation of residuals against the correspondingly adapted cluster centroids within the same domain.

5.2 TOWARDS FORGETTING-FREE AGGREGATOR ROUTING

A practical challenge at inference is selecting the correct domain-specific aggregator when the current environment is unknown. Assuming access to oracle domain labels is unrealistic, as real-world agents must operate under unseen conditions without annotation. Inspired by ProtoDepth Rim et al. (2025), we introduce a lightweight routing mechanism based on compact *domain descriptors* that automatically selects the appropriate aggregator, enabling forgetting-free aggregator routing without external labels.

Learning domain descriptors. During training, each domain t is assigned a learnable descriptor $r_t \in \mathbb{R}^d$. For an input image x from domain t , we extract a per-image *routing descriptor* $s(x)$ by global average pooling the backbone bottleneck features (optionally followed by a linear projection) and ℓ_2 -normalize it. Unlike aggregator parameters, $\{r_t\}$ serve only as identifiers for routing; once a domain is learned, its descriptor is frozen. When a new domain arrives, a fresh r_t is initialized

270 and optimized to align with the current domain while remaining distinct from all previously learned
 271 domains. We use a cosine-based objective:
 272

$$273 \quad \mathcal{L}_D = (1 - \cos(\bar{s}_t, r_t)) + \frac{\lambda}{T-1} \sum_{j \neq t} \cos(r_t, r_j), \quad (6)$$

274 where \bar{s}_t is the mini-batch mean of $s(x)$ for domain t , and $\lambda > 0$ balances alignment and separation.
 275 The overall training loss combines VPR training with descriptor learning:
 276

$$277 \quad \mathcal{L} = \mathcal{L}_{MS} + \mathcal{L}_D. \quad (7)$$

280 **Routing at inference.** Given a query image, we compute its routing descriptor s and select the
 281 aggregator whose descriptor is most similar:
 282

$$283 \quad t^* = \arg \max_t \cos(s, r_t). \quad (8)$$

284 This routing is efficient, deterministic, and label-free. It scales gracefully as new environments are
 285 introduced, avoids catastrophic forgetting by never modifying past aggregators, and activates only
 286 the relevant expert at inference, providing a practical and robust solution for lifelong VPR under
 287 continuously evolving conditions. The effectiveness of aggregator routing via domain descriptors is
 288 evaluated in Section A.3.
 289

290 6 EXPERIMENTS

292 6.1 IMPLEMENTATION DETAILS

294 We evaluate our Isolated Aggregators (IA) with two state-of-the-art aggregators, NetVLAD Arand-
 295 jelovic et al. (2016) and SALAD Izquierdo & Civera (2024), on a DINOv2 Oquab et al. (2023)
 296 backbone. To ensure fairness, we adopt the same aggregator configurations and optimization set-
 297 tings as NetVLAD and SALAD. Experiments are conducted on an NVIDIA RTX 4090 GPU.
 298

299 6.2 BASELINES

301 We compare IA against the regularization-based AirLoop Gao et al. (2022) and replay via Experi-
 302 ence Replay (ER) Rolnick et al. (2019). For reference, we also report a non-continual baseline: full
 303 fine-tuning on each environment (*Finetuned*). We attempted to include BioSLAM Yin et al. (2023)
 304 and VIPeR Ming et al. (2024), but their implementations are closed-source at the time of writing,
 305 preventing reproduction.
 306

307 6.3 CONTINUAL PROTOCOLS AND EVALUATION DATASETS

308 We categorize VPR domain shifts into two types and design corresponding continual learning pro-
 309 tocols: (i) Location-induced shifts, which occur when transitioning between geographical contexts
 310 (e.g., urban \rightarrow natural \rightarrow indoor); and (ii) Condition-induced shifts, which arise from appearance
 311 variations like changes in illumination, weather, or season.
 312

313 **Location-induced protocol.** To the best of our knowledge, we are the first to propose this chal-
 314 lenging cross-location protocol for continual VPR evaluation. In this protocol, we start from a base
 315 model pre-trained on GSV-Cities Ali-bey et al. (2022) (city-like) and then adapt and evaluate it se-
 316 quentially on Nordland Olid et al. (2018) (natural) and ScanNet Dai et al. (2017) (indoor). The
 317 evaluation datasets are described in Section A.1.
 318

319 **Condition-induced protocol.** Following Gao et al. (2022), we also evaluate condition-induced
 320 shifts on Nordland. Unlike their setups, we initialize with a base model pre-trained on the GSV-
 321 Cities dataset before adapting to new conditions. The model is adapted sequentially across the four
 322 seasons (spring, summer, fall, winter) and evaluated after each step.
 323

To mimic realistic deployment, all adaptation is performed in a single epoch with a single pass over
 each image. Past data are not accessible (no replay).

324 6.4 EVALUATION METRICS
325

326 To evaluate the model’s ability to retain past knowledge and adapt to new domains, we adopt the
327 evaluation protocol in previous work Gao et al. (2022). We form a $T \times T$ matrix R , where $R_{i,j}$
328 is the R@1 on environment j after training on environment i . We report three scalars: Average
329 Performance (AP), which provides a holistic view of the model’s effectiveness; Backward Transfer
330 (BWT), where a negative value signifies catastrophic forgetting. The metrics are calculated as:

$$331 \quad AP = \frac{\sum_{i=1}^T \sum_{j=1}^i R_{i,j}}{T(T+1)/2}, \quad BWT = \frac{\sum_{i=2}^T \sum_{j=1}^{i-1} (R_{i,j} - R_{j,j})}{T(T-1)/2}. \quad (9)$$

335
336 Table 1: Our Isolated Aggregation (IA) framework achieves strong adaptation and zero-forgetting
337 capacity in both location- and condition-induced continual protocols. \uparrow denotes improvement over
338 the base or seen domain on the same dataset; \rightarrow denotes no forgetting relative to the previous step.

339 (a) Location-induced continual VPR. Starting (b) Condition-induced continual VPR on Nordland
340 from a base model pre-trained on a city-like (2018). Starting from a city-like pre-trained base, the model is
341 dataset Ali-bey et al. (2022), the model is adapted sequentially across seasons (spring \rightarrow summer \rightarrow fall
342 adapted sequentially to *Nordland* Olid et al. \rightarrow winter). Each row indicates the *evaluation season*; *Base* is
343 (2018) and then *ScanNet* Dai et al. (2017). *Base* reports performance before any seasonal adaptation. Under *IA (Ours)*,
344 columns report performance after each adaptation step.

Aggregator	Dataset	Base	IA (Ours)			
			Nordland	ScanNet	spring	summer
NetVLAD	Nordland	70.7	74.5 \uparrow	74.5 \rightarrow	73.7	74.4 \uparrow
	ScanNet	90.5	90.5	90.5 \rightarrow	70.8	71.4
	SALAD	Nordland	76.6	86.5 \uparrow	86.5 \rightarrow	70.6
		ScanNet	88.5	88.0	91.5 \uparrow	72.0
SALAD	SALAD	spring	72.7	76.1 \uparrow	76.7 \uparrow	76.6 \uparrow
		summer	70.9	73.9	74.9 \uparrow	75.1 \uparrow
		fall	70.7	73.4	74.1	74.4 \uparrow
		winter	69.2	71.7	71.7	72.3 \uparrow

355 6.5 CONTINUAL PLACE RECOGNITION PERFORMANCE
356357 6.5.1 LOCATION-INDUCED SHIFTS
358

359 We first evaluate our Isolated Aggregators (IA) framework on the challenging location-induced
360 continual learning protocol, with results presented in Table 1a. Our method demonstrates both strong
361 forward adaptation and perfect backward retention (zero forgetting).

362 NetVLAD-IA improves Recall@1 by 3.8% (from 70.7% to 74.5%) when adapting from the urban
363 base domain to the natural *Nordland* dataset. As reported in the table, when the model subsequently
364 adapts to the indoor domain (*ScanNet*), it perfectly retains its performance on *Nordland* (74.5%),
365 achieving zero forgetting.

366 The improvements are even more pronounced with the stronger SALAD aggregator. SALAD-IA
367 achieves a remarkable +9.9% (76.6% to 86.5%) when adapting to *Nordland*. Furthermore, when
368 transitioning to the indoor *ScanNet* dataset, it not only maintains its expert performance on *Nordland*
369 (86.5%) but also continues to improve its performance by 3.5%, demonstrating effective adaptation.

370 As shown in Table 2, IA outperforms baseline continual VPR methods on both overall performance
371 (AP) and forgetting (BWT). With the NetVLAD aggregator, IA attains the best AP of 79.8%, ex-
372 ceeding AirLoop and Replay by 12.6% and 7.5%, respectively. It is also the only method with a
373 positive BWT (+1.3%), indicating no catastrophic forgetting, whereas AirLoop and Replay exhibit
374 substantial forgetting (BWT of -6.5% and -2.7%, respectively). The advantage is even more signif-
375 icant with the stronger SALAD aggregator: SALAD-IA achieves an AP of 88.2% and a BWT of
376 +4.3%, outperforming all baselines.

378
 379 Table 2: Continual VPR performance comparison in both location-induced and condition-induced
 380 protocols. IA demonstrates a significant advantage in both overall performance (AP) and cata-
 381 strophic forgetting (BWT) abilities over existing continual learning strategies.

382 Aggregator	383 Method	384 Location-induced		385 Condition-induced	
		386 AP	387 BWT	388 AP	389 BWT
390 NetVLAD	Finetuned	59.2	-18.1	51.6	-0.2
	AirLoop Gao et al. (2022)	67.2	-6.5	62.9	-0.1
	Replay Rolnick et al. (2019)	72.3	-2.7	66.2	0
	IA (Ours)	79.8	+1.3	72.8	0
391 SALAD	Finetuned	62.1	-18.5	53.0	-0.1
	AirLoop Gao et al. (2022)	60.6	-10.1	51.4	+0.7
	Replay Rolnick et al. (2019)	76.1	-2.3	67.3	+0.1
	IA (Ours)	88.2	+4.3	75.2	+0.3

394 6.5.2 CONDITION-INDUCED SHIFTS

395 In the condition-induced protocol on the Nordland dataset, our IA framework demonstrates a strong
 396 ability to continuously adapt to seasonal changes while perfectly preserving knowledge from previ-
 397 ously seen conditions. The results are detailed in Table 1b.

398 With NetVLAD as the base aggregator, IA shows consistent positive adaptation. For example, when
 399 first adapting to ‘spring’, performance improves from 73.7% to 74.4%. As the model sequentially
 400 adapts to ‘summer’, ‘fall’, and ‘winter’, it not only learns the new conditions but also maintains its
 401 peak performance on all previously seen seasons, achieving zero forgetting in all subsequent steps.

402 Using the SALAD aggregator, the benefits of our framework are even more evident. SALAD-IA
 403 shows significant and cumulative performance gains across the seasonal sequence. It achieves a
 404 3.4% gain on ‘spring’ (72.7% to 76.1%), and continues to improve its performance on both ‘spring’
 405 and ‘summer’ even as it adapts to ‘fall’. This demonstrates strong adaptation on unseen environ-
 406 ments, while achieving zero forgetting on past domains.

407 Additionally, our IA framework continues to lead in overall performance while completely elimi-
 408 nating forgetting, as reported in Table 2. For both NetVLAD and SALAD, IA achieves the highest
 409 AP (72.8% and 75.2%, respectively). In terms of forgetting, our method achieves a BWT of 0 with
 410 NetVLAD and +0.3% with SALAD, effectively achieving zero-forgetting capability. Notably, IA
 411 achieves this perfect retention while delivering a significantly higher AP than Replay and AirLoop,
 412 confirming its ability to adapt to new environments without forgetting past knowledge.

413 We report an additional condition-induced shift experiment on the RobotCar Maddern et al. (2017)
 414 dataset in Section A.2, where illumination changes follow sun → night → overcast. The results
 415 further show that our Isolated Aggregators (IA) framework is markedly more stable than regulariza-
 416 tion Gao et al. (2022) under condition-induced shifts against catastrophic forgetting.

419 6.6 ONLINE LEARNING RUNTIME PERFORMANCE

420 We report the online learning runtime performance of our method on both the Nordland and ScanNet
 421 datasets. All runtime experiments are conducted on an NVIDIA RTX 4090 GPU, and each value is
 422 the average of 10 runs.

423 As reported in Table 3a, both NetVLAD-IA and SALAD-IA achieve efficient online adaptation. On
 424 the Nordland dataset, with 4,096 places, NetVLAD-IA requires 90.33 seconds, while SALAD-IA
 425 completes training in 87.54 seconds. On the ScanNet dataset, which contains 1,513 indoor scenes,
 426 NetVLAD-IA finishes in 29.84 seconds, and SALAD-IA achieves a slightly faster runtime of 27.1
 427 seconds. In each place and scene, we randomly select 4 images for training.

428 These results demonstrate that our continual learning framework not only provides strong adapta-
 429 tion and robustness against forgetting, as shown in previous experiments, but also maintains high
 430 computational efficiency during online training, making it practical for real-time deployment.

432 Table 3: Runtime performance and memory footprint of our Isolated Aggregators (IA) framework.
433

434 (a) Runtime performance of our IA.

435 (b) Memory footprint of our NetVLAD-IA framework.

436 Dataset	#places	NetVLAD-IA	SALAD-IA	Object	#parameters	float64 (8B)	float32 (4B)	float16 (2B)	int8 (1B)
437 Nordland	4,096	90.33s	87.54s	Score-projection weights	24,576	192 KB	96 KB	48 KB	24 KB
437 ScanNet	1,513	29.84s	27.1s	Cluster centroids	24,576	192 KB	96 KB	48 KB	24 KB

438 6.7 MEMORY FOOTPRINT ANALYSIS

439
440 We further report the memory overhead of our method in Table 3b. For NetVLAD-IA, we store the
441 soft-assignment score-projection weights (192 KB) and cluster centroids (192 KB), totaling 384 KB
442 per domain. The cost scales linearly with the number of domains: e.g., 10 domains for 3.75 MB,
443 1,000 domains 375 MB. For SALAD-IA, only the score-projection layer is stored, i.e., 192 KB per
444 domain (10 domains 1.875 MB; 1,000 domains 187.5 MB).445
446 These lightweight footprints make IA highly scalable and memory-efficient, supporting long-term
447 continual operation across many environments without prohibitive storage.
448

449 Table 4: Effect of architectural choice for adaptation on continual performance.

450 Aggregator	Dataset	Base	Configuration I		Configuration II		IA (Ours)	
			Nordland	ScanNet	Nordland	ScanNet	Nordland	ScanNet
451 NetVLAD	Nordland	70.7	73.5 \uparrow	73.2 \downarrow	50.9 \downarrow	43.5 \downarrow	74.5 \uparrow	74.5 \rightarrow
	ScanNet	90.5	90.5	90.5 \rightarrow	88.5	97.0 \uparrow	90.5	90.5 \rightarrow
452 SALAD	Nordland	76.6	83.8 \uparrow	83.2 \downarrow	42.1 \downarrow	29.8 \downarrow	86.5 \uparrow	86.5 \rightarrow
	ScanNet	88.5	88.5	90.5 \uparrow	86.5	96.0 \uparrow	88.0	90.5 \uparrow

453 6.8 ABLATION STUDY

454 In this section, we examine how the adaptation locus affects continual performance (Table 4). Configuration I (frozen backbone with shared-aggregator adaptation) delivers notable adaptation gains
455 but introduces forgetting on the previously learned domain: with NetVLAD, performance on Nordland drops by 0.3% after adapting to ScanNet; with SALAD, a similar decline is observed (-0.6%).
456 By contrast, our isolated aggregators (IA) framework achieves both stronger adaptation (+3.8% and
457 +9.9% on Nordland for NetVLAD and SALAD, respectively, versus +2.8% and +7.2% under Con-
458 figuration I) and forgetting prevention, showing no forgetting on the previously learned domain.
459460 Configuration II (backbone adaptation with a frozen shared aggregator) yields the largest gains on
461 ScanNet, but at the cost of catastrophic forgetting on Nordland. For NetVLAD, it drops by 19.8%
462 and 27.2% after sequential adaptation. For SALAD, the collapse is even larger. This further demon-
463 strates IA’s effectiveness at preventing forgetting while enabling strong adaptation.
464

465 7 CONCLUSION

466 We present the *Isolated Aggregators (IA)*, a continual VPR framework that freezes a shared backbone
467 and learns lightweight, domain-specific aggregators. Across cross-location and cross-condition pro-
468 tocols, IA achieves effective adaptation within tens of seconds while preserving prior-domain per-
469 formance, yielding zero forgetting. Our study offers two key insights. First, after sufficient base-
470 domain pretraining with a strong backbone (e.g., DINOv2), adapting the *aggregator* yields larger
471 gains than updating backbone parameters under substantial domain shifts. Second, this behavior
472 arises from a distribution mismatch between backbone features and the aggregator’s statistics (soft-
473 assignment projections and cluster centroids); IA addresses this by isolating parameters so that
474 descriptors, projections, and centroids are aligned within each domain, thereby eliminating inter-
475 ference with previously learned domains. Although effective, IA currently relies on prior information
476 to detect domain changes during training. Future work includes automatic change detection.
477 Overall, IA reframes where and how adaptation should occur in continual VPR, moving the field toward
478 forgetting-free, fast adaptation and deployment-ready lifelong operation.
479

486 **Reproducibility statement.** We describe the base encoder and aggregators (NetVLAD and
 487 SALAD) together with all training settings in Section 6.1, our proposed method in Section 5, the
 488 evaluation protocols and datasets in Section 6.3, and metrics in Section 6.4. The code and evaluated
 489 datasets will be released publicly upon acceptance.
 490

491 REFERENCES
 492

493 Amar Ali-bey, Brahim Chaib-draa, and Philippe Giguere. Gsv-cities: Toward appropriate supervised
 494 visual place recognition. *Neurocomputing*, 513:194–203, 2022.

495 Amar Ali-Bey, Brahim Chaib-draa, and Philippe Giguere. Boq: A place is worth a bag of learnable
 496 queries. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 497 nition*, pp. 17794–17803, 2024.

498 Relja Arandjelovic and Andrew Zisserman. All about vlad. In *Proceedings of the IEEE conference
 499 on Computer Vision and Pattern Recognition*, pp. 1578–1585, 2013.

500 Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic. Netvlad: Cnn ar-
 501 chitecture for weakly supervised place recognition. In *Proceedings of the IEEE conference on
 502 computer vision and pattern recognition*, pp. 5297–5307, 2016.

503 Hila Chefer, Shir Gur, and Lior Wolf. Transformer interpretability beyond attention visualization.
 504 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 505 782–791, 2021.

506 Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
 507 Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In *Proceedings of the
 508 IEEE conference on computer vision and pattern recognition*, pp. 5828–5839, 2017.

509 Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
 510 Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
 511 tasks. *IEEE transactions on pattern analysis and machine intelligence*, 44(7):3366–3385, 2021.

512 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 513 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
 514 age is worth 16x16 words: Transformers for image recognition at scale. In *International Confer-
 515 ence on Learning Representations*.

516 Dasong Gao, Chen Wang, and Sebastian Scherer. Airloop: Lifelong loop closure detection. In *2022
 517 International Conference on Robotics and Automation (ICRA)*, pp. 10664–10671. IEEE, 2022.

518 Xinyuan Gao, Songlin Dong, Yuhang He, Qiang Wang, and Yihong Gong. Beyond prompt learning:
 519 Continual adapter for efficient rehearsal-free continual learning. In *European Conference on
 520 Computer Vision*, pp. 89–106. Springer, 2024.

521 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 522 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 523 770–778, 2016.

524 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
 525 drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
 526 In *International conference on machine learning*, pp. 2790–2799. PMLR, 2019.

527 Sergio Izquierdo and Javier Civera. Optimal transport aggregation for visual place recognition. In
 528 *Proceedings of the ieee/cvf conference on computer vision and pattern recognition*, pp. 17658–
 529 17668, 2024.

530 Hervé Jégou, Matthijs Douze, Cordelia Schmid, and Patrick Pérez. Aggregating local descriptors
 531 into a compact image representation. In *2010 IEEE computer society conference on computer
 532 vision and pattern recognition*, pp. 3304–3311. IEEE, 2010.

533 Stephanie Lowry, Niko Sünderhauf, Paul Newman, John J Leonard, David Cox, Peter Corke, and
 534 Michael J Milford. Visual place recognition: A survey. *ieee transactions on robotics*, 32(1):1–19,
 535 2015.

540 Feng Lu, Xinyao Zhang, Canming Ye, Shuting Dong, Lijun Zhang, Xiangyuan Lan, and Chun
 541 Yuan. Supervlad: Compact and robust image descriptors for visual place recognition. *Advances*
 542 *in Neural Information Processing Systems*, 37:5789–5816, 2024.

543 Will Maddern, Geoff Pascoe, Chris Linegar, and Paul Newman. 1 Year, 1000km: The Oxford Robot-
 544 Car Dataset. *The International Journal of Robotics Research (IJRR)*, 36(1):3–15, 2017. doi: 10.
 545 1177/0278364916679498. URL <http://dx.doi.org/10.1177/0278364916679498>.

546 Yuhang Ming, Minyang Xu, Xingrui Yang, Weicai Ye, Weihan Wang, Yong Peng, Weichen Dai, and
 547 Wanzeng Kong. Viper: Visual incremental place recognition with adaptive mining and lifelong
 548 learning. *arXiv e-prints*, pp. arXiv–2407, 2024.

549 Raul Mur-Artal and Juan D Tardós. Orb-slam2: An open-source slam system for monocular, stereo,
 550 and rgb-d cameras. *IEEE transactions on robotics*, 33(5):1255–1262, 2017.

551 Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: A versatile and
 552 accurate monocular slam system. *IEEE transactions on robotics*, 31(5):1147–1163, 2015.

553 Daniel Olid, José M Fácil, and Javier Civera. Single-view place recognition under seasonal changes.
 554 *arXiv preprint arXiv:1808.06516*, 2018.

555 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 556 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 557 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

558 Patrick Rim, Hyoungseob Park, Suchisrit Gangopadhyay, Ziyao Zeng, Younjoon Chung, and Alex
 559 Wong. Protodepth: Unsupervised continual depth completion with prototypes. In *Proceedings of*
 560 *the Computer Vision and Pattern Recognition Conference*, pp. 6304–6316, 2025.

561 David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
 562 replay for continual learning. *Advances in neural information processing systems*, 32, 2019.

563 Paul-Edouard Sarlin, Cesar Cadena, Roland Siegwart, and Marcin Dymczyk. From coarse to fine:
 564 Robust hierarchical localization at large scale. In *Proceedings of the IEEE/CVF conference on*
 565 *computer vision and pattern recognition*, pp. 12716–12725, 2019.

566 Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-motion revisited. In *Confer-
 567 ence on Computer Vision and Pattern Recognition (CVPR)*, 2016.

568 Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm. Pixelwise
 569 view selection for unstructured multi-view stereo. In *European Conference on Computer Vision*
 570 (*ECCV*), 2016.

571 Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
 572 self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In Anna Korhonen,
 573 David Traum, and Lluís Márquez (eds.), *Proceedings of the 57th Annual Meeting of the Associa-
 574 tion for Computational Linguistics*, pp. 5797–5808, Florence, Italy, July 2019. Association for
 575 Computational Linguistics. doi: 10.18653/v1/P19-1580. URL <https://aclanthology.org/P19-1580/>.

576 Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and Matthew R Scott. Multi-similarity loss
 577 with general pair weighting for deep metric learning. In *Proceedings of the IEEE/CVF conference*
 578 *on computer vision and pattern recognition*, pp. 5022–5030, 2019.

579 Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
 580 Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
 581 rehearsal-free continual learning. In *European conference on computer vision*, pp. 631–648.
 582 Springer, 2022a.

583 Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vin-
 584 cent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In *Pro-
 585 ceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 139–149,
 586 2022b.

594 Peng Yin, Abulikemu Abuduweili, Shiqi Zhao, Lingyun Xu, Changliu Liu, and Sebastian Scherer.
 595 Bioslam: A bioinspired lifelong memory system for general place recognition. *IEEE Transactions*
 596 *on Robotics*, 39(6):4855–4874, 2023.

598 Da-Wei Zhou, Hai-Long Sun, Han-Jia Ye, and De-Chuan Zhan. Expandable subspace ensemble for
 599 pre-trained model-based class-incremental learning. In *Proceedings of the IEEE/CVF Conference*
 600 *on Computer Vision and Pattern Recognition*, pp. 23554–23564, 2024.

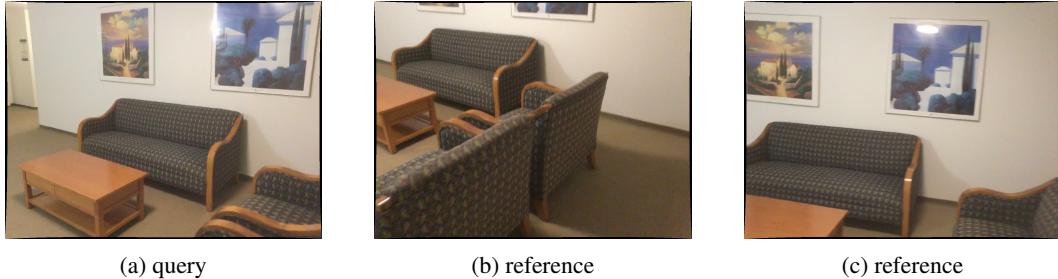
602 A APPENDIX

604 A.1 EVALUATION DATASETS

613 Figure 3: Visualization of samples from the Nordland Olid et al. (2018) dataset.

616 **Nordland.** The Nordland Olid et al. (2018) dataset captures a long-distance train journey across
 617 Norway, recorded once per season (summer, fall, winter, spring), resulting in identical routes under
 618 dramatically different seasonal appearances. The training split uses two route sections with 24,570
 619 images per season. During training, we group every three consecutive frames into a single place ID
 620 and remove adjacent overlaps to avoid place aliasing.

621 For the location-induced protocol, Nordland (Test) contains 2,760 query images from summer and
 622 27,592 reference images from winter; a match within ± 1 frame is considered ground truth. For the
 623 condition-induced protocol, Nordland (Test) uses the full set of 27,592 images from each of the four
 624 seasons as queries and references, respectively, with the same ± 1 -frame ground-truth criterion. A
 625 visualization is shown in Figure 3.



635 Figure 4: Visualization of samples from the ScanNet Dai et al. (2017) dataset.

639 **ScanNet.** To the best of our knowledge, we are the first to use ScanNet Dai et al. (2017) to evaluate
 640 indoor VPR. From the 1,513 indoor scenes, we randomly sample 12 images per scene for training.
 641 For evaluation, we select 100 scenes disjoint from the training set and, for each scene, sample 2
 642 query images and 20 reference images to form the database. A visualization is shown in Figure 4.

644 **RobotCar.** We follow the same setting as AirLoop Gao et al. (2022), which selects three en-
 645 vironments based on the lighting condition, labeled sun, overcast, and night. For each environ-
 646 ment, we select two sequences as the training and test set, respectively. Ground truth is defined as
 647 query–reference pairs with distance < 10 m and yaw difference $< 15^\circ$. A visualization is shown in
 Figure 5.

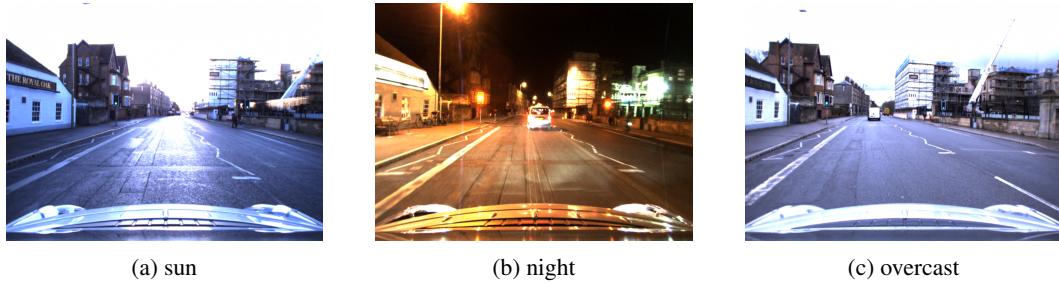


Figure 5: Visualization of samples from the RobotCar Maddern et al. (2017) dataset.

A.2 ADDITIONAL CONTINUAL PLACE RECOGNITION PERFORMANCE

Table 5: Condition-induced continual VPR on RobotCar Maddern et al. (2017). Starting from a city-like pre-trained base, the model is adapted sequentially across illumination (sun → night → overcast). Each row indicates the *evaluation illumination*; *Base* is performance before any illumination adaptation. Under *IA (Ours)*, columns report performance after each adaptation step.

Seq.	NetVLAD	NetVLAD-AirLoop			NetVLAD-IA (Ours)		
		sun	night	overcast	sun	night	overcast
sun	71.5	49.5 ↓	52.9 ↑	49.7 ↑	71.5 →	71.6 ↑	71.6 ↑
night	72.3	48.2	51.5 ↓	47.4 ↓	72.3	72.4 ↑	72.5 ↑
overcast	69.4	52.8	54.6	49.7 ↓	69.4	69.5	69.5 ↑

Table 5 shows performance when adapting sequentially across illumination (sun → night → overcast). With NetVLAD, IA preserves or slightly improves the base score at every step, e.g., evaluating on sun: 71.5 → 71.5 → 71.6 → 71.6; on night: 72.3 → 72.3 → 72.4 → 72.5; on overcast: 69.4 → 69.4 → 69.5 → 69.5, indicating zero forgetting and small positive backward transfer. In contrast, AirLoop, which is strong under standard continual settings, suffers large drops immediately after the first adaptation (e.g., sun: 71.5 → 49.5, night: 72.3 → 51.5, overcast: 69.4 → 49.7) and never recovers to the base, yielding consistently negative BWT. These results highlight that our IA is markedly more stable than regularization for condition-induced shifts against catastrophic forgetting.

A.3 STUDY ON THE EFFECTIVENESS OF AGGREGATOR ROUTING

Table 6: Domain recognition accuracy via aggregator routing.

Method	Nordland		RobotCar			Location-induced
	summer	winter	sun	night	overcast	
NetVLAD-IA	88.5	94.3	98.7	98.1	95.6	94.3
SALAD-IA	90.3	95.1	98.3	97.6	95.8	95.6

As reported in Table 6, routing accuracy is consistently high across datasets. On Nordland (seasonal shifts), accuracy is 91.4% for NetVLAD-IA (88.5% summer / 94.3% winter) and 92.7% for SALAD-IA (90.3% / 95.1%). The lower accuracy for the summer stems from their visual similarity: as shown in Figures 3a, 3b, and 3c, summer exhibit only subtle appearance differences with spring and fall, which leads to confusion among them. In contrast, winter (Figure 3d) presents a much larger appearance shift, resulting in higher recognition accuracy. On RobotCar (illumination shifts), routing is near-perfect: 97.5% for NetVLAD-IA (98.7% sun, 98.1% night, 95.6% overcast) and 97.2% for SALAD-IA (98.3%, 97.6%, 95.8%). For the location-induced setting, accuracy is 94.3% (NetVLAD-IA) and 95.6% (SALAD-IA). Overall averages are 94.9% and 95.8% for NetVLAD-IA and SALAD-IA, respectively, indicating reliable routing via domain descriptors.

702 A.4 THE USE OF LARGE LANGUAGE MODELS (LLMs)
703

704 We used ChatGPT and Gemini solely for language polishing.
705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755