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ABSTRACT

Visual Place Recognition (VPR), the task of identifying revisited places by a
query image, suffers significant degradation in long-term deployment due to non-
stationary distribution shifts. Existing methods mainly rely on regularization-
and/or replay-based continual learning strategies to address this challenge. How-
ever, regularization remains vulnerable to catastrophic forgetting under strong do-
main shifts, while replay introduces additional storage and latency costs and raises
privacy concerns, making online adaptation impractical. To this end, we propose
Isolated Aggregators, a new paradigm where each new environment is assigned
an independent aggregator following a shared, frozen backbone. By design, pa-
rameters for the backbone and all previously learned aggregators are frozen, pro-
viding a structural guarantee against catastrophic forgetting. Meanwhile, fine-
tuning only the new, lightweight aggregator for the current domain enables fast,
privacy-preserving online adaptation to new environments without replay. We fur-
ther maintain domain descriptors that allow the model to automatically select the
appropriate aggregator during inference, ensuring robust continual VPR across di-
verse environments. Extensive experiments show that our method achieves both
zero forgetting and fast adaptation, improving Recall@1 by +9.9% (city-like to
nature) and +3.5% (nature to indoor) and within just around 30 and 90 seconds
of single-epoch and single-pass training on an NVIDIA RTX 4090. Code will be
publicly available.

1 INTRODUCTION

Visual Place Recognition (VPR) is the task of identifying previously visited locations from a
database given a query image. It is a fundamental problem in both computer vision and robotics,
supporting core applications such as Structure-from-Motion (SfM) [Schonberger & Frahm| (2016);
Schonberger et al.|(2016), visual localization Sarlin et al.|(2019), and Simultaneous Localization and
Mapping (SLAM) |Mur-Artal et al.| (2015); Mur-Artal & Tardds|(2017). Despite substantial progress
in recent years, a critical challenge emerges in real-world deployments, where performance often
degrades during domain shifts Lowry et al.|(2015)), for example when moving from urban to indoor
environments, from daytime to nighttime, or across seasons from spring to winter.

Existing work incorporates continual learning into VPR via regularization or replay to address this
challenge. An ideal continual VPR system should retain knowledge acquired from previous domains
while rapidly adapting to new environments. Regularization-based methods|Gao et al.|(2022); Ming
et al.|(2024) penalize updates to parameters deemed important for previously learned domains. How-
ever, under strong domain shifts, regularization faces a stability—plasticity dilemma: strong penalties
hinder adaptation, whereas relaxed penalties lead to catastrophic forgetting |De Lange et al.| (2021).
Replay-based methods Yin et al.|(2023) store and reuse samples from prior domains during training.
While effective at mitigating forgetting, replay requires memory that grows with the number of envi-
ronments, increases data-loading and training latency, which is impractical for resource-constrained
robots. It also raises privacy concerns.

Moreover, both methods are less effective with powerful Vision Transformer (ViT) backbones such
as DINOvV2 |Oquab et al.| (2023). With transformers, self-attention mixes information across the
whole image, making “important” parameters harder to pinpoint. Even tiny updates may spread
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widely through the network and cause severe catastrophic forgetting |Chefer et al.| (2021)); Voita et al.
(2019). At the same time, stronger backbones improve feature robustness, shifting the main bottle-
neck from feature extraction to the aggregation module. We find that the aggregation parameters
(e.g., soft-assignment score-projection and cluster centroids in NetVLAD |Arandjelovic et al.| (2016)
and score-projection in SALAD |Izquierdo & Civeral (2024)) remain highly sensitive to domain dis-
tribution. Consequently, the key challenge is not only to extract consistent cross-domain features,
but also to learn domain-specific aggregations that maintain past-domain performance while adapt-
ing quickly to new environments.

Building on these observations, we propose Isolated Aggregators (IA), a framework that freezes
a shared backbone and learns an independent, domain-specific aggregator for each new environ-
ment. Freezing the backbone preserves base task knowledge and provides a stable feature space
for both past and new domains. Adaptation is confined to a new, lightweight aggregator, which is
trained from scratch. Since the aggregator contains significantly fewer parameters than the back-
bone, it converges rapidly, enabling fast and effective adaptation to new environments. To avoid
forgetting, we retain all domain-specific aggregators and automatically select the appropriate one at
inference. This is achieved by comparing a routing descriptor computed from the current backbone
features with each aggregator’s learned domain descriptor. The closest match is chosen. By design,
our method structurally resolves the stability-plasticity dilemma while incurring substantially lower
computational and memory overhead than regularization- or replay-based alternatives, as it updates
only a small parameter set and requires no replay buffer. It also avoids the storage growth, latency
overhead, and privacy concerns.

In conclusion, our contributions are threefold:

* We identify that for recent VPR models employing powerful foundation backbones like DI-
NOv2|Oquab et al.[(2023), the continual VPR bottleneck lies in the aggregator rather than
the backbone, and we further explain this aggregator sensitivity theoretically in Section[4.1}

* Accordingly, we introduce the first parameter-isolation continual learning framework for
VPR, Isolated Aggregators (IA). IA freezes a shared backbone and learns an independent,
domain-specific aggregator for each new environment. All aggregators are retained and au-
tomatically selected at inference. This design structurally prevents catastrophic forgetting
while enabling fast adaptation to new environments.

* We demonstrate through extensive experiments that IA achieves both zero forgetting and
rapid adaptation, improving Recall @ 1 by +9.9% (from city-like to nature) and +3.5% (from
nature to indoor) within around 30's and 90 s of training on an NVIDIA RTX 4090.

2 RELATED WORKS

2.1 VISUAL PLACE RECOGNITION

The evolution of Visual Place Recognition (VPR) has centered on the aggregator’s design, with the
consistent goal of converting local/patch features into compact, distinctive global descriptors that
remain robust across changing domains [Lowry et al.| (2015). Classical VPR relied on statistical
aggregators to pool hand-crafted local features into a global representation. Prominent example is
the Vector of Locally Aggregated Descriptors (VLAD) Jégou et al.|(2010), which accumulates the
residuals between local features and their assigned visual words.

CNN-based NetVLAD |Arandjelovic et al.| (2016) is a milestone, which ushered in the data-driven
era by introducing a learnable, end-to-end trainable VLAD layer featuring learnable cluster cen-
troids and a soft-assignment mechanism. However, both the learned cluster centroids and the soft-
assignment are inherently sensitive to their training distribution, causing significant performance
degradation under domain shifts |Arandjelovic & Zisserman| (2013)). Subsequent methods, such as
DINOv2-based SALAD [Izquierdo & Civeral (2024), SuperVLAD [Lu et al.| (2024) and BoQ |Ali-
Bey et al.| (2024), have attempted to enhance robustness by using various strategies to mitigate the
reliance on fixed, learned cluster centroids. Nevertheless, they continue to depend on the domain-
sensitive soft-assignment mechanism. This leaves a critical research gap for a long-term, deployable
aggregation strategy that is robust by design.
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2.2 CONTINUAL VISUAL PLACE RECOGNITION

Continual VPR methods have primarily followed two strategies: regularization and replay.
Regularization-based approaches, such as AirL.oop Gao et al.|(2022) and VIPeR Ming et al.| (2024),
penalize updates to critical network parameters. While effective for CNNs, these methods fail to
adequately constrain modern, large-scale Vision Transformers (ViTs), leading to a poor trade-off
between forgetting and adaptation. Replay-based methods, such as BioSLAM |Yin et al.| (2023)),
achieve strong memory retention by storing and reusing past data. However, this comes at the cost
of high computational overhead, storage requirements, and potential privacy issues, making them
impractical for resource-constrained robotic applications. Neither approach offers a scalable contin-
ual VPR solution for the era of foundation models, motivating the need for a new paradigm.

2.3 PARAMETER-ISOLATION-BASED CONTINUAL LEARNING

A third paradigm for continual learning, parameter-isolation, offers an architectural solution to catas-
trophic forgetting by allocating distinct parameters for each new task. A prominent example of this
is Parameter-Efficient Fine-Tuning (PEFT) Houlsby et al.[(2019)), using techniques like adapters/Gao
et al.| (2024); Zhou et al.|(2024) or prompts Wang et al.|(2022aib)). These methods freeze the vast ma-
jority of the backbone’s parameters and insert small, trainable modules, such as adapters between its
layers or prompts in the input space, for each new task. While highly successful in general Computer
Vision (CV) and Natural Language Processing (NLP) tasks, this paradigm has been underexplored
in VPR. Our work, Isolated Aggregators (IA), is the first to apply this parameter-isolation strategy
to the VPR aggregator, addressing a key gap in the literature.

3 PROBLEM FORMULATION

Visual place recognition. Given a query image I, and a reference database D = {I,}*_;, a VPR
model maps each image I to a global descriptor z = f(I) € R?, which is f5-normalized. During
training, f(-) is optimized with the multi-similarity loss/Wang et al.[{(2019) over mini-batches labeled
by place IDs, pulling same-place pairs together and pushing different-place pairs apart:
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where P; and N; denote the positive and negative index sets for anchor 4, respectively; ;5 1is the

cosine similarity between descriptors z; and z; (equal to zf z; after £ normalization); and «, 3, and
m are hyperparameters controlling the sharpness and margin.

Continual learning setting. We train across a sequence of environments (domains) t = 1,...,T
with non-stationary data. At environment ¢, the available training set is D! = {(:z:;, yﬁ) ;y:t 1» Where
each image x§ is associated with a place identity y; € C!. Images arrive sequentially and each
sample is only seen once (single-pass). Data in environment ¢ may induce appearance and condition
shifts (e.g., illumination, season, weather). During training at environment ¢, the model has access

only to D* and labels y*; past data and labels D°*~! and C%*~" are inaccessible.

4 REVISITING MODERN VPR PIPELINES

To map each image to a global descriptor, a single-stage Visual Place Recognition (VPR) model
is composed of two main components: a backbone and an aggregator. Commonly used backbones
include classical models like ResNet [He et al.| (2016)), as well as the latest Vision Transformers
(ViT) Dosovitskiy et al.| such as DINOv2|Oquab et al.[(2023)). The backbone acts as a feature extrac-
tor, transforming the raw image into a high-dimensional, spatially rich, and semantically meaningful
feature map. The following aggregator processes these feature maps (local descriptors) to produce
a compact, highly discriminative global descriptor.
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(a) NetVLAD|Arandjelovic et al.|(2016) aggregator. (b) SALAD |Izquierdo & Civeral(2024) aggregator.

Figure 1: Overview of state-of-the-art aggregators in modern VPR pipelines. blocks indicate
components with learnable parameters.

4.1 AGGREGATORS

VLAD |Jégou et al.|(2010) aggregates the residuals of each local descriptor with respect to a set of
clustered centers. This approach captures richer statistical information about the feature distribution,
providing a more robust and discriminative descriptor.

Given N local descriptors {z;} € RP, and K cluster centers {cy}, the handcrafted VLAD represen-
tation is constructed as a K x D matrix. For each descriptor, the nearest cluster center is identified,
and the distance between the descriptor and that center is accumulated into the corresponding col-
umn of the matrix. Mathematically, this can be expressed as:

N
V() k) = Zak(m)(zi(ﬁ — o)), 2)

where ay(x;) = 1 if the descriptor x; is assigned to cluster ¢, and 0 otherwise. Each column
therefore encodes the sum of residuals of descriptors associated with one cluster center.

NetVLAD |Arandjelovic et al.|(2016) extends this concept by introducing a trainable and differen-
tiable version of VLAD. Rather than hard assignment (each local descriptor assigned to its nearest
cluster), NetVLAD uses soft assignment, so each local descriptor contributes to multiple clusters
with learnable weights produced by a 1x1 convolution:
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As shown in Figure[Ta] the soft-assignment score-projection weights wy, bias by, and cluster centers
ci, are trainable parameters, allowing the aggregation to be optimized jointly with the backbone
through end-to-end learning.

While NetVLAD significantly advanced handcrafted VLAD by enabling supervised, end-to-end
training, it remains inherently susceptible to domain shifts. This limitation arises because the pa-
rameters learned from the training domain A may not align well with the feature space encountered
in a new inference domain B |Arandjelovic & Zisserman| (2013). This mismatch can be formally
described by the residual aggregation in the following equation:

N T,A_B A
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where wj', bj), and c;' are learned from the fraining domain A, while =7 represents the feature
maps generated from the backbone in the unseen inference domain B. In this case, the residual
aggregation becomes biased toward mismatched centroids, causing the resulting representation to
emphasize irrelevant variations. This fundamentally weakens the model’s robustness under domain
shifts, highlighting a key challenge for real-world, long-term deployment.

SALAD |Izquierdo & Civeral (2024) mitigates these issues by aggregating features via weighted
summation rather than residuals to cluster centroids (see Figure [Ib). However, it is not entirely
cluster-independent: the score-projection layer used for feature-to-cluster assignment remains sen-
sitive to domain shifts|Lu et al.| (2024).
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Figure 2: Overview of our Isolated Aggregators framework with NetVLAD (NetVLAD-IA).
A frozen DINOv2 backbone produces local descriptors. For each environment, we maintain a
lightweight, domain-specific aggregator consisting of a 1x1 score-projection convolutional layer
and cluster centroids. When a new domain ¢ arrives, only the new aggregator is trained; the back-
bone and all previous aggregators remain frozen. A bank of domain descriptors {r;} is trained and
used to choose the appropriate aggregator at inference.

5 ISOLATED AGGREGATORS

5.1 FAST AND EFFECTIVE DOMAIN ADAPTATION

In Section[d.1] we analyze that NetVLAD and SALAD are vulnerable to domain shifts because their
soft-assignment score-projection layer and cluster centroids are learned on the training distribution,
leading to misalignment with backbone features extracted in novel environments.

To address this limitation, as shown in Figure 2] we freeze the backbone parameters and learn
domain-specific aggregator parameters, i.e., score-projection weights wy, biases by, and cluster cen-
troids ¢y, for each newly encountered domain. This ensures that wy, by, ci, and local descriptors x;
are aligned within the same domain B. The VLAD residual for cluster k (at dimension j) is then

V(i k)= Z %(IF(J) — i (7)) &)

As a result, the adapted soft-assignment layer can accurately associate local descriptors with the
correct clusters, enabling a precise computation of residuals against the correspondingly adapted
cluster centroids within the same domain.

5.2 TOWARDS FORGETTING-FREE AGGREGATOR ROUTING

A practical challenge at inference is selecting the correct domain-specific aggregator when the cur-
rent environment is unknown. Assuming access to oracle domain labels is unrealistic, as real-world
agents must operate under unseen conditions without annotation. Inspired by ProtoDepth Rim et al.
(2025), we introduce a lightweight routing mechanism based on compact domain descriptors that
automatically selects the appropriate aggregator, enabling forgetting-free aggregator routing without
external labels.

Learning domain descriptors. During training, each domain ¢ is assigned a learnable descriptor
r; € RZ. For an input image = from domain ¢, we extract a per-image routing descriptor s(x) by
global average pooling the backbone bottleneck features (optionally followed by a linear projection)
and /y-normalize it. Unlike aggregator parameters, {7} serve only as identifiers for routing; once
a domain is learned, its descriptor is frozen. When a new domain arrives, a fresh r; is initialized
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and optimized to align with the current domain while remaining distinct from all previously learned
domains. We use a cosine-based objective:

_ A
Lp = (1—cos(5,m)) + 71 Zcos(rt,rj), (6)
J#t
where §; is the mini-batch mean of s(z) for domain ¢, and A > 0 balances alignment and separation.
The overall training loss combines VPR training with descriptor learning:

L = Lys + Lp. @)

Routing at inference. Given a query image, we compute its routing descriptor s and select the
aggregator whose descriptor is most similar:

tr = arg max cos(s,rt). )

This routing is efficient, deterministic, and label-free. It scales gracefully as new environments are
introduced, avoids catastrophic forgetting by never modifying past aggregators, and activates only
the relevant expert at inference, providing a practical and robust solution for lifelong VPR under
continuously evolving conditions. The effectiveness of aggregator routing via domain descriptors is
evaluated in Section[A3]

6 EXPERIMENTS

6.1 IMPLEMENTATION DETAILS

We evaluate our Isolated Aggregators (IA) with two state-of-the-art aggregators, NetVLAD |Arand-
jelovic et al.|(2016) and SALAD |[[zquierdo & Civera (2024), on a DINOv2 |Oquab et al.[ (2023)
backbone. To ensure fairness, we adopt the same aggregator configurations and optimization set-
tings as NetVLAD and SALAD. Experiments are conducted on an NVIDIA RTX 4090 GPU.

6.2 BASELINES

We compare A against the regularization-based AirLoop |Gao et al.|(2022) and replay via Experi-
ence Replay (ER) Rolnick et al.|(2019). For reference, we also report a non-continual baseline: full
fine-tuning on each environment (Finetuned). We attempted to include BioSLAM |Yin et al.| (2023)
and VIPeR Ming et al.[(2024), but their implementations are closed-source at the time of writing,
preventing reproduction.

6.3 CONTINUAL PROTOCOLS AND EVALUATION DATASETS

We categorize VPR domain shifts into two types and design corresponding continual learning pro-
tocols: (i) Location-induced shifts, which occur when transitioning between geographical contexts
(e.g., urban — natural — indoor); and (ii) Condition-induced shifts, which arise from appearance
variations like changes in illumination, weather, or season.

Location-induced protocol. To the best of our knowledge, we are the first to propose this chal-
lenging cross-location protocol for continual VPR evaluation. In this protocol, we start from a base
model pre-trained on GSV-Cities |Ali-bey et al.| (2022)) (city-like) and then adapt and evaluate it se-
quentially on Nordland [Olid et al.| (2018)) (natural) and ScanNet |Dai et al.| (2017) (indoor). The
evaluation datasets are described in Section [A.]]

Condition-induced protocol. Following |Gao et al| (2022), we also evaluate condition-induced
shifts on Nordland. Unlike their setups, we initialize with a base model pre-trained on the GSV-
Cities dataset before adapting to new conditions. The model is adapted sequentially across the four
seasons (spring, summer, fall, winter) and evaluated after each step.

To mimic realistic deployment, all adaptation is performed in a single epoch with a single pass over
each image. Past data are not accessible (no replay).



Under review as a conference paper at ICLR 2026

6.4 EVALUATION METRICS

To evaluate the model’s ability to retain past knowledge and adapt to new domains, we adopt the
evaluation protocol in previous work |Gao et al.| (2022). We form a T' x T matrix R, where R; ;
is the R@1 on environment j after training on environment i. We report three scalars: Average
Performance (AP), which provides a holistic view of the model’s effectiveness; Backward Transfer
(BWT), where a negative value signifies catastrophic forgetting. The metrics are calculated as:

S X Rig o S SRy — Rig)
T(T+1)/2 N T(T —1)/2

AP = €))

Table 1: Our Isolated Aggregation (IA) framework achieves strong adaptation and zero-forgetting
capacity in both location- and condition-induced continual protocols. 1 denotes improvement over
the base or seen domain on the same dataset; — denotes no forgetting relative to the previous step.

(a) Location-induced continual VPR. Starting (b) Condition-induced continual VPR on Nordland |Olid et al.
from a base model pre-trained on a city-like (2018). Starting from a city-like pre-trained base, the model is
dataset [Ali-bey et al.| (2022), the model is adapted sequentially across seasons (spring — summer — fall
adapted sequentially to Nordland |Olid et al| — winter). Each row indicates the evaluation season; Base is
(2018)) and then ScanNetDai et al.| (2017)). Base performance before any seasonal adaptation. Under IA (Ours),
reports performance before adaptation. Un- columns report performance after each adaptation step.

der IA (Ours), the Nordland column is perfor-
mance immediately after adapting to Nordland;
the ScanNet column is performance after subse-
quently adapting to ScanNet.

Aggregator Season Base 1A (Ours)

spring summer fall winter

spring  73.7 7441 744 — 744 — 744 —
summer 70.8 714 71571 71.5— 715 —

TA (Ours)

Aggregator Dataset Basem NetVLAD wii ™ 706 713 715 7141 714—
winter 720 725 725 725 7261

NetVLAD foraand 0T ST spring 727 7611 7671 7661 7661
SALAD summer 70.9 739 7491 7511 7517

GALAp Nordiand 766 8651 865 — fall 707 734 741 7441 744 —
ScanNet 885 880 91571 winter 692 717 717 717 72371

6.5 CONTINUAL PLACE RECOGNITION PERFORMANCE

6.5.1 LOCATION-INDUCED SHIFTS

We first evaluate our Isolated Aggregators (IA) framework on the challenging location-induced con-
tinual learning protocol, with results presented in Table [Ta] Our method demonstrates both strong
forward adaptation and perfect backward retention (zero forgetting).

NetVLAD-IA improves Recall@1 by 3.8% (from 70.7% to 74.5%) when adapting from the urban
base domain to the natural Nordland dataset. As reported in the table, when the model subsequently
adapts to the indoor domain (ScanNet), it perfectly retains its performance on Nordland (74.5%),
achieving zero forgetting.

The improvements are even more pronounced with the stronger SALAD aggregator. SALAD-IA
achieves a remarkable +9.9% (76.6% to 86.5%) when adapting to Nordland. Furthermore, when
transitioning to the indoor ScanNet dataset, it not only maintains its expert performance on Nordland
(86.5%) but also continues to improve its performance by 3.5%, demonstrating effective adaptation.

As shown in Table [2} IA outperforms baseline continual VPR methods on both overall performance
(AP) and forgetting (BWT). With the NetVLAD aggregator, IA attains the best AP of 79.8%, ex-
ceeding AirLoop and Replay by 12.6% and 7.5%, respectively. It is also the only method with a
positive BWT (+1.3%), indicating no catastrophic forgetting, whereas AirLoop and Replay exhibit
substantial forgetting (BWT of -6.5% and -2.7%, respectively). The advantage is even more signif-
icant with the stronger SALAD aggregator: SALAD-IA achieves an AP of 88.2% and a BWT of
+4.3%, outperforming all baselines.
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Table 2: Continual VPR performance comparison in both location-induced and condition-induced
protocols. TA demonstrates a significant advantage in both overall performance (AP) and catas-
trophic forgetting (BWT) abilities over existing continual learning strategies.

Aggregator  Method Location-induced Condition-induced
AP BWT AP BWT
Finetuned 59.2 -18.1 51.6 -0.2
AirLoop|Gao et al.|(2022) 67.2 -6.5 62.9 -0.1
NetVLAD  geplay Rolnick et al|(2019) 723 -2.7 662 0
TA (Ours) 79.8 +1.3 72.8 0
Finetuned 62.1 -18.5 53.0 -0.1
SALAD AirLoop|Gao et al.|(2022) 60.6 -10.1 514 +0.7
Replay |Rolnick et al.[(2019)  76.1 2.3 67.3 +0.1
TA (Ours) 88.2 +4.3 75.2 +0.3

6.5.2 CONDITION-INDUCED SHIFTS

In the condition-induced protocol on the Nordland dataset, our IA framework demonstrates a strong
ability to continuously adapt to seasonal changes while perfectly preserving knowledge from previ-
ously seen conditions. The results are detailed in Table[Th]

With NetVLAD as the base aggregator, IA shows consistent positive adaptation. For example, when
first adapting to ‘spring’, performance improves from 73.7% to 74.4%. As the model sequentially
adapts to ‘summer’, ‘fall’, and ‘winter’, it not only learns the new conditions but also maintains its
peak performance on all previously seen seasons, achieving zero forgetting in all subsequent steps.

Using the SALAD aggregator, the benefits of our framework are even more evident. SALAD-IA
shows significant and cumulative performance gains across the seasonal sequence. It achieves a
3.4% gain on ‘spring’ (72.7% to 76.1%), and continues to improve its performance on both ‘spring’
and ‘summer’ even as it adapts to ‘fall’. This demonstrates strong adaptation on unseen environ-
ments, while achieving zero forgetting on past domains.

Additionally, our IA framework continues to lead in overall performance while completely elimi-
nating forgetting, as reported in Table 2] For both NetVLAD and SALAD, IA achieves the highest
AP (72.8% and 75.2%, respectively). In terms of forgetting, our method achieves a BWT of 0 with
NetVLAD and +0.3% with SALAD, effectively achieving zero-forgetting capability. Notably, IA
achieves this perfect retention while delivering a significantly higher AP than Replay and AirLoop,
confirming its ability to adapt to new environments without forgetting past knowledge.

We report an additional condition-induced shift experiment on the RobotCar Maddern et al.| (2017)
dataset in Section where illumination changes follow sun — night — overcast. The results
further show that our Isolated Aggregators (IA) framework is markedly more stable than regulariza-
tion|Gao et al.| (2022)) under condition-induced shifts against catastrophic forgetting.

6.6 ONLINE LEARNING RUNTIME PERFORMANCE

We report the online learning runtime performance of our method on both the Nordland and ScanNet
datasets. All runtime experiments are conducted on an NVIDIA RTX 4090 GPU, and each value is
the average of 10 runs.

As reported in Table[3a] both NetVLAD-IA and SALAD-IA achieve efficient online adaptation. On
the Nordland dataset, with 4,096 places, NetVLAD-IA requires 90.33 seconds, while SALAD-IA
completes training in 87.54 seconds. On the ScanNet dataset, which contains 1,513 indoor scenes,
NetVLAD-IA finishes in 29.84 seconds, and SALAD-IA achieves a slightly faster runtime of 27.1
seconds. In each place and scene, we randomly select 4 images for training.

These results demonstrate that our continual learning framework not only provides strong adapta-
tion and robustness against forgetting, as shown in previous experiments, but also maintains high
computational efficiency during online training, making it practical for real-time deployment.
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Table 3: Runtime performance and memory footprint of our Isolated Aggregators (IA) framework.

(a) Runtime performance of our IA. (b) Memory footprint of our NetVLAD-IA framework.

Dataset  #places NetVLAD-IA SALAD-IA  Object #parameters float64 (8B) float32 (4B) floatl6 (2B) int8 (1B)
Nordland 4,096 90.33s 87.54s Score-projection weights 24,576 192 KB 96 KB 48 KB 24 KB
ScanNet 1,513 29.84s 27.1s Cluster centroids 24,576 192 KB 96 KB 48 KB 24 KB

6.7 MEMORY FOOTPRINT ANALYSIS

We further report the memory overhead of our method in Table For NetVLAD-IA, we store the
soft-assignment score-projection weights (192 KB) and cluster centroids (192 KB), totaling 384 KB
per domain. The cost scales linearly with the number of domains: e.g., 10 domains for 3.75 MB,
1,000 domains 375 MB. For SALAD-IA, only the score-projection layer is stored, i.e., 192 KB per
domain (10 domains 1.875 MB; 1,000 domains 187.5 MB).

These lightweight footprints make IA highly scalable and memory-efficient, supporting long-term
continual operation across many environments without prohibitive storage.

Table 4: Effect of architectural choice for adaptation on continual performance.

Aggregator  Dataset Base Configuration I Configuration 11 IA (Ours)
Nordland  ScanNet Nordland ScanNet Nordland  ScanNet
NetVLAD Nordland  70.7 7351 7321 509 | 435 74.5 1 74.5 —
ScanNet  90.5 90.5 90.5 — 88.5 97.0 T 90.5 90.5 —
SALAD Nordland 76.6 83.871 83.2] 42.1 ) 29.8 | 86.5 1 86.5 —
ScanNet  88.5 88.5 90.5 1 86.5 96.0 T 88.0 90.5 1

6.8 ABLATION STUDY

In this section, we examine how the adaptation locus affects continual performance (Table ). Con-
figuration I (frozen backbone with shared-aggregator adaptation) delivers notable adaptation gains
but introduces forgetting on the previously learned domain: with NetVLAD, performance on Nord-
land drops by 0.3% after adapting to ScanNet; with SALAD, a similar decline is observed (-0.6%).
By contrast, our isolated aggregators (IA) framework achieves both stronger adaptation (+3.8% and
+9.9% on Nordland for NetVLAD and SALAD, respectively, versus +2.8% and +7.2% under Con-
figuration I) and forgetting prevention, showing no forgetting on the previously learned domain.

Configuration II (backbone adaptation with a frozen shared aggregator) yields the largest gains on
ScanNet, but at the cost of catastrophic forgetting on Nordland. For NetVLAD, it drops by 19.8%
and 27.2% after sequential adaptation. For SALAD, the collapse is even larger. This further demon-
strates IA’s effectiveness at preventing forgetting while enabling strong adaptation.

7 CONCLUSION

We presente Isolated Aggregators (IA), a continual VPR framework that freezes a shared backbone
and learns lightweight, domain-specific aggregators. Across cross-location and cross-condition pro-
tocols, IA achieves effective adaptation within tens of seconds while preserving prior-domain per-
formance, yielding zero forgetting. Our study offers two key insights. First, after sufficient base-
domain pretraining with a strong backbone (e.g., DINOv2), adapting the aggregator yields larger
gains than updating backbone parameters under substantial domain shifts. Second, this behavior
arises from a distribution mismatch between backbone features and the aggregator’s statistics (soft-
assignment projections and cluster centroids); IA addresses this by isolating parameters so that
descriptors, projections, and centroids are aligned within each domain, thereby eliminating interfer-
ence with previously learned domains. Although effective, IA currently relies on prior information
to detect domain changes during training. Future work includes automatic change detection. Over-
all, TA reframes where and how adaptation should occur in continual VPR, moving the field toward
forgetting-free, fast adaptation and deployment-ready lifelong operation.
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Reproducibility statement. We describe the base encoder and aggregators (NetVLAD and
SALAD) together with all training settings in Section our proposed method in Section [5] the
evaluation protocols and datasets in Section[6.3] and metrics in Section[6.4] The code and evaluated
datasets will be released publicly upon acceptance.
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A APPENDIX

A.1 EVALUATION DATASETS

(a) spring (b) summer (c) fall (d) winter

Figure 3: Visualization of samples from the Nordland |Olid et al.[(2018)) dataset.

Nordland. The Nordland dataset captures a long-distance train journey across
Norway, recorded once per season (summer, fall, winter, spring), resulting in identical routes under
dramatically different seasonal appearances. The training split uses two route sections with 24,570
images per season. During training, we group every three consecutive frames into a single place ID
and remove adjacent overlaps to avoid place aliasing.

For the location-induced protocol, Nordland (Test) contains 2,760 query images from summer and
27,592 reference images from winter; a match within +1 frame is considered ground truth. For the
condition-induced protocol, Nordland (Test) uses the full set of 27,592 images from each of the four
seasons as queries and references, respectively, with the same +1-frame ground-truth criterion. A
visualization is shown in Figure[3]

(a) query (b) reference (c) reference

Figure 4: Visualization of samples from the ScanNetm (2017)) dataset.

ScanNet. To the best of our knowledge, we are the first to use ScanNetDai et al | to evaluate
indoor VPR. From the 1,513 indoor scenes, we randomly sample 12 images per scene for training.
For evaluation, we select 100 scenes disjoint from the training set and, for each scene, sample 2
query images and 20 reference images to form the database. A visualization is shown in Figure ]

RobotCar. We follow the same setting as AirLoop (2022), which selects three en-
vironments based on the lighting condition, labeled sun, overcast, and night. For each environ-
ment, we select two sequences as the training and test set, respectively. Ground truth is defined as
query-reference pairs with distance < 10 m and yaw difference < 15°. A visualization is shown in

Figure[5]
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(a) sun (b) night (c) overcast

Figure 5: Visualization of samples from the RobotCar Maddern et al. (2017) dataset.

A.2 ADDITIONAL CONTINUAL PLACE RECOGNITION PERFORMANCE

Table 5: Condition-induced continual VPR on RobotCar Maddern et al (2017). Starting from a
city-like pre-trained base, the model is adapted sequentially across illumination (sun — night —
overcast). Each row indicates the evaluation illumination; Base is performance before any illumina-
tion adaptation. Under /A (Ours), columns report performance after each adaptation step.

Seq. NetVLAD NetVLAD-AirLoop NetVLAD-IA (Ours)
sun night  overcast sun night  overcast
sun 71.5 495] 5291 49.7 1 71.5— 7167 71.6 1
night 72.3 48.2 51.5] 474 | 72.3 7241 72.51
overcast 69.4 52.8 54.6 49.7 ] 69.4 69.5 69.5 1

Table [5] shows performance when adapting sequentially across illumination (sun — night — over-
cast). With NetVLAD, IA preserves or slightly improves the base score at every step, e.g., evaluating
onsun: 71.5 — 71.5 — 71.6 — 71.6; on night: 72.3 — 72.3 — 72.4 — 72.5; on overcast: 69.4 —
69.4 — 69.5 — 69.5, indicating zero forgetting and small positive backward transfer. In contrast,
AirLoop, which is strong under standard continual settings, suffers large drops immediately after the
first adaptation (e.g., sun: 71.5 — 49.5, night: 72.3 — 51.5, overcast: 69.4 — 49.7) and never recov-
ers to the base, yielding consistently negative BWT. These results highlight that our IA is markedly
more stable than regularization for condition-induced shifts against catastrophic forgetting.

A.3 STUDY ON THE EFFECTIVENESS OF AGGREGATOR ROUTING

Table 6: Domain recognition accuracy via aggregator routing.

Nordland RobotCar

Method Location-induced
summer winter sun  night overcast
NetVLAD-IA 88.5 94.3 98.7 98.1 95.6 94.3
SALAD-IA 90.3 95.1 98.3 97.6 95.8 95.6

As reported in Table [} routing accuracy is consistently high across datasets. On Nordland (seasonal
shifts), accuracy is 91.4% for NetVLAD-IA (88.5% summer / 94.3% winter) and 92.7% for SALAD-
IA (90.3% / 95.1%). The lower accuracy for the summer stems from their visual similarity: as
shown in Figures [3a] 3b] and summer exhibit only subtle appearance differences with spring
and fall, which leads to confusion among them. In contrast, winter (Figure [3d) presents a much
larger appearance shift, resulting in higher recognition accuracy. On RobotCar (illumination shifts),
routing is near-perfect: 97.5% for NetVLAD-IA (98.7% sun, 98.1% night, 95.6% overcast) and
97.2% for SALAD-IA (98.3%, 97.6%, 95.8%). For the location-induced setting, accuracy is 94.3%
(NetVLAD-IA) and 95.6% (SALAD-IA). Overall averages are 94.9% and 95.8% for NetVLAD-IA
and SALAD-IA, respectively, indicating reliable routing via domain descriptors.
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A.4 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used ChatGPT and Gemini solely for language polishing.
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