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Abstract

Recent advances in large language models001
(LLMs) and vision-language models (LVLMs)002
have shown promise across many tasks, yet003
their scientific reasoning capabilities remain004
untested, particularly in multimodal settings.005
We present MMSciBench, a benchmark for006
evaluating mathematical and physical reason-007
ing through text-only and text-image formats,008
with human-annotated difficulty levels, solu-009
tions with detailed explanations, and taxonomic010
mappings. Evaluation of state-of-the-art mod-011
els reveals significant limitations, with even the012
best model achieving only 63.77% accuracy013
and particularly struggling with visual reason-014
ing tasks. Our analysis exposes critical gaps in015
complex reasoning and visual-textual integra-016
tion, establishing MMSciBench as a rigorous017
standard for measuring progress in multimodal018
scientific understanding. The code for MM-019
SciBench is open-sourced at GitHub1, and the020
dataset is available at Hugging Face2.021

1 Introduction022

Scientific reasoning represents a crucial test of023

artificial intelligence (AI) systems’ ability to un-024

derstand and apply complex concepts, making it025

essential for developing truly intelligent models026

(Evans et al., 2023; Liang et al., 2024; Zhang et al.,027

2023; Truhn et al., 2023; Ma et al., 2024; Sprueill028

et al., 2023).Recent advancements in LLMs like029

GPTs (Brown et al., 2020; Achiam et al., 2023) and030

Llama (Dubey et al., 2024) have significantly trans-031

formed the field of natural language processing032

(NLP). Despite these advances, scientific reason-033

ing remains challenging for these models, facing034

several key limitations: (1) Lack of multimodal035

*Corresponding Author.
1https://anonymous.4open.science/r/

MMSciBench-code-812A/
2https://huggingface.co/datasets/

anonymous-acl-submission/mmscibench-anonymous

evaluation: While LVLMs have emerged as power- 036

ful models capable of processing both images and 037

text, existing scientific benchmarks are predomi- 038

nantly text-only, preventing comprehensive assess- 039

ment of visual-textual reasoning abilities. (2) Lim- 040

ited domain coverage: Current scientific datasets 041

either focus too narrowly on individual subjects 042

or too broadly across scientific areas, failing to 043

systematically evaluate understanding of key con- 044

cepts within specific disciplines. (3) Insufficient 045

assessment granularity: Existing benchmarks lack 046

human-annotated difficulty levels and structured 047

taxonomies of scientific concepts, making it chal- 048

lenging to evaluate models’ performance across 049

different complexity levels and specific knowledge 050

domains. These limitations create an urgent need 051

for a benchmark that can effectively evaluate both 052

LLMs’ and LVLMs’ scientific reasoning abilities 053

while addressing these challenges. 054

To address these challenges, we introduce MM- 055

SciBench, a benchmark focused on mathematics 056

and physics that evaluates scientific reasoning capa- 057

bilities. Our benchmark makes three key contribu- 058

tions: (1) A comprehensive evaluation framework 059

that combines multiple-choice questions (MCQs) 060

and open-ended Q&A problems, designed to test 061

diverse reasoning skills across mathematical and 062

physical domains. (2) A novel multimodal assess- 063

ment approach incorporating both text-only and 064

text-image formats, enabling direct comparison of 065

models’ unimodal versus multimodal reasoning ca- 066

pabilities. (3) A hierarchical taxonomy of scientific 067

concepts with human-annotated difficulty levels, 068

detailed solutions, and explanations for each prob- 069

lem. We conducted extensive experiments using 070

four state-of-the-art LVLMs (including both open- 071

source and proprietary models) on the complete 072

dataset, and two mathematics-specialized LLMs 073

on text-only questions. For consistent evaluation 074

across models, we employed GPT-4o as an auto- 075

mated assessor. 076
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Question & Standard Solution

Question
Question (Single Choice): As shown in the figure,
two identical right-angled glass prisms ABC are
placed with their AC faces parallel to each other,
and between them is a uniform unknown transpar-
ent medium. A monochromatic thin light beam O
is incident perpendicular to the AB face. ( ) is the
possible exit light path in the diagram.

Options:
A. Any one of the lines 1, 2, 3 (parallel to each other)
B. Any one of the lines 4, 5, 6 (parallel to each other)
C. Any one of the lines 7, 8, 9 (parallel to each other)
D. Only one of the lines 4 or 6
Standard Solution: B

Explanation

This question primarily tests knowledge of prism-
related problems.
Option analysis: According to the problem descrip-
tion, the refractive index of the medium between
the two right-angled prisms is unknown. It may be
greater than, equal to, or smaller than the refractive
index of the glass. The possible light path diagrams
are as follows:

Therefore, Option B is correct, and Options A, C, and
D are incorrect.
In conclusion, the correct answer to this question is
B.

Figure 1: The English translation of an example of a
physics MCQ, featuring a single-choice question, the
correct answer, and a detailed explanation to aid under-
standing. The original Chinese version is shown in Fig.
10 in the appendix.

Our evaluation reveals significant limitations in077

current models’ multimodal scientific reasoning ca-078

pabilities. Gemini 1.5 Pro 002 achieved the highest079

accuracy (63.77%), followed by Claude 3.5 Sonnet080

(53.95%) and GPT-4o (50.94%), while Llama-3.2-081

90B-Vision-Instruct performed substantially lower082

(31.19%). Analysis across task types exposed three083

critical challenges: (1) Performance degradation084

on open-ended tasks, with accuracy dropping by an085

average of 22.32% compared to multiple-choice 086

questions (2) Systematic failures in complex math- 087

ematical and physical reasoning, particularly in 088

domains requiring multi-step problem-solving (3) 089

Limited visual-textual integration, evidenced by a 090

36.28% performance gap between text-only and 091

text-image questions Notably, model performance 092

improved when utilizing explicit chain-of-thought 093

prompting and English-language reasoning, even 094

for Chinese-language questions, suggesting poten- 095

tial pathways for enhancing scientific reasoning 096

capabilities. 097

2 MMSciBench 098

2.1 Data Collection and Preprocessing 099

The benchmark data was originally curated by K- 100

12 teachers who annotate questions, detailed step- 101

by-step solutions, final answers, difficulty level, 102

knowledge points, as well as a bunch of other meta- 103

data. The dataset3 includes precise text descrip- 104

tions, high-resolution images, and high-quality so- 105

lutions, all compiled and shared as part of a collabo- 106

rative research effort aimed at advancing AI bench- 107

marking standards. Each question in the dataset is 108

assigned a human-annotated hardness score rang- 109

ing from 0 to 1, where 1 represents the most chal- 110

lenging questions, and zero denotes the easiest. 111

To ensure benchmark quality and rigor, we im- 112

plemented a systematic data curation process. We 113

filtered out questions with incomplete information 114

or duplicate content, focusing on problems with 115

well-defined, quantifiable answers. Following our 116

emphasis on challenging scientific reasoning, we 117

selected questions with human-annotated difficulty 118

scores ≥ 0.7 on a standardized scale. To maintain 119

consistent evaluation conditions, we limited visual 120

content to a maximum of one image per question. 121

To enable systematic knowledge categorization, 122

we employed GPT-4o to annotate each question 123

according to a three-level subject-specific taxon- 124

omy, detailed in Section 2.2. The classification 125

results were thoroughly validated by experienced 126

K-12 curriculum specialists to ensure accuracy and 127

alignment with educational standards. This taxo- 128

nomic analysis confirmed that our filtered dataset 129

maintains comprehensive coverage of key scientific 130

concepts while focusing on challenging problems. 131

Following preprocessing and validation, the final 132

benchmark contains 4,482 question-solution pairs 133

3The dataset is released under the apache-2.0 license.
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that enable rigorous evaluation of models’ scien-134

tific reasoning capabilities across diverse domains.135

2.2 Dataset Description136

Data Characteristics The MMSciBench dataset137

offers several distinct advantages over previous sci-138

entific datasets:139

1. Curriculum Coverage: The benchmark140

spans essential high school mathematics and141

physics concepts through carefully curated142

MCQs and open-ended Q&A questions. We143

maintain comprehensiveness while keeping144

the dataset size tractable (N = 4,482).145

2. Quality Assurance: Questions undergo146

multi-stage validation by K-12 educators and147

domain experts, ensuring pedagogical rele-148

vance and technical accuracy. Each question149

includes detailed solutions and explanations.150

3. Multimodal Design: The parallel text-only151

and text-image question formats enable sys-152

tematic comparison of unimodal and multi-153

modal reasoning capabilities.154

4. Structured Assessment: Questions are or-155

ganized through a three-level taxonomy and156

annotated with standardized difficulty scores,157

facilitating fine-grained analysis of model per-158

formance.159

An example of a physics MCQ in English is160

shown in Fig. 1, with the original Chinese version161

available in Fig. 10 in the appendix. Addition-162

ally, a detailed comparison between MMSciBench163

and other scientific benchmarks is provided from164

multiple perspectives in Table 1.165

Data Statistics MMSciBench comprises 4,482166

questions, distributed across modalities and ques-167

tion types, as shown in Table 2. The distribution of168

core knowledge areas for mathematics and physics169

is illustrated in Figure 2.170

Taxonomy The taxonomy used in MMSciBench171

has three levels: Domain, Module, and Chapter:172

• Domain: Core subject areas that define fun-173

damental knowledge boundaries. Mathemat-174

ics domains include “Sets” and “Functions”,175

while physics encompasses “Classical Me-176

chanics”, “Electrodynamics”, and “Quantum177

Mechanics”. Domains group related topics178

under a common framework.179

Math

Physics

Applied Mathematical Modeling and Mathematical Inquiry

Calculus
Functions

Geometry and Algebra

Logic and Reasoning

Probability and Statistics
Sets

Applied Physics

Classical Mechanics

Electrodynamics
Quantum Mechanics
Thermodynamics

Figure 2: The distribution of data in MMSciBench ac-
cording to the first-level key knowledge points for each
subject.

• Module: Subdivisions within Domains that 180

focus on key themes or methods. Examples 181

include “Probability and Statistics” in mathe- 182

matics and “Mechanical Motion and Physical 183

Models” in physics. Modules scaffold learn- 184

ing by clustering related topics. 185

• Chapter: The most detailed level, covering 186

specific topics within a Module. For instance, 187

mathematics Chapters under “Functions” in- 188

clude “Exponential Functions” and “Trigono- 189

metric Functions”, while physics Chapters un- 190

der “Interactions and Laws of Motion” include 191

“Hooke’s Law” and “Equilibrium Conditions 192

of Concurrent Forces”. Chapters enable fine- 193

grained content analysis and annotation. 194

3 Experiment Settings 195

3.1 Evaluated Models 196

We evaluated our benchmark using four state-of- 197

the-art LVLMs: GPT-4o, Claude 3.5 Sonnet (An- 198

thropic, 2024), Gemini 1.5 Pro 002 (Team et al., 199

2024), and Llama-3.2-90B-Vision-Instruct. 200

In addition, as there are models specifically de- 201

signed for mathematical problem-solving, we ex- 202

tend our evaluation to include two math-focused 203

LLMs: Qwen2.5-Math-72B-Instruct (Yang et al., 204

2024) and DeepSeekMath-7B-Instruct (Shao et al., 205

2024). Additionally, we assessed two special- 206

ized mathematical LLMs—Qwen2.5-Math-72B- 207

Instruct (Yang et al., 2024) and DeepSeekMath- 208
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Benchmark Subject Modality key knowledge point Explanation Language Difficulty Size

MSVEC P, O T ✗ ✓ EN College 200
SciOL P, O T&I ✗ ✗ EN College 18M
TRIGO M T ✗ ✓ Lean High School 11K
DMath M T ✓ ✓ EN&KR Grade School 10K
GRASP P T&V ✓ ✗ EN Basic 2K
SceMQA M, P, O T&I ✓ ✓ EN Pre-College 1K
OlympiadBench M, P T, T&I ✓ ✓ EN, ZH Olympiad 8K
GAOKAO-Bench M, P, O T ✗ ✓ ZH High School 3K
GAOKAO-MM M, P, O T, T&I ✗ ✓ ZH High School 650

MMSciBench (Ours) M, P T, T&I ✓ ✓ ZH High School 4K

Table 1: Comparison of MMSciBench with existing benchmarks. T denotes text-only data, T&I denotes text-image
data pairs, and T&V denotes text-video data pairs. EN, ZH, and KR represent English, simplified Chinese, and
Korean, respectively.

Question Type Math Physics Overall

MCQs Q&A MCQs Q&A MCQs Q&A

Text&Image 260 197 450 260 710 457
Text 500 319 2257 239 2757 558

Total 760 516 2707 499 3467 1015

Table 2: Distribution of questions in MMSciBench by
image presence, subject, and question type.

7B-Instruct (Shao et al., 2024)—on the text-only209

mathematics subset. For reproducibility, all evalua-210

tions used a fixed sampling temperature of 0.211

3.2 Evaluation Criteria212

To evaluate the models, we use accuracy as the met-213

ric, a widely adopted standard in existing research,214

for all question types in MMSciBench. Our evalua-215

tion focuses solely on whether the final answer is216

correct, without considering intermediate solution217

steps. This criterion is naturally suited for MCQ218

evaluation, as grading is based on the selected219

choice(s) in practice. For Q&A questions, this220

approach ensures a fair and objective comparison221

by emphasizing the correctness of the final answer222

rather than incorporating subjective human-defined223

grading that accounts for intermediate steps.224

The evaluation workflow involves first generat-225

ing answers for MMSciBench questions using each226

model. GPT-4o is then employed to assess answer227

correctness by comparing the models’ final outputs228

with the dataset’s standard solutions. In existing229

studies, MCQs often require models to adhere to a230

specified output format, imposed through prompts,231

with regular expression rules used to extract the232

selected choice(s). However, during our experi-233

ments, we observed that some models struggled to234

System Prompt: As an AI tutor, answer the provided question and 
conclude your response by stating the selected choice(s).

MCQs:

Q&A:

User Prompt: 

<Question>

Notice, you MUST answer in Chinese.

System Prompt: As an AI tutor, you should answer the provided 
question.

User Prompt: 

<Question>

Notice, you MUST answer in Chinese.

Figure 3: The prompt template designed for request-
ing models to answer questions in Chinese, where the
<Question> is sourced from MMSciBench.

consistently follow these formatting instructions, 235

complicating this approach. In fact, none of the 236

models achieved a 100% compliance rate with the 237

formatting guidelines. To ensure the evaluation 238

focuses on the models’ scientific knowledge and 239

reasoning abilities, rather than being influenced by 240

format compliance issues, we employ GPT-4o to 241

judge whether the final answers are equivalent. 242

3.3 Prompt Design 243

We use prompts customized for different question 244

types to evaluate the models in a zero-shot setting. 245

For each question type, we apply the same specific 246

prompt template across all models, avoiding model- 247

specific prompt engineering that might explicitly 248

guide reasoning or impose tailored requirements. 249

The prompt template is illustrated in Fig. 3. To 250

assess the models’ intrinsic scientific abilities, the 251

prompts used in the evaluation do not include ad- 252

ditional key knowledge points or supplementary 253

information from the dataset, although such infor- 254
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Models Math Physics Overall

Llama-3.2-90B-Vision-Instruct 16.69% 36.96% 31.19%
Gemini 1.5 Pro 002 56.74% 66.56% 63.77%
Claude 3.5 Sonnet 37.38% 60.54% 53.95%
GPT-4o 35.97% 56.89% 50.94%

Qwen2.5-Math-72B-Instruct 57.39%∗ – –
DeepSeekMath-7B-Instruct 21.86%∗ – –

Table 3: Accuracies of models across different subjects.
Values marked with ∗ indicate accuracies reported only
on text-only questions, as the corresponding models are
not multimodal.

mation could be incorporated in future research for255

other purposes. Since the dataset is in Chinese,256

we instruct the models to provide their answers in257

Chinese to ensure consistency with the dataset’s258

language.259

For the LLM-as-a-judge evaluation (Gu et al.,260

2024; Chen et al., 2024; Raju et al., 2024), we sam-261

ple 180 instances of evaluated data and iteratively262

refined the judging prompts by manually verifying263

the accuracy of the judgments. This refinement264

process resulted in a judgment accuracy of 97.22%.265

Detailed prompts are provided in Sec. A in the266

appendix.267

4 Results268

4.1 Model Performance269

Overall and Subject-wise Performance Table270

3 presents the overall and subject-specific accura-271

cies of the four LVLMs on the full MMSciBench272

dataset, along with the accuracies of the two math-273

specific LLMs on the text-only math subset. Gem-274

ini 1.5 Pro 002 achieves the highest overall ac-275

curacy at 63.77%, significantly outperforming276

the other LVLMs in the evaluation. It consis-277

tently surpasses all competitors across each of278

the examined subjects, highlighting the substan-279

tial challenge posed by the benchmark, even for280

the most advanced LVLMs. Among the remaining281

LVLMs, Claude 3.5 Sonnet ranks second overall282

with an accuracy of 53.95%, outperforming GPT-283

4o (50.94%) specifically in physics. In contrast,284

Llama-3.2-90B-Vision-Instruct lags far behind,285

recording the lowest overall accuracy of 31.19%.286

For the two math-specific LLMs, Qwen2.5-Math-287

72B-Instruct demonstrates notable performance288

with an accuracy of 57.39% on text-only math289

questions, while DeepSeekMath-7B-Instruct sig-290

nificantly underperforms, achieving only 21.86%.291

This discrepancy is expected, given the difference292

in model sizes. Another noteworthy observation is 293

the variation in performance across subjects, with 294

models consistently performing better in physics. 295

This finding will be analyzed further in Sec. 4.3. 296

Performance on Different Questions Types Ta- 297

ble 4 reflects the performance of models on MCQs 298

and Q&A questions in different subjects and the 299

whole dataset, as well as the theoretical random- 300

guess baselines. The random-guess baselines of 301

MCQs are calculated based on the approximation 302

that all MCQs in MMSciBench are 4-choice ques- 303

tions, as over 99% of MCQs in MMSciBench 304

have 4 choices (see Table 7 in the appendix for 305

detailed statistics). For single-choice questions, 306

the random-guess accuracy is 1/4, as only one 307

option is correct. For multiple-choice questions, 308

where valid subsets include combinations of more 309

than one choice, the random-guess accuracy is 310

1/(C2
4 + C3

4 + C4
4 ) = 1/11. For indeterminate- 311

choice questions, where any non-empty subset 312

of choices is valid, the random-guess accuracy is 313

1/24 = 1/16. These probabilities were weighted 314

to compute random-guess baselines of MCQs. 315

While the raw accuracies suggest that models 316

generally perform better on MCQs than on Q&A 317

questions, subtracting the baseline accuracies from 318

their MCQ results reveals smaller yet positive gaps. 319

This indicates that the provided answer choices in 320

MCQs may assist the models by narrowing the pos- 321

sible answer space, making these questions easier 322

to answer correctly compared to Q&A questions. 323

Interestingly, this pattern does not hold true for 324

math, where the MCQ advantage disappears after 325

accounting for the baseline. In fact, some models 326

seem to struggle more with MCQs than with Q&A 327

questions in this subject. This suggests that the 328

provided choices in math MCQs might mislead the 329

models, making these questions more challenging. 330

4.2 Key Knowledge Point-Based Analysis 331

To better understand where different models ex- 332

cel or struggle within scientific domains—and 333

to identify inherently challenging key knowledge 334

points—all models’ performances were analyzed 335

across the taxonomy of first- and second-level key 336

knowledge points, i.e., Domain and Module lev- 337

els (see Fig. 4). This analysis reveals that, while 338

models generally maintain consistent relative rank- 339

ings across entire subjects, their strengths can vary 340

significantly at the subfield level. For instance, al- 341

though Gemini 1.5 Pro 002 often leads overall, it 342
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Models Math Physics Overall

MCQs Q&A MCQs Q&A MCQs Q&A

Llama-3.2-90B-Vision-Instruct 25.39% 3.88% 41.49% 12.42% 37.96% 8.08%
1.52% 21.48% 17.1%

Gemini 1.5 Pro 002 63.16% 47.29% 70.41% 45.69% 68.82% 46.50%
39.29% 50.40% 47.96%

Claude 3.5 Sonnet 48.03% 21.71% 65.35% 34.47% 61.55% 27.98%
24.16% 45.34% 40.69%

GPT-4o 44.47% 23.45% 61.17% 33.67% 57.51% 28.47%
20.60% 41.16% 36.65%

Qwen2.5-Math-72B-Instruct 66.80%∗ 42.63%∗ – – – –
41.80%∗

DeepSeekMath-7B-Instruct 32.40%∗ 5.33%∗ – – – –
7.40%∗

Theoretical Random Baseline 23.87% 0 20.01% 0 20.86% 0
25.00%∗ 0∗ – – – –

Table 4: Accuracies of models across different question types, with underscored values indicating the accuracy
improvement over the theoretical accuracy of random guess for MCQs. Values marked with ∗ indicate accuracies on
text-only math subsets for specialized math models.

falls behind Claude 3.5 Sonnet and GPT-4o in the343

subfield of “Electrodynamics - Magnetic Field”.344

Additionally, certain subfields prove universally345

challenging, e.g., “Electrodynamics - Electromag-346

netic Induction and Its Applications” in physics, as347

well as “Geometry and Algebra – Geometry and348

Algebra” and “Functions – Preliminary Knowledge”349

in mathematics. These findings highlight both the350

nuanced capabilities and the current limitations351

of state-of-the-art models in addressing scientific352

knowledge.353

4.3 Visual Understanding354

MMSciBench includes both text-only and text-355

image paired questions. To evaluate the impact356

of visual input, we assess models on both types of357

questions, as shown in Table 5. Notably, all LVLMs358

perform worse on tasks involving both textual and359

visual elements compared to those relying solely on360

text. This highlights that bridging the gap between361

text comprehension and text-image co-reasoning362

remains a significant challenge for current LVLMs.363

Furthermore, the higher proportion of text-only364

questions in physics partially explains why models365

perform better on physics questions compared to366

math questions, as observed in Table 3.367

4.4 The Effect of Chain-of-Thought in 368

Reasoning 369

To evaluate the full scientific potential of the mod- 370

els, we design a suite of prompts to instruct them to 371

answer step-by-step in Chinese, as detailed in Sec. 372

A.2 in the appendix. As shown in Table 6, step-by- 373

step prompting improves the accuracies of Llama- 374

3.2-90B-Vision-Instruct and DeepSeekMath-7B- 375

Instruct compared to their results in Table 3. How- 376

ever, the accuracy of Qwen2.5-Math-72B-Instruct 377

decreases, while the performance of the other mod- 378

els remains unchanged. 379

This observation suggests that explicitly prompt- 380

ing certain models to use chain-of-thought reason- 381

ing can enhance their performance, and that differ- 382

ent models exhibit varying degrees of alignment or 383

readiness in this regard. Notably, Gemini 1.5 Pro 384

002, Claude 3.5 Sonnet, GPT-4o, and Qwen2.5- 385

Math-72B-Instruct are more capable of generating 386

effective reasoning steps without explicit prompt- 387

ing, whereas other models show more significant 388

improvements when guided explicitly. 389

Considering that models typically have access to 390

richer English training resources, we conducted ad- 391

ditional experiments by prompting them to answer 392

6



0 50 100
Accuracy (%)

Applied Mathematical Modeling and Mathematical Inquiry - Mathematical Modeling and Mathematical Inquiry
Calculus - Calculus

Functions - Functions
Functions - Preliminary Knowledge

Geometry and Algebra - Geometry and Algebra
Logic and Reasoning - Logical Reasoning

Logic and Reasoning - Preliminary Knowledge
Probability and Statistics - Probability and Statistics

Sets - Preliminary Knowledge
Applied Physics - Energy and Sustainable Development

Classical Mechanics - Curve Movement and Law of Universal Gravitation
Classical Mechanics - Interaction and Laws of Motion

Classical Mechanics - Limitations of Newtonian Mechanics and Introduction to Relativity
Classical Mechanics - Mechanical Energy and Its Conservation Law

Classical Mechanics - Mechanical Motion and Physical Models
Classical Mechanics - Mechanical Vibration and Mechanical Waves

Classical Mechanics - Momentum and Law of Conservation of Momentum
Electrodynamics - Circuit and Its Applications

Electrodynamics - Electromagnetic Field and Electromagnetic Waves
Electrodynamics - Electromagnetic Induction and Its Applications

Electrodynamics - Electromagnetic Oscillation and Electromagnetic Waves
Electrodynamics - Electrostatic Field

Electrodynamics - Magnetic Field
Electrodynamics - Sensor

Quantum Mechanics - Atom and Nucleus
Quantum Mechanics - Light and Its Applications

Quantum Mechanics - Wave-Particle Duality
Thermodynamics - Laws of Thermodynamics

Thermodynamics - Solid, Liquid and Gas

Ca
te

go
rie

s
Llama-3.2-90B-Vision-Instruct

0 50 100
Accuracy (%)

Gemini 1.5 Pro 002

0 50 100
Accuracy (%)

Claude 3.5 Sonnect

0 50 100
Accuracy (%)

GPT-4o

0 50 100
Accuracy (%)

Qwen2.5-Math-72B-Instruct

0 50 100
Accuracy (%)

DeepSeekMath-7B-Instruct

Subjects
Physics
Math

Figure 4: Accuracies of models across different key knowledge points.

Models Math Physics Overall

Text T&I Text T&I Text T&I

Llama-3.2-90B-Vision-Instruct 19.54% 11.60% 42.83% 16.34% 37.07% 14.48%
Gemini 1.5 Pro 002 69.60% 33.70% 74.40% 39.01% 73.21% 36.93%
Claude 3.5 Sonnet 44.57% 24.51% 67.75% 35.21% 62.02% 31.02%
GPT-4o 44.69% 20.35% 64.10% 31.55% 59.31% 27.16%

Qwen2.5-Math-72B-Instruct 57.39% – – – – –
DeepSeekMath-7B-Instruct 21.86% – – – – –

Table 5: Accuracies of models on text-only (Text) and text-image paired (T&I) questions across different subjects.

step-by-step in English to further explore their sci-393

entific capabilities. The corresponding prompts are394

detailed in Sec. A.2 of the appendix. As shown in395

Table 6, the results indicate that all models, except396

Gemini 1.5 Pro 002, benefit from this instruction.397

This underscores the effectiveness of explicit chain-398

of-thought prompting and its importance in accu-399

rately assessing models’ capabilities. The differing400

behavior of Gemini 1.5 Pro 002 may suggest that401

its performance relies on the compatibility between402

the language of the questions and the language of403

the answers.404

5 Related Work405

Scientific Benchmarks Scientific benchmarks406

are essential tools for evaluating the capabilities407

of language models in understanding and reason-408

ing about complex scientific concepts, encompass-409

ing a wide range of disciplines, from general sci-410

ence to domain-specific areas like mathematics and411

physics. General scientific benchmarks, such as412

MSVEC (Evans et al., 2023) and SciOL (Tarsi413

Models Math Physics Overall

in Chinese

Llama-3.2-90B-Vision-Instruct 19.12% 38.86% 33.24%
Gemini 1.5 Pro 002 56.90% 66.28% 63.61%
Claude 3.5 Sonnet 36.83% 61.42% 54.42%
GPT-4o 35.74% 56.86% 50.85%
Qwen2.5-Math-72B-Instruct 55.68%∗ – –
DeepSeekMath-7B-Instruct 23.32%∗ – –

in English

Llama-3.2-90B-Vision-Instruct 22.41% 44.20% 38.00%
Gemini 1.5 Pro 002 55.17% 65.07% 62.25%
Claude 3.5 Sonnet 40.67% 61.26% 55.40%
GPT-4o 37.23% 59.08% 52.86%
Qwen2.5-Math-72B-Instruct 55.31%∗ – –
DeepSeekMath-7B-Instruct 23.69%∗ – –

Table 6: Accuracies of models asked to provide step-by-
step answers in Chinese and English. Values marked
with ∗ indicate accuracies on text-only math questions
for the corresponding specialized math models.

et al., 2024), have been developed to assess var- 414

ious aspects of language models’ abilities in spe- 415

cific scientific domains, including claim verifica- 416

tion, figure retrieval, and multimodal information 417

comprehension. However, the increasing complex- 418

ity of language models necessitates more special- 419

ized benchmarks to evaluate their performance in 420
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specific scientific domains.421

In mathematics, benchmarks like TRIGO (Xiong422

et al., 2023), DrawEduMath (Baral et al., 2025),423

and DMath (Kim et al., 2023) have been developed424

to assess AI models on targeted mathematical tasks.425

TRIGO focuses on formal mathematical proof re-426

duction, evaluating models’ abilities to understand427

and manipulate complex mathematical expressions.428

DrawEduMath is designed to assess models’ profi-429

ciency in solving visual math problems, where both430

image and textual inputs are required to extract and431

process mathematical information. DMath, on the432

other hand, evaluates models on a diverse set of433

math word problems, testing their natural language434

understanding alongside mathematical reasoning.435

Similarly, in physics, datasets such as GRASP (Jas-436

sim et al., 2023) have been introduced to assess437

models’ understanding of “Intuitive Physics” prin-438

ciples, including object permanence and continuity.439

Additionally, benchmarks like GAOKAO-Bench440

(Zhang et al., 2023), GAOKAO-MM (Zong and441

Qiu, 2024), OlympiadBench (He et al., 2024), and442

SceMQA (Liang et al., 2024) span multiple sci-443

entific domains, including mathematics, physics,444

chemistry, and biology. These benchmarks focus445

on high-school, Olympiad, and pre-college levels,446

offering comprehensive evaluations of AI models’447

scientific reasoning capabilities across key disci-448

plines.449

Benchmarks for LVLMs Benchmarks for450

LVLMs have been developed to evaluate their per-451

formance across various tasks, including visual452

question answering, image captioning, and mul-453

timodal reasoning. These benchmarks typically454

consist of datasets with image-text pairs accompa-455

nied by corresponding questions or instructions,456

assessing the ability of LVLMs to generate ac-457

curate and relevant responses. For example, the458

VALSE benchmark (Parcalabescu et al., 2021) fo-459

cuses on evaluating the visio-linguistic ground-460

ing capabilities of pretrained VLMs on specific461

linguistic phenomena. Other benchmarks, such462

as VisIT-Bench (Bitton et al., 2023), WinoGAViL463

(Bitton et al., 2022), and those designed for zero-464

shot visual reasoning (Nagar et al., 2024; Xu et al.,465

2024), are aimed at assessing the ability of LVLMs466

to reason about visual scenes and answer ques-467

tions that require minimal world knowledge. These468

benchmarks often analyze the impact of conveying469

scene information either as visual embeddings or as470

purely textual scene descriptions to the underlying471

LLM of the LVLM. 472

To address the scarcity of scientific bench- 473

marks specifically designed for the high school 474

level—supporting both text-only and multimodal 475

reasoning—we introduce MMSciBench. As de- 476

tailed in Table 1, this dataset achieves a balanced 477

trade-off between size and comprehensiveness, en- 478

abling efficient evaluation while offering a diverse 479

selection of challenging high-school-level scien- 480

tific problems. Additionally, MMSciBench prior- 481

itizes quality, with a significant portion of prob- 482

lems including detailed solution explanations and 483

a three-level taxonomy of key knowledge points, 484

facilitating fine-grained analysis of AI model per- 485

formance. 486

6 Conclusion 487

This paper introduces MMSciBench, a benchmark 488

designed to evaluate the scientific capabilities of 489

both unimodal and multimodal language mod- 490

els. MMSciBench consists of a collection of high 491

school-level MCQs and Q&A questions in mathe- 492

matics and physics, with a subset of the questions 493

incorporating images. The benchmark organizes 494

its questions into a three-level taxonomy, ensuring 495

comprehensive coverage of key knowledge points 496

in both subjects. Our evaluation of four advanced 497

LVLMs and two specialized math LLMs on MM- 498

SciBench demonstrates that current models still 499

have significant room for improvement in scientific 500

problem-solving. The analysis highlights that the 501

inclusion of visual elements in questions presents 502

a substantial challenge for model performance, em- 503

phasizing the complexity of integrating textual and 504

visual reasoning. This work contributes to the on- 505

going development of robust benchmarks aimed 506

at evaluating the evolving capabilities of language 507

models, particularly in the domain of scientific rea- 508

soning. 509

Limitations 510

Despite the advances presented in MMSciBench, 511

several limitations warrant discussion and open 512

avenues for future research. 513

1. Domain and Content Scope: MMSciBench 514

is focused on high-school level mathemat- 515

ics and physics, a scope chosen for its edu- 516

cational relevance and well-defined problem 517

sets. However, this focus also limits the bench- 518

mark’s applicability to broader scientific do- 519

mains. While the curated questions capture es- 520

8



sential concepts, they do not encompass other521

fields such as chemistry, biology, or advanced522

scientific topics. Additionally, the dataset’s523

reliance on K–12 educational standards may524

introduce biases that do not reflect the diverse525

challenges encountered in higher-level or in-526

terdisciplinary scientific reasoning.527

2. Evaluation Metrics and Reasoning Trans-528

parency: The evaluation framework is cen-529

tered on final answer accuracy, a metric that,530

while objective, does not capture the nuances531

of intermediate reasoning steps or the quality532

of explanations generated by models. By dis-533

counting partial correctness or the reasoning534

process, the assessment may obscure impor-535

tant differences in how models arrive at their536

answers. Future iterations of the benchmark537

may benefit from incorporating multi-faceted538

evaluation criteria that assess both the correct-539

ness of conclusions and the soundness of the540

reasoning process.541

3. Language and Cultural Considerations:542

MMSciBench is primarily composed in Chi-543

nese, with some experiments extended to En-544

glish. Models predominantly trained on En-545

glish data may therefore be disadvantaged,546

and cultural or linguistic biases could affect547

performance. Future work should consider548

expanding the benchmark to include a more549

balanced representation of languages and edu-550

cational contexts.551

4. Dataset Size and Filtering Practices:552

While MMSciBench comprises 4,482 ques-553

tion–solution pairs, the dataset size is mod-554

est relative to some large-scale benchmarks.555

The strict filtering criteria (e.g., including556

only questions with a human-annotated hard-557

ness score ≥ 0.7) may also limit the diversity558

of problem difficulties, potentially excluding559

edge cases that could be valuable for assessing560

nuanced reasoning. Enlarging the dataset and561

diversifying the difficulty distribution would562

further strengthen the benchmark’s compre-563

hensiveness.564
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A Prompts720

In this section, we present the prompts used in our721

work.722

A.1 The Prompt for Question Categorization723

Fig. 5 presents the prompt designed for categoriz-724

ing MMSciBench questions into specific categories725

using GPT-4o. The category sets for each subject726

are derived from a Chinese high school key knowl-727

edge point taxonomy.728

User Prompt: 

你是一个分类助手，用于将提供的习题题目归类到以下类别之一：

<Categories>

请先进行分析，然后在最后以以下格式提供你的分类结果：

分类结果: <类别名称>

请确保你的分类结果严格遵守上述格式，并且不要修改类别名称。

<Question>

Figure 5: The prompt template is designed to use GPT-4
as a classifier, categorizing each question into a three-
level hierarchy. <Categories> represents the predefined
set of categories for the target subject.

A.2 Prompt Templates for the Effect of729

Chain-of-Thought in Reasoning730

Fig. 6 and Fig. 7 are prompts templates that ask731

models to think step by step in Chinese and English,732

respectively.733

System Prompt: As an AI tutor, answer the provided question and 
conclude your response by stating the selected choice(s).

MCQs:

Q&A:

User Prompt: 

<Question>

Notice, you MUST answer in Chinese. Let's solve it step by step.

System Prompt: As an AI tutor, you should answer the provided 
question.

User Prompt: 

<Question>

Notice, you MUST answer in Chinese. Let's solve it step by step.

Figure 6: The prompt template is designed for request-
ing models to answer questions in Chinese step by step,
where the <Question> is sourced from MMSciBench.

A.3 The Prompt Template for Using GPT-4o734

as a Judge735

Fig. 8 (with its English translation in Fig. 9) il-736

lustrates the prompt used to instruct GPT-4o to737

evaluate whether a “student solution”—that is, the738

model’s response being assessed—is correct or in-739

correct compared to the standard solution in MM-740

SciBench. For MCQs, only the model’s answer and741

System Prompt: As an AI tutor, answer the provided question and 
conclude your response by stating the selected choice(s).

MCQs:

Q&A:

User Prompt: 

<Question>

Notice, you MUST answer in English. Let's solve it step by step.

System Prompt: As an AI tutor, you should answer the provided 
question.

User Prompt: 

<Question>

Notice, you MUST answer in English. Let's solve it step by step.

Figure 7: The prompt template is designed for request-
ing models to answer questions in English step by step,
where the <Question> is sourced from MMSciBench.

the standard solution are provided, omitting the ac- 742

tual questions. This approach is sufficient because 743

the evaluation solely involves comparing whether 744

the selected choices match the standard answer, 745

eliminating the need to understand the question’s 746

context. In contrast, for Q&A questions, GPT-4o 747

is provided with the question, the standard solu- 748

tion, and the model’s answer. This comprehensive 749

context enables accurate semantic understanding 750

and a thorough comparison between the two re- 751

sponses. The prompt for Q&A questions have been 752

iteratively refined and enhanced to improve GPT- 753

4o’s judgment, particularly in cases where misjudg- 754

ments are likely. This refinement process involves 755

sampling a subset of evaluated responses and man- 756

ually diagnosing the reasons for any misjudgments, 757

thereby continually improving the evaluation accu- 758

racy. 759
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System Prompt: 你是一个助教助手，负责判断学生答案的选择是否与
标准答案一致。

MCQs:

Q&A:

User Prompt: 

### 标准答案：<Standard Solution>

### 学生答案：<Student Solution>

标准答案只包含选项，而学生答案可能包含思考过程或解析。

你需要从学生答案中提取具体选择项，并与标准答案进行比对。

如果提取出的学生选择与标准答案完全一致，则回答“正确”，否则回
答“错误”。

判断结果以“正确”或“错误”的形式回答，不要提供任何其他信息。


System Prompt: 你是一个助教助手，负责判断学生答案的结论是否与
标准答案的结论表达同样的意思。

User Prompt: 

请根据以下题目信息和提供的标准答案判断学生答案是否正确:

### 问题：<Question>

### 标准答案：<Standard Solution>

### 学生答案：<Student Solution>

请根据以上题目信息和标准答案，仅根据学生答案的最终结论或答案判
断其是否正确，忽略过程的正确性。



注意事项：

1. 检查题目是否包含多个子问题：

- 如果包含多个子问题，请逐一判断每个子问题的答案是否正确。只有
当所有子问题的最终答案都正确时，整体答案才被视为正确。

- 如果不包含子问题，则仅根据学生答案的最终结论或答案进行判断。

2. 即使学生答案的表达方式与标准答案不同，只要最终结论或答案的意
思相同，也应视为正确。可能的情况包括但不限于：

- 学生答案和标准答案使用的语言不同，但意思相同。

- 学生答案中的公式经过化简和变形后与标准答案的公式相同。

- 学生答案采用了不同的表述形式，但语义相同。

3. 请解释和分析学生答案与标准答案的最终结论或答案的异同之处。

4. 如果由于学生答案不完整或缺失，或者学生答案没有按照题目要求给
出结论，导致无法判断是否正确的，就判断为错误。

5. 如果题目包含子问题，请为每个子问题提供“子问题X判断结果：正
确”或“子问题X判断结果：错误”的形式。

6. 最终判断结果应以“判断结果：正确”或“判断结果：错误”的形式给
出。



请按照以下格式回复：



分析：

[在此处填写详细的分析内容]



[如果有子问题，则添加以下部分]

子问题判断结果：

子问题1判断结果：正确/错误

子问题2判断结果：正确/错误

...

子问题N判断结果：正确/错误



判断结果：正确/错误

Figure 8: The prompt template designed for using GPT-
4o as a judge, where the <Question> and <Standard
Solution> is sourced from MMSciBench, while <Stu-
dent Solution> is the solution provided by the tested
model.

System Prompt: You are a teaching assistant responsible for 
determining whether the choices of students’ solution match the 
standard solution.

MCQs:

Q&A:

User Prompt: 

### Standard Solution: <Standard Solution>

### Student Solution: <Student Solution>



Standard solution only contains the choices, while student 
solution may include reasoning or explanations.  

You need to extract the specific choices from the student solution 
and compare them with the standard solution.  



If the extracted student choices match the standard solution 
exactly, respond with "Correct"; otherwise, respond with 
"Incorrect."  

The judgment should be provided in the form of "Correct" or 
"Incorrect" only, without any additional information.


System Prompt: You are a teaching assistant responsible for 
determining whether the conclusion of the student solution 
expresses the same meaning as the conclusion of the standard 
solution.

User Prompt: 

Please determine whether the student solution is correct based 
on the following question information and the provided standard 
solution:



### Question: <Question>

### Standard Solution: <Standard Solution>

### Student Solution: <Student Solution>



Make your judgment based solely on the final conclusion or 
answer provided in the student solution, ignoring the correctness 
of the process.



Notes:

1. Check whether the question contains multiple sub-questions:

- If it contains multiple sub-questions, evaluate each sub-question 
individually to determine whether its answer is correct. Only when 
the final answers to all sub-questions are correct is the overall 
answer considered correct.

- If there are no sub-questions, judge based solely on the final 
conclusion or answer in the student solution.

2. Even if the student's expression differs from the standard 
solution, as long as the final conclusion or answer conveys the 
same meaning, it should be considered correct. Possible cases 
include but are not limited to:

- The language used in the student solution differs from the 
standard solution, but the meaning is the same.

- The formula in the student solution simplifies or transforms into 
the same formula as the standard solution.

- The student solution uses a different expression, but the 
semantics are identical.

3. Explain and analyze the similarities and differences between 
the final conclusion or answer of the student solution and the 
standard solution.

4. If the student solution is incomplete, missing, or does not 
provide a conclusion as required by the question, making it 
impossible to determine correctness, the judgment should be 
"Incorrect."

5. If the question contains sub-questions, provide results for each 
sub-question in the format of “Sub-question X result: Correct” or 
“Sub-question X result: Incorrect.”

6. The final judgment should be given in the format: "Judgment 
Result: Correct" or "Judgment Result: Incorrect."



Please folllow the following response format:



Analysis:  

[Provide detailed analysis here]



[If there are sub-questions, include the following section]  

Sub-question Results:  

Sub-question 1 result: Correct/Incorrect  

Sub-question 2 result: Correct/Incorrect  

...  

Sub-question N result: Correct/Incorrect  



Judgment Result: Correct/Incorrect

Figure 9: The English translation of the prompt template
shown in Fig. 8.
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B Data Examples760

In this section, we present examples from MM-761

SciBench, including a physics MCQ (Fig. 10 and762

the corresponding English translation in Fig. 1), a763

physics Q&A question (Fig. 15 and the correspond-764

ing English translation in Fig. 16), a math MCQ765

(Fig. 11 and the corresponding English translation766

in Fig. 12), and a math Q&A question (Fig. 13767

and the corresponding English translation in Fig.768

14). Each example is accompanied by its standard769

solution and explanation.770

Question & Standard Solution

Question
问题（单选）：如图所示，两块同样的玻璃直
角三棱镜ABC，两者的AC面是平行放置的，
在它们之间是均匀的未知透明介质。一束单色
细光O垂直于AB面入射，在图示的出射光线中
（ ）。

选项：
A. 1、2、3（彼此平行）中的任一条都有可能
B. 4、5、6（彼此平行）中的任一条都有可能
C. 7、8、9（彼此平行）中的任一条都有可能
D.只能是4、6中的某一条
Standard Solution: B

Explanation

本题主要考查三棱镜问题。
选项分析：据题述，两个直角三棱镜之间的介
质折射率未知，可能比玻璃大，可能与玻璃相
同，也可能比玻璃小，可能的光路图如下：

故B项正确，ACD项错误。
综上所述，本题正确答案为B。

Figure 10: An example of a physics MCQ.

C The Distribution of Choices of MCQs771

Table 7 shows that over 99% of MCQs in MM-772

SciBench have 4 choices773

Question & Standard Solution

Question
问题（多选）：下图是函数y = sin(ωx + φ)的
部分图象，则sin(ωx+ φ) =（）。

选项：
A. sin(x+ π

3
)

B. sin(π
3
− 2x)

C. cos(2x+ π
6
)

D. cos( 5π
6

− 2x)
Standard Solution: B, C

Explanation

本题主要考查三角函数。
由题图可知，

T

2
=

2

3
π − π

6
=

π

2
,

所以

T =
2π

|ω| = π,

所以|ω| = 2。
当ω = 2时，由函数图象过点

(
π
6
, 0
)
，

(
2π
3
, 0
)
，

且f(0) > 0，得

φ =
2π

3
+ 2kπ (k ∈ Z),

所以

y = sin

(
2x+

2π

3

)
= − cos

(
5π

6
− 2x

)
,

同理，当ω = −2时，

φ =
π

3
+ 2kπ (k ∈ Z),

所以

y = sin
(
−2x+

π

3

)
= cos

(
2x+

π

6

)
故本题正确答案为BC。

Figure 11: An example of a math MCQ.
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Question & Standard Solution

Question
Question (Multiple Choice): The figure below shows
a part of the graph of the function y = sin(ωx+ φ).
Determine sin(ωx+ φ) = ( ).

Options:
A. sin

(
x+ π

3

)
B. sin

(
π
3
− 2x

)
C. cos

(
2x+ π

6

)
D. cos

(
5π
6

− 2x
)

Standard Solution: B, C

Explanation

This question primarily assesses trigonometric func-
tions.
From the figure, we know that

T

2
=

2

3
π − π

6
=

π

2
,

therefore
T =

2π

|ω| = π,

so |ω| = 2.
When ω = 2, since the graph passes through the
points

(
π
6
, 0
)

and
(
2π
3
, 0
)
, and f(0) > 0, we have

φ =
2π

3
+ 2kπ (k ∈ Z),

thus

y = sin

(
2x+

2π

3

)
= − cos

(
5π

6
− 2x

)
,

similarly, when ω = −2,

φ =
π

3
+ 2kπ (k ∈ Z),

so

y = sin
(
−2x+

π

3

)
= cos

(
2x+

π

6

)
Therefore, the correct answer is BC.

Figure 12: The English translation of the math MCQ
example in Fig. 11.

Question & Standard Solution

Question
问题（解答）：如图，建立平面直角坐标
系xOy，x轴在地平面上，y轴垂直于地平面，
单位长度为1千米。某炮位于坐标原点。已知炮
弹发射后的轨迹在方程

y = kx− 1

20
(1 + k2)x2(k > 0)

表示的曲线上，其中k与发射方向有关。炮的射
程是指炮弹落地点的横坐标。（1）求炮的最大
射程；（2）设在第一象限有一飞行物（忽略其
大小），其飞行高度为3.2千米，试问它的横坐
标a不超过多少时，炮弹可以击中它？请说明理
由。

Standard Solution
（1）令y = 0，得kx− 1

20
(1 + k2)x2 = 0，由实

际意义和题设条件知x > 0，k > 0，故

x =
20k

1 + k2
=

20

k + 1
k

≤ 20

2
= 10,

当且仅当k = 1时取等号。所以炮的最大射程
为10千米。
（2）因为a > 0，所以炮弹可击中目标
⇔存在k > 0，使3.2 = ka− 1

20
(1 + k2)a2成立

⇔关于k的方程a2k2 − 20ak + a2 + 64 = 0有正
根
⇔判别式

∆ = (−20a)2 − 4a2(a2 + 64) ≥ 0

⇔ a ≤ 6
此时，

k =
20a+

√
(−20a)2 − 4a2(a2 + 64)

2a2
> 0

（不考虑另一根）。所以当a不超过6千米时，
可击中目标。

Explanation

本题主要考查函数与方程和基本不等式的应用
等相关知识。（1）求炮的最大射程，即y =
0时的一个较大的根，因为含有参数k，所以需
根据k的取值范围确定另外一个根的最大值，即
为炮的最大射程。（2）炮弹能击中目标的含义
为炮弹的飞行高度y = 3.2时有解。根据二次函
数有正根，可得出a的取值范围。

Figure 13: An example of a math Q&A question.
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Question & Standard Solution

Question
Question (Q&A): As shown in the figure, set up a
Cartesian coordinate system xOy, with the x-axis on
the ground, the y-axis perpendicular to the ground,
and the unit length is 1 kilometer. A cannon is located
at the origin. It is known that the trajectory of the
cannonball after firing is represented by the equation

y = kx− 1

20
(1 + k2)x2(k > 0)

where k is related to the firing direction. The can-
non’s range refers to the x-coordinate of the land-
ing point of the cannonball. (1) Find the maximum
range of the cannon; (2) Suppose there is a flying
object in the first quadrant (ignoring its size) with a
flight height of 3.2 kilometers. What is the maximum
x-coordinate a such that the cannonball can hit it?
Please explain your reasoning.

Standard Solution
(1) Set y = 0, obtaining kx − 1

20
(1 + k2)x2 = 0.

From the actual meaning and problem conditions, we
know x > 0, k > 0, thus

x =
20k

1 + k2
=

20

k + 1
k

≤ 20

2
= 10,

equality holds if and only if k = 1. Therefore, the
maximum range of the cannon is 10 kilometers.
(2) Because a > 0, the cannonball can hit the target
⇔ there exists k > 0 such that 3.2 = ka − 1

20
(1 +

k2)a2 holds
⇔ the equation a2k2−20ak+a2+64 = 0 in terms
of k has positive roots
⇔ the discriminant

∆ = (−20a)2 − 4a2(a2 + 64) ≥ 0

⇔ a ≤ 6
At this time,

k =
20a+

√
(−20a)2 − 4a2(a2 + 64)

2a2
> 0

(Not considering the other root). Therefore, when a
does not exceed 6 kilometers, the target can be hit.

Explanation

This question primarily tests the application of func-
tions, equations, and basic inequalities. (1) To find
the maximum range of the cannon, which is the larger
root when y = 0, because there is a parameter k, we
need to determine the maximum value of the other
root based on the range of k, which gives the cannon’s
maximum range. (2) The meaning of the cannonball
being able to hit the target is that when the flight
height y = 3.2, there exists a solution. Based on
the quadratic function having positive roots, we can
derive the range of a.

Figure 14: The English translation of the math Q&A
question example in Fig. 13.

Question & Standard Solution

Question
问题（解答）：如图所示，在光滑的水平面
上，质量m = 5kg的物体，在水平拉力F =
10N的作用下，从静止开始运动，运动时间t =
3s。求：（1）力F在3s内对物体所做的功；
（2）力F在3s内对物体做功的平均功率；（3）
在3s末，力F对物体做功的瞬时功率。

Standard Solution
（1）由牛顿第二定律可得：F = ma，3s内对
物体的位移为x = 1

2
at2，则力F在3s内对物体所

做的功为W = Fx，联立可得：W = 90J。
（2）力F在3s内对物体做功的平均功率为P =
W
t

= 30W。

（3）在3s末物体的速度大小为v = at，则
在3s末，力F对物体做功的瞬时功率为P =
Fv，联立可得：P = 60W。

Explanation

本题主要考查牛顿第二定律和功率公式的选择
与计算。
问题求解：
（1）由牛顿第二定律可算出运动的加速度，便
可求出3s内对物体的位移，便能算出力F在3s内
对物体所做的功。
（2）根据P = W

t
便可算出力F在3s内对物体做

功的平均功率。
（3）先算出在3s末物体的速度大小，根据P =
Fv便可算出在3s末，力F对物体做功的瞬时功
率。

Figure 15: An example of a physics Q&A question.

Subject Image 4 Choices Other Total

Physics ✗ 2230 27 2257
Physics ✓ 448 2 450
Math ✗ 500 0 500
Math ✓ 260 0 260

Total 3438 29 3467

Table 7: Distribution of choice numbers in MCQs in
MMSciBench by subject and image presence.
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Question & Standard Solution

Question
Question (Q&A): As shown in the figure, on a smooth
horizontal plane, a mass m = 5kg object is acted
upon by a horizontal force F = 10N and starts
moving from rest. The motion time is t = 3s. Find:
(1) The work done by force F on the object within
3s; (2) The average power of force F in doing work
on the object within 3s; (3) The instantaneous power
of force F in doing work on the object at the end of
3s.

Standard Solution
(1) From Newton’s second law, F = ma. The
displacement of the object within 3s is x = 1

2
at2.

Therefore, the work done by force F on the object
within 3s is W = Fx. Solving these equations yields
W = 90J .
(2) The average power of force F in doing work on
the object within 3s is P = W

t
= 30W .

(3) At the end of 3s, the velocity of the object is
v = at. Therefore, the instantaneous power of force
F in doing work on the object at the end of 3s is
P = Fv. Solving these equations yields P = 60W .

Explanation

This problem primarily tests the application and cal-
culation of Newton’s second law and power formulas.
Problem Solving:
(1) Using Newton’s second law, the acceleration of
the motion can be calculated, which allows us to
find the displacement of the object within 3 s. This
displacement can then be used to calculate the work
done by force F on the object within 3s.
(2) Using P = W

t
, the average power of force F in

doing work on the object within 3s can be calculated.
(3) First, calculate the velocity of the object at the
end of 3s. Then, using P = Fv, the instantaneous
power of force F in doing work on the object at the
end of 3s can be calculated.

Figure 16: The English translation of the physics Q&A
question example in Fig. 15.
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