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ABSTRACT

Gene regulatory network (GRN) inference is crucial for cell fate decision, as it
outlines the regulations between genes, which direct cell differentiation. Although
there have been some work to infer cell lineage GRN, they fail to capture the con-
tinuous nature of the differentiation process as they group cells by cell type or
cluster and infer GRN in a discrete manner. In this paper, we hypothesize GRN
can forecast future gene expression based on history information and transform
the inference process into a multivariate time series forecasting problem, linking
cells at different time to learn temporal dynamics and inferring GRN in a contin-
uous process. We introduce MTGRN, a transformer-based model that only takes
single cell data as input to infer the cell lineage GRN by forecasting gene expres-
sion. MTGRN consists of temporal blocks and spatial blocks, effectively captures
the connections between cells along their developmental trajectories and leverages
prior knowledge to elucidate regulatory interactions among genes. It significantly
outperforms six other methods across five datasets, demonstrating superior per-
formance even compared to multimodal approaches. Based on the inferred GRN,
MTGRN pinpoints three crucial genes associated with the development of mouse
embryonic stem cells and depicts the activity changes of these genes during cel-
lular differentiation. Beyond this, MTGRN is capable of conducting perturbation
experiments on key genes and accurately modeling the change of cell identity
following the knockout of the Gata1 in mouse hematopoietic stem cells.

1 INTRODUCTION

Organism develops from a single fertilized egg, which undergoes differentiation to produce various
specialized cell types necessary for maintaining essential life activities. Although all cells in a
multicellular organism share the same genome, the complex regulatory relationships between genes
lead to selective gene expression in different cell types, resulting in the translation of distinct proteins
that drive cells toward specific functional fates (Keller, 2005). As shown in Figure 1 (a), gene
expression is primarily regulated by transcription factors (TFs), which are proteins that bind to distal
cis-regulatory elements (CREs) on DNA and work in concert with cofactors and other proteins to
recruit and stabilize the RNA polymerase complex. This, in turn, modulates the transcriptional rate
of target genes (TGs), either positively or negatively. In addition to TFs, other elements such as
splicing factors, microRNAs, and metabolites can also regulate gene expression. However, in this
paper, we focus exclusively on the regulatory interactions between TFs and TGs.

Gene regulatory network (GRN) serves as computational models to explain the regulation of gene
expression, which are mathematically defined as graphs (Dai et al., 2024). It’s noteworthy that TFs
are gene products, the regulatory relationship between a TF and its TG can be understood as the
relationship between the gene which encodes the TF (TFG) and the TG. Figure 1 (b) demonstrates
the topology of GRN, the nodes of the GRN are composed of genes, with some genes are TFGs,
while the remaining genes are TGs. The edges of the GRN represent regulatory interactions be-
tween genes, with directionality pointing from TFGs to TGs. Inferring cell lineage GRN has been
a longstanding goal in biology. Since GRN can be represented as graph, uncovering its topological
features and dynamic changes is crucial for understanding how cellular identities are established
and maintained, which holds significant potential for engineering cell fates and disease prevention.
Originally, GRN was typically constructed by inferring gene co-expression from bulk transcriptomic
data (Margolin et al., 2006; Langfelder & Horvath, 2008; Huynh-Thu et al., 2010). However, such
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Figure 1: The regulatory processes between genes and the mathematical representation of GRN. (a)
Gene A regulates the transcription of Gene B through the TF it encodes. This TF binds to the CRE
of Gene B and influences the recruitment of RNA polymerase. (b) GRN can be mathematically
represented as a directed graph, where nodes represent genes and directed edges denote regulatory
relationships. TFG regulates the expression of TG through the TF it encodes, while the TFG itself
can also act as a target gene.

statistically-driven approaches require a large number of samples, which severely limit their practi-
cal applicability. Single-cell RNA sequencing (scRNA-seq) (Tang et al., 2009) has addressed some
of these limitations by enabling high-throughput sequencing of tens of thousands of cells, allowing
researchers to infer GRN at relatively low cost. However, scRNA-seq data do not directly cap-
ture many underlying regulatory mechanisms, such as the TF protein abundance and DNA binding
events. As a result, some researchers incorporated additional regulatory information, such as single-
cell ATAC sequencing (scATAC-seq) (Buenrostro et al., 2015) data into their models, leading to the
development of multimodal GRN inference methods (Kartha et al., 2022; Kamimoto et al., 2023;
Wang et al., 2023a). Despite the promising results of these approaches, several challenges remain:
1) Due to technical limitations and cost constraints, it is difficult to obtain samples with multiple
modalities in practical settings, making large-scale application of these methods challenging. 2)
These methods often split cells into groups based on cell type or cluster and infer GRN separately
for each group. It disregards the continuous nature of cellular development and fails to capture the
dynamic changes during cell differentiation.

To address these challenges, we introduce MTGRN, a transformer-based model comprising both
temporal and spatial blocks. MTGRN only utilizes scRNA-seq data as input and frames GRN in-
ference as a multivariate time-series (MTS) forecasting task by assigning pseudotime to each cell
along the developmental trajectory. Incorporating prior knowledge from databases and experimental
results, MTGRN predicts gene expression at the next N time points based on the gene expression of
cells from the previous M time points, learning an attention matrix in the spatial block. This matrix
captures the attention scores between genes, which we interpret as the inferred GRN along the cell
lineage. Our contributions are summarized as follows:

• Our method is the first work to frame GRN inference task in a MTS forecasting problem.
Unlike previous methods that group cells and infer GRN in a discrete manner, we link
cells along the developmental trajectory using pseudotime and infer GRN in a continuous
process through MTS prediction, enabling a deeper understanding of the dynamic changes
in cellular development.

• Our method achieves superior performance across five datasets compared to other ap-
proaches.

• Our method is capable of identifying key TFGs that have been validated by biological
experiments.

• Our method enables in silico perturbation experiments by propagating the effects through
the inferred GRN, simulating the cellular response to perturbations.
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2 RELATED WORK

Over the past few decades, numerous methods for GRN inference have emerged. We categorize
these methods into unimodal and multimodal approaches, which we will introduce in the follow-
ing paragraphs. Additionally, we will present the trajectory inference (TI) methods employed in
MTGRN for pseudotime calculation.

Unimodal GRN inference. These methods only take scRNA-seq data as input, aiming to infer
regulatory relationships between genes based solely on gene expression information. One of the
most commonly used approaches is Weighted Gene Co-expression Network Analysis (WGCNA)
(Langfelder & Horvath, 2008), which identifies modules of co-expressed genes by calculating pair-
wise correlations across the transcriptome. However, since WGCNA built undirected networks
based purely on co-expression, it lacks the ability to infer causal regulatory relationships, leading
to many false positive associations. To overcome these issues, methods like GENIE3 (Huynh-Thu
et al., 2010) and its more efficient variant GRNBoost2 (Moerman et al., 2019) incorporated prior
knowledge of regulatory activity to predict target gene expression based only on TF expression,
thereby reducing the number of potential interactions. In addition, NetREX (Wang et al., 2018) re-
configured the prior network to find the optimal topology that explains the observed expression data,
enhancing the inference of regulatory networks and CEFCON (Wang et al., 2023b) utilized graph
neural network to refine the prior network and obtained the ultimate GRN. DTGN (Guo & Xiao,
2024) proposed a framework for identifying phenotype-specific transcription factors and pathways
by constructing dynamic transcriptional regulatory networks using time-series gene expression data
and a graph autoencoder model. However, relying exclusively on transcriptomic data will generate
false positives, as other regulatory mechanisms, such as chromatin accessibility, are often neglected.
These shortcomings limit the accuracy of network inference.

Multimodal GRN inference. Recent advances in scATAC-seq, which provides insights into chro-
matin accessibility, identifying regulatory elements and transcription factor binding sites, have al-
lowed for the refinement of GRN reconstruction in a multimodal manner. CellOracle (Kamimoto
et al., 2023) integrated scATAC-seq data to simulate changes in cell identity following TF perturba-
tions. By combining computational perturbation with GRN modeling, CellOracle enabled a system-
atic interpretation of context-dependent TF functions in regulating cell identity. Dictys (Wang et al.,
2023a) constructed a initial TF binding network using scATAC-seq data and refined it by modeling
transcriptional dynamics with an Ornstein-Uhlenbeck (OU) process to capture biological variabil-
ity. While multimodal approaches have delivered promising results in GRN inference tasks, most of
them clustered cells and then inferred a GRN for each cluster. This discretized strategy disrupts the
continuous nature of cellular development.

Trajectory inference. TI methods assign to every cell a so-called pseudotime, a numeric value in
arbitrary units which measures how far a particular cell is within a dynamic process of interest. By
ordering the cells according to this pseudotime, it becomes possible to define the different transition
stages through which a cell progresses during its dynamic process. Currently, there are numerous TI
methods, such as PAGA (Wolf et al., 2019), Slingshot (Street et al., 2018), and Waterfall (Shin et al.,
2015). These methods take either a single snapshot of a mixture of cells at different stages or a set
of samples collected at multiple time points as input. According to these single cell data, they aim to
order the cells based on an underlying dynamic process that accounts for the heterogeneity observed
in the sample. The goal of TI methods is to automatically reconstruct the cellular dynamic process by
arranging individual cells sampled and profiled from the process along a trajectory. This trajectory
is then used to identify the various stages in the dynamic process and reveal their interrelationships.

3 METHODOLOGY

We present MTGRN, a transformer-based model to infer cell lineage GRN, which utilizes self-
attention to obtain the correlations between genes in differentiation context. We summarize the
framework in Figure 2, where MTGRN consists of three key modules:

1. Trajectory Inference Module transforms the raw data into time series data by assigning
pseudotime to each cell.

3
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Figure 2: Overview of MTGRN’s training and inference process. (a) The data processed by TI
method will serve as input to MTGRN. The input will sequentially pass through temporal block and
spatial block to learn gene regulatory relationships during the differentiation process. (b) Once the
model is trained, we fix the parameters of MTGRN and feed test data into the network. By extracting
the attention matrix from the spatial block, we derive the inferred GRN.

2. Temporal Attention Module designs a upper triangular mask to learn the intercellular cor-
relations during differentiation process.

3. Spatial Attention Module creates a spatial mask based on the prior knowledge to learn the
regulatory relationships between genes.

We will introduce them in the following subsections.

3.1 TRAJECTORY INFERENCE MODULE

To address the limitation of previous methods, which require cells to be split into groups by cell
type or cluster, we employ TI method to transform the original single-cell data into time-series data
and infer GRN in a MTS prediction manner. Specifically, as illustrated in Figure 3, our raw data
is a gene expression matrix E ∈ RC ×G obtained by scRNA-seq, where C and G represents the
number of cells and genes, E ij indicates the expression value of gene j within cell i. To endow the
raw data with temporal information, we employ the Slingshot algorithm (Street et al., 2018), one of
TI methods, to calculate a pseudotime for each cell. Then we sort the cells in chronological order,
thus transforming E into a time series data E (t) ∈ R T ×G, where T is the number of time steps.
It’s worth noting that T is equal to C, as each cell corresponds to a pseudotime on differentiation
trajectory. In this way, our MTS data E (t) = [e 1 , . . . , e T ]

T possesses the temporal relationships
of genes during the differentiation process as we map each cell to a pseudotime, where e i ∈ RG

4
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Figure 3: Utilizing TI methods to convert single-cell data into time-series data, where the gene
expression profiles from the previous W time points are used as input, and the subsequent M time
points serve as ground truth.

represents the gene expression at the i-th time step. After that, we split E (t) into dataset D =
{(Xi , Yi) | i = 1, . . . , N}, where Xi are input samples, Yi are the ground truth associated to each
sample and N is the number of samples. Each sample Xi = [e i , . . . , e i+W − 1]

T ∈ RW ×G and
Yi = [e i+W , . . . , e i+W +M − 1]

T ∈ RM ×G is the gene expression in W observation windows
and M prediction windows respectively.

Since GRN regulates gene expression, we assume it can forecast the subsequent gene expression
within M windows (Yi) by observing the expression within proceeding W windows (Xi).

Therefore, the inference process can be formulated as a MTS forecasting problem and our goal is to
learn a mapping function fGRN :

fGRN (e t−W +1 , . . . , e t) = (e t+1 , . . . , e t+M ) (1)

3.2 TEMPORAL ATTENTION MODULE

As shown in Figure 2 (a), we will embed each value from the output of Trajectory Inference Mod-
ule, that is X ∈ RW ×G to X ∈ RW ×G× dmodel and transpose it to Xinput ∈ RG×W × dmodel ,
where dmodel is the embedding dimension. Xinput will be input into Temporal Attention Module,
where we construct a unique temporal mask M t ∈ RW ×W for calculation of attention:

M t
ij =

{
− inf, if j > i

1, if j ≤ i
(2)

M t constraints cell at a given time point can’t attend to information at subsequent cells. This trick
is in line with the principles of cell differentiation, as a cell at specific time can only know the gene
information from its ancestors but not its descendants, because they haven’t been born yet at this
point. Thus, the calculation of temporal attention is modified as follows:

TemporalAttention(Q, K, V ) = softmax (
QKT

√
dk

⊙ M t )V (3)

where dk =
dmodel

h
, h is the number of heads in multi-head self-attention and ⊙ represents

hadamard product.

3.3 SPATIAL ATTENTION MODULE

As shown in Figure 2 (a), the output of temporal block Xoutput ∈ RG×W × dmodel will be trans-
posed to X̂output ∈ RW ×G× dmodel , which will be input into Spatial attention module alongside
prior knowledge. The prior knowledge is a highly comprehensive gene interaction network proposed
in NicheNet (Browaeys et al., 2020), which is a collection of gene regulatory interactions from over
50 public data sources of mouse and human, we filter the genes involved in the prior knowledge to
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Figure 4: Metric calculation involves treating the GRN inference as a binary classification problem
for edges, where each dataset has a corresponding true GRN. We assess whether the predicted edges
are present in the true GRN.

those present in the single-cell input, ensuring the prior knowledge only focuses on the relationships
among the G genes. Since prior knowledge can be represented as a graph, we use its adjacency
matrix P ∈ RG×G as a mask in the computation of self attention:

M s
ij =

{
− inf, if P ij = 0

1, if P ij = 1
(4)

M s ensures the attention is computed between genes that are known to have regulation in prior
knowledge, rather than focusing on unrelated genes. Thus, the calculation of spatial attention can be
formulated as follows:

SpatialAttention (Q, K, V ) = softmax (
QKT

√
dk

⊙ M s )V (5)

Ultimately, the output of spatial block will go through a linear layer to obtain the predicted gene
expression Ŷi ∈ RM ×G. We use mean square error (MSE) as our loss function:

L = MSE ( Ŷi , Yi ) (6)

3.4 GRN INFERENCE

Once the model is trained, we fix the parameters of MTGRN and use the test data to compute the
attention matrix in the Spatial Attention Module, as illustrated in Figure 2 (b). The values in the
attention matrix H ∈ RG×G represent the regulatory scores between genes. It is important to note
that the regulatory scores in the masked regions are zero, as no regulatory edges exist between those
gene pairs in the prior knowledge. We then multiply the regulatory scores by the degree of TFG in
the network, rank the scores in descending order, and select the top K edges to form the inferred
GRN, where K corresponds to the number of edges in the true gene regulatory network.

4 EXPERIMENT SETTINGS

Datasets. We assessed the quality of GRN inferred by our model on five cell lineage datasets:
human mature hepatocytes (hHep) (Camp et al., 2017), embryonic stem cells (mESC) (Hayashi
et al., 2018), and three mouse hematopoietic stem cell lineages (mHSC-E, mHSC-GM, mHSC-L)
(Hayashi et al., 2018). For each lineage, we used the ground truth network provided in Pratapa et al.
(2020) to evaluate the accuracy of the inferred GRN.

Baselines. We compared MTGRN with: (1) GENIE3 (Huynh-Thu et al., 2010), GRNBoost2 (Mo-
erman et al., 2019), NetREX (Wang et al., 2018) and CEFCON (Wang et al., 2023b), four methods
that use scRNA-seq data combined with prior knowledge; (2) CellOracle (Kamimoto et al., 2023),
a multimodal approach that integrates scRNA-seq and scATAC-seq data and (3) Random, where
edges are randomly selected to infer the GRN.

Metrics. We computed the areas under the precision-recall (AUPRC) and receiver operating char-
acteristic (AUROC) curves, using the edges in the true GRN as ground truth and the ranked edges
from each method as predictions. As illustrated in Figure 4, the comparison between the predicted

6
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Table 1: Performance comparison with six methods on five benchmark datasets.
hHep mESC mHSC-E mHSC-GM mHSC-L

AUROC AUPRC F1 AUROC AUPRC F1 AUROC AUPRC F1 AUROC AUPRC F1 AUROC AUPRC F1

GENIE3 0.481 0.084 0.167 0.531 0.168 0.275 0.350 0.019 0.026 0.419 0.072 0.138 0.486 0.183 0.322

GRNBoost2 0.578 0.077 0.101 0.548 0.143 0.217 0.385 0.007 0.018 0.450 0.068 0.122 0.515 0.181 0.297

NetREX 0.575 0.096 0.110 0.509 0.191 0.299 0.515 0.091 0.162 0.466 0.120 0.205 0.509 0.182 0.300

CEFCON 0.465 0.218 0.391 0.494 0.291 0.448 0.552 0.379 0.502 0.623 0.634 0.686 0.653 0.659 0.675

Celloracle 0.527 0.341 0.478 0.502 0.204 0.336 0.465 0.268 0.460 0.462 0.270 0.457 0.564 0.278 0.365

Random 0.481 0.032 0.068 0.513 0.111 0.198 0.500 0.083 0.155 0.495 0.090 0.167 0.518 0.135 0.227

MTGRN (ours) 0.664 0.639 0.651 0.713 0.748 0.694 0.485 0.429 0.635 0.765 0.849 0.859 0.583 0.791 0.879

and true GRN frames the task as a binary classification problem for the edges. AUPRC and AU-
ROC serve as key evaluation metrics for binary classification and we also calculated the F1 score to
evaluate the accuracy of inferred GRN.

Reproducibility. We used the Adam optimizer with a warmup strategy to increase the learning
rate from 0 to 1e-4, followed by CosineAnnealingLR scheduler for further adjustments. The dmodel

and number of heads of Transformer were set to 128 and 4 respectively. We trained our model on
a 80G Nvidia A100 GPU with 20 epoches and implemented an early stopping strategy to prevent
overfitting, where the patience was set to 3.

5 RESULTS

5.1 MTGRN OUTPERFORMS OTHER METHODS

Table 2: Statistical analysis of the label distribution for each dataset.
hHep mESC mHSC-E mHSC-GM mHSC-L

Genes 805 774 961 949 639
Positive edges 2019 8085 5394 6508 4705
Possible edges 647220 598302 922560 899652 407682
Proportion 0.003 0.014 0.006 0.007 0.012

To evaluate the accuracy of MTGRN in GRN inference problem, we compared it against six meth-
ods across five developmental datasets. The quantitative results are shown in Table 1. In terms of
AUROC, MTGRN achieved the highest performance on four out of the six datasets. Although its
performance on the mHSC-E and mHSC-L datasets were slightly below that of CEFCON, MTGRN
consistently outperformed other methods in AUPRC and F1 scores across all six datasets. For in-
stance, on hHep dataset, MTGRN achieved AUPRC of 0.639, surpassing the second-best method
CellOracle (0.341) by 0.298 and showing an improvement of F1 score by 0.173. When compared
with CellOracle, the multimodal GRN inference method, we found that despite using only single cell
data, MTGRN outperformed CellOracle across all metrics in five datasets, showcasing its superior
performance. Furthermore, we observed that most methods exhibited low AUPRC. To have a deeper
insight into this phenomenon, we analyzed the label distribution in each dataset, as summarized in
Table 2.Genes is the number of genes in the input scRNA-seq data. Possible edges refers to the total
number of potential regulatory edges between genes, which was calculated as all possible pairwise
combinations but exclude the self-loops. It can be represented as G × (G − 1), where G is the
number of genes. Positive edges denotes the actual edges in the true GRN, and Proportion reflects
the ratio of true regulatory edges within the total gene pair search space. From Table 2, We observed
that the Proportion in all datasets were approximately 0.01, suggesting there is a severe label imbal-
ance in these datasets (positive labels are significantly fewer than the negative labels). In this case,
AUPRC becomes a more suitable metric than AUROC for evaluating model performance (Davis &
Goadrich, 2006). As a result, despite other models showing poor performance in AUPRC, MTGRN
still achieved an AUPRC higher than 0.6 (exclude the mHSC-E dataset), and even reached AUPRC
over 0.85 on the mHSC-GM and mHSC-L datasets, demonstrating the superior performance of our
method.
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Figure 5: Workflow for identifying key TFGs using the AUCELL algorithm. (a) The TFG’s regulon
is consisted of the TFG and its target genes. (b) AUCELL calculates the TFG’s activity score in a
given cell by assessing the proportion of regulon genes that rank among the top highly expressed
genes. (c) A heatmap of z-scores for each TFG’s activity score, showing the dynamic changes in
TFG activity throughout different stages of cell differentiation.

5.2 MTGRN IDENTIFIES KEY TFGS

Identifying and understanding the key TFGs that drive cell differentiation is crucial for uncovering
the fundamental biological mechanisms of life. These TFGs not only play a central role in under-
standing cell fate decisions in basic research but also have significant potential applications in stem
cell therapy, disease research. For example, recognizing specific TFGs can deepen our understand-
ing of the molecular basis of diseases, particularly those caused by aberrant gene regulation, such
as cancer or developmental disorders (Anderson et al., 2023; Walsh et al., 2017). Additionally, by
manipulating these critical TFGs, scientists can precisely control cell differentiation in experimental
settings, paving the way for the development of innovative cell therapies and organ regeneration
techniques.

We chose mouse embryonic stem cells, the mESC dataset shown in Table 1 to evaluate our model’s
ability in identifying key TFGs. Mouse embryonic stem cells exhibit high pluripotency, allowing
them to differentiate into nearly all cell types within the embryo, including neurons, cardiomyocytes,
and hepatocytes. This remarkable differentiation potential makes mESC an ideal model for study-
ing developmental biology and the underlying mechanisms of cellular differentiation. We trained
MTGRN on the mESC dataset and used the AUCELL algorithm proposed by SCENIC (Aibar et al.,
2017) to score the activity of each TFG’s regulon in each cell and identify the key TFGs based on
the activity score.

Specifically, AUCELL takes a gene set as input and outputs the gene set activity score for each cell.
As shown in Figure 5 (a), these gene sets correspond to regulons, which are composed of TFGs and
their predicted target genes. AUCELL calculates the enrichment of each regulon by determining the
area under the recovery curve (AUC) based on the ranking of all genes in a given cell, where genes
are ranked according to their expression levels. In brief, as illustrated in Figure 5 (b), the x-axis
represents the ranking of all genes by expression level (genes with identical expression values, such
as 0, are randomly ordered), and the y-axis represents the number of genes recovered from the input
TFG regulon. AUCELL uses the AUC to assess whether a critical subset of the input regulon is
enriched at the top of the ranking for each cell (by default, selecting the top 5% of genes). This way,
the AUC score reflects the proportion of genes from the TFG regulon that are highly expressed in
each cell, with higher scores indicating greater TFG activity in that cell. The output of this step is a
matrix containing AUC scores for each TFG regulon across all cells.

After the calculation of the activity score for all TFGs involved in the GRN inferred by MTGRN, we
divided the cells into two groups based on developmental pseudotime, representing early and late
developmental stages. For each TFG, we conducted differential analysis between the early-stage
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Figure 6: Overview of the mHSC dataset. (a) Force-directed visualization of the three developmental
lineages. (b) In the mHSC dataset, all development originates from HSC and ultimately leads to the
differentiation into three distinct cell types. (c) In the erythrocytes lineage (mHSC-E), the expression
level of Gata1 changes dynamically throughout the development process.

and late-stage cell groups and calculated the p-value for each TFG. TFGs with p-values less than
0.01 were filtered out and considered key TFGs showing significant differences during lineage de-
velopment. As shown in Figure 5 (c), we identified a total of 23 differential TFGs and found that
three TFGs, namely Nanog, Sox2 and Pou5f1 (Oct3/4), which are well-known pluripotency factors
for mESC development (Wang et al., 2012). It had been previously reported that the three TFGs
were mutually regulated by one another, forming cross-regulated feedforward loops (Almeida et al.,
2021). We then calculated the z-scores of the activity scores for the 23 identified key TFGs and pre-
sented them in a heatmap. As shown in Figure 5 (c), the activity scores for Nanog, Sox2, and Pou5f1
are high during the early stages and gradually decline as the cells develop. This pattern aligns with
previous studies, which report that Pou5f1, Nanog, and Sox2 are highly expressed in undifferenti-
ated embryonic stem cells and the three TFGs are crucial for maintaining the pluripotency of stem
cells (Masui et al., 2007). All these results suggested that MTGRN can accurately identify the key
TFGs determining cell fates.

5.3 MTGRN PERFORMS IN SILICO GENE PERTURBATION

MTGRN not only can identify key TFGs involved in cell development but also enable in silico per-
turbation experiments. Unlike traditional laboratory perturbations, in silico experiments allow for
the rapid and cost-effective exploration of potential changes within large gene regulatory networks,
eliminating the need for extensive experimental resources or time-consuming wet-lab procedures.
By simulating gene knockouts or overexpression scenarios, we can predict how gene regulatory
networks will respond to various perturbations, thus accelerating our understanding of critical regu-
latory factors.

We selected the mouse hematopoietic stem cell (mHSC) dataset from Table 1 for analysis. Figure 6
(a) illustrates a force-directed (FA) visualization of the three differentiation lineages (i.e., mHSC-E,
mHSC-GM, mHSC-L). The cell type annotations were obtained from Nestorowa et al. (2016): HSC
refers to hematopoietic stem cells, MPP to multipotent progenitors, LMPP to lymphoid multipotent
progenitors, CMP to common myeloid progenitors, MEP to megakaryocyte-erythrocyte progenitors,
and GMP to granulocyte-monocyte progenitors. Figure 6 (b) provides a detailed representation of
the three differentiation lineages of mHSC. It starts from HSC and eventually leading to the forma-
tion of lymphoid cells, erythrocytes, granulocytes and monocytes. Gata1 is known to orchestrate
significant changes in the expression of genes throughout the erythrocytes differentiation process,
driving critical steps required for the proliferation and differentiation of erythrocytes progenitors. As
shown in Figure 6 (c), Gata1 expression is initiated at the CMP stage during early erythrocytes com-
mitment and gradually decreases as erythrocytes mature (Moriguchi & Yamamoto, 2014). Given
that Gata1 is a well-established TFG, we aim to assess whether MTGRN can accurately simulate
the effects of knocking out this gene.

As shown in Figure 7 (a), because GRN can be abstracted as a graph, the effects of perturbing
TFGs can propagate through its neighboring nodes. In Figure 7 (b), we simulate such a perturbation
by setting the expression value of a gene to zero, resulting in a change denoted as △X , which
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Figure 7: In silico perturbation workflow. (a) A GRN can be represented as a graph, where per-
turbing a specific gene causes the effects to propagate through its neighboring nodes. (b) After
perturbing a gene, the resulting gene expression changes are propagated by multiplying the differ-
ences with the attention map from the MTGRN spatial block. (c) In the mHSC-E dataset, perturbing
Gata1 results in transition vectors pointing back toward HSC, opposite to the original differentiation
direction.

represents the difference of gene expression after perturbation. The propagation of this perturbation
is modeled by multiplying △X with the attention matrix H ∈ R,G,×,G obtained from spatial block
in MTGRN (section 3.4), where the attention scores in H indicate the weights to which the influence
of this perturbation will be propagated to neighboring nodes. Once the propagation is complete, each
cell will have a perturbed gene expression value. Using these values, we calculated a probability
vector for each cell, indicating the likelihood of transitioning toward different cells as a result of
the gene perturbation, the calculation process is same as Kamimoto et al. (2023). As illustrated
in Figure 7(c), after setting the Gata1 gene expression to zero and propagating the influence, we
computed the transition vectors for each cell. It can be observed that these vectors predominantly
point toward HSC, suggesting that cells fail to proceed with erythrocytes differentiation when Gata1
is knocked out, which is consistent with previous report that Gata1 promotes the differentiation of
HSC into erythrocytes (Moriguchi & Yamamoto, 2014). Additionally, the transition vectors are more
pronounced in areas where MEP and CMP cells are clustered, indicating that these cells are more
significantly affected by the Gata1 perturbation, consistent with earlier reports that Gata1 expression
begins in CMP cells (Moriguchi & Yamamoto, 2014). These experiments demonstrate that the
GRN inferred by MTGRN can accurately predict the cellular changes after key TFG perturbations,
showcasing the model’s strong performance in GRN inference.

6 CONCLUSION

We introduced MTGRN, the first approach that formulated the GRN inference process as a MTS
problem. Our method inferred GRN in a continuous process compared to approaches that group cells
by type or cluster. MTGRN uses only scRNA-seq data as input, combined with prior knowledge to
learn cell lineage GRNs. MTGRN outperformed six other inference methods (one for multimodal
inference method) across five datasets. Furthermore, in the mESC dataset, MTGRN successfully
identified three key TFGs previously reported and the activity scores of theses TFG all exhibited
clear trends of change (initially high then low or initially low then high), with Nanog, Sox2, and
Pou5f1 (Oct3/4) all showing a trend from high to low. This is consistent with previous reports that
the three TFGs are crucial for maintaining the pluripotency of stem cells, in other words, they are
highly expressed in the initial embryonic stem cells and have lower expression in differentiated cells.
In addition, in the mHSC-E dataset, after knocking out Gata1 and propagating the influence through
our inferred GRN, we validated that the knock out of Gata1 significantly inhibited the differentiation
of CMP and MEP cells, which is consistent with the finding that Gata1 promotes the differentiation
of these two cell types into erythrocytes. All of results demonstrate the accuracy of our inferred
GRN and we think MTGRN offers a novel approach to GRN inference.
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