Under review as a conference paper at ICLR 2026

MARWA :MULTI-AGENT RETRIEVAL-AUGMENTED
FRAMEWORK FOR RELIABLE BIOINFORMATICS WORK-
FLOW AUTOMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The rapid growth of multi-omics data has driven the expansion of bioinformat-
ics analysis tools. Common bioinformatics tasks often rely on workflows, which
link multiple tools into structured pipelines for reproducibility and scalability.
Yet, building workflows manually is slow and error-prone, motivating efforts to-
ward automation. However, bioinformatics workflow automation remains difficult
due to the need to clarify vague analytical objectives, coordinate heterogeneous
tools, and generate intricate tool commands. Despite the potential of large lan-
guage models (LLMs) to aid bioinformatics workflow recommendation through
advanced semantic understanding and logical reasoning, current agent frameworks
often rely on one-shot generation, weak tool retrieval solution, and limited eval-
uation scheme, resulting in fragile workflow automation. We propose MARWA,
a Multi-Agent Retrieval-augmented framework for reliable bioinformatics Work-
flow Automation. The framework emphasizes a step-by-step generation process
with error handling at each stage to ensure robustness. We introduce a retrieval-
augmented framework to strengthen tool command accuracy, which incorporates
multi-perspective LLM-augmented descriptions and employs contrastive learning.
We further design a two-stage evaluation framework, combining expert-verified
execution on 40 curated tasks with large-scale benchmarking on 2,270 tasks us-
ing LLM-based evaluation. Our experiments demonstrate that MARWA consis-
tently outperforms baselines in pass rate, workflow quality and scalability. Our
work provides a foundation for trustworthy bioinformatics workflow automation.
Project Page: https://anonymous.4open.science/r/MARWA-7D30.

1 INTRODUCTION

Bioinformatics is an interdisciplinary field that combines computational science, statistics, and bi-
ology to analyze large and complex biological datasets through computational and statistical meth-
ods (Luscombe et al.l [2001; |Gauthier et al., 2019; Baxevanis et al., 2020). With the advances in
high-throughput biological technologies (Rhoads & Aul |2015), the field is now confronted with a
rapid expansion of biological data. This explosive growth has spurred the development of numerous
bioinformatics tools, covering diverse fields such as genomics (Lesk,[2017; [Bustamante et al., 2011}
Lips et al.,[2022), structural biology(Orlando et al., 2022} Jones & Thornton, |2022)) and evolutionary
biology (Sober, [1994; Losos et al., 2013)). These tools have further enabled significant advances in
personalized medicine (Heinken et al.,[2023) and drug discovery (Hemmerling & Piel, 2022).

Due to the diverse requirements for analyzing biological data, such as genome assembly (Sohn
& Nam, 2018)) and differential expression analysis (Anders & Huber, [2010), bioinformatics tasks
cannot be accomplished using a single bioinformatics tool alone. Instead, they depend on multi-step
workflows that organize bioinformatics tools in a sequential, flow-based manner(Fig|I)).

Traditional workflow construction often relies heavily on manual scripting and command-line op-
erations. With the emergence of new technologies and algorithms, the workflows are getting in-
creasingly complicated (Subramanian et al., [2020; Schlotter et al., [2018).This approach is not only
time-consuming and prone to errors but also hinders repeatability. These issues highlight the need
for more automated, intelligent, and trustworthy methods to create bioinformatics workflows.

https://anonymous.4open.science/r/MARWA-7D30

Under review as a conference paper at ICLR 2026

D Question: I have some raw WGS sequencing data
on hand and want to do a complete genome assembly
N

File input: ./input/SRR11874161_1 fastq, L)
./input/SRR11874161_2 fastq
File description: 'Illumina WGS of E. coli' [0
s
N Tool name:fastp
Step 1: 3‘ Environment Installation Command: conda create -n fastp -c conda-forge -c
Pre-assembly read | bioconda fastp -y && conda activate fastp e
fre-assemply read @ File Creation Command: mkdir -p ./output/fastp/ -
processing and correction g Execution_command: fastp -i ./input/SRR11874161_1 fastq - _—
a I ./input/SRR11874161_2.fastq -o ...
eee g &) Sequential command execution & Intermediate file generation
S L
______________________________ O e
=+
o
S Tool name:Unicycler (short-read mode)
.°., Environment Installation Command: conda create -n unicycler -c conda-forge -c
Step N: © bfaconda u_nicyclar python=3.11 -y && conda activate unicycler =3
D bly £ Tllumi o File Creation CAommand: mkdir -p ./output/unicycler/ 2\
w \ Execution_command: ..unicycler -1 "$R1" -2 "$R2" -0 "$OUT" -t 8 --mode —
reads producing FASTA and GFA g normal ...
S
Y = Sequential command execution & Result file generation

e

Figure 1: A bioinformatics workflow example for de novo genome assembly. Raw Illumina paired-
end reads are processed and quality-controlled (e.g., with fastp) before being assembled into contigs
(e.g., with Unicycler), producing final outputs such as FASTA and GFA files. This illustrates the
pipeline nature of bioanalysis, where specialized tools are chained together.

Recently, large language models (LLMs) (Zhao et al., [2023}; |Park et al., 2023} X1 et al., 2025)), with
their advanced semantic understanding and logical reasoning capabilities, are opening new possi-
bilities for automating bioinformatics workflows. Systems such as AutoBA (Zhou et al.| [2023)) and
BioMaster (Su et al., [2025) show the potential of Al-driven agents, demonstrating their capabilities
in automating bioinformatics workflows. However, these approaches remain constrained in three
key aspects:

e Adopting one-shot generation strategies makes it struggle to handle vague analytical objec-
tives, coordinate heterogeneous tools, and generate intricate command-line specifications.

e The lack of robust semantic representations for bioinformatics tools makes it difficult to
retrieve relevant tools during the retrieval-augmented generation (RAG) (Lewis et al., 2020)
process.

e The absence of rigorous evaluation framework results in insufficient validation of the gen-
erated workflows’ reliability and reproducibility.

To address these challenges, we propose a Multi-Agent Retrieval-augmented framework for reliable
bioinformatics Workflows Automation (MARWA). Our work makes three key contributions:

o We propose MARWA, a step-by-step multi-agent framework that leverages historical con-
text at each stage of workflow construction, thereby enhancing the flexibility and robustness
of bioinformatics workflow automation.

e We design a RAG framework that integrates multi-perspective LLM-enhanced tool de-
scriptions with contrastive representation learning, producing discriminative embeddings
that significantly improve tool retrieval accuracy and command generation reliability.

e We construct two representative datasets and evaluation standard for bioinformatics work-
flow automation, comprising a small-scale executable dataset, a large-scale dataset with
2,270 high-quality workflow queries and establish a two-stage evaluation scheme that com-
bines human execution with LLM-based evaluation to ensure rigorous and reproducible
benchmarking.

2 RELATED WORK

The automation of bioinformatics workflows has undergone a steady evolution, moving from manual
construction to intelligent recommendation and, more recently, to LLM-driven automation.

Under review as a conference paper at ICLR 2026

Workflow Management Systems Early advances were supported by workflow management plat-
forms such as Galaxy (Jalili et al., 2020ﬁ Snakemake E] and Nextflow (Langer et al., 2025ﬂ which
provide standardized execution environments and improve reproducibility. Despite these contribu-
tions, workflow design still mainly requires manual tool selection and scripting, which renders the
process inefficient and prone to mistakes.

Tool Recommendation To reduce the burden of tool selection, recommender systems were pro-
posed. For instance, Kumar et al.| (2021) employed gated recurrent units (GRU) (Dey & Salem)
2017) neural network in Galaxy to capture higher-order dependencies among tools. |Green et al.
(2024) further extended this idea by representing workflows as graphs and applying graph neu-
ral networks (Wu et al.| |2020) with semantic embeddings of tool descriptions. These approaches
improve context-aware tool discovery but remain limited to tool-level assistance rather than full
workflow automation.

LLM-Based Workflow Automation The recent emergence of LLMs has enabled more compre-
hensive automation (Xi et al.|[2025;|Zhang et al.| 2024} Xiao et al.| 2024). AutoBA demonstrated an
LLM-based agent can design, implement and execute workflows for diverse omics analyses (Zhou
et al.l 2023)). However, its single-agent design often led to error accumulation in long and complex
pipelines. To address this, BioMaster introduced a multi-agent framework with specialized agents
for planning, execution, and debugging, combined with RAG of tool knowledge (Su et al., [2025).
This multi-agent design improved adaptability and robustness; however, its overall accuracy and
reliability were constrained by the limited precision of RAG’s embedding matching.

3 METHODOLOGY

3.1 OVERALL ARCHITECTURE

The overall framework of MARWA is illustrated in Fig [2] and the main algorithm is presented in
the Appendix |B} It is composed of six cooperative LLM-based expert agents—Analyzing, Plan-
ning, Selecting, Generating & Executing, Debugging, and Judging—organized into a closed-loop
pipeline. The system is further supported by two auxiliary components: (1) a retrieval module that
provides related information about bioinformatics tools, and (2) file system interface access that
grounds decisions in the actual execution environment.

The user’s input is defined as (1) a list of input files (including their file name and file path), (2) file
descriptions (such as format or sequencing type), and (3) the analytical goal (for example, differen-
tial expression analysis).

Each agent processes the input and converts it into a structured output, facilitating subsequent pars-
ing. The general agent workflow, as shown in the Fig[3] is outlined below along with a summary of
their roles.

Analyzing The Analyzing agent refines the user query into a structured task specification. It pro-
duces descriptions of the input and output files (including their formats and data types), along with
a clarified analytical objective. Appendix [A.T]for the prompt of the agent.

Planning The Planning agent predicts the next tool to be used in the workflow (see Appendix[A.2)
based on the refined task and the tools already applied. It provides the tool name, a brief description,
and its intended function. It also queries the retrieval module to obtain a set of candidate tools with
corresponding descriptions and example commands.

Selecting The Selecting agent decides whether to adopt one of the retrieved candidate tools or
retain the one proposed by Planning. If a retrieved tool is chosen, its description and command
template are adopted; otherwise, the Planning output is used. Appendix for the prompt of the
agent.

'https://usegalaxy.org/
Zhttps://snakemake.github.io/
*https://www.nextflow.io/

https://usegalaxy.org/
https://snakemake.github.io/
https://www.nextflow.io/

Under review as a conference paper at ICLR 2026

User Input Agent Architecture

A Evaluation
Generation
File System —
/ Stagel:
() . "7 Generatingd T (Small-Scale Dataset
x " udgin = 5 . .
@Analyzmg o Judging L7 Executing) .« Debugging Manual & LLM Evaluation
Workflow I 1 P i i e i
Campletion [eofigwrtion Conmand |, {1 Metabolomics 5% Genomics |
irmatic i i !
- Input File CZiiimzion | | New 15 Transcriptomics [proteomics
s f Question: f Configuration ' 1
ummary o XooxXox Tool Missing from DB | 1 Command B i I
Workflow Tctfe: X L e e g ==
formation | ZRITEST L | 0 1 v o e — — = = = v N4
. = Hist, yZ 1niformation New File .
X[, Filter Factual Error Output File B Planni = : Creation =[5 Manal Execution
Human o Information g anning ' = 3 Selecting e 3
oo i ~a
e 7 7 [o Tooone | Tl o sorte T | . Consistency Evluation
Question: 7D
Fow can I analyze the expression of “Slzx'ff; [etail Tool Description | [command Reference | 1+
different gene? @
) Task "] LLM Evaluat
Inputfile: . . . e valuators
e s [Function in Workflow | [DB Existence Flag | &l
L Field: transcriptomics Stage2:

Large-Scale Dataset
Muti-LLMs Evaluation

Bioinformatics Bioinformatics Tool Database .
Tool Data {1 Metabolomics 552 Genomics |
4 - 1
Embeddingl :rL Transcriptomics Proteomics |
Core capability Toolname: \B_Mimf"am'”_ - =
Raw Bioinformatics Tool Data &)A;\):J)I(t)i()(:erspecﬁve 2270)
Typical applications 4 “PErspective | | | e e e \
= wn : .
& Crawler‘ Augatation 3 Coml:a?ena‘r.edA i @ !
-g ‘ Tool Descriptions: { ol
Sl | A | 7| xooxxx 00 | | (Mo T2
Toolname: XxxXxx @ ons ¥><XIXZ(X d: LLM Evu\umor
Tool Description: XxxXxx ool Command:) 2
Tool Command: xxXxx XXXxx ilili Average Score
o Multi-Perspective Enhanced Contrastive Fine- Tool Description 22 .
Structured Tool Description Tool Descriptions Tuning of Encoder DataBase Consistency Score

Figure 2: The overall framework of MARWA. The left part shows the generation methods of the
data. The middle part illustrates tool retrieval and agent architecture for workflow automation con-
struction. The right part presents workflow evaluation framework.

Generating & Executing The Generating & Executing agent constructs executable commands
based on the chosen tool and the information available in the system. These commands include
environment setup, directory creation, and the actual execution (detail in Appendix [A:4). They are
dynamically generated and adjusted based on interactions with the live runtime environment, such
as detected paths. The commands are then executed, and the success or failure of the execution
determines the next step.

Debugging If execution fails, the Debugging agent uses the error message to iteratively refine the
command set. This process is repeated until the command succeeds or until five attempts have been
made. Appendix [A.5]for the prompt of the agent.

Judging The Judging agent evaluates whether the overall analytical task has been completed (de-
tail in Appendix [A.6). The workflow is considered complete only if all required output files are
present and every analysis step is fully covered and validated by the tools used. If the task is incom-
plete, the system loops back to Planning to select the next tool; if complete, the execution terminates.
Tools not covered by the retrieval module but successfully executed are recorded, along with their
verified commands, to expand the system’s tool database.

3.2 AUXILIARY COMPONENTS
3.2.1 EMBEDDING

Since bioinformatics tool descriptions often come from heterogeneous platforms and vary widely
in description length and perspective 2021), conventional embedding methods struggle
to achieve precise semantic alignment. To improve the accuracy and reliability of MARWA in the
tool retrieval phase, we design a multi-perspective LLM-augmented strategy and refined through
contrastive learning fine-tuning.

Under review as a conference paper at ICLR 2026

User Question

File System
1) TG Y (waime el etor oo cton fa oot £ MADW A [eamere
Analyzing [Conpine Step-by-step Completion of MARWA \
—_——_- T e - - - === = -~
Act a bioinformatics Judging i \
ek | | Debugging 4 Generating & Executing I
produce a more detail As a bioinformatics As a bioinformatics code expert, modify the 1 "As a bicinformatics workflow assistant, genérate 1 I
structured response I workflow expert, | previousAcommand line (installation, setup, | the setup and exe.cuﬁon details for the current tool | | I
| determine if the workflow | execution) based on the error message. SRR intheworkflow.. _ _ _ . “
E} is fully completed. [configration File creation [arvormessage) | ™Y | analysis goal ool name. |
| [command Lo = ——
e = . i
R |l] |
Pl 2k
| Succudl : &% Command command | I
ot
| .]
_______________ -
{{;ﬁ Command-Generation¥5
| |
Planning Selecting
anchzisioed] I et As a bicinformatics expert, select the most suitable As a bioinformatics expert, select the most suitable’ [|
| based h) inf . tool based on the information. You may choose from
= | e cseclonetnpuiliiogmation the reference list or propose a different one. |
%
Sl 5] —ea
[SEEE e B B |
orkflow
Global History |
[
N & |
e pvaapie) v o

0 + Retrieve Tool () zoput Data |

input files + Data B siovat Infornation,

Bioinformatics Tool Database

Figure 3: Workflow of MARWA'’s specialized agents, illustrating the input data, intermediate pro-
cessing steps, and final output generation.

Data Sources We collected raw tool data from open repositories such as Galaxy and GitHuHﬂ
These unformatted text data were parsed into structured fields including tool name, description,
command and parameters. By removing duplicate entries based on names and command hashes,
followed by manual verification we have built a curated database containing 3,148 unique tools.
This provides a soild foundation for the subsequent stages.

LLM-based Multi-perspective Enhancement To enrich the semantic information of the bioin-
formatics tools, we employ GPT-4 Turbo to generate a diverse range of descriptions for each
tool, covering perspectives such as its core capabilities and typical applications (Prompt in Ap-
pendix[A7). The resulting augmented descriptions increase semantic diversity and provide comple-
mentary views of the same tool, which are stored in structured form for downstream training.

Contrastive Learning We adopt BERT (Devlin et al., 2019; [Liu et al., 2019) as the encoder,
representing each tool description with the [CLS] embedding. We select BERT not only because
it remains a widely recognized and reproducible baseline, but also because it provides stable and
efficient fine-tuning. This allows us to highlight that the improvements mainly come from our
augmentation and contrastive framework rather than from a stronger backbone. Furthermore, its
computational efficiency, compared to larger and more complex models, aligns with practical needs
for faster iteration and lower resource consumption. Training uses a multi-positive contrastive loss,
where augmented descriptions of the same tool serve as positive pairs. For the detailed formulation,
see the Appendix [D.1]

Evaluation To evaluate the effectiveness of the proposed embedding approach, we use a dataset
derived from data enhanced by a LLM. The experimental results are shown in Table[I] Our embed-
ding method (LAFT) achieves consistent improvements over all baselines, where BioMaster em-
ploys Text-Embedding-3-Large. These results highlight the effectiveness of combining LLM-based
augmentation with contrastive learning in capturing the functional semantics of bioinformatics tools.
The contribution of this module will be further validated in subsequent ablation studies.

*nttps://github.com/

https://github.com/

Under review as a conference paper at ICLR 2026

Table 1: Retrieval Performance of baseline embeddings and LLM-augmented fine-tuned model.

Model Dim MRR Hit@1 Hit@3 Hit@10
BERT (Devlin et al.}[2019) 768 0.1988 0.1307 0.2010 0.2261
all MiniLM_L6_v2 (Wang et al.| [2020) 384 0.4842 0.3920 0.5477 0.5879
Text-Embedding-3-Large 3072 0.5466 0.4623 0.5729 0.6432
PubMedBERT (Gu et al., 2021 768 0.5798 0.5025 0.6181 0.6533
Qwen3-Embedding-4B 2560 0.6065 0.5226 0.6382 0.6884
bge-en-icl 4096 0.6114 0.5141 0.6338 0.7183
Qwen3-Embedding-8B 4096 0.6458 0.5593 0.6893 0.7458
LAFT 768 0.6686 0.5779 0.6985 0.7638

3.2.2 FILE SYSTEM INTERFACE

A key challenge in automated workflow generation is bridging the gap between abstract plans gener-
ated by LLMs and the real execution environment. To address this, MARWA integrates a file system
interface that enables agents to directly query and interact with the underlying directory structure.
Specifically, the module provides access to the names and formats of available files, which are then
used to guide the construction of subsequent commands.

This interaction yields two main benefits. First, by grounding command generation in the actual
file system, the framework reduces errors caused by incorrect file references or incompatible in-
put—output specifications. Second, it ensures that intermediate results are consistently tracked and
made available for downstream tools, thereby improving the continuity and robustness of multi-step
workflows.

4 EXPERIMENTS

4.1 DATASETS

To evaluate the effectiveness of our framework, we constructed datasets from multiple real-world
bioinformatics workflow repositories, including the Galaxy platform, the Common Workflow Lan-
guage (CWLf] collection, and preprint articles from BioRxiV’} These sources were selected because
they represent diverse workflow practices and contain detailed applications, covering a wide range
of research domains such as metabolomics (Liu & Locasale, [2017), transcriptomics (Lowe et al.,
2017), metagenomics (Wooley et al., 2010), genomics (Lesk, |2017) and proteomics (Aslam et al.,
2016), thereby ensuring diversity and representativeness.

For further evaluation, we create two datasets of different
scales. Table 2] illustrate the statistics of them. The first is Table 2: Statistics for the datasets.
a small-scale dataset containing 40 tasks carefully selected by

bioinformatics experts (detail in Appendix [C.I). Each task

is designed for real execution in practical workflows, allow- etabolomics Smali Largg
ing manual verification and in-depth inspection of model per- . .

. transcriptomics 10 600
formance. This dataset reflects real-world research demands metagenomics g 390
across major bioinformatics domains, and the task distribu- enoil ics 10 900
tion aligned to current practices (Mitchener et al., [2025). We gro teomics] 300
created the second dataset by using GPT-4 Turbo to summa- Fotal 1070

rize tasks from raw workflow metadata (data acquisition is

provided in Appendix [C.2), adopting the roles of a lab re-

searcher, a clinician, and a data engineer. This process produced a large-scale dataset of 2,270 tasks,
which has been validated for quality by bioinformatics experts (Appendix shows the prompt;
dataset examples in Appendix[C.3). The large-scale dataset maintains a similar domain distribution,
further ensuring the representativeness of the small set.

Shttps://view.commonwl.org/workflows/
Shttps://www.biorxiv.org/

https://view.commonwl.org/workflows/
https://www.biorxiv.org/

Under review as a conference paper at ICLR 2026

4.2 EVALUATION FRAMEWORK

To objectively assess the capabilities of different models, we adopted a two-stage evaluation frame-
work. In the first stage, we conducted experiments on the small dataset. Each task was executed
manually by domain experts and also simulated by LLMs. We then calculated consistency scores
between human execution and model outputs, demonstrating that LLMs can provide reliable eval-
uations of bioinformatics workflows. The expert-executed results on the small dataset serve as the
ground truth, primarily establishing the feasibility of the approach. In the second stage, we scaled up
to the large dataset and employed multiple LLMs as evaluators. The large-scale evaluation confirms
the trends and demonstrates the method’s scalability. These models were used to assign scores to
the generated bioinformatics tools and their corresponding command-line, and the final results were
reported in terms of both average scores and cross-model consistency. The adoption of LLM-based
evaluation is a reasonable yet approximate strategy suitable for large-scale benchmarking. While it
confirms the robustness of the method, it does not fully equate to real execution outcomes.

For a comprehensive evaluation, we included both proprietary and open-source models, specifically
selecting GPT-40 (GPT-40) and Gemini-2.5-pro-exp (Gemini2.5) as leading closed-source models,
alongside Qwen 2.5 72B-Instruct (Qwen2.5-72B) as a representative open-source alternative. These
models were chosen based on prior studies which indicate their strong performance in relevant
evaluation tasks (Gu et al., 2024 [Liu et al., 2025).

4.3 EVALUATION METRICS

We adopted a combination of human-centered and model-based metrics. For manual execution, we
used h_Pass@n, which measures the success rate of completing a task within n» manual execution
attempts.

For LLM-based evaluation, we developed a structured scoring template that includes six metrics: (1)
Workflow Completion (Comp): Measures whether the workflow achieves the analysis goal (0-3;
higher is better). (2) Workflow Redundancy (Redun): Measures whether unnecessary or redundant
tools are included(0-3; lower is better). (3) Installation Accuracy (Inst): Correctness of tool
installation commands (0-2; higher is better). (4) Path Accuracy (Path): Correctness of file paths
used in tool commands (0-2; higher is better). (5) Parameters Accuracy (Param): Correctness of
command-line parameters (0-2; higher is better). (6) Executable Flag: whether this command be
executed successfully (True or False). Score criteria can be found in the Appendix [D.3]

The first two metrics operate at the workflow level (prompt in Appendix [A.9), while the last four
focus on individual tools (prompt in Appendix [A.9). These metrics align with common issues in
computational method evaluation, making the overall assessment both rigorous and transparent. If
a step fails, the system may invoke Debugging to adjust commands and re-evaluate. We define
m_Pass@n as the probability of task success within n LLM-based execution attempts.

To quantify agreement between human and LLM evaluations, we used two measures: (1) Pass/-
Fail Agreement Rate (PFAR): The proportion of steps where human execution and LLMs agree
on pass/fail outcomes. (2) Score Agreement Rate (SAR): The proportion of instances where the
human and LLM scores match exactly for each metric. Formula in Appendix [D.2}

We also computed Krippendorff’s alpha (k) (Krippendortf, 2018;|1970) to assess inter-model agree-
ment among LLM evaluators across all five score metrics, providing a measure of consistency at
both workflow and tool levels. In line with established conventions, values above 0.80 indicate re-
liable agreement, values between 0.67 and 0.80 are considered tentatively acceptable, and values
below 0.67 reflect insufficient consistency.

4.4 SMALL-SCALE DATASET VALIDATION

We compared MARWA against four baseline methods: LLM-only, AutoBA, ReAct and BioMaster.
All models utilized GPT-4 Turbo as the underlying agent to ensure a fair and consistent evaluation.
Experimental details can be found in the Appendix [D.4]

We evaluated the small dataset using both manual and LLM-based execution with GPT-40, Gem-
ini2.5, and Qwen2.5-72B. Table [3|reports the average results. More detailed results are provided in

Under review as a conference paper at ICLR 2026

Table 3: The main results of MARWA and different kinds of baselines on the small dataset.

Method hPass@l h_Pass@2 m_Pass@l m_Pass@2 PFAR SAR
LLM-only 0.100 0.100 0.092 0.150 0.938 0.872
AutoBA 0.250 0.250 0.342 0.358 0.892 0.839
ReAct 0.275 0.275 0.358 0.363 0.895 0.872
BioMaster 0.300 0.350 0.367 0.375 0.908 0.874
MARWA 0.375 0.450 0.433 0.467 0.913 0.877

Appendix MARWA surpassed all baseline methods across every evaluation metric, achieving
superior performance in both human execution and LLM-based simulation. MARWA’s performance
advantage can be attributed to its improved capability in selecting appropriate tools, generating more
accurate file paths and specifying precise command-line parameters, as clearly demonstrated in the
Figure[d More case studies are provided in Appendix [E] A specific running instance of MARWA
is provided in the Appendix [F} The moderate performance observed across all methods is primarily
due to the inherent complexity of real-world bioinformatics workflow automation, which involve
multi-step analytical processes, domain-specific tool integration and stringent parameter tuning re-
quirements.

(a) Base Large Language Model 3 (b) One-shot Execution (c) Step-by-step Execution (Ours)
—~6—-0 X e — —[
0 — N (e P82 > (OO = (0 0O) = =) : =
i 2 3 l

'
. Output 1
User Question m Output ! User Question Planner Executor put !

BioToolAgent

file: ./input/SRR11874161_1.fastq,./input/SRR11874161_2.fastq

; g Question: | have some raw WGS sequencing data on hand and want to do a complete genome assembly for evolutionary analysis
_ file_description: raw sequencing reads in FASTQ format

Tool Choice: Tool Choice: | T()ol Choice: fastp,SPAdes, BWA, samtot)s,
Command: Command: : [Pilon, Prokka
spades.py \ conda install -c bioconda spades -y ! |Command:
-1./input/SRR11874161_1.fastq \ conda create -n spades_env -y python=3.10\
-2 ./input/SRR11874161_2.fastq \ spades.py | i |conda activate spades_en \
-0 -1./input/SRR11874161_1.fastq \ i |conda install -y spades \
...... -2 ./input/SRR11874161_2.fastq \ \ |mkdir -p ./spades \
-0 | |spades.py \

| -1./input/SRR11874161_1.fastq \
------ ! |-2./input/SRR11874161_2.fastq \

° Executable @ Completion level ; -ot 1/‘;’3 ;dgj l careful\
. 9 Executable @ Completion level 1 (-
Command ° Parameter ' ' \ j
accuracy accuracy 3 0 Command 0 Parameter E
accuracy accuracy ! (9 Executable (4 Completion level
Command », Parameter

accuracy A4 accuracy

Figure 4: Comparison of bioinformatics workflow automation methods.

4.5 LARGE-SCALE DATASET VALIDATION

On the large dataset, MARWA demonstrates consistent superiority across nearly all evaluation met-
rics. Result in Table @ A comprehensive analysis of the time consumption is provided in Ap-
pendix [D.6] We have the following findings.(1) Workflow Completion and Redundancy: While
MARWA achieves strong workflow completion (Comp: 2.72), the LLM-only approach attains a
higher score (2.76) but with more redundancy (Redun: 0.31 vs 0.15). The LLM-only method re-
lies on redundant tools to superficially improve coverage, whereas MARWA emphasizes precision
and efficiency through iterative self-correction. Other baselines perform worse in both metrics due
to their inability to revise errors in a single pass, leading to accumulated inaccuracies. (2) Tool
Command-Level Reliability: MARWA achieves the highest path accuracy (Path: 1.78), parameter
accuracy (Param: 1.27) and installation correctness (Inst: 1.75). These metrics reflect MARWA’s

Under review as a conference paper at ICLR 2026

Table 4: The main results of MARWA and different kinds of baselines on the large dataset.

Method Models Comp Redun Inst Path Param m_Pass@1
GPT-40 2.83 0.29 0.61 0.19 0.76 0.11
LLM-onl Gemini2.5 2.75 0.31 0.44 0.12 0.72 0.11
y Qwen2.5-72B 2.69 0.32 0.33 0.12 0.68 0.09
mean/k 2.76/0.77 0.31/0.77 0.46/0.66 0.14/0.77 0.72/0.75 0.11/0.77
GPT-40 2.72 0.34 1.02 0.71 0.77 0.19
AutoBA Gemini2.5 2.66 0.38 0.92 0.55 0.74 0.19
Qwen2.5-72B 2.55 0.45 0.87 0.58 0.71 0.18
mean/k 2.64/0.73 0.39/0.69 0.94/0.76 0.61/0.75 0.74/0.81 0.19/0.73
GPT-40 2.58 0.23 1.08 1.12 1.08 0.24
ReAct Gemini2.5 2.54 0.23 1.02 1.04 1.11 0.21
Qwen2.5-72B 2.53 0.27 0.96 1.08 1.01 0.21
mean/k 2.55/0.75 0.24/0.72 1.02/0.71 1.08/0.78 1.07/0.69 0.22/0.74
GPT-4o 2.62 0.22 1.74 0.63 1.15 0.25
BioMaster Gemini2.5 2.58 0.24 1.63 0.52 1.08 0.24
Qwen2.5-72B 2.54 0.25 1.66 0.59 1.07 0.25
mean/k 2.58/0.79 0.24/0.73 1.68/0.72 0.58/0.68 1.10/0.70 0.25/0.71
GPT-40 2.74 0.15 1.77 1.79 1.28 0.41
Gemini2.5 2.71 0.14 1.74 1.77 1.26 0.40
MARWA Qwen2.5-72B 2.71 0.16 1.74 1.78 1.26 0.40
mean/k 2.72/0.81 0.15/0.89 1.75/0.76 1.78/0.68 1.27/0.76 0.40/0.76

ability to generate reliable tool commands, which is critical for real-world execution. By compar-
ison, all the baselines perform poor on the path accuracy due to the absence of real file system in-
teraction. Although BioMaster incorporates RAG, its embedding mechanism often fails to retrieve
relevant and accurate information, resulting in incorrect parameter usage. (3) Time Efficiency:
MARWA achieves this high accuracy with notable efficiency, as its fast BERT-based retrieval and
concise context.

4.6 CoOST-EFFECTIVENESS ANALYSIS

To evaluate the cost of our framework, we analyzed the token consumption for each method, as
shown in Table E} We measured the average input (I-Tokens) and output (O-Tokens) tokens for
successful (S) and failed (F) tasks. Based on this data, we calculated the Effective Cost Per Success
(ECPS). This metric is derived from the official API pricing of GPT-4 Turbo, our agents’ backbone,
to reflect the actual monetary expense (see Appendix for the formula). ECPS represents the
average U.S. dollar cost to achieve a single successful workflow, with a lower value indicating
superior cost-effectiveness.

Our analysis shows that MARWA achieves the lowest ECPS (0.310), making it the most cost-
effective method. MARWA'’s high success rate prevents costly repeated attempts and debugging
cycles, unlike BioMaster (0.693) and ReAct (0.521). This demonstrates that MARWA'’s design pro-
vides a strong balance between high performance and practical efficiency.

4.7 ABLATION STUDY

We conducted ablation experiments to evaluate the contribution of each component in MARWA.
The results demonstrate that each module plays a distinct role in the process: (1) Removing the
retrieval model most severely hurts installation accuracy and overall executability. (2) Disabling
the Selecting agent increases workflow redundancy. (3) Removing the Analyzing agent reduces

Under review as a conference paper at ICLR 2026

Table 5: Comparison of token consumption and cost efficiency across different methods.

Method I-Tokens (S) O-Tokens (S) I-Tokens (F) O-Tokens (F) ECPS
LLM-only 298 689 1396 2836 0.825
AutoBA 945 1043 1373 2218 0.383
ReAct 4085 1329 6526 1963 0.521
BioMaster 6972 1920 9203 3221 0.693
MARWA 5117 1831 6529 2357 0.310

Table 6: Ablation study on the small dataset and large dataset.

Method Comp Redun Inst Path Param m Pass@1 h Pass@l h Pass@2
MARWA 272 0.15 1.75 1.78 1.27 0.40 0.375 0.45
w/o retrieval -0.03 -0.01 -0.19 -0.02 -0.10 -0.12 -0.13 -0.18
w/o Selecting -0.08 +0.04 -0.05 -0.04 +0.01 -0.06 -0.10 -0.10
w/o Analying -0.10 +0.09 -0.01 -0.02 -0.02 -0.07 -0.08 -0.13
w/o file system -0.04 +0.02 +0.01 -0.33 -0.03 -0.10 -0.10 -0.15

completion and increases redundancy. (4) Without the file system interface, path accuracy drops
sharply. More detailed analyses are provided in the Appendix

5 CONCLUSION

In this paper, we present MARWA, a multi-agent retrieval-augmented framework for reliable bioin-
formatics workflow automation. MARWA combines a step-by-step generation strategy that decom-
poses complex tasks into verifiable steps, LLM-augmented retrieval embeddings for precise tool
selection and direct file-system interaction to ground commands in the real execution environment.
These components reduce error accumulation, improve command and path accuracy and enable re-
producible execution. Experiments on diverse real-world datasets show MARWA consistently out-
performs strong baselines in execution success and expert-aligned evaluation, offering a practical
foundation for trustworthy workflow automation in computational biology.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Simon Anders and Wolfgang Huber. Differential expression analysis for sequence count data. Nature
Precedings, pp. 1-1, 2010.

Bilal Aslam, Madiha Basit, Muhammad Atif Nisar, Mohsin Khurshid, and Muhammad Hidayat
Rasool. Proteomics: technologies and their applications. Journal of chromatographic science,
pp. 1-15, 2016.

Andreas D Baxevanis, Gary D Bader, and David S Wishart. Bioinformatics. John Wiley & Sons,
2020.

Carlos D Bustamante, Francisco M De La Vega, and Esteban G Burchard. Genomics for the world.
Nature, 475(7355):163-165, 2011.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge dis-
tillation. arXiv preprint arXiv:2402.03216, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171-4186, 2019.

Rahul Dey and Fathi M Salem. Gate-variants of gated recurrent unit (gru) neural networks. In 2017
IEEE 60th international midwest symposium on circuits and systems (MWSCAS), pp. 1597-1600.
IEEE, 2017.

Jeff Gauthier, Antony T Vincent, Steve J Charette, and Nicolas Derome. A brief history of bioinfor-
matics. Briefings in bioinformatics, 20(6):1981-1996, 2019.

Ryan Green, Xufeng Qu, Jinze Liu, and Tingting Yu. Btr: a bioinformatics tool recommendation
system. Bioinformatics, 40(5):btae275, 2024.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Ying-
han Shen, Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. arXiv preprint
arXiv:2411.15594, 2024.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto Usuyama, Xiaodong Liu, Tristan Naumann,
Jianfeng Gao, and Hoifung Poon. Domain-specific language model pretraining for biomedical
natural language processing. ACM Transactions on Computing for Healthcare (HEALTH), 3(1):
1-23, 2021.

Almut Heinken, Johannes Hertel, Geeta Acharya, Dmitry A Ravcheev, Malgorzata Nyga,
Onyedika Emmanuel Okpala, Marcus Hogan, Stefania Magntisdéttir, Filippo Martinelli, Bram
Nap, et al. Genome-scale metabolic reconstruction of 7,302 human microorganisms for person-
alized medicine. Nature Biotechnology, 41(9):1320-1331, 2023.

Franziska Hemmerling and J6rn Piel. Strategies to access biosynthetic novelty in bacterial genomes
for drug discovery. Nature Reviews Drug Discovery, 21(5):359-378, 2022.

Jon Ison, Hans Ienasescu, Emil Rydza, Piotr Chmura, Kristoffer Rapacki, Alban Gaignard, Veit
Schwiammle, Jacques Van Helden, Matds$ Kalas, and Hervé Ménager. biotoolsschema: a formal-
ized schema for bioinformatics software description. GigaScience, 10(1):giaal57, 2021.

Vahid Jalili, Enis Afgan, Qiang Gu, Dave Clements, Daniel Blankenberg, Jeremy Goecks, James
Taylor, and Anton Nekrutenko. The galaxy platform for accessible, reproducible and collaborative
biomedical analyses: 2020 update. Nucleic acids research, 48(W1):W395-W402, 2020.

David T Jones and Janet M Thornton. The impact of alphafold2 one year on. Nature methods, 19
(1):15-20, 2022.

Klaus Krippendorff. Estimating the reliability, systematic error and random error of interval data.
Educational and psychological measurement, 30(1):61-70, 1970.

11

Under review as a conference paper at ICLR 2026

Klaus Krippendorff. Content analysis: An introduction to its methodology. Sage publications, 2018.

Anup Kumar, Helena Rasche, Bjorn Griining, and Rolf Backofen. Tool recommender system in
galaxy using deep learning. GigaScience, 10(1):giaal52, 2021.

Bjorn E Langer, Andreia Amaral, Marie-Odile Baudement, Franziska Bonath, Mathieu Charles,
Praveen Krishna Chitneedi, Emily L Clark, Paolo Di Tommaso, Sarah Djebali, Philip A Ewels,
et al. Empowering bioinformatics communities with nextflow and nf-core. Genome Biology, 26
(1):228, 2025.

Arthur M Lesk. Introduction to genomics. Oxford University Press, 2017.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktéschel, et al. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459-9474, 2020.

Esther H Lips, Tapsi Kumar, Anargyros Megalios, Lindy L Visser, Michael Sheinman, Angelo For-
tunato, Vandna Shah, Marlous Hoogstraat, Emi Sei, Diego Mallo, et al. Genomic analysis defines
clonal relationships of ductal carcinoma in situ and recurrent invasive breast cancer. Nature ge-
netics, 54(6):850-860, 2022.

Xiaojing Liu and Jason W Locasale. Metabolomics: a primer. Trends in biochemical sciences, 42
(4):274-284, 2017.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Yuyang Liu, Liuzhenghao Lv, Xiancheng Zhang, Li Yuan, and Yonghong Tian. Bioprobench: Com-
prehensive dataset and benchmark in biological protocol understanding and reasoning. arXiv
preprint arXiv:2505.07889, 2025.

Jonathan B Losos, Stevan J Arnold, Gill Bejerano, ED Brodie III, David Hibbett, Hopi E Hoekstra,
David P Mindell, Anténia Monteiro, Craig Moritz, H Allen Orr, et al. Evolutionary biology for
the 21st century. PLoS biology, 11(1):e1001466, 2013.

Rohan Lowe, Neil Shirley, Mark Bleackley, Stephen Dolan, and Thomas Shafee. Transcriptomics
technologies. PLoS computational biology, 13(5):e1005457, 2017.

Nicholas M Luscombe, Dov Greenbaum, and Mark Gerstein. What is bioinformatics? a proposed
definition and overview of the field. Methods of information in medicine, 40(04):346-358, 2001.

Ludovico Mitchener, Jon M Laurent, Benjamin Tenmann, Siddharth Narayanan, Geemi P
Wellawatte, Andrew White, Lorenzo Sani, and Samuel G Rodriques. Bixbench: a comprehen-
sive benchmark for 1lm-based agents in computational biology. arXiv preprint arXiv:2503.00096,
2025.

Gabriele Orlando, Daniele Raimondi, Ramon Duran-Romana, Yves Moreau, Joost Schymkowitz,
and Frederic Rousseau. Pyuul provides an interface between biological structures and deep learn-
ing algorithms. Nature communications, 13(1):961, 2022.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings
of the 36th annual acm symposium on user interface software and technology, pp. 1-22, 2023.

Anthony Rhoads and Kin Fai Au. Pacbio sequencing and its applications. Genomics, proteomics &
bioinformatics, 13(5):278-289, 2015.

Florian Schlotter, Arda Halu, Shinji Goto, Mark C Blaser, Simon C Body, Lang H Lee, Hideyuki Hi-
gashi, Daniel M DeLaughter, Joshua D Hutcheson, Payal Vyas, et al. Spatiotemporal multi-omics
mapping generates a molecular atlas of the aortic valve and reveals networks driving disease. Cir-
culation, 138(4):377-393, 2018.

12

Under review as a conference paper at ICLR 2026

Elliott Sober. Conceptual issues in evolutionary biology. Mit Press, 1994,

Jang-il Sohn and Jin-Wu Nam. The present and future of de novo whole-genome assembly. Briefings
in bioinformatics, 19(1):23-40, 2018.

Houcheng Su, Weicai Long, and Yanlin Zhang. Biomaster: Multi-agent system for automated
bioinformatics analysis workflow. bioRxiv, pp. 2025-01, 2025.

Indhupriya Subramanian, Srikant Verma, Shiva Kumar, Abhay Jere, and Krishanpal Anamika.
Multi-omics data integration, interpretation, and its application. Bioinformatics and biology in-
sights, 14:1177932219899051, 2020.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-
attention distillation for task-agnostic compression of pre-trained transformers. Advances in neu-
ral information processing systems, 33:5776-5788, 2020.

John C Wooley, Adam Godzik, and Iddo Friedberg. A primer on metagenomics. PLoS computa-
tional biology, 6(2):¢1000667, 2010.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4-24, 2020.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
A survey. Science China Information Sciences, 68(2):121101, 2025.

Yihang Xiao, Jinyi Liu, Yan Zheng, Xiaohan Xie, Jianye Hao, Mingzhi Li, Ruitao Wang, Fei Ni,
Yuxiao Li, Jintian Luo, et al. Cellagent: An llm-driven multi-agent framework for automated
single-cell data analysis. arXiv preprint arXiv:2407.09811, 2024.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiagi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow genera-
tion. arXiv preprint arXiv:2410.10762, 2024.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 1(2), 2023.

Juexiao Zhou, Bin Zhang, Xiuying Chen, Haoyang Li, Xiaopeng Xu, Siyuan Chen, and Xin Gao.
Automated bioinformatics analysis via autoba. arXiv preprint arXiv:2309.03242, 2023.

13

Under review as a conference paper at ICLR 2026

A PROMPT TEMPLATES

A.1 ANALYZING AGENT

Prompt: Analyzing

You are an assistant for bioinformatics workflow analysis.

Your task is to carefully read the user's question about their analysis task,input files and
input files' descriptions.
Decompose it into a structured natural language response with the following sections:

1. *Input files**
- List each input file mentioned by the user.
- For each file, describe:
- file name (if provided, otherwise say "not specified")
- file format (e.g., FASTQ, BAM, VCF, mzML)
- data type (e.g., raw sequencing reads, aligned reads, variant calls, proteomics spectra)
- whether it is paired-end (true/false/unknown)
2. **Output files**
- Describe the expected output files.
- Include file format (e.g., VCF, TSV, abundance table, PDF report)
and data type (e.g., variants, gene expression matrix, species abundance).
- If the user did not specify, infer the most common output for the analysis goal.
3. *Analysis goal**
- Provide a detailed sentence describing the intended analysis, including:
- starting point (input files)
- main processing steps (e.g., quality control, alignment, variant calling)
- desired outcome (the type of result the user wants)
Rules:
- Always extract actual file names if provided.
- If information is missing, clearly state it as "not specified" or "unknown".
- The output must be well-structured natural language, divided into the three sections above.
- The output must be in JSON format as follow:
{"input_files": [{
"file_name": "sample1.fastq" | null, // the provided file name, if available
"file_format": "FASTQ", // e.g., FASTQ, BAM, VCF, mzML
"data_type": "raw sequencing reads", // e.g., raw sequencing reads, aligned reads
"paired_end": true | false | null // true/false/null
1,
"output_files": [{
"file_format": "VCF", // e.g., VCF, TSV, abundance table, PDF report
"data_type": "variants" // e.g., variants, gene expression matrix, species abundance
1,
"analysis_goal": "string" // a detailed description of the intended analysis,
including start point, key processing steps, and desired outcome}
Now the files user input: {file list},the files' descriptions:{descriptions} ,user's question:{user_question}

Figure A.1: The prompt of Analyzing Agent.

A.2 PLANNING AGENT

Prompt: Planning

You are a bioinformatics expert.
Your task is to give the most suitable NEXT bioinformatics tool (to be used in a workflow) based on information below.

The user’s requirement is: {analysis_goal}.

IThe user's input file(s) are: {input_files}.

I The expected final output files are: {output_files}.

IThe workflow has already used the following tools: {used_tools}.

Based on this context, you must propose and describe exactly ONE next tool, unless the workflow has already fully satisfied the user's final output requirement.
The tool you propose must be consistent with the provided context and logically follow the workflow towards producing the required output file format/content.

\When describing the tool, include:

- The specific problem or gap it solves in the workflow

- A detailed explanation of the tool.

- Its input and output data formats, with explicit mapping to the user's output requirement

Output JSON format:

{ toolname: "the name of the tool"
function:"What problem the tool solves in the workflow"
description: "the detailed description of the tool"
inputformat:"the input data format of the tool"
outputformat:"the output data format of the tool"

Figure A.2: The prompt of Planning Agent.

14

Under review as a conference paper at ICLR 2026

A.3 SELECTING AGENT

Prompt:Selecting

'You are a bioinformatics expert.

'Your task is to select ONE suitable bioinformatics tool based on the workflow task, already used tools, and the available input files.
'You may choose from the reference tools list or propose a different tool.

Context:

- Workflow task: {analysis_goal}

- Already used tools in the workflow: {used_tools}

- Tool function: {tool_function}

- Reference tools (JSON array of objects):{reference_tools}

Rules:
1. Select exactly ONE tool.
2. You MAY choose a tool outside the reference list if it is more suitable.

Output JSON format:

toolname:"The name of the selected tool."
reference_tool_id:"The ID of the tool if it comes from the reference list; use -1 if not."

function: "An explanation of the tool’s role in the workflow,including Function,What the tool does and an example.(e.g. STAR:RNA-Seq read alignment,Maps
sequenced fragments to the genome,Read aligns to exon1-exon2)"

Figure A.3: The prompt of Selecting Agent.

A.4 GENERATING & EXECUTING AGENT

Prompt:Generating & Executing

'You are a bioinformatics workflow assistant.
Your task is to generate the necessary setup and execution details for running the CURRENT bioinformatics tool within an existing workflow.
Context:
- Tool name: {tool_name}
- Tool function: {tool_function}
- Workflow task: {analysis_goal}
- Available input files: {available_files}
- The command line you can reference: {reference_tool_command}
Rules:
1. Input file selection:
- Select input file(s) ONLY from {available_input_files}.
- Ensure input type strictly matches the tool’s required input format (e.g., FASTA, TSV, BAM).
- Do not fabricate or assume non-listed input files.
2. Output file naming & directory:
- All outputs must be stored under: ./output/{tool_name}/
- Output filenames must:
a. Preserve the sample ID from the input filename.
b. Append the tool name and step role (e.g., "_{tool_name}_classified", "_{tool_name}_metrics").
- Do not overwrite files from previous steps.
3. File Creation command:(The command to create the output directory)
- Create the output directory if it does not exist(Not in the folder to which these files {existing_files} belong to):
“"setup_command": "mkdir -p./output/{tool_name}/"*
- If the output directory already exists, use it directly without recreating.
“"setup_command": "cd ./output/{tool_name}/"*
4. Installation command:(The command to install the tool in a new environment)
- If the tool is not in {executed_tools_list}, create a new conda environment and install it in this environment:
if the tool needs python:
“"installation_command": "conda create -n {tool_name} -c conda-forge -c bioconda {tool_name} python=3.11 -y && conda activate {tool_name}"
if the tool does not need python:
“"installation_command": "conda create -n {tool_name} -c conda-forge -c bioconda {tool_name} -y && conda activate {tool_name}"
- If the tool is already installed, skip the installation step, directly activate the environment:
"installation_command": "conda activate {tool_name}"
- If you think conda is not available, try pip:
“"installation_command": "pip install {tool_name}[all]""
- If you think pip is not available, try apt-get:
“"installation_command": "apt-get install {tool_name}"
- Ensure all required dependencies are included.
5. Execution command (The command to execute the tool)
- Construct the command specifically for {tool_name}. The core task of this tool is {tool_description}.
- Use absolute paths for all input and output files. Do not create directories or symbolic links—assume all inputs already exist and output paths are ready.
- Select input files only from {available_files}.Ensure that all input files actually exist before running the command.
- Ensure every environment variable is set before running the command.
- Name the output files based on {tool_name}, preserving the input sample ID in each output filename. Ensure filenames do not conflict with {available_files} or

other outputs.Example: Input file: sampleA.fasta — Tool: gtdbtk — Expected output: taxonomy classification table — Output filename:
sampleA.gtdbtk.classification.tsv.

- You can refer to the command line {tool_command_reference}.

Focus only on generating **the actual execution command that runs the tool on the inputs and produces the outputs**.
Output format:

'You MUST output in this strict JSON structure:{
File_Creation_command:"The command to create the output directory"
installation_command: "The command to install the tool environment."
execution_command: "The command to execute the tool"}

Figure A.4: The prompt of Generating & Executing Agent.

15

Under review as a conference paper at ICLR 2026

A.5 DEBUGGING AGENT

Prompt:Debugging

'You are a Bioinformatics Code Expert.

'Your task is to modify your previous command line
File Creation Command:{file_creation_commandy},
Installation Command:{installation_command},
Execution Command:{execution_command}
based on the error message{error_message}

Output format:

'You MUST output in this strict JSON structure:{

installation_command: "The command to install the tool environment."
File_Creation_Command:"The command to create the output directory"
Execution Command: "The command to execute the tool"

Figure A.5: The prompt of Debugging Agent.

A.6 JUDGING AGENT

Prompt:Judging

'You are a bioinformatics workflow expert.
'Your task is to determine whether the given workflow has been fully completed.
Context:
- Workflow detailed requirement: {analysis_goal}
- Workflow input format requirement: {input_files}
- Workflow output format requirement: {output_files}
- Tools already used in the workflow: {used_tools}
- Current output files: {available_files}
Rules:
1. The workflow is considered **complete** only if BOTH conditions are met:
a) The current available output files {available_files} include **all** required files and formats specified in {output_files}.
b) The workflow requirement {analysis_goal} has been fully satisfied by the tools listed in {used_tools}, meaning every required analysis/processing step is
covered without omission.
2. If **any** required output is missing OR any workflow step is not accounted for by the tools used, the workflow is **not complete**.
3. The output format must be as :{Complete: "Whether the workflow has been fully completed"}
Question: Has the workflow been fully completed?

Figure A.6: The prompt of Judging Agent.

A.7 PROMPT TEMPLATES FOR AUXILIARY COMPONENTS

Prompt:Tool description augmentation

'You are a bioinformatics expert.
| will provide you with a description of a bioinformatics tool: {tool_description}
'Your task is to generate **5 short alternative descriptions** of this tool, each from a **different perspective**.
- Each description should be **1-2 sentences long**.
- Focus on distinct aspects, such as:
1. Main function / core capability
2. Typical applications / use cases
3. Advantages, performance, or limitations
4. Target users (e.g., researchers, clinicians, bioinformaticians) and the reason why they use the tool
5. Integration with workflows or other tools
- Avoid repeating the same wording across descriptions.
- Keep the descriptions **concise, clear, and non-overlapping**.
Output JSON format:
i
description1: "Main function / core capability of the tool"
description2: "Typical applications / use cases of the tool"
description3: "Advantages, performance, or limitations of the tool and the reason"
description4: "Target users (e.g., researchers, clinicians, bioinformaticians) of the tool and the reason"
description5: "Integration with workflows or other tools and the reason"}

Figure A.7: The prompt of Tool description augmentation.

16

Under review as a conference paper at ICLR 2026

A.8

A9

PROMPT TEMPLATES FOR DATASET

Prompt:User Input Generation

Please generate exactly **3 user questions** for each persona in the list below.

- The output must consist only of user questions, not answers or explanations.

- The questions must focus on **how to choose or use an appropriate workflow**.

- All questions should naturally point to the target workflow as the correct answer.

- Each persona should have a distinct perspective (e.g., cost, speed, accuracy, compliance, reproducibility, visualization).
- Do **not** contradict the workflow’s input, output, or tasks.

- Vary **style** (formal, casual, search-query style).

- Vary **length** (short ~10 words, long ~40 words).

- Do not expose the workflow name or implementation details.

Persona list: Wet-lab researcher, Clinician, Data engineer.

Output format must be strictly JSON format:

"persona_list": [
{"name": "Wet-lab researcher",
"Question": [List of user questions for this persona]},......],
"inputs": [List of required input files with concrete names]}
You are given the following **target workflow** description:{input}

Figure A.8: The prompt of User input generation.

PROMPT TEMPLATES FOR LLLM EVALUATION

Prompt:LLM Judge Tools

You are a bioinformatics expert.

You are evaluating the steps of the bioinformatics workflow for correctness and executability.
For each step below, you must judge three aspects separately:

“*Envi / ion C. *

Evaluate whether the installation command correctly and completely installs the required software and all its dependencies.
Scoring (0-2): [
0 = Completely incorrect or unusable; software cannot be installed(do not have Installation Command)
,0.5 = Mostly incorrect; major dependencies missing or software unusable(Example:pip install fastqc (FastQC is not a Python package, installation fails).)
,1 = Partially correct; software installs but manual modifications or additional dependencies required(Example: conda install fastqc (fails unless correct
channels are added).)
,1.5 = Mostly correct; minor issues only (e.g., warnings, optional dependencies missing)(Example:mamba install -c bioconda fastqc do not have its own
environment)
,2 = Perfectly correct and complete; software and all dependencies installed and functional](Example:mamba create -n fastqc python=3.11 -y && conda
activate fastqc && mamba install -c bioconda fastqc)
Path Command
Evaluate whether the command correctly creates all required directories and handles paths properly in the workflow, including input/output paths, existing folders,
and permissions.
Scoring (0-2):
[0 = Completely incorrect or fails to create directories / incorrect paths
,0.5 = Mostly incorrect; some directories not created
,1 = Partially correct; some paths incorrect
,1.5 = Mostly correct; only minor issues (e.g., warnings, redundant paths)
,2 = Perfectly correct; all directories and paths handled correctly]
Execution Command
Evaluate whether the execution command is likely to run successfully given that the previous steps are correctly completed, and whether it produces the expected
output.
Scoring (0-2):

[0=C y fails; output ample: fastqc)

,0.5 = Mostly fails; output likely incorrect(Example:fastqc sample.fastq)

,1 = Partially executable; may require [or path adj ts(-fastqc ./inp! fastq -0 output/)

,1.5 = Mostly executable; minor issues only (e.g., warnings)(Example:fastqc ./input/sample.fastq.gz -o ./output/fastqc/)
= Fully executable; output meets expectations](Example:fastqc ./input/sarr fastq -o ./outp! qc/)

Finally, declde whether the step as a whole is executable (True/False).
Your output should be in the following JSON format:

step_score_command_installation:"Score for the environment/installation command"
step_score_command_path: "Score for the path command"
step_score_command_executable:"Score for the execution command"

step_command_success: "Whether the command is executable, True=executable, False=unexecutable"

}
Now,The user question is: {analysis_goal};The tool steps are:{steps_summary};The input file is:{input_file}

Figure A.9: The prompt of LLM Evaluation Tool Command.

17

Under review as a conference paper at ICLR 2026

Prompt:LLM Judge Workflow

You are an expert bioinformatics workflow evaluator.

Your task is to evaluate a given bioinformatics workflow based on step-level scores and success indicators.

Your evaluation must be precise, consistent, and avoid subjective judgment beyond the scoring criteria.

Rate the workflow on three dimensions:

Completion_level (0-3) (Measures whether the workflow achieves {analysis_goal} intended goals / core functionality by {used_tool})

3 = Fully complete — Workflow meets all core requirements and produces all required final outputs.(Example: identify genes that are differentially expressed
between two or more biological conditions starts from raw FASTQ files, performs quality control (FastQC), trims low-quality reads (Trimmomatic), aligns reads to the
reference genome (STAR), quantifies gene expression (featureCounts), and produces differential expression tables and visualization plots. All steps complete and
successful.)

2 = Partially complete — Workflow meets some core requirements, but some steps or functions are missing.(Same RNA-seq workflow, but only performs
Trimmomatic and STAR; quality control and quantifies gene expression are missing.)

1 = Barely complete — Most core requirements are not met; only a few outputs or functions are present.(Only performs FASTQ QC, or only produces alignment
files without further analysis. No usable final results.)

0 = Not complete — Core functionality is not met; workflow is unusable or fails to produce required outputs.(Attempted RNA-seq workflow fails due to missing
tools or incorrect inputs, producing no valid outputs.)

Redundancy (0-3)(Measures whether the workflow use {used_tool} to achieve {analysis_goal} is redundant)

0 = No redundancy — Al steps unique, no duplicates.(Example:A ChIP-seq workflow runs QC — alignment — duplicate removal — peak calling. Each step
appears once, no repetition.)

1 = Some redundancy — Minor duplication, does not break workflow.(FastQC is run twice during QC, but other steps are unique. Workflow still functions
correctly.)

2 = Mostly redundant — Many repeated steps without necessity.(Multiple alignments or repeated QC steps on the same RNA-seq data. Increases runtime but
does not fully break results.)

3 = Very redundant — Workflow bloated with repetitive or overlapping steps.).(Same FASTQ files are repeatedly aligned and quantified, steps are duplicated
multiple times. Workflow becomes complex and wasteful.)

Important principles:

Be objective: base scores only on explicit evidence from the workflow, not assumptions.

Be consistent: apply the same standards to all workflows being evaluated.

Provide the output in strict JSON format:

{
Completion_level :"how complete the workflow is"
Redundancy :"how redundant the workflow is"

}

Figure A.10: The prompt of LLM Evaluation Workflow.

18

Under review as a conference paper at ICLR 2026

B MAIN ALGORITHM

Algorithm 1 The MARWA Workflow Automation Algorithm

Require: User analytical goal G, a list of input files F},,, and file descriptions D;,.
Ensure: A completed bioinformatics workflow W with all generated files.

1: procedure MARWA(G, F;,,, D;y,)
2: task_spec < Analyzing(G, Fy,, D;y,) > Refine user query
3: workflow _state < Initialize with task_spec
4: is_complete < False
5: while not is_complete do
6 planned_tool, candidates <+ Planning(workflow_state) > Predict next tool & retrieve
candidates
7: selected_tool < Selecting(planned_tool, candidates) > Choose the best tool
8: success, outputs < ExecuteWithRetry(selected_tool, workflow _state)
9: if success then
10: Update workflow _state with selected_tool and outputs
11: if selected_tool is new then
12: Add selected_tool and its verified command to retrieval database
13: end if
14: is_complete < Judging(workflow_state) > Check if overall goal is met
15: else
16: break > Terminate on unrecoverable execution failure
17: end if
18: end while
19: return workflow_state

20: end procedure
21: procedure EXECUTEWITHRETRY (t00l, state)

22: command < Generating(tool, state) > Generate initial command
23: fori=1— 5do

24: success, log + Execute(command) > Interact with file system
25: if success then

26: return True, log.files

27: else

28: command < Debugging(command, log.error) > Iteratively refine on failure
29: end if

30: end for

31: return False, null

32: end procedure

19

Under review as a conference paper at ICLR 2026

C DATASET

C.1

SMALL DATASET

Table A.1: Summary of the small-scale dataset.

Domain Question file source
Transcriptomics How can I perform quality control of the raw SRR453566, raw FASTQ
RNA-seq reads to assess sequencing quality?
Transcriptomics What is the read length and GC content distribu- SRR453566, raw FASTQ
tion of this dataset?
Transcriptomics How can I align these reads to the reference SRR453566, Drosophila
genome of Drosophila? reference genome (dm6)
Transcriptomics What proportion of reads map uniquely vs. multi- SRR453566, Drosophila
map to the genome? reference genome (dm6)
Transcriptomics How can I quantify transcript abundance at the SRR453566, Drosophila an-
gene level? notation (GTF)
Transcriptomics Which genes are most highly expressed in this SRR453566, Drosophila an-
sample? notation (GTF)
Transcriptomics Can I identify alternative splicing events in this SRR453566, Drosophila an-
dataset? notation (GTF)
Transcriptomics How can I detect potential novel transcripts notin ~ SRR453566, Drosophila
the reference annotation? reference genome (dm6)
Transcriptomics What is the expression distribution across differ- SRR453566, Drosophila
ent functional gene categories? annotation (GTF, GO
database)
Transcriptomics How reproducible are expression estimates be- SRR453566, SRR453567,
tween technical replicates of this dataset? SRR453568, Drosophila
annotation (GTF)
Genomics How can I assemble the complete genome of this SRR8185310 (E. coli
E. coli sample from raw sequencing reads? WGS,FASTQ)
Genomics What is the estimated sequencing depth and SRR8185310, raw FASTQ
genome coverage of this dataset?
Genomics How can I align these reads to the E. coli K-12 SRR8185310, E. coli
MG1655 reference genome? reference genome
(NC_000913.3,RefSeq)
Genomics What is the GC content distribution across the se- SRR8185310, raw FASTQ
quencing reads?
Genomics How can I detect single-nucleotide variants SRR8185310, E. coli refer-
(SNV5) in this dataset? ence genome(NC_000913.3,
RefSeq)
Genomics How can I identify small insertions and deletions SRR8185310, E. coli
(indels) relative to the reference? reference genome
(NC_000913.3, RefSeq)
Genomics Can I identify plasmid sequences present in this SRR8185310, plasmid ref-
sample? erence database (NCBI Ref-
Seq Plasmid)
Genomics How can I annotate the assembled genome with SRR8185310(assembly),
coding genes and functional elements? E. coli RefSeq annotation
Genomics How does this E. coli isolate compare phylogenet- SRR8185310, related
ically to other K-12 strains? E. coli reference genomes
(NC_000913.3, RefSeq)
Genomics Are there mobile genetic elements in this genome? SRR8185310, E. coli
reference genome
(NC_000913.3, RefSeq),
PHASTER database
next page...

20

Under review as a conference paper at ICLR 2026

Domain Question file source
Metabolomics How can I identify differential metabolite pro- MTBLS233(MetaboLights),
files between experimental groups in this LC-MS raw mzML files, sample
dataset? metadata
Metabolomics What metabolic pathways are significantly en- MTBLS233, raw mzML
riched given the detected features in this dataset? files, pathway reference
databases (KEGG)
Metabolomics How many unknown mass features (no match in MTBLS233, raw mzML
spectral libraries) are present, and what is their in- files, spectral library meta-
tensity distribution? data
Metabolomics What is the technical reproducibility of peak de- MTBLS233, raw mzML
tection and quantification in this dataset? files, QC sample metadata
Proteomics How many proteins are identified with at least 2 PXD000001 (PRIDE; raw
unique peptides in this TMT Erwinia dataset? mzML files, small number
of runs)
Proteomics What is the peptide-spectrum match score distri- PXDO000001, raw mzML,
bution in this dataset? identification files
Proteomics Which proteins show the highest variability across PXD000001, reporter-ion
TMT channels? quantitation data
Proteomics Can we detect contaminant proteins in blank /con- PXD000001, raw MS/MS
trol runs? files, control sample meta-
data
Proteomics What is the dynamic range of protein intensities PXDO000001, raw data,
measured? quantitative output
Proteomics Are there any post-translational modifications ob- PXD000001, identifica-
served in this dataset? tion(mgf/mztab), UniProt
reference
Proteomics What fraction of expected proteome is covered PXDO000001, raw data,
given this dataset? fasta reference pro-
teome(Erwinia)
Proteomics How reproducible are replicate injections in this PXDO000001, raw mzML,
dataset? replicate sample metadata
Metagenomics What is the taxonomic composition (genus level) SRR7140083, raw FASTQ
of the bacterial community in this 16S amplicon
sample?
Metagenomics How does alpha diversity (Shannon, Simpson) dif- SRR7140083, raw FASTQ
fer among subsets of this sample?
Metagenomics Which OTUs / ASVs are most abundant in this SRR7140083, raw FASTQ,
sample, and how is their abundance distributed? 16S reference database
(SILVA)
Metagenomics What is the read-length and quality score distribu- SRR7140083, raw FASTQ
tion across the reads?
Metagenomics Are there chimeric sequences present (PCR arti- SRR7140083, raw FASTQ,
facts) in this amplicon dataset? chimera detection reference
(uchime)
Metagenomics What fraction of reads map to bacteria vs non- SRR7140083, raw FASTQ,
bacteria in this dataset? SILVA database
Metagenomics What is the GC content distribution among the SRR7140083, raw FASTQ,
reads and among dominant OTUs? alignment output
Metagenomics Can we construct a rarefaction curve to know SRR7140083, raw FASTQ,

whether the sampling depth is sufficient?

sample metadata

C.2 WORKFLOW DATA PROCESSING

Galaxy (Jalili et al., 2020) is a web-based, open-source platform designed to make computational
biology accessible to researchers.

21

Under review as a conference paper at ICLR 2026

We obtain information from the public Galaxy APlﬂ This API provides structured information about
each workflow’s purpose and overall structure.

The Common Workflow Language (CWL) [’[is an open community standard for describing
command-line data analysis tools and workflows.

The data outlining the workflow’s objective and design were obtained by parsing the primary source
files (.cwl or .yml), which were acquired via links of public code repositories (e.g., Github) provided
by the platform.

BioRxiv [ﬂ is a preprint server for the biological sciences. It is a vital resource for discovering novel
bioinformatics workflows.

The workflow descriptions were extracted from the abstracts of the preprints themselves.

C.3 LARGE DATASET

An Large-Scale Dataset Example

{"inputs":
[
{"file": "sample1.fastq.gz","description": "Paired-end raw sequencing reads from sample 1,
generated using lllumina platform, suitable for quality control, read trimming, and taxonomy assignment analysis."},
{"file": "sample2.fastq.gz","description": "Paired-end raw sequencing reads from sample 2,
complementary to sample1.fastq.gz, used for validating workflow reproducibility and
testing downstream bioinformatics pipelines."}],
"persona_list":
[{"name": "Lab researcher”,
"Question": |
"How do | process raw sequencing data to ensure clean reads for downstream analysis?",
"What's the best way to filter low-quality reads before sending data to bioinformatics?",
"Can | automate quality control and read trimming without sacrificing accuracy?"]},
{"name": "Clinician",
"Question": |
"What's the fastest way to get accurate pathogen identification from sequencing data?",
"How can | ensure my analysis meets clinical standards for patient diagnosis?",
"Which method guarantees reproducible results for diagnostic reporting?"]},
{"name": "Data engineer",
"Question": |
"How can | pipeline raw FASTQ files into structured JSON output reliably?",
"What scalable approach handles multiple FASTQ inputs with consistent quality metrics?",
"How do | ensure the workflow is reproducible across different environments?"]}]}

Figure A.11: An example for large-scale dataset.

D EXPERIMENTAL SETUP

D.1 MULTI-POSITIVE CONTRASTIVE LOSS

Given an anchor representation z;, let P(i) denote the set of its positive samples and A(%) the set of

all candidates except itself. The similarity between two samples is defined as s(z;, z;) = % with
temperature 7 > (0. The multi-positive contrastive loss is formulated as:
> exp(s(zi,2p))
P(i)
L;=—log = : 1
' & > exp (s(zi,2a)) M
acA(i)
D.2 DETAIL SAR FORMULA
SAR = ZdeD I(Smrz(d) = mtman(d)) (2)

|D|

"https://usegalaxy.eu/api/workflows
$https://view.commonwl.org/workflows/
‘https://www.biorxiv.org/

22

https://usegalaxy.eu/api/workflows
https://view.commonwl.org/workflows/
https://www.biorxiv.org/

Under review as a conference paper at ICLR 2026

where D is the set of evaluation instances, m denotes one of the evaluation metrics, Sl’fm(d) repre-
sents the score assigned by the LLM to instance d under metric m, S}, (d) is the score given by

human

a human evaluator for the same instance and metric, and I(-) is an indicator function that returns 1
if the two scores are identical and 0 otherwise.

D.3 SCORE CRITERIA

Table A.2: Bioinformatics Workflow Evaluation Criteria

Step-Level Evaluation

Environment/Installation Command

0 Completely incorrect or unusable; software cannot be installed (no installation
command)

0.5 Mostly incorrect; major dependencies missing or software unusable (e.g. pip install
fastqc)

1 Partially correct; software installs but manual modifications or additional
dependencies required (e.g. conda install fastqc without specifying correct channels)

1.5 Mostly correct; minor issues only (e.g., warnings, optional dependencies missing)
(e.g. mamba install -c bioconda fastqc without creating a dedicated environment)

2 Perfectly correct and complete; software and all dependencies installed and
functional (e.g. mamba create -n fastqc python=3.11 -y && conda activate fastqc
&& mamba install -c bioconda fastqc)

Path Command

0 Completely incorrect or fails to create directories/incorrect paths

0.5 Mostly incorrect; some directories not created

1 Partially correct; some paths incorrect

1.5 Mostly correct; only minor issues (e.g., warnings, redundant paths)

2 Perfectly correct; all directories and paths handled correctly

Execution Command

0 Completely fails; output unusable (e.g., just typing fastqc)

0.5 Mostly fails; output likely incorrect (e.g. fastqc sample.fastq)

1 Partially executable; may require parameter or path adjustments (e.g. fastqc
Jinput/sample.fastq -o output/)

1.5 Mostly executable; minor issues only (e.g., warnings) (e.g. fastqc
Jinput/sample.fastq.gz -o ./output/fastqc/)

2 Fully executable; output meets expected results (e.g. fastqc ./input/sample.fastq -o
Joutput/fastqc/)

Workflow-Level Evaluation
Completion Level

0 Not complete; core functionality not met; workflow unusable or fails to produce
required outputs

1 Barely complete; most core requirements not met; only a few outputs or functions
present

2 Partially complete; meets some core requirements, but some steps or functions
missing

3 Fully complete; workflow meets all core requirements and produces all required final
outputs

Redundancy

0 No redundancy; all steps unique, no duplicates

1 Some redundancy; minor duplication, does not break workflow

2 Mostly redundant; many repeated steps without necessity

3 Very redundant; workflow bloated with repetitive or overlapping steps

D.4 BASELINES

For fairness and reproducibility, we provide details regarding how the baseline systems were repro-
duced in our experiments:

23

Under review as a conference paper at ICLR 2026

Unified model backbone: All baseline methods were implemented using the same backbone, GPT-4
Turbo, in order to ensure a consistent evaluation setting. For all LLMs, the temperature parameter
was uniformly set to 0.3, thereby reducing randomness and ensuring deterministic outputs across
multiple runs.

LLM-only employs a strategy based on prompting, relying entirely on the LLM’s own parametric
knowledge to generate outputs. Prompt is shown in Figure [A-12]

AutoBA (Zhou et al., 2023) employs an autonomous LLM-based agent with Planner, Executor, and
Debugger roles to automatically generate bioinformatics workflows.

During the reproduction of AutoBA, all system-level prompts originally specified in their framework
were replaced with our own environment-specific configuration prompt, explicitly reflecting CUDA
Version: 12.6.

ReAct employs an iterative “Thought-Action-Observation” loop through a unique prompt template
(as shown in Figure[A.T3). This approach enables the LLM to dynamically perform reasoning and
planning (Thought), decide and execute the next action (Action), and adjust its strategy in real-time
based on the resulting feedback (Observation), continuing this cycle until the task is complete.

BioMaster (Su et all 2025) employs a multi-agent system composed of specialized role-based
agents—Plan, Task, Debug, and Check—that operate sequentially, enhanced by a RAG framework.

The original BioMaster implementation did not release its retrieval-augmented generation (RAG)
tool database. To address this, we constructed and employed our own curated tool database to
approximate the functionality.

Role

'You are a senior bioinformatics expert.

'You are proficient in a wide range of bioinformatics tools and data processing workflows,

excelling at breaking down complex analytical tasks into a series of clear, executable command-line steps and
organizing them into a robust Bash script.

Task

Your task is to receive a bioinformatics analysis task described by the user and convert it into a well-structured,
thoroughly commented Bash script that can be directly executed in a shell environment.

Execution Starts Here

Now, strictly following all the requirements above, generate the corresponding Bash script for the user task below.
User Task: {{user_task_input}}

Figure A.12: Prompt for LLM-only.

You are an expert bioinformatician agent.
'Your goal is to solve a user's request by creating and executing a bioinformatics workflow step-by-step.

'You operate in a "Thought, Action, Observation" cycle. At each step,

you must first use a "Thought" to reason about the current state and decide your next move.
Then, you must use an "Action" from the available tools.

After the action is executed, you will receive an "Observation" with the result.

'You will repeat this process until the user's goal is achieved.

AVAILABLE TOOLS:

1. “search_tool[query: str]’: Searches the bioinformatics tool database for tools matching the query.
The query should describe the desired functionality.

Returns a list of relevant tools, their descriptions, and command examples.

2. ‘execute_command[command: str]: Executes a shell command in the bash terminal.

Use it for installing tools (e.g., ‘mamba install ..."),creating directories (‘mkdir ..."),

and running bioinformatics tools. Returns the stdout and stderr of the command.

3. list_files[path: str]': Lists all files and directories at the given path.

Use "." for the current directory. Returns a list of file/directory names.

4. “finish[reason: str]: Call this action when you are confident that the entire analysis workflow is complete
and the final expected output has been generated.

The reason should summarize why the task is considered finished.

RESPONSE FORMAT:

You must strictly follow this format for each turn:

Thought: Your reasoning about the current situation, what you have done, and what you plan to do next.
Action: A single action to be taken, chosen from the available tools.

Now, begin.

Figure A.13: Prompt for ReAct.

24

Under review as a conference paper at ICLR 2026

Table A.3: The detailed results of MARWA and different kinds of baselines on the small dataset.

Method LLM-only AutoBA ReAct BioMaster MARWA
h_Pass@1 0.100 0.250 0.275 0.300 0.350
h_Pass@2 0.100 0.250 0.275 0.375 0.450
GPT-40
m_Pass@1 0.100 0.375 0.400 0.400 0.475
m_Pass@2 0.175 0.400 0.425 0.400 0.500
PFAR 0.938 0.863 0.875 0.887 0.913
SAR 0.882 0.820 0.838 0.854 0.889
Gemini2.5
m_Pass@1 0.100 0.325 0.350 0.350 0.425
m_Pass@2 0.150 0.325 0.350 0.375 0.450
PFAR 0.950 0.925 0.900 0.925 0.900
SAR 0.857 0.854 0.849 0.885 0.873
Qwen2.5-72B
m_Pass@1 0.075 0.325 0.325 0.350 0.400
m_Pass@2 0.125 0.350 0.325 0.350 0.450
PFAR 0.925 0.887 0.913 0.913 0.925
SAR 0.879 0.842 0.867 0.882 0.869

These adjustments guarantee that the reproduced baselines operate under consistent conditions with
our proposed framework, while also reflecting the practical constraints arising from incomplete tool
or configuration disclosure in prior work.

D.5 DETAILED RESULTS ON THE SMALL DATASET

Table compares the performance of MARWA with several baselines on the small dataset. From
the human evaluation results (h_Pass@n), MARWA consistently achieves higher pass rates than all
baselines, showing improvements of about 5—10 percentage points over Biomaster. This indicates
that even under direct human execution, MARWA provides more reliable outcomes.

For model-based evaluations (m_Pass@n), the trend is consistent across all three representative
LLMs—GPT-40, Gemini2.5, and Qwen2.5-72B. In each case, MARWA achieves the highest
Pass@1 and Pass@2, demonstrating that the system can guide LLMs toward more successful ex-
ecutions with fewer attempts. Notably, GPT-40 shows the strongest improvement under MARWA,
with m_Pass @2 increasing to 0.500 compared to 0.400 for Biomaster.

Agreement-based metrics provide further evidence of MARWA'’s robustness. Both PFAR (Pass/Fail
Agreement Rate) and SAR (Score Agreement Rate) remain high across all settings, typically ex-
ceeding 0.85. MARWA achieves the best or near-best values, suggesting that its outputs are not only
more accurate but also more consistent with human judgments.

Overall, these results highlight that MARWA improves task reliability under both human and LLM
execution, while maintaining strong agreement with human evaluations.

D.6 TIME CONSUMPTION COMPARISON

The average time consumption of per tool generation is detailed in Table[A.4] The results demon-
strate that MARWA achieves its superior performance without a proportional increase in computa-
tional cost, primarily due to two key design efficiencies.

Context Length The LLM-only baseline is the fastest (0.6878s) but performs poorly, as it lacks
critical information. AutoBA is moderately faster (1.1873s) than MARWA (3.1050s) but signifi-
cantly less accurate. Most notably, MARWA is 14.1% faster than the competing retrieval-augmented

25

Under review as a conference paper at ICLR 2026

Table A.4: Average time consumption for per tool generation comparison on the large dataset.

Method Avg. Total Time(s) Avg. Retrieval Time(s)
LLM-only 0.6878 -

AutoBA 1.1873 -

ReAct 1.4797 0.2109
BioMaster 3.6132 1.3747
MARWA (Ours) 3.1050 0.2076

method, BioMaster (3.6132s). This efficiency gain is largely attributable to our strategy of supplying
the LLM with highly condensed, relevant information instead of lengthy, raw context. In extended
workflows, this results in significantly shorter prompt contexts for MARWA, leading to faster LLM
inference times compared to approaches that incorporate information more indiscriminately.

Retrieval Speed The most striking efficiency gain is in the retrieval phase. MARWA's retrieval is
approximately 6.6 times faster than BioMaster’s (0.2076s vs. 1.3747s). This is a direct consequence
of our deliberate choice to employ a lightweight yet effective BERT-style model for retrieval, as
opposed to the larger, more computationally intensive embedding models (e.g., models like text-
embedding-3-large). This design ensures low-latency retrieval without compromising the quality of
the retrieved information.

The time consumption data, when viewed alongside the performance metrics, confirms that
MARWA’s architectural choices create an optimal balance. Our method of using a fast retriever
to find precise information, which in turn reduces LLM processing time, allows MARWA to achieve
the highest m_Pass@1 score (0.40) and excel on most granular metrics. This demonstrates that our
efficiency gains are not achieved by sacrificing quality but are intrinsic to a more intelligent and
streamlined workflow. MARWA delivers state-of-the-art performance with practical and scalable
computational requirements.

D.7 FORMULA FOR EFFECTIVE COST PER SUCCESS (ECPS)

To provide a realistic assessment of cost-effectiveness, we calculated the Effective Cost Per Success
(ECPS) based on the GPT-4 Turbo API, which served as the backbone for our agents.

The ECPS is defined as the average monetary cost (in USD) required to achieve a single successful
workflow:

Total Monetary Cost T™C

ECPS = =
CPS Total Successful Tasks N x m_Pass@1

3)

The Total Monetary Cost (TMC) is calculated by summing the costs of all input and output tokens
across all tasks:

TMC:CZ‘-((IS XNs)-i-(Ip XNF))—I-CO'((OS XN5)+(OF X NF)) @)

Where ¢; is the price per input token. c, is the price per output token. Is and Og are the average
input and output tokens for successful tasks. I and O are the average input and output tokens for
failed tasks. Ng is the number of successful tasks. Nr is the number of failed tasks. N is the total
number of tasks (N = Ng + Np). m_Pass@1 is the success rate of the method.

A lower ECPS value signifies higher cost-effectiveness, as it represents a lower real-world monetary
investment to achieve a successful outcome.

D.8 DETAILED FINDINGS FOR ABLATION STUDIES
We conducted ablation experiments to assess the contribution of each component in MARWA.

o Retrieval model Removing the retrieval model leads to the largest performance drop across
nearly all metrics. In particular, installation accuracy decreases by 0.19 and the overall

26

Under review as a conference paper at ICLR 2026

m_Pass@ [score drops by 0.12, underscoring the critical role of retrieval in ensuring correct
tool installation and executable workflows.

e Selecting agent Disabling the Selecting agent results in higher workflow redundancy
(+0.04) while also reducing completion (-0.08) and pass rate (-0.06). This suggests that
the agent is effective in pruning unnecessary steps, thereby improving efficiency and exe-
cution reliability.

e Analyzing agent Removing the Analyzing agent causes completion to decrease (-0.10)
and redundancy to increase (+0.09). Although the drop in installation accuracy is rela-
tively small, the higher redundancy indicates that the agent is crucial for reasoning about
intermediate outputs and maintaining streamlined workflows.

¢ File system interface Without the file system interface, path accuracy suffers a sharp de-
cline (-0.33), and m_Pass@ [decreases by 0.10. This demonstrates that access to and ma-
nipulation of the file system is essential for managing dependencies and maintaining correct
path references.

Overall, the ablation results confirm that each component of MARWA plays a distinct and com-
plementary role. The retrieval model is indispensable for correctness, the Selecting and Analyzing
agents ensure efficiency and completeness, and the file system interface secures accurate execution
environments.

27

Under review as a conference paper at ICLR 2026

E CASE STUDY

E.1

E.2

E.3

E.4

ENVIRONMENT AND DEPENDENCY CONFLICTS

Scenario:

a standard ChlP-seq analysis workflow.

The plan involves two key steps:Peak Calling: Use MACS2, which requires Python 2.7.
Visualization: Use the modern tool deepTools to create heatmaps from the MACS2 output.
This tool requires Python >= 3.6.

Wrong Method:

Attempt to install both tools into the same environment

conda install -c bioconda macs2 -y

conda install -c bioconda deeptools -y

MARWA:

MARWA generates commands to create separate, stable environments

conda create -n env_macs2 -c bioconda macs2

conda create -n env_deeptools -c bioconda deeptools

Analysis:

The Wrong Method fails because it ignores the fact that some tools are incompatible within the same runtime.

Figure A.14: Case study: environment and dependency conflicts.

FILE PATH AND I/O ERRORS

Scenario:

a quality-control-to-alignment workflow

Wrong Method:

mkdir -p ./qc_output

fastp -i ./input/sampleA.fastq.gz -o ./qc_output/sampleA.clean.fastq.gz

bwa mem reference.fasta ./input/sampleA.fastq.gz > aligned.sam

MARWA:

mkdir -p ./qc_output

fastp -i ./input/sampleA.fastq.gz -o ./qc_output/sampleA.clean.fastq.gz

mkdir -p ./alignment_output

bwa mem reference.fasta ./qc_output/sampleA.clean.fastq.gz > ./alignment_output/sampleA.aligned.sam
Analysis:

The wrong method mistakenly uses the original raw file for alignment instead of the actual clean file generated
by the previous step, due to its lack of awareness of the real file system.

Figure A.15: Case study: file path and I/O errors.

ToOL PARAMETER MISCONFIGURATION

Scenario:

a variant calling workflow on a diploid organism.

Wrong Method:

This command uses the default haploid model for variant calling

bcftools mpileup -f reference.fasta aligned.sorted.bam | bcftools call -mv -o variants.vcf
MARWA:

This command correctly specifies the diploid ploidy for the sample

bcftools mpileup -f reference.fasta aligned.sorted.bam | bcftools call -mv --ploidy 2 -o variants.vcf
Analysis:

The wrong method uses the correct tool (bcftools) for variant calling, but omits a critical parameter.

Figure A.16: Case study: tool parameter misconfiguration.

LoGICAL FLAWS IN WORKFLOW DESIGN

Scenario:

An alignment-to-variant-calling workflow.
Wrong Method:

Tool Chain: BWA -> bcftools

MARWA:

Tool Chain: BWA -> Samtools -> bcftools
Analysis:

The wrong method omits the critical intermediate processing steps that are handled by .

Figure A.17: Case study: logical flaws in workflow design.

28

Under review as a conference paper at ICLR 2026

F RUNNING INSTANCE

User Input:

name: WGS data analysis Genome assembly

question: I have some raw WGS sequencing data (FASTQ files
) on hand and want to do a complete genome assembly

file: './input/SRR11874161_1.fastqg,./input/SRR11874161_2.
fastqg'

file_description: 'Illumina WGS of E. coli'

Log:

input_files: [{'file_name': './input/SRR11874161_1.fastqg
', '"file_format': 'FASTQ', 'data_type': 'raw sequencing
reads (Illumina WGS of E. coli)', 'paired_end': True},
{'file_name': './input/SRR11874161_2.fastqg', '
file_format': 'FASTQ', 'data_type': 'raw sequencing
reads (Illumina WGS of E. coli)', 'paired_end': True}]
output_files: [{'file_format': 'FASTA', 'data_type': '
assembled genome contigs/scaffolds (final assembly) '},
{'file_format': 'GFA', 'data_type': 'assembly graph'},
{'file_format': 'TSV', 'data_type': 'assembly
statistics and quality metrics (e.g., N50, total length
, number of contigs)'}, {'file_format': 'HTML', '
data_type': 'assembly quality report (e.g., QUAST
report) '}1]
analysis_goal: Starting from paired-end Illumina FASTQ
reads (./input/SRR11874161_1.fastqg and ./input/
SRR11874161_2.fastqg), perform a de novo whole—genome
assembly of E. coli: run read quality control, adapter
and quality trimming/filtering, optional error
correction; assemble the genome with an Illumina-
focused assembler (e.g., SPAdes/SKESA), followed by
scaffolding and polishing using the same reads; then
evaluate assembly quality (e.g., with QUAST) and
deliver the final contig/scaffold FASTA, assembly graph
(GFA), and summary metrics/reports.

Step 1:

toolname: fastp

function: Performs read quality control and adapter/
quality trimming (with optional overlap-based error
correction) on paired-end Illumina FASTQ reads prior to
de novo assembly.

description: fastp is a fast, multithreaded all-in-one
preprocessor for FASTQ reads. It automatically detects
and trims adapters in paired-end data using read
overlap analysis, and supports quality trimming via
sliding-window algorithms, per-read length filtering,
polyG/polyX tail trimming (important for NovaSeq/
NextSeq), and removal of low-complexity sequences. For
paired-end libraries, fastp can perform overlap-based
base correction: when R1 and R2 overlap, base
disagreements are corrected according to quality scores
, reducing random sequencing errors prior to assembly.
It reports comprehensive QC summaries (per-cycle
quality, GC content, duplication rates, adapter content

29

Under review as a conference paper at ICLR 2026

, overrepresented sequences) in both JSON and
interactive HTML formats. Typical applications include
cleaning short-read Illumina WGS data before assembly,
variant calling, or metagenomics. Strengths: very fast,
single-step QC+trimming+reporting, robust adapter
autodetection for PE reads, built-in correction for
overlapped regions. Limitations: error correction is
limited to overlapping regions and is not a full k-mer
based corrector (tools like BFC/Lighter provide deeper
correction if required); overly aggressive trimming/
filtering can reduce effective coverage and fragment
read pairs if parameters are set too stringently. This
tool addresses the first required step of the workflow
(read QC, adapter and quality trimming/filtering,
optional error correction). Its cleaned paired-end
FASTQ outputs are the correct inputs for the downstream
Illumina-focused assembler (e.g., SPAdes/SKESA). The
HTML/JSON QC reports are ancillary; the final assembly
deliverables (FASTA contigs/scaffolds and GFA graph,
plus QUAST metrics) will be produced by later tools.
inputformat: Paired-end FASTQ files (gzipped or plain).
Here: ./input/SRR11874161_1.fastg and ./input/
SRR11874161_2.fastqg.
outputformat: Primary: cleaned/truncated paired-end FASTQ
files (e.g., SRR11874161_1.clean.fastg and
SRR11874161_2.clean.fastqg), optionally with files for
unpaired reads if enabled. Secondary: a JSON summary (
fastp.json) and an interactive HTML QC report (fastp.
html) . Mapping to user requirements: the cleaned FASTQ
files will be used by the assembler to generate the
required final assembly FASTA and GFA; the HTML report
here is read QC (not the final assembly quality report,
which will come later from QUAST) .
conference: ['fastp', 'sickle', 'flash', 'rawtools',6 '
fastplong', 'short_reads_trim_seq', 'chopper',6 '
trimmomatic', 'bowtie_wrappers', 'rasusa']

toolname: fastp

description: fastp: Read QC, adapter removal, quality
trimming, and optional overlap-based error correction
for Illumina paired-end reads. It auto-detects adapters
, trims low-quality bases, filters poor reads, and can
correct mismatches in overlapping regions. Example:
Takes SRR11874161 R1/R2 FASTQ files and outputs cleaned
paired-end FASTQs plus HTML/JSON QC reports for
downstream assembly with SPAdes/SKESA.

used_reference_tool: True

toolid: O

selected_input_files: [{'file_name': './input/
SRR11874161_1.fastqg', 'file_format': 'FASTQ'}, {'
file_name': './input/SRR11874161_2.fastqg', 'file_format
': '"FASTQ'}]

expected_outputs_info: Trimmed/filtered paired-end FASTQ
files (R1 and R2) suitable for assembly; accompanying
QC reports in HTML and JSON summarizing quality metrics
and trimming actions.

30

Under review as a conference paper at ICLR 2026

installation_command: conda create -n fastp -c conda-forge
—c bioconda fastp -y && conda activate fastp

setup_command: mkdir -p ./output/fastp/

execution_command: fastp -1 ./input/SRR11874161_1.fastqg -I

./input/SRR11874161_2.fastq -o ./output/fastp/

SRR11874161_fastp_trimmed_R1.fastqg -0 ./output/fastp/
SRR11874161_fastp_trimmed_R2.fastq -h ./output/fastp/
SRR11874161_fastp_qgc.html -3j ./output/fastp/
SRR11874161_fastp_gc.json -c -w 8

2 channel Terms of Service accepted

Channels:

- conda-forge

- bioconda

- defaults

Platform: linux-64

Collecting package metadata (repodata.json): done
Solving environment: done

Package Plan
environment location: ./miniconda3/envs/fastp
added / updated specs:

- fastp

The following NEW packages will be INSTALLED:

_libgcc_mutex conda-forge/linux-64::_libgcc_mutex
-0.1l-conda_forge

_openmp_mutex conda-forge/linux—64::_openmp_mutex
-4.5-2_gnu

fastp bioconda/linux-64::fastp-1.0.1-
heae3180_0

isa-1 conda-forge/linux-64::isa-1-2.31.1-
hb9d3cd8_1

libdeflate conda-forge/linux—-64::1libdeflate-1.24-
h86£0d12_0

libgcc conda-forge/linux—-64::1ibgcc—-15.1.0-
h767d61lc_4

libgomp conda-forge/linux—-64::1ibgomp-15.1.0-
h767d61c_4

libstdcxx conda-forge/linux—-64::1libstdcxx-15.1.0-
h8£f9b012_4

Downloading and Extracting Packages: ...working... done

Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
To activate this environment, use
$ conda activate fastp
To deactivate an active environment, use

#
#
#
#
#
#

31

Under review as a conference paper at ICLR 2026

$ conda deactivate

run success
khkkhkkhkhkhkkhkkhkhkkhkkhkrkhkhkhrkhkkhhhkhkxkk*xx
Step 2:
toolname: Unicycler (short-read mode)
function: De novo bacterial genome assembly from the
trimmed Illumina paired-end reads, producing the
primary assembly (FASTA contigs/scaffolds) and an
assembly graph (GFA) for downstream polishing and
evaluation.
description: Unicycler is a bacterial genome assembler
that orchestrates SPAdes to build a de Bruijn graph (
DBG) from short reads and then applies graph-bridging/
simplification strategies guided by paired-end linkage
to resolve repeats and produce high-quality contigs. In
short-read mode, it: (1) runs SPAdes to generate the
assembly graph and initial contigs, (2) constructs a
read-pair connectivity graph to identify reliable paths
through the DBG, (3) performs conservative/normal/bold
graph simplifications to bridge gaps and minimize
fragmentation, and (4) detects and circularizes small
replicons when strongly supported by the read evidence.
Typical applications include bacterial WGS assemblies
from Illumina data, generating outputs suitable for
downstream polishing (e.g., Pilon) and quality
assessment (e.g., QUAST). Strengths: produces both
FASTA and an assembly graph (GFA) that captures contig
connectivity; optimized for bacterial genomes; often
yields fewer fragments than running SPAdes alone due to
graph-bridging logic. Limitations: requires SPAdes (
and Bowtie2 for some internal steps) to be installed;
polishing is limited compared to dedicated polishers (
Pilon/Polypolish) and should be performed in later
workflow steps; performance depends on read quality/
coverage and complex repeats may remain unresolved with
short reads alone.
inputformat: Paired-end Illumina FASTQ reads (gz or
uncompressed) . For this workflow: Rl=./output/fastp/
SRR11874161_fastp_trimmed_R1.fastqg, R2=./output/fastp/
SRR11874161_fastp_trimmed R2.fastqg.
outputformat: Primary outputs: (1) FASTA: assembled genome
contigs/scaffolds (e.g., assembly.fasta), satisfying
the 'FASTA assembled genome contigs/scaffolds'
requirement; (2) GFA: assembly graph linking nodes/
contigs (e.g., assembly.gfa), satisfying the 'GFA
assembly graph' requirement. Additional byproducts:
logs and intermediate graph files useful for
troubleshooting/visualization.

conference: ['unicycler', 'berokka', 'novoplasty', '
trycycler', 'socru', 'hifiasm_meta', 'bionano', '
getorganelle', 'mitobim', 'velvet_optimiser']

toolname: unicycler

description: Unicycler (short-read mode): de novo
bacterial genome assembly. It assembles trimmed
Illumina paired-end reads into high—-quality contigs/

32

Under review as a conference paper at ICLR 2026

scaffolds and an assembly graph by running SPAdes and
performing graph-bridging/simplification. Example: from
trimmed SRR11874161 R1/R2 FASTQ files, produce
assembly.fasta and assembly.gfa for downstream
polishing (e.g., Pilon) and evaluation (e.g., QUAST).
used_reference_tool: True

toolid: O

selected_input_files: [{'file_name': './output/fastp/
SRR11874161_fastp_trimmed Rl.fastqg', 'file_ format': '
FASTQ'}, {'file_name': './output/fastp/
SRR11874161_fastp_trimmed_R2.fastqg', 'file_format': '
FASTQ'}]

expected_outputs_info: FASTA (assembled contigs/scaffolds)
, GFA (assembly graph), TXT/LOG (run log and summaries)

installation_command: conda create -n unicycler -c conda-—
forge -c bioconda unicycler python=3.11 -y && conda
activate unicycler
setup_command: mkdir —-p ./output/unicycler/
execution_command: bash -1lc '
set —euo pipefail Rl=./output/fastp/
SRR11874161_fastp_trimmed_R1l.fastqg
R2=./output/fastp/SRR11874161_fastp_trimmed_R2.fastqg
OUT= . /output/unicycler
SAMPLE = SRR11874161
[-s $R1 1 && [-s S$SR2]
for £ in \
SOUT/S{SAMPLE}_unicycler_assembly.fasta \
SOUT/S{SAMPLE}_unicycler_assembly.gfa \
SOUT/S${SAMPLE}_unicycler_run.log ; do
if [e S$f]; then echo Error: output already exists:
St >&2; exit 1; fi
done
for £ in $OUT/assembly.fasta SOUT/assembly.gfa SOUT/
unicycler.log ; do

if [—e S$f]1; then echo Error: Unicycler default output
already exists: $f >&2; exit 1; fi

done

unicycler \

-1 SRrR1 \

-2 S$R2 \

-o $OUT \

-t 8 \

—-mode normal

[—s $OUT/assembly.fasta] && [-s SOUT/assembly.gfa]
&& [—-s $OUT/unicycler.log]

mv $OUT/assembly.fasta SOUT/${ SAMPLE }
_unicycler_assembly.fasta

mv $OUT/assembly.gfa $OUT/$ { SAMPLE }
_unicycler_assembly.gfa
mv $OUT/unicycler.log SOUT/S${SAMPLE}_unicycler_run.log

Preparing transaction: done
Verifying transaction: done
Executing transaction: \

33

Under review as a conference paper at ICLR 2026

For Linux 64, Open MPI is built with CUDA awareness but
this support is disabled by default.

To enable it, please set the environment variable
OMPI_MCA_opal_cuda_support=true before

launching your MPI processes. Equivalently, you can set
the MCA parameter in the command line:

mpiexec —--mca opal_cuda_support 1

In addition, the UCX support is also built but disabled by

default.
To enable it, first install UCX (conda install -c conda-
forge ucx). Then, set the environment

variables OMPI_MCA_pml = ucx OMPI_MCA_osc= ucx before
launching your MPI processes.

Equivalently, you can set the MCA parameters in the
command line:

mpiexec —--mca pml ucx —-mca OSC ucx

Note that you might also need to set UCX_MEMTYPE_CACHE=n
for CUDA awareness via UCX.

Please consult UCX's documentation for detail.

one

To activate this environment, use

$ conda activate unicycler

To deactivate an active environment, use

Y T & o

$ conda deactivate

Starting Unicycler (2025-08-29 02:32:26)

Welcome to Unicycler, an assembly pipeline for bacterial
genomes. Since you

provided only short reads, Unicycler will essentially
function as a SPAdes-—

optimiser. It will try many k-mer sizes, choose the best
based on contig length

and graph connectivity, and scaffold the graph using
SPAdes repeat resolution.

For more information, please see https://github.com/rrwick
/Unicycler

Command: ./miniconda3/envs/unicycler/bin/unicycler -1 ./
output/fastp/SRR11874161_fastp_trimmed_R1.fastg -2 ./
output/fastp/SRR11874161_fastp_trimmed_R2.fastg -o ./
output/unicycler -t 8 —--mode normal

Unicycler version: v0.5.1
Using 8 threads

The output directory already exists:
./output/unicycler

Dependencies:
Program Version Status
spades.py 4.2.0 good

34

Under review as a conference paper at ICLR 2026

racon not used
makeblastdb 2.17.0+ good
tblastn 2.17.0+ good

Choosing k-mer range for assembly (2025-08-29 02:32:28)

Unicycler chooses a k-mer range for SPAdes based on the
length of the input

reads. It uses a wide range of many k-mer sizes to
maximise the chance of

finding an ideal assembly.

SPAdes maximum k-mer: 127
Median read length: 150
K-mer range: 27, 53, 71, 87, 99, 111, 119, 127

SPAdes assemblies (2025-08-29 02:32:29)

Unicycler now uses SPAdes to assemble the short reads. It
scores the

assembly graph for each k-mer using the number of contigs
(fewer is better) and

the number of dead ends (fewer is better). The score
function is 1/ (cx* (d+2)),

where ¢ is the contig count and d is the dead end count.

spades.py —-o ./output/unicycler/spades_assembly -k 27 —-—
threads 8 --gfall —--isolate -1 ./output/fastp/
SRR11874161_fastp_trimmed_R1.fastqg -2 ./output/fastp/
SRR11874161_fastp_trimmed R2.fastg —-m 1024

spades.py —-o ./output/unicycler/spades_assembly -k 27,53
——threads 8 —--gfall —--restart—-from k27 -m 1024

spades.py —-o ./output/unicycler/spades_assembly -k
27,53,71 —-threads 8 --gfall --restart-from k53 -m 1024

spades.py —-o ./output/unicycler/spades_assembly -k
27,53,71,87 ——threads 8 —--gfall —--restart-from k71 -m
1024

spades.py —-o ./output/unicycler/spades_assembly -k
27,53,71,87,99 —-—-threads 8 --gfall --restart-from k87 -
m 1024

spades.py —-o ./output/unicycler/spades_assembly -k
27,53,71,87,99,111 —--threads 8 --gfall --restart-from
k99 -m 1024

spades.py —-o ./output/unicycler/spades_assembly -k
27,53,71,87,99,111,119 —--threads 8 --gfall —--restart-
from k111 -m 1024

spades.py —-o ./output/unicycler/spades_assembly -k
27,53,71,87,99,111,119,127 —--threads 8 --gfall —-
restart—-from k119 -m 1024

K-mer Contigs Dead ends Score
27 too complex

35

Under review as a conference paper at ICLR 2026

53 894 10 9.32e-05
71 682 12 1.05e-04
87 522 10 1.60e-04
99 456 12 1.57e-04
111 400 13 1.67e-04
119 373 14 1.68e-04
127 351 14 1.78e-04 <-best

Read depth filter: removed 3 contigs totalling 908 bp
Deleting ./output/unicycler/spades_assembly/

Determining graph multiplicity (2025-08-29 02:42:13)

Multiplicity is the number of times a sequence occurs in
the underlying

sequence. Single-copy contigs (those with a multiplicity
of one, occurring only

once in the underlying sequence) are particularly useful.

Saving ./output/unicycler/002_depth_filter.gfa

Cleaning graph (2025-08-29 02:42:13)

Unicycler now performs various cleaning procedures on the
graph to remove

overlaps and simplify the graph structure. The end result
is a graph ready for

bridging.

Graph overlaps removed

Removed zero-length segments:

225, 227, 229, 233, 234, 235, 244, 245, 249, 253, 265,
267, 272, 273, 274,

284, 290, 292, 297, 305, 315, 325, 345

Removed zero-length segments:
223, 346

Removed zero-length segments:
343

Merged small segments:

324, 327, 329, 330, 332, 334, 335, 337, 338, 340, 341,
342, 344, 347, 348,

350

Saving ./output/unicycler/003_overlaps_removed.gfa

Unicycler now selects a set of anchor contigs from the
single-copy contigs.

These are the contigs which will be connected via bridges
to form the final

assembly.

73 anchor segments (4,877,761 bp) out of 309 total
segments (4,928,537 bp)

36

Under review as a conference paper at ICLR 2026

Creating SPAdes contig bridges (2025-08-29 02:42:14)

SPAdes uses paired-end information to perform repeat
resolution (RR) and

produce contigs from the assembly graph. SPAdes saves the
graph paths

corresponding to these contigs in the contigs.paths file.
When one of these

paths contains two or more anchor contigs, Unicycler can
create a bridge from

the path.
Bridge
Start
Path
End quality
-60
-199
62 63.1
-54
131
57 62.2
-47 -196 -> -265 -> 128 -> -113 -> 165 —-> -228 -> 173 ->
174 -> -168 -> 76 -> -188 -> -281 -> -153 -> 96 —>
-204 65 10.3
-46 183 —> 297 -> =120 -> 222 -> -203 —->
-162 -> 181 —> 298 —-> 130 -> 226 —> -171
73 16.2
-14 -205 -> =250 ->
180 -> -284 -> -182
71 34.5
=7 225 —>
-195 -> 209
68
37.3
3 158 —>
-81 —> -161
22
18.8
12 -109 -> 286 —>
-135 -> 300 -> 116
-45 24.3
26 161 —>
80 -> -158
-46
18.8
33 122 —>
-98 -> -154
-69
16.3
35
193
-54 62.4
38 -202 —>

110 -> =202

37

Under review as a conference paper at ICLR 2026

=52
26.1
40 -116 —> 302 —>
135 —> 280 —> 109
ol 24.2
43 273 —=> 122 -> 231 -> -121
-> -251 -> 180 —> 290 —> -182
66 19.3
44
-171
-64 63.2
47 -166 —>
103 -> -157
50
26.6
48 200 => =104 —-> -137 -> 219 —> 201 —>
-178 —> -198 —-> 117 —> 138 —-> 256 —-> 186
-56 12.8
50 273 => 122 -> 231 —> 160 -> =205
-> -251 -> 180 —> -284 —-> 260 —-> -154
55 21.7
53
140
70 62.1
55 =130 => 304 => =18l => =163 =>
203 —> 221 —-> 120 -> 301 —-> -183
10 20.3
57
199
56 62.0
60 -186 —> -255 -> -138 -—> 118 —> 198 —>
177 —> -201 -> -220 -> 137 —> -105 -> -200
42 14.7
62
194
-65 61.5
66 115 —> -291 -> -172 -> -187 -> -229 —>
285 —> 185 —-> -233 -> 167 -> 303 —-> 134
64 16.3
70 206 —> 176
-> -119 -> -215
31
31.0

Creating loop unrolling bridges (2025-08-29 02:42:14)

When a SPAdes contig path connects an anchor contig with
the middle contig

of a simple loop, Unicycler concludes that the sequences
are contiguous (i.e.

the loop is not a separate piece of DNA). It then uses the

read depth of the

middle and repeat contigs to guess the number of times to
traverse the loop and

makes a bridge.

38

Under review as a conference paper at ICLR 2026

Loop count Loop count Loop Bridge
Start Repeat Middle End by repeat
count quality
38 =202 110 =52 0.51
1 39.4

Applying bridges

(2025-08-29 02:42:14)

by middle

0.88

Unicycler now applies to the graph in decreasing order of

quality.

This

ensures that when multiple,
the most supported
option is used.

contradictory bridges exist,

Bridge type Start -> end Path
Quality
SPAdes 44 -> -64 =171
63.246
SPAdes -60 —> 62 -199
63.076
SPAdes 35 —> -54 193
62.400
SPAdes -54 -> 57 131
62.184
SPAdes 53 —> 70 140
62.119
SPAdes 57 —> 56 199
61.983
SPAdes 62 —> —-65 194
61.468
SPAdes -7 —> 68 225, -195, 209
37.263
SPAdes -14 —> 71 -205, -250, 180, -284, -182
34.518
SPAdes 70 —> 31 206, 176, -119, -215
30.961
SPAdes 47 -> 50 -166, 103, -157
26.582
SPAdes 38 —> =52 -202, 110, -202
26.068
SPAdes 12 —> -45 -109, 286, -135, 300, 116
24.336
SPAdes 40 -> 61 -116, 302, 135, 280, 109
24.162
SPAdes 50 -> 55 273, 122, 231, 160, -205,
-251, 180, 21.712
-284, 260, -154
SPAdes 55 -> 10 -130, 304, -181, -163, 203,
221, 120, 20.315
301, -183
SPAdes 43 -> 66 2713, 122, 231, =121, =251,
180, 290, 19.307
-182
SPAdes 3 —> 22 158, -81, -161
18.808
SPAdes 26 —> —-46 161, 80, -158
18.802

39

Under review as a conference paper at ICLR 2026

SPAdes 33 —> -69 122, -98, -154
16.337

SPAdes 66 —-> 64 115, =291, =172, =187, =229,
285, 185, 16.315

-233, 167, 303, 134

SPAdes -46 —> 73 183, 297, =120, 222, =203,
-162, 181, 16.239

298, 130, 226, -171

SPAdes 60 -> 42 =186, =255, =138, 118, 19§,
177, -201, 14.735

-220, 137, -105, -200

SPAdes 48 -> -56 200, -104, -137, 219, 201,
-178, -198, 12.791

117, 138, 256, 186

SPAdes -47 -> 65 -196, -265, 128, -113, 165,
-228, 173, 10.287

174, -168, 76, -188, -281, -153, 96,

-204

Saving ./output/unicycler/004_bridges_applied.gfa

Bridged assembly graph (2025-08-29 02:42:14)

The assembly is now mostly finished and no more structural
changes will be

made. Ideally the assembly graph should now have one
contig per replicon and no

erroneous contigs (i.e. a complete assembly). If there are
more contigs, then

the assembly is not complete.

Saving ./output/unicycler/005_final_clean.gfa

Component Segments Links Length N50
Longest segment Status

total 178 240 4,938,037 156,616
617,816

1 155 209 4,670,836 157,869
617,816 incomplete

2 22 31 214,554 60,464
91,038 incomplete

3 1 0 52,647 52,647

52,647 incomplete

Assembly complete (2025-08-29 02:42:14)

Saving ./output/unicycler/assembly.gfa

Saving ./output/unicycler/assembly.fasta

run success

kAhkkhkkhhkhkkhkkhkhkkhkkhkrkhkhkrhkkhkhhkhkxkk*x*x

Step 3:

toolname: QUAST

function: Reference-free (or reference-guided) assembly
quality assessment to generate comprehensive assembly
statistics and an interactive HTML report.

description: QUAST (Quality Assessment Tool for Genome
Assemblies) evaluates draft genome assemblies by
computing contiguity, size, and composition metrics and
, when a reference is provided, alignment-based

40

Under review as a conference paper at ICLR 2026

misassembly statistics. Core methods include: (1)
reference-free statistics (N50/L50, NG50 if genome size
is known, total length, largest contig, number of
contigs above thresholds, GC%, ambiguous bases,
duplication, and k-mer-based composition summaries),
and (2) reference—guided evaluation via fast whole-—
genome alignments (MUMmer/NUCmer) to report
misassemblies, relocations/inversions, indels, and
genome fraction. QUAST can optionally map reads back to
the assembly using standard short-read aligners (e.g.,
Bowtie2/BWA, invoked internally) to compute coverage
and support-based metrics. Strengths: widely used for
bacterial assemblies, produces both machine-readable
TSVs and an interactive HTML report with plots;
supports multiple assemblies for side-by-side
comparison. Limitations: without a suitable reference,
misassembly detection is limited to read/coverage-based
cues and general contiguity metrics; interpretation of
metrics requires context (e.g., expected genome size).
For this workflow, QUAST will take the Unicycler
contig FASTA and produce the required TSV statistics
and an HTML evaluation report, complementing the
existing FASTA/GFA outputs.
inputformat: Required: Assembled genome in FASTA (e.g., ./
output/unicycler/SRR11874161_unicycler_assembly.fasta).
Optional: paired-end FASTQ reads for coverage-based
metrics (e.g., ./output/fastp/
SRR11874161_fastp_trimmed_Rl.fastg and ..._R2.fastq).
Optional: reference genome FASTA for alignment-based
misassembly analysis.
outputformat: HTML: interactive assembly quality report (
plots and summaries); TSV: assembly statistics (e.g.,
report.tsv with N50, L50, total length, GC%, number of
contigs, largest contig), plus additional tab-delimited
detail files (e.g., misassemblies.tsv when reference
provided) . These fulfill the required QC/assembly
evaluation reports (HTML) and assembly metrics (TSV).

conference: ['MetaQUAST', 'quast', 'assembly-stats', '
merqury', 'compleasm', 'genomescope', 'Jellyfish', '
cami_amber', 'art', 'velvet']

toolname: quast

description: QUAST: assembly quality assessment. Computes
contiguity and composition metrics (e.g., total length,
N50/L50, largest contig, GC%, number of contigs >
thresholds) and generates an interactive HTML report
and tabular summaries. Example: given the Unicycler
contig FASTA from SRR11874161, QUAST produces reference
—free assembly statistics and plots for review.

used_reference_tool: True

toolid: 1

selected_input_files: [{'file_name': './output/unicycler/
SRR11874161_unicycler_assembly.fasta', 'file_format': '
FASTA'}]

expected_outputs_info: A results directory containing:
HTML report (interactive summary), TSV/TSV tables (e.g
., report.tsv with N50, L50, total length, GC%, contig
counts), plain-text summaries (report.txt), and figure

41

Under review as a conference paper at ICLR 2026

files (PNG/PDF) for cumulative length and NG/N50 plots.
No reference provided, so outputs are reference-free
metrics only.

installation_command: conda create -n quast —-c conda-forge
—-c bioconda quast python=3.11 -y && conda activate
quast
setup_command: mkdir -p ./output/quast/
execution_command: bash -1lc '
set —-euo pipefail
ASM= . /output/unicycler/SRR11874161_unicycler_assembly.
fasta
OUT= . /output/quast
SAMPLE = SRR11874161
[-s S$ASM]
for £ in \
SOUT/S{SAMPLE}_quast_report.html \
SOUT/S${SAMPLE}_quast_metrics.tsv \
SOUT/S{SAMPLE}_quast_summary.txt \
SOUT/S{SAMPLE}_quast_report.pdf \
SOUT/S${SAMPLE}_qguast_metrics_transposed.tsv \
SOUT/S{SAMPLE}_quast_Nx_plot.pdf \
SOUT/S{SAMPLE}_quast_NGx_plot.pdf \
SOUT/S${SAMPLE}_qguast_cumulative_plot.pdf \
SOUT/S${SAMPLE}_quast_Nx_plot.png \
SOUT/S{SAMPLE}_quast_NGx_plot.png \
SOUT/S${SAMPLE}_quast_cumulative_plot.png ; do

if [—e S$f]1; then echo Error: output already exists:
St >&2; exit 1; fi

done

quast.py \

—-—threads 8 \
——-min-contig 200 \
——output-dir $OUT \

SASM

[-s $OUT/report.html] && mv $OUT/report.html SOUT/S$
{SAMPLE }_quast_report.html

[-s $OUT/report.tsv] && cp S$SOUT/report.tsv SOUT/$
{SAMPLE}_quast_metrics.tsv

[—s S$OUT/report.txt] && cp S$OUT/report.txt SOUT/$
{SAMPLE}_quast_summary.txt

if [-s $OUT/report.pdf 1; then cp $OUT/report.pdf
SOUT/${SAMPLE}_quast_report.pdf ; fi

if [-s $OUT/transposed_report.tsv]; then cp $OUT/

transposed_report.tsv SOUT/${SAMPLE}
_quast_metrics_transposed.tsv ; fi
for ext in pdf png; do

[-f S$OUT/plots_S{ext}/Nx_plot.S${ext}] && cp S$SOUT/
plots_S${ext}/Nx_plot.S{ext } SOUT/S$ {SAMPLE}
_quast_Nx_plot.${ext} || true

[-f $OUT/plots_S{ext}/NGx_plot.S{ext}] && cp $OUT/
plots_S${ext}/NGx_plot.S${ext } SOUT/S$ {SAMPLE}

_quast_NGx_plot.${ext} || true

[-f $OUT/plots_S${ext}/cumulative_plot.S${ext}] && cp
SOUT/plots_S${ext}/cumulative_plot.S${ext } SOUT/ ${
SAMPLE}_quast_cumulative_plot.${ext} || true

done

2025-08-29 02:57:06

42

Under review as a conference paper at ICLR 2026

Creating large visual summaries...

This may take a while: press Ctrl-C to skip this step..
1 of 2: Creating PDF with all tables and plots...

2 of 2: Creating Icarus viewers...

Done

2025-08-29 02:57:06

RESULTS:

Text versions of total report are saved to ./output/quast/
report.txt, report.tsv, and report.tex

Text versions of transposed total report are saved to ./
output/quast/transposed_report.txt, transposed_report.
tsv, and transposed_report.tex

HTML version (interactive tables and plots) is saved to ./
output/quast/report.html

PDF version (tables and plots) is saved to ./output/quast/
report.pdf

Icarus (contig browser) is saved to ./output/quast/icarus.
html

Log is saved to ./output/quast/quast.log

Finished: 2025-08-29 02:57:06
Elapsed time: 0:00:01.509758
NOTICEs: 1; WARNINGs: 0; non-fatal ERRORs: 0

Thank you for using QUAST!

run success
LR R R I b b I S b I SE b e I b S b b b S b S

Step 4:

toolname: Bowtie2

function: Map the trimmed Illumina paired-end reads back
to the Unicycler assembly to generate high-quality read
—to-contig alignments required for assembly polishing (
e.g., with Pilon) and for downstream coverage/mapping
QC.

description: Bowtie2 is a fast, memory-efficient gapped
short-read aligner based on the Transform and a seed-
and-extend strategy. It is widely used to align
Illumina paired-end reads to a reference, supporting
local or end-to-end alignment modes with quality-aware
scoring and handling of small indels. In bacterial de
novo assembly workflows, Bowtie2 is the standard choice
to map cleaned reads back to assembled contigs,
producing the alignments that polishing tools (e.g.,
Pilon, POLCA) use to detect and correct residual SNP/
indel errors and small misassemblies. It also enables
coverage assessment and mapping statistics for
contamination checks and assembly evaluation. Strengths

very fast and accurate for short reads, robust paired

—-end handling, and good default presets (e.g., —--very-—
sensitive-local) for polishing. Limitations: not
designed for long reads; highly repetitive regions can
yield multi-mapping reads; large structural variations
are not its focus. Typical usage: build an index from
the Unicycler FASTA (bowtie2-build), align paired-end
trimmed reads (bowtie2 —--very-sensitive-local -x index
-1 Rl.fastq -2 R2.fastg -S out.sam), then convert/sort/

43

Under review as a conference paper at ICLR 2026

index with SAMtools to produce a coordinate-sorted BAM
for input to a polisher like Pilon. This step directly
addresses the current gap in the workflow (no read-to-
assembly alignments yet), enabling the polishing step
that will produce a higher-quality final FASTA.

inputformat: - Reference: FASTA assembly from Unicycler (e
.g., ./output/unicycler/SRR11874161_unicycler_assembly.
fasta)

- Reads: Paired-end trimmed FASTQ from fastp (e.g., ./

output/fastp/SRR11874161_fastp_trimmed_R1l.fastgq and ./
output/fastp/SRR11874161_fastp_trimmed_R2.fastq)
— Optional: unpaired reads (FASTQ) if present
outputformat: - Primary: SAM file containing read-to-—
contig alignments (convertible to BAM/CRAM via SAMtools
)
— Downstream (recommended): coordinate-sorted, indexed BAM
(BAM + BAI) for polishing with Pilon
- Mapping statistics (stderr/log) that can inform coverage
-based QC and contamination checks
Mapping to user's final outputs: while Bowtie2 produces
intermediate alignment files (SAM/BAM) rather than the
final FASTA/GFA/HTML/TSV deliverables, these alignments
are necessary to run a polisher (e.g., Pilon) that
will improve the final FASTA assembly quality and
support comprehensive QC.

conference: ['bowtie2',6 'racon', 'bowtie_wrappers', 'pilon
', 'necat', 'ngmlr', 'minimap2', 'rasusa', 'sickle',6 '
colibread']

toolname: Bowtie2

description: Function: Map trimmed Illumina paired-end
reads back to the Unicycler assembly to generate high-
quality read-to-contig alignments for polishing and
coverage QC. What it does: Builds an index from the
assembly FASTA and aligns paired reads, producing a SAM
alignment file suitable for conversion to sorted BAM
for tools like Pilon. Example: bowtie2-build
SRR11874161_unicycler_assembly.fasta idx; bowtie2 --
very-sensitive-local -x idx -1
SRR11874161_fastp_trimmed R1l.fastg -2
SRR11874161_fastp_trimmed R2.fastg -S
SRR11874161_vs_assembly.sam

used_reference_tool: True

toolid: O

selected_input_files: [{'file_name': './output/unicycler/
SRR11874161_unicycler_assembly.fasta', 'file_format': '
FASTA'}, {'file_name': './output/fastp/
SRR11874161_fastp_trimmed_R1l.fastqg', 'file_format': '
FASTQ'}, {'file_name': './output/fastp/
SRR11874161_fastp_trimmed_R2.fastqg', 'file_format': '
FASTQ'}]

expected_outputs_info: Primary: SAM file of read-to-
assembly alignments. Typically followed by samtools to
produce a coordinate-sorted BAM (BAM + BAI) for
polishing (e.g., Pilon) and coverage/mapping QC.

Returning block of 716588 for bucket 7
Exited Ebwt loop

44

Under review as a conference paper at ICLR 2026

fchr[A] 0

fchr[C]: 1218875
fchr[G]: 2468300
fchr[T]: 3712787

fchr[$]: 4936436

Exiting Ebwt::buildToDisk ()

Returning from initFromVector

Wrote 5845162 bytes to primary EBWT file: ./output/Bowtie2

/SRR11874161_Bowtie2_index.rev.1l.bt2.tmp
Wrote 1234116 bytes to secondary EBWT file: ./output/
Bowtie2/SRR11874161_Bowtie2_index.rev.2.bt2.tmp

Re-opening _inl and _in2 as input streams

Returning from Ebwt constructor

Headers:

len: 4936436

bwtLen: 4936437

sz: 1234109

bwtSz: 1234110

lineRate: 6

offRate: 4

offMask: Oxfffffff0

ftabChars: 10

eftabLen: 20

eftabSz: 80

ftabLen: 1048577

ftabSz: 4194308

offsLen: 308528

offsSz: 1234112

lineSz: 64

sideSz: 64

sideBwtSz: 48

sideBwtLen: 192

numSides: 25711

numLines: 25711

ebwtTotLen: 1645504

ebwtTotSz: 1645504

color: O

reverse: 1

Total time for backward call to driver () for mirror index:
00:00:02

run success
KK Kk ko ok ok ok ok ok ok ok ok Kk Kk ok ok ok ok ke kK

45

	Introduction
	Related Work
	Methodology
	Overall Architecture
	Auxiliary components
	Embedding
	file system interface

	Experiments
	Datasets
	Evaluation Framework
	Evaluation Metrics
	Small-Scale Dataset Validation
	Large-scale Dataset Validation
	Cost-Effectiveness Analysis
	Ablation Study

	Conclusion
	Prompt Templates
	Analyzing Agent
	Planning Agent
	Selecting Agent
	Generating & Executing Agent
	Debugging Agent
	Judging Agent
	Prompt Templates for Auxiliary components
	Prompt Templates for dataset
	Prompt Templates for LLM Evaluation

	Main Algorithm
	Dataset
	Small Dataset
	workflow data processing
	Large Dataset

	Experimental setup
	multi-positive contrastive loss
	Detail SAR Formula
	Score Criteria
	Baselines
	Detailed results on the Small Dataset
	Time consumption comparison
	Formula for Effective Cost Per Success (ECPS)
	Detailed Findings for Ablation Studies

	Case Study
	Environment and Dependency Conflicts
	File Path and I/O Errors
	Tool Parameter Misconfiguration
	Logical Flaws in Workflow Design

	Running instance

