
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MARWA:MULTI-AGENT RETRIEVAL-AUGMENTED
FRAMEWORK FOR RELIABLE BIOINFORMATICS WORK-
FLOW AUTOMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The rapid growth of multi-omics data has driven the expansion of bioinformat-
ics analysis tools. Common bioinformatics tasks often rely on workflows, which
link multiple tools into structured pipelines for reproducibility and scalability.
Yet, building workflows manually is slow and error-prone, motivating efforts to-
ward automation. However, bioinformatics workflow automation remains difficult
due to the need to clarify vague analytical objectives, coordinate heterogeneous
tools, and generate intricate tool commands. Despite the potential of large lan-
guage models (LLMs) to aid bioinformatics workflow recommendation through
advanced semantic understanding and logical reasoning, current agent frameworks
often rely on one-shot generation, weak tool retrieval solution, and limited eval-
uation scheme, resulting in fragile workflow automation. We propose MARWA,
a Multi-Agent Retrieval-augmented framework for reliable bioinformatics Work-
flow Automation. The framework emphasizes a step-by-step generation process
with error handling at each stage to ensure robustness. We introduce a retrieval-
augmented framework to strengthen tool command accuracy, which incorporates
multi-perspective LLM-augmented descriptions and employs contrastive learning.
We further design a two-stage evaluation framework, combining expert-verified
execution on 40 curated tasks with large-scale benchmarking on 2,270 tasks us-
ing LLM-based evaluation. Our experiments demonstrate that MARWA consis-
tently outperforms baselines in pass rate, workflow quality and scalability. Our
work provides a foundation for trustworthy bioinformatics workflow automation.
Project Page: https://anonymous.4open.science/r/MARWA-7D30.

1 INTRODUCTION

Bioinformatics is an interdisciplinary field that combines computational science, statistics, and bi-
ology to analyze large and complex biological datasets through computational and statistical meth-
ods (Luscombe et al., 2001; Gauthier et al., 2019; Baxevanis et al., 2020). With the advances in
high-throughput biological technologies (Rhoads & Au, 2015), the field is now confronted with a
rapid expansion of biological data. This explosive growth has spurred the development of numerous
bioinformatics tools, covering diverse fields such as genomics (Lesk, 2017; Bustamante et al., 2011;
Lips et al., 2022), structural biology(Orlando et al., 2022; Jones & Thornton, 2022) and evolutionary
biology (Sober, 1994; Losos et al., 2013). These tools have further enabled significant advances in
personalized medicine (Heinken et al., 2023) and drug discovery (Hemmerling & Piel, 2022).

Due to the diverse requirements for analyzing biological data, such as genome assembly (Sohn
& Nam, 2018) and differential expression analysis (Anders & Huber, 2010), bioinformatics tasks
cannot be accomplished using a single bioinformatics tool alone. Instead, they depend on multi-step
workflows that organize bioinformatics tools in a sequential, flow-based manner(Fig 1).

Traditional workflow construction often relies heavily on manual scripting and command-line op-
erations. With the emergence of new technologies and algorithms, the workflows are getting in-
creasingly complicated (Subramanian et al., 2020; Schlotter et al., 2018).This approach is not only
time-consuming and prone to errors but also hinders repeatability. These issues highlight the need
for more automated, intelligent, and trustworthy methods to create bioinformatics workflows.

1

https://anonymous.4open.science/r/MARWA-7D30

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Question: I have some raw WGS sequencing data
on hand and want to do a complete genome assembly
File input: ./input/SRR11874161_1.fastq,
./input/SRR11874161_2.fastq
File description: 'Illumina WGS of E. coli'

Tool name:fastp
Environment Installation Command: conda create -n fastp -c conda-forge -c
bioconda fastp -y && conda activate fastp
File Creation Command: mkdir -p ./output/fastp/
Execution_command: fastp -i ./input/SRR11874161_1.fastq -
I ./input/SRR11874161_2.fastq -o ...

Sequential command execution & Intermediate file generation

Step 1:
Pre-assembly read
processing and correction

...
Tool name:Unicycler (short-read mode)
Environment Installation Command: conda create -n unicycler -c conda-forge -c
bioconda unicycler python=3.11 -y && conda activate unicycler
File Creation CAommand: mkdir -p ./output/unicycler/
Execution_command: ...unicycler -1 "$R1" -2 "$R2" -o "$OUT" -t 8 --mode
normal ...

Sequential command execution & Result file generation

Step N:
De novo assembly from Illumina
reads producing FASTA and GFA

The Workflow Done！

Step-by-step Com
pletion of Bio-workflow

Figure 1: A bioinformatics workflow example for de novo genome assembly. Raw Illumina paired-
end reads are processed and quality-controlled (e.g., with fastp) before being assembled into contigs
(e.g., with Unicycler), producing final outputs such as FASTA and GFA files. This illustrates the
pipeline nature of bioanalysis, where specialized tools are chained together.

Recently, large language models (LLMs) (Zhao et al., 2023; Park et al., 2023; Xi et al., 2025), with
their advanced semantic understanding and logical reasoning capabilities, are opening new possi-
bilities for automating bioinformatics workflows. Systems such as AutoBA (Zhou et al., 2023) and
BioMaster (Su et al., 2025) show the potential of AI-driven agents, demonstrating their capabilities
in automating bioinformatics workflows. However, these approaches remain constrained in three
key aspects:

• Adopting one-shot generation strategies makes it struggle to handle vague analytical objec-
tives, coordinate heterogeneous tools, and generate intricate command-line specifications.

• The lack of robust semantic representations for bioinformatics tools makes it difficult to
retrieve relevant tools during the retrieval-augmented generation (RAG) (Lewis et al., 2020)
process.

• The absence of rigorous evaluation framework results in insufficient validation of the gen-
erated workflows’ reliability and reproducibility.

To address these challenges, we propose a Multi-Agent Retrieval-augmented framework for reliable
bioinformatics Workflows Automation (MARWA). Our work makes three key contributions:

• We propose MARWA, a step-by-step multi-agent framework that leverages historical con-
text at each stage of workflow construction, thereby enhancing the flexibility and robustness
of bioinformatics workflow automation.

• We design a RAG framework that integrates multi-perspective LLM-enhanced tool de-
scriptions with contrastive representation learning, producing discriminative embeddings
that significantly improve tool retrieval accuracy and command generation reliability.

• We construct two representative datasets and evaluation standard for bioinformatics work-
flow automation, comprising a small-scale executable dataset, a large-scale dataset with
2,270 high-quality workflow queries and establish a two-stage evaluation scheme that com-
bines human execution with LLM-based evaluation to ensure rigorous and reproducible
benchmarking.

2 RELATED WORK

The automation of bioinformatics workflows has undergone a steady evolution, moving from manual
construction to intelligent recommendation and, more recently, to LLM-driven automation.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Workflow Management Systems Early advances were supported by workflow management plat-
forms such as Galaxy (Jalili et al., 2020)1, Snakemake 2 and Nextflow (Langer et al., 2025)3, which
provide standardized execution environments and improve reproducibility. Despite these contribu-
tions, workflow design still mainly requires manual tool selection and scripting, which renders the
process inefficient and prone to mistakes.

Tool Recommendation To reduce the burden of tool selection, recommender systems were pro-
posed. For instance, Kumar et al. (2021) employed gated recurrent units (GRU) (Dey & Salem,
2017) neural network in Galaxy to capture higher-order dependencies among tools. Green et al.
(2024) further extended this idea by representing workflows as graphs and applying graph neu-
ral networks (Wu et al., 2020) with semantic embeddings of tool descriptions. These approaches
improve context-aware tool discovery but remain limited to tool-level assistance rather than full
workflow automation.

LLM-Based Workflow Automation The recent emergence of LLMs has enabled more compre-
hensive automation (Xi et al., 2025; Zhang et al., 2024; Xiao et al., 2024). AutoBA demonstrated an
LLM-based agent can design, implement and execute workflows for diverse omics analyses (Zhou
et al., 2023). However, its single-agent design often led to error accumulation in long and complex
pipelines. To address this, BioMaster introduced a multi-agent framework with specialized agents
for planning, execution, and debugging, combined with RAG of tool knowledge (Su et al., 2025).
This multi-agent design improved adaptability and robustness; however, its overall accuracy and
reliability were constrained by the limited precision of RAG’s embedding matching.

3 METHODOLOGY

3.1 OVERALL ARCHITECTURE

The overall framework of MARWA is illustrated in Fig 2, and the main algorithm is presented in
the Appendix B. It is composed of six cooperative LLM-based expert agents—Analyzing, Plan-
ning, Selecting, Generating & Executing, Debugging, and Judging—organized into a closed-loop
pipeline. The system is further supported by two auxiliary components: (1) a retrieval module that
provides related information about bioinformatics tools, and (2) file system interface access that
grounds decisions in the actual execution environment.

The user’s input is defined as (1) a list of input files (including their file name and file path), (2) file
descriptions (such as format or sequencing type), and (3) the analytical goal (for example, differen-
tial expression analysis).

Each agent processes the input and converts it into a structured output, facilitating subsequent pars-
ing. The general agent workflow, as shown in the Fig 3, is outlined below along with a summary of
their roles.

Analyzing The Analyzing agent refines the user query into a structured task specification. It pro-
duces descriptions of the input and output files (including their formats and data types), along with
a clarified analytical objective. Appendix A.1 for the prompt of the agent.

Planning The Planning agent predicts the next tool to be used in the workflow (see Appendix A.2)
based on the refined task and the tools already applied. It provides the tool name, a brief description,
and its intended function. It also queries the retrieval module to obtain a set of candidate tools with
corresponding descriptions and example commands.

Selecting The Selecting agent decides whether to adopt one of the retrieved candidate tools or
retain the one proposed by Planning. If a retrieved tool is chosen, its description and command
template are adopted; otherwise, the Planning output is used. Appendix A.3 for the prompt of the
agent.

1https://usegalaxy.org/
2https://snakemake.github.io/
3https://www.nextflow.io/

3

https://usegalaxy.org/
https://snakemake.github.io/
https://www.nextflow.io/

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: The overall framework of MARWA. The left part shows the generation methods of the
data. The middle part illustrates tool retrieval and agent architecture for workflow automation con-
struction. The right part presents workflow evaluation framework.

Generating & Executing The Generating & Executing agent constructs executable commands
based on the chosen tool and the information available in the system. These commands include
environment setup, directory creation, and the actual execution (detail in Appendix A.4). They are
dynamically generated and adjusted based on interactions with the live runtime environment, such
as detected paths. The commands are then executed, and the success or failure of the execution
determines the next step.

Debugging If execution fails, the Debugging agent uses the error message to iteratively refine the
command set. This process is repeated until the command succeeds or until five attempts have been
made. Appendix A.5 for the prompt of the agent.

Judging The Judging agent evaluates whether the overall analytical task has been completed (de-
tail in Appendix A.6). The workflow is considered complete only if all required output files are
present and every analysis step is fully covered and validated by the tools used. If the task is incom-
plete, the system loops back to Planning to select the next tool; if complete, the execution terminates.
Tools not covered by the retrieval module but successfully executed are recorded, along with their
verified commands, to expand the system’s tool database.

3.2 AUXILIARY COMPONENTS

3.2.1 EMBEDDING

Since bioinformatics tool descriptions often come from heterogeneous platforms and vary widely
in description length and perspective (Ison et al., 2021), conventional embedding methods struggle
to achieve precise semantic alignment. To improve the accuracy and reliability of MARWA in the
tool retrieval phase, we design a multi-perspective LLM-augmented strategy and refined through
contrastive learning fine-tuning.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Planning

analysis goal

tool functiontool name

tool description

input files

output files used tools

output format

input format

tool name

tool function

tool description

Retrieve

As a bioinformatics expert, select the most suitable
 next tool based on the input information

2 Selecting
As a bioinformatics expert, select the most suitable
tool based on the information. You may choose from

the reference list or propose a different one.

analysis goal

reference tool idtool name

tool description

used tools

tool function reference tools

tool function

reference
tool command

Bioinformatics Tool Database

Available
Tool
Data

reference tools

tool name
tool description
tool command

File System

Debugging
As a bioinformatics code expert, modify the

previous command line (installation, setup,
execution) based on the error message.

Generating & Executing
As a bioinformatics workflow assistant, generate

the setup and execution details for the current tool
in the workflow.

tool function

tool nameanalysis goal

reference
tool command

available files

configuration
Command

file creation
command

execute
command

5Command Generation
Execute

Fail

3

error messageconfiguration
command

file creation
command

execute
command error message

new Configuration
Command

new File Creation
Command

new Execute
Command

Step-by-step Completion of MARWAAnalyzing

Act a bioinformatics
expert, read the user’s
analysis question and
produce a more detail
structured response

user question

analysis goal

data type
file format

output files

data type
file format

input files

input files

file description

available files

As a bioinformatics
workflow expert,

determine if the workflow
is fully completed.

Judging

Execute
Succeed

analysis goal

input files

output files

used tools

Workflow
Completion

confirmation

Global History
Information

analysis goal

input files

output files

used tools

available files

Workflow
Not Complete

Workflow
Complete

user question

input files

file description

User Question

Input Data

Global Information

Output Data

available files1
56 4

Figure 3: Workflow of MARWA’s specialized agents, illustrating the input data, intermediate pro-
cessing steps, and final output generation.

Data Sources We collected raw tool data from open repositories such as Galaxy and GitHub4.
These unformatted text data were parsed into structured fields including tool name, description,
command and parameters. By removing duplicate entries based on names and command hashes,
followed by manual verification we have built a curated database containing 3,148 unique tools.
This provides a soild foundation for the subsequent stages.

LLM-based Multi-perspective Enhancement To enrich the semantic information of the bioin-
formatics tools, we employ GPT-4 Turbo to generate a diverse range of descriptions for each
tool, covering perspectives such as its core capabilities and typical applications (Prompt in Ap-
pendix A.7). The resulting augmented descriptions increase semantic diversity and provide comple-
mentary views of the same tool, which are stored in structured form for downstream training.

Contrastive Learning We adopt BERT (Devlin et al., 2019; Liu et al., 2019) as the encoder,
representing each tool description with the [CLS] embedding. We select BERT not only because
it remains a widely recognized and reproducible baseline, but also because it provides stable and
efficient fine-tuning. This allows us to highlight that the improvements mainly come from our
augmentation and contrastive framework rather than from a stronger backbone. Furthermore, its
computational efficiency, compared to larger and more complex models, aligns with practical needs
for faster iteration and lower resource consumption. Training uses a multi-positive contrastive loss,
where augmented descriptions of the same tool serve as positive pairs. For the detailed formulation,
see the Appendix D.1.

Evaluation To evaluate the effectiveness of the proposed embedding approach, we use a dataset
derived from data enhanced by a LLM. The experimental results are shown in Table 1. Our embed-
ding method (LAFT) achieves consistent improvements over all baselines, where BioMaster em-
ploys Text-Embedding-3-Large. These results highlight the effectiveness of combining LLM-based
augmentation with contrastive learning in capturing the functional semantics of bioinformatics tools.
The contribution of this module will be further validated in subsequent ablation studies.

4https://github.com/

5

https://github.com/

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Retrieval Performance of baseline embeddings and LLM-augmented fine-tuned model.

Model Dim MRR Hit@1 Hit@3 Hit@10
BERT (Devlin et al., 2019) 768 0.1988 0.1307 0.2010 0.2261
all MiniLM L6 v2 (Wang et al., 2020) 384 0.4842 0.3920 0.5477 0.5879
Text-Embedding-3-Large 3072 0.5466 0.4623 0.5729 0.6432
PubMedBERT (Gu et al., 2021) 768 0.5798 0.5025 0.6181 0.6533
Qwen3-Embedding-4B 2560 0.6065 0.5226 0.6382 0.6884
bge-en-icl 4096 0.6114 0.5141 0.6338 0.7183
Qwen3-Embedding-8B 4096 0.6458 0.5593 0.6893 0.7458
LAFT 768 0.6686 0.5779 0.6985 0.7638

3.2.2 FILE SYSTEM INTERFACE

A key challenge in automated workflow generation is bridging the gap between abstract plans gener-
ated by LLMs and the real execution environment. To address this, MARWA integrates a file system
interface that enables agents to directly query and interact with the underlying directory structure.
Specifically, the module provides access to the names and formats of available files, which are then
used to guide the construction of subsequent commands.

This interaction yields two main benefits. First, by grounding command generation in the actual
file system, the framework reduces errors caused by incorrect file references or incompatible in-
put–output specifications. Second, it ensures that intermediate results are consistently tracked and
made available for downstream tools, thereby improving the continuity and robustness of multi-step
workflows.

4 EXPERIMENTS

4.1 DATASETS

To evaluate the effectiveness of our framework, we constructed datasets from multiple real-world
bioinformatics workflow repositories, including the Galaxy platform, the Common Workflow Lan-
guage (CWL)5 collection, and preprint articles from BioRxiv6. These sources were selected because
they represent diverse workflow practices and contain detailed applications, covering a wide range
of research domains such as metabolomics (Liu & Locasale, 2017), transcriptomics (Lowe et al.,
2017), metagenomics (Wooley et al., 2010), genomics (Lesk, 2017) and proteomics (Aslam et al.,
2016), thereby ensuring diversity and representativeness.

Table 2: Statistics for the datasets.

Small Large
metabolomics 4 80
transcriptomics 10 600
metagenomics 8 390
genomics 10 900
proteomics 8 300
total 40 2270

For further evaluation, we create two datasets of different
scales. Table 2 illustrate the statistics of them. The first is
a small-scale dataset containing 40 tasks carefully selected by
bioinformatics experts (detail in Appendix C.1). Each task
is designed for real execution in practical workflows, allow-
ing manual verification and in-depth inspection of model per-
formance. This dataset reflects real-world research demands
across major bioinformatics domains, and the task distribu-
tion aligned to current practices (Mitchener et al., 2025). We
created the second dataset by using GPT-4 Turbo to summa-
rize tasks from raw workflow metadata (data acquisition is
provided in Appendix C.2), adopting the roles of a lab re-
searcher, a clinician, and a data engineer. This process produced a large-scale dataset of 2,270 tasks,
which has been validated for quality by bioinformatics experts (Appendix A.8 shows the prompt;
dataset examples in Appendix C.3). The large-scale dataset maintains a similar domain distribution,
further ensuring the representativeness of the small set.

5https://view.commonwl.org/workflows/
6https://www.biorxiv.org/

6

https://view.commonwl.org/workflows/
https://www.biorxiv.org/

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.2 EVALUATION FRAMEWORK

To objectively assess the capabilities of different models, we adopted a two-stage evaluation frame-
work. In the first stage, we conducted experiments on the small dataset. Each task was executed
manually by domain experts and also simulated by LLMs. We then calculated consistency scores
between human execution and model outputs, demonstrating that LLMs can provide reliable eval-
uations of bioinformatics workflows. The expert-executed results on the small dataset serve as the
ground truth, primarily establishing the feasibility of the approach. In the second stage, we scaled up
to the large dataset and employed multiple LLMs as evaluators. The large-scale evaluation confirms
the trends and demonstrates the method’s scalability. These models were used to assign scores to
the generated bioinformatics tools and their corresponding command-line, and the final results were
reported in terms of both average scores and cross-model consistency. The adoption of LLM-based
evaluation is a reasonable yet approximate strategy suitable for large-scale benchmarking. While it
confirms the robustness of the method, it does not fully equate to real execution outcomes.

For a comprehensive evaluation, we included both proprietary and open-source models, specifically
selecting GPT-4o (GPT-4o) and Gemini-2.5-pro-exp (Gemini2.5) as leading closed-source models,
alongside Qwen 2.5 72B-Instruct (Qwen2.5-72B) as a representative open-source alternative. These
models were chosen based on prior studies which indicate their strong performance in relevant
evaluation tasks (Gu et al., 2024; Liu et al., 2025).

4.3 EVALUATION METRICS

We adopted a combination of human-centered and model-based metrics. For manual execution, we
used h Pass@n, which measures the success rate of completing a task within n manual execution
attempts.

For LLM-based evaluation, we developed a structured scoring template that includes six metrics: (1)
Workflow Completion (Comp): Measures whether the workflow achieves the analysis goal (0–3;
higher is better). (2) Workflow Redundancy (Redun): Measures whether unnecessary or redundant
tools are included(0–3; lower is better). (3) Installation Accuracy (Inst): Correctness of tool
installation commands (0–2; higher is better). (4) Path Accuracy (Path): Correctness of file paths
used in tool commands (0–2; higher is better). (5) Parameters Accuracy (Param): Correctness of
command-line parameters (0–2; higher is better). (6) Executable Flag: whether this command be
executed successfully (True or False). Score criteria can be found in the Appendix D.3.

The first two metrics operate at the workflow level (prompt in Appendix A.9), while the last four
focus on individual tools (prompt in Appendix A.9). These metrics align with common issues in
computational method evaluation, making the overall assessment both rigorous and transparent. If
a step fails, the system may invoke Debugging to adjust commands and re-evaluate. We define
m Pass@n as the probability of task success within n LLM-based execution attempts.

To quantify agreement between human and LLM evaluations, we used two measures: (1) Pass/-
Fail Agreement Rate (PFAR): The proportion of steps where human execution and LLMs agree
on pass/fail outcomes. (2) Score Agreement Rate (SAR): The proportion of instances where the
human and LLM scores match exactly for each metric. Formula in Appendix D.2.

We also computed Krippendorff’s alpha (k) (Krippendorff, 2018; 1970) to assess inter-model agree-
ment among LLM evaluators across all five score metrics, providing a measure of consistency at
both workflow and tool levels. In line with established conventions, values above 0.80 indicate re-
liable agreement, values between 0.67 and 0.80 are considered tentatively acceptable, and values
below 0.67 reflect insufficient consistency.

4.4 SMALL-SCALE DATASET VALIDATION

We compared MARWA against four baseline methods: LLM-only, AutoBA, ReAct and BioMaster.
All models utilized GPT-4 Turbo as the underlying agent to ensure a fair and consistent evaluation.
Experimental details can be found in the Appendix D.4.

We evaluated the small dataset using both manual and LLM-based execution with GPT-4o, Gem-
ini2.5, and Qwen2.5-72B. Table 3 reports the average results. More detailed results are provided in

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: The main results of MARWA and different kinds of baselines on the small dataset.

Method h Pass@1 h Pass@2 m Pass@1 m Pass@2 PFAR SAR

LLM-only 0.100 0.100 0.092 0.150 0.938 0.872
AutoBA 0.250 0.250 0.342 0.358 0.892 0.839
ReAct 0.275 0.275 0.358 0.363 0.895 0.872
BioMaster 0.300 0.350 0.367 0.375 0.908 0.874
MARWA 0.375 0.450 0.433 0.467 0.913 0.877

Appendix D.5. MARWA surpassed all baseline methods across every evaluation metric, achieving
superior performance in both human execution and LLM-based simulation. MARWA’s performance
advantage can be attributed to its improved capability in selecting appropriate tools, generating more
accurate file paths and specifying precise command-line parameters, as clearly demonstrated in the
Figure 4. More case studies are provided in Appendix E. A specific running instance of MARWA
is provided in the Appendix F. The moderate performance observed across all methods is primarily
due to the inherent complexity of real-world bioinformatics workflow automation, which involve
multi-step analytical processes, domain-specific tool integration and stringent parameter tuning re-
quirements.

(b) One-shot Execution (c) Step-by-step Execution（Ours）(a) Base Large Language Model

ExecutorUser Question Planner Output User Question Output
User Question LLM Output

Question: I have some raw WGS sequencing data on hand and want to do a complete genome assembly for evolutionary analysis
file: ./input/SRR11874161_1.fastq,./input/SRR11874161_2.fastq
file_description: raw sequencing reads in FASTQ format

BioToolAgent
N

Tool Choice: Spades,Quast
Command:
spades.py \
-1 ./input/SRR11874161_1.fastq \
-2 ./input/SRR11874161_2.fastq \
-o ./assembly_output/spades_result
......

Tool Choice: Spades,Quast
Command:
conda install -c bioconda spades -y
mkdir -p ./output \
spades.py \
-1 ./input/SRR11874161_1.fastq \
-2 ./input/SRR11874161_2.fastq \
-o ./assembly_output/spades_result
-w 16
......

Tool Choice: fastp,SPAdes，BWA，samtools，
Pilon，Prokka

Command:
conda create -n spades_env -y python=3.10 \
conda activate spades_en \
conda install -y spades \
mkdir -p ./spades \
spades.py \
 -1 ./input/SRR11874161_1.fastq \
-2 ./input/SRR11874161_2.fastq \
-o ./spades \
 -t 16 -m 64 --careful \
......

Executable

Command
accuracy

Completion level

Parameter
accuracy

Executable

Command
accuracy

Completion level

Parameter
accuracy Executable

Command
accuracy

Completion level

Parameter
accuracy

Figure 4: Comparison of bioinformatics workflow automation methods.

4.5 LARGE-SCALE DATASET VALIDATION

On the large dataset, MARWA demonstrates consistent superiority across nearly all evaluation met-
rics. Result in Table 4. A comprehensive analysis of the time consumption is provided in Ap-
pendix D.6. We have the following findings.(1) Workflow Completion and Redundancy: While
MARWA achieves strong workflow completion (Comp: 2.72), the LLM-only approach attains a
higher score (2.76) but with more redundancy (Redun: 0.31 vs 0.15). The LLM-only method re-
lies on redundant tools to superficially improve coverage, whereas MARWA emphasizes precision
and efficiency through iterative self-correction. Other baselines perform worse in both metrics due
to their inability to revise errors in a single pass, leading to accumulated inaccuracies. (2) Tool
Command-Level Reliability: MARWA achieves the highest path accuracy (Path: 1.78), parameter
accuracy (Param: 1.27) and installation correctness (Inst: 1.75). These metrics reflect MARWA’s

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: The main results of MARWA and different kinds of baselines on the large dataset.

Method Models Comp Redun Inst Path Param m Pass@1

LLM-only

GPT-4o 2.83 0.29 0.61 0.19 0.76 0.11
Gemini2.5 2.75 0.31 0.44 0.12 0.72 0.11

Qwen2.5-72B 2.69 0.32 0.33 0.12 0.68 0.09
mean/k 2.76/0.77 0.31/0.77 0.46/0.66 0.14/0.77 0.72/0.75 0.11/0.77

AutoBA

GPT-4o 2.72 0.34 1.02 0.71 0.77 0.19
Gemini2.5 2.66 0.38 0.92 0.55 0.74 0.19

Qwen2.5-72B 2.55 0.45 0.87 0.58 0.71 0.18
mean/k 2.64/0.73 0.39/0.69 0.94/0.76 0.61/0.75 0.74/0.81 0.19/0.73

ReAct

GPT-4o 2.58 0.23 1.08 1.12 1.08 0.24
Gemini2.5 2.54 0.23 1.02 1.04 1.11 0.21

Qwen2.5-72B 2.53 0.27 0.96 1.08 1.01 0.21
mean/k 2.55/0.75 0.24/0.72 1.02/0.71 1.08/0.78 1.07/0.69 0.22/0.74

BioMaster

GPT-4o 2.62 0.22 1.74 0.63 1.15 0.25
Gemini2.5 2.58 0.24 1.63 0.52 1.08 0.24

Qwen2.5-72B 2.54 0.25 1.66 0.59 1.07 0.25
mean/k 2.58/0.79 0.24/0.73 1.68/0.72 0.58/0.68 1.10/0.70 0.25/0.71

MARWA

GPT-4o 2.74 0.15 1.77 1.79 1.28 0.41
Gemini2.5 2.71 0.14 1.74 1.77 1.26 0.40

Qwen2.5-72B 2.71 0.16 1.74 1.78 1.26 0.40
mean/k 2.72/0.81 0.15/0.89 1.75/0.76 1.78/0.68 1.27/0.76 0.40/0.76

ability to generate reliable tool commands, which is critical for real-world execution. By compar-
ison, all the baselines perform poor on the path accuracy due to the absence of real file system in-
teraction. Although BioMaster incorporates RAG, its embedding mechanism often fails to retrieve
relevant and accurate information, resulting in incorrect parameter usage. (3) Time Efficiency:
MARWA achieves this high accuracy with notable efficiency, as its fast BERT-based retrieval and
concise context.

4.6 COST-EFFECTIVENESS ANALYSIS

To evaluate the cost of our framework, we analyzed the token consumption for each method, as
shown in Table 5. We measured the average input (I-Tokens) and output (O-Tokens) tokens for
successful (S) and failed (F) tasks. Based on this data, we calculated the Effective Cost Per Success
(ECPS). This metric is derived from the official API pricing of GPT-4 Turbo, our agents’ backbone,
to reflect the actual monetary expense (see Appendix D.7 for the formula). ECPS represents the
average U.S. dollar cost to achieve a single successful workflow, with a lower value indicating
superior cost-effectiveness.

Our analysis shows that MARWA achieves the lowest ECPS (0.310), making it the most cost-
effective method. MARWA’s high success rate prevents costly repeated attempts and debugging
cycles, unlike BioMaster (0.693) and ReAct (0.521). This demonstrates that MARWA’s design pro-
vides a strong balance between high performance and practical efficiency.

4.7 ABLATION STUDY

We conducted ablation experiments to evaluate the contribution of each component in MARWA.
The results demonstrate that each module plays a distinct role in the process: (1) Removing the
retrieval model most severely hurts installation accuracy and overall executability. (2) Disabling
the Selecting agent increases workflow redundancy. (3) Removing the Analyzing agent reduces

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 5: Comparison of token consumption and cost efficiency across different methods.

Method I-Tokens (S) O-Tokens (S) I-Tokens (F) O-Tokens (F) ECPS

LLM-only 298 689 1396 2836 0.825
AutoBA 945 1043 1373 2218 0.383
ReAct 4085 1329 6526 1963 0.521
BioMaster 6972 1920 9203 3221 0.693
MARWA 5117 1831 6529 2357 0.310

Table 6: Ablation study on the small dataset and large dataset.

Method Comp Redun Inst Path Param m Pass@1 h Pass@1 h Pass@2

MARWA 2.72 0.15 1.75 1.78 1.27 0.40 0.375 0.45

w/o retrieval -0.03 -0.01 -0.19 -0.02 -0.10 -0.12 -0.13 -0.18

w/o Selecting -0.08 +0.04 -0.05 -0.04 +0.01 -0.06 -0.10 -0.10

w/o Analying -0.10 +0.09 -0.01 -0.02 -0.02 -0.07 -0.08 -0.13

w/o file system -0.04 +0.02 +0.01 -0.33 -0.03 -0.10 -0.10 -0.15

completion and increases redundancy. (4) Without the file system interface, path accuracy drops
sharply. More detailed analyses are provided in the Appendix D.8.

5 CONCLUSION

In this paper, we present MARWA, a multi-agent retrieval-augmented framework for reliable bioin-
formatics workflow automation. MARWA combines a step-by-step generation strategy that decom-
poses complex tasks into verifiable steps, LLM-augmented retrieval embeddings for precise tool
selection and direct file-system interaction to ground commands in the real execution environment.
These components reduce error accumulation, improve command and path accuracy and enable re-
producible execution. Experiments on diverse real-world datasets show MARWA consistently out-
performs strong baselines in execution success and expert-aligned evaluation, offering a practical
foundation for trustworthy workflow automation in computational biology.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Simon Anders and Wolfgang Huber. Differential expression analysis for sequence count data. Nature
Precedings, pp. 1–1, 2010.

Bilal Aslam, Madiha Basit, Muhammad Atif Nisar, Mohsin Khurshid, and Muhammad Hidayat
Rasool. Proteomics: technologies and their applications. Journal of chromatographic science,
pp. 1–15, 2016.

Andreas D Baxevanis, Gary D Bader, and David S Wishart. Bioinformatics. John Wiley & Sons,
2020.

Carlos D Bustamante, Francisco M De La Vega, and Esteban G Burchard. Genomics for the world.
Nature, 475(7355):163–165, 2011.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge dis-
tillation. arXiv preprint arXiv:2402.03216, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Rahul Dey and Fathi M Salem. Gate-variants of gated recurrent unit (gru) neural networks. In 2017
IEEE 60th international midwest symposium on circuits and systems (MWSCAS), pp. 1597–1600.
IEEE, 2017.

Jeff Gauthier, Antony T Vincent, Steve J Charette, and Nicolas Derome. A brief history of bioinfor-
matics. Briefings in bioinformatics, 20(6):1981–1996, 2019.

Ryan Green, Xufeng Qu, Jinze Liu, and Tingting Yu. Btr: a bioinformatics tool recommendation
system. Bioinformatics, 40(5):btae275, 2024.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Ying-
han Shen, Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. arXiv preprint
arXiv:2411.15594, 2024.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto Usuyama, Xiaodong Liu, Tristan Naumann,
Jianfeng Gao, and Hoifung Poon. Domain-specific language model pretraining for biomedical
natural language processing. ACM Transactions on Computing for Healthcare (HEALTH), 3(1):
1–23, 2021.

Almut Heinken, Johannes Hertel, Geeta Acharya, Dmitry A Ravcheev, Malgorzata Nyga,
Onyedika Emmanuel Okpala, Marcus Hogan, Stefanı́a Magnúsdóttir, Filippo Martinelli, Bram
Nap, et al. Genome-scale metabolic reconstruction of 7,302 human microorganisms for person-
alized medicine. Nature Biotechnology, 41(9):1320–1331, 2023.

Franziska Hemmerling and Jörn Piel. Strategies to access biosynthetic novelty in bacterial genomes
for drug discovery. Nature Reviews Drug Discovery, 21(5):359–378, 2022.

Jon Ison, Hans Ienasescu, Emil Rydza, Piotr Chmura, Kristoffer Rapacki, Alban Gaignard, Veit
Schwämmle, Jacques Van Helden, Matúš Kalaš, and Hervé Ménager. biotoolsschema: a formal-
ized schema for bioinformatics software description. GigaScience, 10(1):giaa157, 2021.

Vahid Jalili, Enis Afgan, Qiang Gu, Dave Clements, Daniel Blankenberg, Jeremy Goecks, James
Taylor, and Anton Nekrutenko. The galaxy platform for accessible, reproducible and collaborative
biomedical analyses: 2020 update. Nucleic acids research, 48(W1):W395–W402, 2020.

David T Jones and Janet M Thornton. The impact of alphafold2 one year on. Nature methods, 19
(1):15–20, 2022.

Klaus Krippendorff. Estimating the reliability, systematic error and random error of interval data.
Educational and psychological measurement, 30(1):61–70, 1970.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Klaus Krippendorff. Content analysis: An introduction to its methodology. Sage publications, 2018.

Anup Kumar, Helena Rasche, Björn Grüning, and Rolf Backofen. Tool recommender system in
galaxy using deep learning. GigaScience, 10(1):giaa152, 2021.

Björn E Langer, Andreia Amaral, Marie-Odile Baudement, Franziska Bonath, Mathieu Charles,
Praveen Krishna Chitneedi, Emily L Clark, Paolo Di Tommaso, Sarah Djebali, Philip A Ewels,
et al. Empowering bioinformatics communities with nextflow and nf-core. Genome Biology, 26
(1):228, 2025.

Arthur M Lesk. Introduction to genomics. Oxford University Press, 2017.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

Esther H Lips, Tapsi Kumar, Anargyros Megalios, Lindy L Visser, Michael Sheinman, Angelo For-
tunato, Vandna Shah, Marlous Hoogstraat, Emi Sei, Diego Mallo, et al. Genomic analysis defines
clonal relationships of ductal carcinoma in situ and recurrent invasive breast cancer. Nature ge-
netics, 54(6):850–860, 2022.

Xiaojing Liu and Jason W Locasale. Metabolomics: a primer. Trends in biochemical sciences, 42
(4):274–284, 2017.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Yuyang Liu, Liuzhenghao Lv, Xiancheng Zhang, Li Yuan, and Yonghong Tian. Bioprobench: Com-
prehensive dataset and benchmark in biological protocol understanding and reasoning. arXiv
preprint arXiv:2505.07889, 2025.

Jonathan B Losos, Stevan J Arnold, Gill Bejerano, ED Brodie III, David Hibbett, Hopi E Hoekstra,
David P Mindell, Antónia Monteiro, Craig Moritz, H Allen Orr, et al. Evolutionary biology for
the 21st century. PLoS biology, 11(1):e1001466, 2013.

Rohan Lowe, Neil Shirley, Mark Bleackley, Stephen Dolan, and Thomas Shafee. Transcriptomics
technologies. PLoS computational biology, 13(5):e1005457, 2017.

Nicholas M Luscombe, Dov Greenbaum, and Mark Gerstein. What is bioinformatics? a proposed
definition and overview of the field. Methods of information in medicine, 40(04):346–358, 2001.

Ludovico Mitchener, Jon M Laurent, Benjamin Tenmann, Siddharth Narayanan, Geemi P
Wellawatte, Andrew White, Lorenzo Sani, and Samuel G Rodriques. Bixbench: a comprehen-
sive benchmark for llm-based agents in computational biology. arXiv preprint arXiv:2503.00096,
2025.

Gabriele Orlando, Daniele Raimondi, Ramon Duran-Romana, Yves Moreau, Joost Schymkowitz,
and Frederic Rousseau. Pyuul provides an interface between biological structures and deep learn-
ing algorithms. Nature communications, 13(1):961, 2022.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings
of the 36th annual acm symposium on user interface software and technology, pp. 1–22, 2023.

Anthony Rhoads and Kin Fai Au. Pacbio sequencing and its applications. Genomics, proteomics &
bioinformatics, 13(5):278–289, 2015.

Florian Schlotter, Arda Halu, Shinji Goto, Mark C Blaser, Simon C Body, Lang H Lee, Hideyuki Hi-
gashi, Daniel M DeLaughter, Joshua D Hutcheson, Payal Vyas, et al. Spatiotemporal multi-omics
mapping generates a molecular atlas of the aortic valve and reveals networks driving disease. Cir-
culation, 138(4):377–393, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Elliott Sober. Conceptual issues in evolutionary biology. Mit Press, 1994.

Jang-il Sohn and Jin-Wu Nam. The present and future of de novo whole-genome assembly. Briefings
in bioinformatics, 19(1):23–40, 2018.

Houcheng Su, Weicai Long, and Yanlin Zhang. Biomaster: Multi-agent system for automated
bioinformatics analysis workflow. bioRxiv, pp. 2025–01, 2025.

Indhupriya Subramanian, Srikant Verma, Shiva Kumar, Abhay Jere, and Krishanpal Anamika.
Multi-omics data integration, interpretation, and its application. Bioinformatics and biology in-
sights, 14:1177932219899051, 2020.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-
attention distillation for task-agnostic compression of pre-trained transformers. Advances in neu-
ral information processing systems, 33:5776–5788, 2020.

John C Wooley, Adam Godzik, and Iddo Friedberg. A primer on metagenomics. PLoS computa-
tional biology, 6(2):e1000667, 2010.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
A survey. Science China Information Sciences, 68(2):121101, 2025.

Yihang Xiao, Jinyi Liu, Yan Zheng, Xiaohan Xie, Jianye Hao, Mingzhi Li, Ruitao Wang, Fei Ni,
Yuxiao Li, Jintian Luo, et al. Cellagent: An llm-driven multi-agent framework for automated
single-cell data analysis. arXiv preprint arXiv:2407.09811, 2024.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow genera-
tion. arXiv preprint arXiv:2410.10762, 2024.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 1(2), 2023.

Juexiao Zhou, Bin Zhang, Xiuying Chen, Haoyang Li, Xiaopeng Xu, Siyuan Chen, and Xin Gao.
Automated bioinformatics analysis via autoba. arXiv preprint arXiv:2309.03242, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A PROMPT TEMPLATES

A.1 ANALYZING AGENT

Prompt：Analyzing

You are an assistant for bioinformatics workflow analysis.

Your task is to carefully read the user's question about their analysis task,input files and
input files‘ descriptions.
Decompose it into a structured natural language response with the following sections:

1. **Input files**
 - List each input file mentioned by the user.
 - For each file, describe:
 - file name (if provided, otherwise say "not specified")
 - file format (e.g., FASTQ, BAM, VCF, mzML)
 - data type (e.g., raw sequencing reads, aligned reads, variant calls, proteomics spectra)
 - whether it is paired-end (true/false/unknown)
2. **Output files**
 - Describe the expected output files.
 - Include file format (e.g., VCF, TSV, abundance table, PDF report)

and data type (e.g., variants, gene expression matrix, species abundance).
 - If the user did not specify, infer the most common output for the analysis goal.
3. **Analysis goal**
 - Provide a detailed sentence describing the intended analysis, including:
 - starting point (input files)
 - main processing steps (e.g., quality control, alignment, variant calling)
 - desired outcome (the type of result the user wants)
Rules:
- Always extract actual file names if provided.
- If information is missing, clearly state it as "not specified" or "unknown".
- The output must be well-structured natural language, divided into the three sections above.
- The output must be in JSON format as follow:
{"input_files": [{

"file_name": "sample1.fastq" | null, // the provided file name, if available
"file_format": "FASTQ", // e.g., FASTQ, BAM, VCF, mzML
"data_type": "raw sequencing reads", // e.g., raw sequencing reads, aligned reads
"paired_end": true | false | null // true/false/null
}],

"output_files": [{
"file_format": "VCF", // e.g., VCF, TSV, abundance table, PDF report
"data_type": "variants" // e.g., variants, gene expression matrix, species abundance
}],

"analysis_goal": "string" // a detailed description of the intended analysis,
including start point, key processing steps, and desired outcome}
Now the files user input: {file list},the files' descriptions:{descriptions} ,user's question:{user_question}

Figure A.1: The prompt of Analyzing Agent.

A.2 PLANNING AGENT

Prompt：Planning
You are a bioinformatics expert.
Your task is to give the most suitable NEXT bioinformatics tool (to be used in a workflow) based on information below.

The user’s requirement is: {analysis_goal}.
The user's input file(s) are: {input_files}.
The expected final output files are: {output_files}.
The workflow has already used the following tools: {used_tools}.

Based on this context, you must propose and describe exactly ONE next tool, unless the workflow has already fully satisfied the user's final output requirement.
The tool you propose must be consistent with the provided context and logically follow the workflow towards producing the required output file format/content.

When describing the tool, include:
- The specific problem or gap it solves in the workflow
- A detailed explanation of the tool.
- Its input and output data formats, with explicit mapping to the user's output requirement

Output JSON format:
{ toolname: "the name of the tool"
 function:"What problem the tool solves in the workflow"
 description: "the detailed description of the tool"
 inputformat:"the input data format of the tool"
 outputformat:"the output data format of the tool"
}

Figure A.2: The prompt of Planning Agent.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.3 SELECTING AGENT

Prompt:Selecting

You are a bioinformatics expert.
Your task is to select ONE suitable bioinformatics tool based on the workflow task, already used tools, and the available input files.
You may choose from the reference tools list or propose a different tool.
Context:
- Workflow task: {analysis_goal}
- Already used tools in the workflow: {used_tools}
- Tool function: {tool_function}
- Reference tools (JSON array of objects):{reference_tools}

Rules:
1. Select exactly ONE tool.
2. You MAY choose a tool outside the reference list if it is more suitable.

Output JSON format:
{
 toolname:"The name of the selected tool."
 reference_tool_id:"The ID of the tool if it comes from the reference list; use -1 if not."
 function: "An explanation of the tool’s role in the workflow,including Function,What the tool does and an example.(e.g. STAR:RNA-Seq read alignment,Maps
sequenced fragments to the genome,Read aligns to exon1–exon2)"
}

Figure A.3: The prompt of Selecting Agent.

A.4 GENERATING & EXECUTING AGENT

Prompt:Generating & Executing

You are a bioinformatics workflow assistant.
Your task is to generate the necessary setup and execution details for running the CURRENT bioinformatics tool within an existing workflow.
Context:
- Tool name: {tool_name}
- Tool function: {tool_function}
- Workflow task: {analysis_goal}
- Available input files: {available_files}
- The command line you can reference: {reference_tool_command}
Rules:
1. Input file selection:
 - Select input file(s) ONLY from {available_input_files}.
 - Ensure input type strictly matches the tool’s required input format (e.g., FASTA, TSV, BAM).
 - Do not fabricate or assume non-listed input files.
2. Output file naming & directory:
 - All outputs must be stored under: ./output/{tool_name}/
 - Output filenames must:
 a. Preserve the sample ID from the input filename.
 b. Append the tool name and step role (e.g., "_{tool_name}_classified", "_{tool_name}_metrics").
 - Do not overwrite files from previous steps.
3. File Creation command:(The command to create the output directory)
 - Create the output directory if it does not exist(Not in the folder to which these files {existing_files} belong to):
 `"setup_command": "mkdir -p./output/{tool_name}/"`
 - If the output directory already exists, use it directly without recreating.
 `"setup_command": "cd ./output/{tool_name}/"`
4. Installation command:(The command to install the tool in a new environment)
 - If the tool is not in {executed_tools_list}, create a new conda environment and install it in this environment:
 if the tool needs python:
 `"installation_command": "conda create -n {tool_name} -c conda-forge -c bioconda {tool_name} python=3.11 -y && conda activate {tool_name}"`
 if the tool does not need python:
 `"installation_command": "conda create -n {tool_name} -c conda-forge -c bioconda {tool_name} -y && conda activate {tool_name}"`
 - If the tool is already installed, skip the installation step, directly activate the environment:
 `"installation_command": "conda activate {tool_name}"`
 - If you think conda is not available, try pip:
 `"installation_command": "pip install {tool_name}[all]"`
 - If you think pip is not available, try apt-get:
 `"installation_command": "apt-get install {tool_name}"`
 - Ensure all required dependencies are included.
5. Execution command (The command to execute the tool)
 - Construct the command specifically for {tool_name}. The core task of this tool is {tool_description}.
 - Use absolute paths for all input and output files. Do not create directories or symbolic links—assume all inputs already exist and output paths are ready.
 - Select input files only from {available_files}.Ensure that all input files actually exist before running the command.
 - Ensure every environment variable is set before running the command.
 - Name the output files based on {tool_name}, preserving the input sample ID in each output filename. Ensure filenames do not conflict with {available_files} or
other outputs.Example: Input file: sampleA.fasta → Tool: gtdbtk → Expected output: taxonomy classification table → Output filename:
sampleA.gtdbtk.classification.tsv.
 - You can refer to the command line {tool_command_reference}.
 Focus only on generating **the actual execution command that runs the tool on the inputs and produces the outputs**.
Output format:
You MUST output in this strict JSON structure:{
 File_Creation_command:"The command to create the output directory"
 installation_command: "The command to install the tool environment."
 execution_command: "The command to execute the tool"}

Figure A.4: The prompt of Generating & Executing Agent.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.5 DEBUGGING AGENT

Prompt:Debugging

You are a Bioinformatics Code Expert.
Your task is to modify your previous command line
File Creation Command:{file_creation_command},
Installation Command:{installation_command},
Execution Command:{execution_command}
based on the error message{error_message}

Output format:
You MUST output in this strict JSON structure:{
installation_command: "The command to install the tool environment."
File_Creation_Command:"The command to create the output directory"
Execution Command: "The command to execute the tool"

Figure A.5: The prompt of Debugging Agent.

A.6 JUDGING AGENT

Prompt:Judging
You are a bioinformatics workflow expert.
Your task is to determine whether the given workflow has been fully completed.
Context:
- Workflow detailed requirement: {analysis_goal}
- Workflow input format requirement: {input_files}
- Workflow output format requirement: {output_files}
- Tools already used in the workflow: {used_tools}
- Current output files: {available_files}
Rules:
1. The workflow is considered **complete** only if BOTH conditions are met:
 a) The current available output files {available_files} include **all** required files and formats specified in {output_files}.
 b) The workflow requirement {analysis_goal} has been fully satisfied by the tools listed in {used_tools}, meaning every required analysis/processing step is
covered without omission.
2. If **any** required output is missing OR any workflow step is not accounted for by the tools used, the workflow is **not complete**.
3. The output format must be as :{Complete: "Whether the workflow has been fully completed"}
Question: Has the workflow been fully completed?

Figure A.6: The prompt of Judging Agent.

A.7 PROMPT TEMPLATES FOR AUXILIARY COMPONENTS

Prompt:Tool description augmentation

You are a bioinformatics expert.
I will provide you with a description of a bioinformatics tool: {tool_description}
Your task is to generate **5 short alternative descriptions** of this tool, each from a **different perspective**.
- Each description should be **1–2 sentences long**.
- Focus on distinct aspects, such as:
 1. Main function / core capability
 2. Typical applications / use cases
 3. Advantages, performance, or limitations
 4. Target users (e.g., researchers, clinicians, bioinformaticians) and the reason why they use the tool
 5. Integration with workflows or other tools
- Avoid repeating the same wording across descriptions.
- Keep the descriptions **concise, clear, and non-overlapping**.
Output JSON format:
{
 description1: "Main function / core capability of the tool"
 description2: "Typical applications / use cases of the tool"
 description3: "Advantages, performance, or limitations of the tool and the reason"
 description4: "Target users (e.g., researchers, clinicians, bioinformaticians) of the tool and the reason"
 description5: "Integration with workflows or other tools and the reason"}

Figure A.7: The prompt of Tool description augmentation.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.8 PROMPT TEMPLATES FOR DATASET

Prompt:User Input Generation
Please generate exactly **3 user questions** for each persona in the list below.

- The output must consist only of user questions, not answers or explanations.
- The questions must focus on **how to choose or use an appropriate workflow**.
- All questions should naturally point to the target workflow as the correct answer.
- Each persona should have a distinct perspective (e.g., cost, speed, accuracy, compliance, reproducibility, visualization).
- Do **not** contradict the workflow’s input, output, or tasks.
- Vary **style** (formal, casual, search-query style).
- Vary **length** (short ~10 words, long ~40 words).
- Do not expose the workflow name or implementation details.
Persona list: Wet-lab researcher, Clinician, Data engineer.
Output format must be strictly JSON format:
{
 "persona_list": [
 {"name": "Wet-lab researcher",
 "Question": [List of user questions for this persona]},......],
 "inputs": [List of required input files with concrete names]}
You are given the following **target workflow** description:{input}

Figure A.8: The prompt of User input generation.

A.9 PROMPT TEMPLATES FOR LLM EVALUATION

Prompt:LLM Judge Tools
You are a bioinformatics expert.
You are evaluating the steps of the bioinformatics workflow for correctness and executability.
For each step below, you must judge three aspects separately:
Environment / Installation Command
Evaluate whether the installation command correctly and completely installs the required software and all its dependencies.
Scoring (0–2): [

 0 = Completely incorrect or unusable; software cannot be installed(do not have Installation Command)
 ,0.5 = Mostly incorrect; major dependencies missing or software unusable(Example:pip install fastqc (FastQC is not a Python package, installation fails).)
 ,1 = Partially correct; software installs but manual modifications or additional dependencies required(Example: conda install fastqc (fails unless correct
channels are added).)
 ,1.5 = Mostly correct; minor issues only (e.g., warnings, optional dependencies missing)(Example:mamba install -c bioconda fastqc do not have its own
environment)
 ,2 = Perfectly correct and complete; software and all dependencies installed and functional](Example:mamba create -n fastqc python=3.11 -y && conda
activate fastqc && mamba install -c bioconda fastqc)
Path Command
Evaluate whether the command correctly creates all required directories and handles paths properly in the workflow, including input/output paths, existing folders,
and permissions.
Scoring (0–2):
 [0 = Completely incorrect or fails to create directories / incorrect paths
 ,0.5 = Mostly incorrect; some directories not created
 ,1 = Partially correct; some paths incorrect
 ,1.5 = Mostly correct; only minor issues (e.g., warnings, redundant paths)
 ,2 = Perfectly correct; all directories and paths handled correctly]
Execution Command
Evaluate whether the execution command is likely to run successfully given that the previous steps are correctly completed, and whether it produces the expected
output.
Scoring (0–2):

 [0 = Completely fails; output unusable(Example: fastqc)
 ,0.5 = Mostly fails; output likely incorrect(Example:fastqc sample.fastq)
 ,1 = Partially executable; may require parameter or path adjustments(Example:fastqc ./input/sample.fastq -o output/)
 ,1.5 = Mostly executable; minor issues only (e.g., warnings)(Example:fastqc ./input/sample.fastq.gz -o ./output/fastqc/)
 ,2 = Fully executable; output meets expectations](Example:fastqc ./input/sample.fastq -o ./output/fastqc/)
Finally, decide whether the step as a whole is executable (True/False).
Your output should be in the following JSON format:
 {
 step_score_command_installation:"Score for the environment/installation command"
 step_score_command_path: "Score for the path command"
 step_score_command_executable:"Score for the execution command"
 step_command_success: "Whether the command is executable,True=executable, False=unexecutable"
}
Now,The user question is: {analysis_goal};The tool steps are:{steps_summary};The input file is:{input_file}

Figure A.9: The prompt of LLM Evaluation Tool Command.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Prompt:LLM Judge Workflow
 You are an expert bioinformatics workflow evaluator.
 Your task is to evaluate a given bioinformatics workflow based on step-level scores and success indicators.
 Your evaluation must be precise, consistent, and avoid subjective judgment beyond the scoring criteria.
 Rate the workflow on three dimensions:
 Completion_level (0–3) (Measures whether the workflow achieves {analysis_goal} intended goals / core functionality by {used_tool})
 3 = Fully complete → Workflow meets all core requirements and produces all required final outputs.(Example: identify genes that are differentially expressed
between two or more biological conditions starts from raw FASTQ files, performs quality control (FastQC), trims low-quality reads (Trimmomatic), aligns reads to the
reference genome (STAR), quantifies gene expression (featureCounts), and produces differential expression tables and visualization plots. All steps complete and
successful.)
 2 = Partially complete → Workflow meets some core requirements, but some steps or functions are missing.(Same RNA-seq workflow, but only performs
Trimmomatic and STAR; quality control and quantifies gene expression are missing.)
 1 = Barely complete → Most core requirements are not met; only a few outputs or functions are present.(Only performs FASTQ QC, or only produces alignment
files without further analysis. No usable final results.)
 0 = Not complete → Core functionality is not met; workflow is unusable or fails to produce required outputs.(Attempted RNA-seq workflow fails due to missing
tools or incorrect inputs, producing no valid outputs.)
 Redundancy (0–3)(Measures whether the workflow use {used_tool} to achieve {analysis_goal} is redundant)
 0 = No redundancy → All steps unique, no duplicates.(Example:A ChIP-seq workflow runs QC → alignment → duplicate removal → peak calling. Each step
appears once, no repetition.)
 1 = Some redundancy → Minor duplication, does not break workflow.(FastQC is run twice during QC, but other steps are unique. Workflow still functions
correctly.)
 2 = Mostly redundant → Many repeated steps without necessity.(Multiple alignments or repeated QC steps on the same RNA-seq data. Increases runtime but
does not fully break results.)
 3 = Very redundant → Workflow bloated with repetitive or overlapping steps.).(Same FASTQ files are repeatedly aligned and quantified, steps are duplicated
multiple times. Workflow becomes complex and wasteful.)
Important principles:
 Be objective: base scores only on explicit evidence from the workflow, not assumptions.
 Be consistent: apply the same standards to all workflows being evaluated.
 Provide the output in strict JSON format:
{
 Completion_level :"how complete the workflow is"
 Redundancy :"how redundant the workflow is"
}

Figure A.10: The prompt of LLM Evaluation Workflow.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B MAIN ALGORITHM

Algorithm 1 The MARWA Workflow Automation Algorithm

Require: User analytical goal G, a list of input files Fin, and file descriptions Din.
Ensure: A completed bioinformatics workflow W with all generated files.

1: procedure MARWA(G,Fin, Din)
2: task spec← Analyzing(G,Fin, Din) ▷ Refine user query
3: workflow state← Initialize with task spec
4: is complete← False
5: while not is complete do
6: planned tool, candidates← Planning(workflow state) ▷ Predict next tool & retrieve

candidates
7: selected tool← Selecting(planned tool, candidates) ▷ Choose the best tool
8: success, outputs← ExecuteWithRetry(selected tool,workflow state)
9: if success then

10: Update workflow state with selected tool and outputs
11: if selected tool is new then
12: Add selected tool and its verified command to retrieval database
13: end if
14: is complete← Judging(workflow state) ▷ Check if overall goal is met
15: else
16: break ▷ Terminate on unrecoverable execution failure
17: end if
18: end while
19: return workflow state
20: end procedure
21: procedure EXECUTEWITHRETRY(tool, state)
22: command← Generating(tool, state) ▷ Generate initial command
23: for i = 1→ 5 do
24: success, log← Execute(command) ▷ Interact with file system
25: if success then
26: return True, log.files
27: else
28: command← Debugging(command, log.error) ▷ Iteratively refine on failure
29: end if
30: end for
31: return False, null
32: end procedure

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C DATASET

C.1 SMALL DATASET

Table A.1: Summary of the small-scale dataset.

Domain Question file source
Transcriptomics How can I perform quality control of the raw

RNA-seq reads to assess sequencing quality?
SRR453566, raw FASTQ

Transcriptomics What is the read length and GC content distribu-
tion of this dataset?

SRR453566, raw FASTQ

Transcriptomics How can I align these reads to the reference
genome of Drosophila?

SRR453566, Drosophila
reference genome (dm6)

Transcriptomics What proportion of reads map uniquely vs. multi-
map to the genome?

SRR453566, Drosophila
reference genome (dm6)

Transcriptomics How can I quantify transcript abundance at the
gene level?

SRR453566, Drosophila an-
notation (GTF)

Transcriptomics Which genes are most highly expressed in this
sample?

SRR453566, Drosophila an-
notation (GTF)

Transcriptomics Can I identify alternative splicing events in this
dataset?

SRR453566, Drosophila an-
notation (GTF)

Transcriptomics How can I detect potential novel transcripts not in
the reference annotation?

SRR453566, Drosophila
reference genome (dm6)

Transcriptomics What is the expression distribution across differ-
ent functional gene categories?

SRR453566, Drosophila
annotation (GTF, GO
database)

Transcriptomics How reproducible are expression estimates be-
tween technical replicates of this dataset?

SRR453566, SRR453567,
SRR453568, Drosophila
annotation (GTF)

Genomics How can I assemble the complete genome of this
E. coli sample from raw sequencing reads?

SRR8185310 (E. coli
WGS,FASTQ)

Genomics What is the estimated sequencing depth and
genome coverage of this dataset?

SRR8185310, raw FASTQ

Genomics How can I align these reads to the E. coli K-12
MG1655 reference genome?

SRR8185310, E. coli
reference genome
(NC 000913.3,RefSeq)

Genomics What is the GC content distribution across the se-
quencing reads?

SRR8185310, raw FASTQ

Genomics How can I detect single-nucleotide variants
(SNVs) in this dataset?

SRR8185310, E. coli refer-
ence genome(NC 000913.3,
RefSeq)

Genomics How can I identify small insertions and deletions
(indels) relative to the reference?

SRR8185310, E. coli
reference genome
(NC 000913.3, RefSeq)

Genomics Can I identify plasmid sequences present in this
sample?

SRR8185310, plasmid ref-
erence database (NCBI Ref-
Seq Plasmid)

Genomics How can I annotate the assembled genome with
coding genes and functional elements?

SRR8185310(assembly),
E. coli RefSeq annotation

Genomics How does this E. coli isolate compare phylogenet-
ically to other K-12 strains?

SRR8185310, related
E. coli reference genomes
(NC 000913.3, RefSeq)

Genomics Are there mobile genetic elements in this genome? SRR8185310, E. coli
reference genome
(NC 000913.3, RefSeq),
PHASTER database

next page...

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Domain Question file source
Metabolomics How can I identify differential metabolite pro-

files between experimental groups in this LC–MS
dataset?

MTBLS233(MetaboLights),
raw mzML files, sample
metadata

Metabolomics What metabolic pathways are significantly en-
riched given the detected features in this dataset?

MTBLS233, raw mzML
files, pathway reference
databases (KEGG)

Metabolomics How many unknown mass features (no match in
spectral libraries) are present, and what is their in-
tensity distribution?

MTBLS233, raw mzML
files, spectral library meta-
data

Metabolomics What is the technical reproducibility of peak de-
tection and quantification in this dataset?

MTBLS233, raw mzML
files, QC sample metadata

Proteomics How many proteins are identified with at least 2
unique peptides in this TMT Erwinia dataset?

PXD000001 (PRIDE; raw
mzML files, small number
of runs)

Proteomics What is the peptide-spectrum match score distri-
bution in this dataset?

PXD000001, raw mzML,
identification files

Proteomics Which proteins show the highest variability across
TMT channels?

PXD000001, reporter-ion
quantitation data

Proteomics Can we detect contaminant proteins in blank / con-
trol runs?

PXD000001, raw MS/MS
files, control sample meta-
data

Proteomics What is the dynamic range of protein intensities
measured?

PXD000001, raw data,
quantitative output

Proteomics Are there any post-translational modifications ob-
served in this dataset?

PXD000001, identifica-
tion(mgf/mztab), UniProt
reference

Proteomics What fraction of expected proteome is covered
given this dataset?

PXD000001, raw data,
fasta reference pro-
teome(Erwinia)

Proteomics How reproducible are replicate injections in this
dataset?

PXD000001, raw mzML,
replicate sample metadata

Metagenomics What is the taxonomic composition (genus level)
of the bacterial community in this 16S amplicon
sample?

SRR7140083, raw FASTQ

Metagenomics How does alpha diversity (Shannon, Simpson) dif-
fer among subsets of this sample?

SRR7140083, raw FASTQ

Metagenomics Which OTUs / ASVs are most abundant in this
sample, and how is their abundance distributed?

SRR7140083, raw FASTQ,
16S reference database
(SILVA)

Metagenomics What is the read-length and quality score distribu-
tion across the reads?

SRR7140083, raw FASTQ

Metagenomics Are there chimeric sequences present (PCR arti-
facts) in this amplicon dataset?

SRR7140083, raw FASTQ,
chimera detection reference
(uchime)

Metagenomics What fraction of reads map to bacteria vs non-
bacteria in this dataset?

SRR7140083, raw FASTQ,
SILVA database

Metagenomics What is the GC content distribution among the
reads and among dominant OTUs?

SRR7140083, raw FASTQ,
alignment output

Metagenomics Can we construct a rarefaction curve to know
whether the sampling depth is sufficient?

SRR7140083, raw FASTQ,
sample metadata

C.2 WORKFLOW DATA PROCESSING

Galaxy (Jalili et al., 2020) is a web-based, open-source platform designed to make computational
biology accessible to researchers.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

We obtain information from the public Galaxy API7. This API provides structured information about
each workflow’s purpose and overall structure.

The Common Workflow Language (CWL) 8 is an open community standard for describing
command-line data analysis tools and workflows.

The data outlining the workflow’s objective and design were obtained by parsing the primary source
files (.cwl or .yml), which were acquired via links of public code repositories (e.g., Github) provided
by the platform.

BioRxiv 9 is a preprint server for the biological sciences. It is a vital resource for discovering novel
bioinformatics workflows.

The workflow descriptions were extracted from the abstracts of the preprints themselves.

C.3 LARGE DATASET

An Large-Scale Dataset Example

{"inputs":
[
 {"file": "sample1.fastq.gz","description": "Paired-end raw sequencing reads from sample 1,

 generated using Illumina platform, suitable for quality control, read trimming, and taxonomy assignment analysis."},
 {"file": "sample2.fastq.gz","description": "Paired-end raw sequencing reads from sample 2,

 complementary to sample1.fastq.gz, used for validating workflow reproducibility and
testing downstream bioinformatics pipelines."}],

"persona_list":
[{"name": "Lab researcher",

 "Question": [
 "How do I process raw sequencing data to ensure clean reads for downstream analysis?",
 "What's the best way to filter low-quality reads before sending data to bioinformatics?",
 "Can I automate quality control and read trimming without sacrificing accuracy?"]},
 {"name": "Clinician",
 "Question": [
 "What's the fastest way to get accurate pathogen identification from sequencing data?",
 "How can I ensure my analysis meets clinical standards for patient diagnosis?",
 "Which method guarantees reproducible results for diagnostic reporting?"]},
 {"name": "Data engineer",
 "Question": [
 "How can I pipeline raw FASTQ files into structured JSON output reliably?",
 "What scalable approach handles multiple FASTQ inputs with consistent quality metrics?",
 "How do I ensure the workflow is reproducible across different environments?"]}]}

Figure A.11: An example for large-scale dataset.

D EXPERIMENTAL SETUP

D.1 MULTI-POSITIVE CONTRASTIVE LOSS

Given an anchor representation zi, let P (i) denote the set of its positive samples and A(i) the set of

all candidates except itself. The similarity between two samples is defined as s(zi, zj) =
z⊤
i zj
τ with

temperature τ > 0. The multi-positive contrastive loss is formulated as:

Li = − log

∑
p∈P (i)

exp
(
s(zi, zp)

)
∑

a∈A(i)

exp
(
s(zi, za)

) . (1)

D.2 DETAIL SAR FORMULA

SAR =

∑
d∈D I

(
Sm
llm(d) = Sm

human(d)
)

|D|
(2)

7https://usegalaxy.eu/api/workflows
8https://view.commonwl.org/workflows/
9https://www.biorxiv.org/

22

https://usegalaxy.eu/api/workflows
https://view.commonwl.org/workflows/
https://www.biorxiv.org/

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

where D is the set of evaluation instances, m denotes one of the evaluation metrics, Sm
llm(d) repre-

sents the score assigned by the LLM to instance d under metric m, Sm
human(d) is the score given by

a human evaluator for the same instance and metric, and I(·) is an indicator function that returns 1
if the two scores are identical and 0 otherwise.

D.3 SCORE CRITERIA

Table A.2: Bioinformatics Workflow Evaluation Criteria

Step-Level Evaluation
Environment/Installation Command

0 Completely incorrect or unusable; software cannot be installed (no installation
command)

0.5 Mostly incorrect; major dependencies missing or software unusable (e.g. pip install
fastqc)

1 Partially correct; software installs but manual modifications or additional
dependencies required (e.g. conda install fastqc without specifying correct channels)

1.5 Mostly correct; minor issues only (e.g., warnings, optional dependencies missing)
(e.g. mamba install -c bioconda fastqc without creating a dedicated environment)

2 Perfectly correct and complete; software and all dependencies installed and
functional (e.g. mamba create -n fastqc python=3.11 -y && conda activate fastqc
&& mamba install -c bioconda fastqc)

Path Command
0 Completely incorrect or fails to create directories/incorrect paths
0.5 Mostly incorrect; some directories not created
1 Partially correct; some paths incorrect
1.5 Mostly correct; only minor issues (e.g., warnings, redundant paths)
2 Perfectly correct; all directories and paths handled correctly

Execution Command
0 Completely fails; output unusable (e.g., just typing fastqc)
0.5 Mostly fails; output likely incorrect (e.g. fastqc sample.fastq)
1 Partially executable; may require parameter or path adjustments (e.g. fastqc

./input/sample.fastq -o output/)
1.5 Mostly executable; minor issues only (e.g., warnings) (e.g. fastqc

./input/sample.fastq.gz -o ./output/fastqc/)
2 Fully executable; output meets expected results (e.g. fastqc ./input/sample.fastq -o

./output/fastqc/)
Workflow-Level Evaluation

Completion Level
0 Not complete; core functionality not met; workflow unusable or fails to produce

required outputs
1 Barely complete; most core requirements not met; only a few outputs or functions

present
2 Partially complete; meets some core requirements, but some steps or functions

missing
3 Fully complete; workflow meets all core requirements and produces all required final

outputs
Redundancy

0 No redundancy; all steps unique, no duplicates
1 Some redundancy; minor duplication, does not break workflow
2 Mostly redundant; many repeated steps without necessity
3 Very redundant; workflow bloated with repetitive or overlapping steps

D.4 BASELINES

For fairness and reproducibility, we provide details regarding how the baseline systems were repro-
duced in our experiments:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Unified model backbone: All baseline methods were implemented using the same backbone, GPT-4
Turbo, in order to ensure a consistent evaluation setting. For all LLMs, the temperature parameter
was uniformly set to 0.3, thereby reducing randomness and ensuring deterministic outputs across
multiple runs.

LLM-only employs a strategy based on prompting, relying entirely on the LLM’s own parametric
knowledge to generate outputs. Prompt is shown in Figure A.12.

AutoBA (Zhou et al., 2023) employs an autonomous LLM-based agent with Planner, Executor, and
Debugger roles to automatically generate bioinformatics workflows.

During the reproduction of AutoBA, all system-level prompts originally specified in their framework
were replaced with our own environment-specific configuration prompt, explicitly reflecting CUDA
Version: 12.6.

ReAct employs an iterative ”Thought-Action-Observation” loop through a unique prompt template
(as shown in Figure A.13). This approach enables the LLM to dynamically perform reasoning and
planning (Thought), decide and execute the next action (Action), and adjust its strategy in real-time
based on the resulting feedback (Observation), continuing this cycle until the task is complete.

BioMaster (Su et al., 2025) employs a multi-agent system composed of specialized role-based
agents—Plan, Task, Debug, and Check—that operate sequentially, enhanced by a RAG framework.

The original BioMaster implementation did not release its retrieval-augmented generation (RAG)
tool database. To address this, we constructed and employed our own curated tool database to
approximate the functionality.

Role
You are a senior bioinformatics expert.
You are proficient in a wide range of bioinformatics tools and data processing workflows,
excelling at breaking down complex analytical tasks into a series of clear, executable command-line steps and
organizing them into a robust Bash script.
Task
Your task is to receive a bioinformatics analysis task described by the user and convert it into a well-structured,
thoroughly commented Bash script that can be directly executed in a shell environment.
Execution Starts Here
Now, strictly following all the requirements above, generate the corresponding Bash script for the user task below.
User Task: {{user_task_input}}

Figure A.12: Prompt for LLM-only.

You are an expert bioinformatician agent.
Your goal is to solve a user's request by creating and executing a bioinformatics workflow step-by-step.

You operate in a "Thought, Action, Observation" cycle. At each step,
you must first use a "Thought" to reason about the current state and decide your next move.
Then, you must use an "Action" from the available tools.
After the action is executed, you will receive an "Observation" with the result.
You will repeat this process until the user's goal is achieved.

AVAILABLE TOOLS:
1. `search_tool[query: str]`: Searches the bioinformatics tool database for tools matching the query.
The query should describe the desired functionality.
Returns a list of relevant tools, their descriptions, and command examples.
2. `execute_command[command: str]`: Executes a shell command in the bash terminal.
Use it for installing tools (e.g., `mamba install ...`),creating directories (`mkdir ...`),
and running bioinformatics tools. Returns the stdout and stderr of the command.
3. `list_files[path: str]`: Lists all files and directories at the given path.
Use `.` for the current directory. Returns a list of file/directory names.
4. `finish[reason: str]`: Call this action when you are confident that the entire analysis workflow is complete
and the final expected output has been generated.
The reason should summarize why the task is considered finished.

RESPONSE FORMAT:
You must strictly follow this format for each turn:
Thought: Your reasoning about the current situation, what you have done, and what you plan to do next.
Action: A single action to be taken, chosen from the available tools.

Now, begin.

Figure A.13: Prompt for ReAct.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table A.3: The detailed results of MARWA and different kinds of baselines on the small dataset.

Method LLM-only AutoBA ReAct BioMaster MARWA

h Pass@1 0.100 0.250 0.275 0.300 0.350
h Pass@2 0.100 0.250 0.275 0.375 0.450

GPT-4o
m Pass@1 0.100 0.375 0.400 0.400 0.475
m Pass@2 0.175 0.400 0.425 0.400 0.500
PFAR 0.938 0.863 0.875 0.887 0.913
SAR 0.882 0.820 0.838 0.854 0.889

Gemini2.5
m Pass@1 0.100 0.325 0.350 0.350 0.425
m Pass@2 0.150 0.325 0.350 0.375 0.450
PFAR 0.950 0.925 0.900 0.925 0.900
SAR 0.857 0.854 0.849 0.885 0.873

Qwen2.5-72B
m Pass@1 0.075 0.325 0.325 0.350 0.400
m Pass@2 0.125 0.350 0.325 0.350 0.450
PFAR 0.925 0.887 0.913 0.913 0.925
SAR 0.879 0.842 0.867 0.882 0.869

These adjustments guarantee that the reproduced baselines operate under consistent conditions with
our proposed framework, while also reflecting the practical constraints arising from incomplete tool
or configuration disclosure in prior work.

D.5 DETAILED RESULTS ON THE SMALL DATASET

Table A.3 compares the performance of MARWA with several baselines on the small dataset. From
the human evaluation results (h Pass@n), MARWA consistently achieves higher pass rates than all
baselines, showing improvements of about 5–10 percentage points over Biomaster. This indicates
that even under direct human execution, MARWA provides more reliable outcomes.

For model-based evaluations (m Pass@n), the trend is consistent across all three representative
LLMs—GPT-4o, Gemini2.5, and Qwen2.5-72B. In each case, MARWA achieves the highest
Pass@1 and Pass@2, demonstrating that the system can guide LLMs toward more successful ex-
ecutions with fewer attempts. Notably, GPT-4o shows the strongest improvement under MARWA,
with m Pass@2 increasing to 0.500 compared to 0.400 for Biomaster.

Agreement-based metrics provide further evidence of MARWA’s robustness. Both PFAR (Pass/Fail
Agreement Rate) and SAR (Score Agreement Rate) remain high across all settings, typically ex-
ceeding 0.85. MARWA achieves the best or near-best values, suggesting that its outputs are not only
more accurate but also more consistent with human judgments.

Overall, these results highlight that MARWA improves task reliability under both human and LLM
execution, while maintaining strong agreement with human evaluations.

D.6 TIME CONSUMPTION COMPARISON

The average time consumption of per tool generation is detailed in Table A.4. The results demon-
strate that MARWA achieves its superior performance without a proportional increase in computa-
tional cost, primarily due to two key design efficiencies.

Context Length The LLM-only baseline is the fastest (0.6878s) but performs poorly, as it lacks
critical information. AutoBA is moderately faster (1.1873s) than MARWA (3.1050s) but signifi-
cantly less accurate. Most notably, MARWA is 14.1% faster than the competing retrieval-augmented

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table A.4: Average time consumption for per tool generation comparison on the large dataset.

Method Avg. Total Time(s) Avg. Retrieval Time(s)

LLM-only 0.6878 -
AutoBA 1.1873 -
ReAct 1.4797 0.2109
BioMaster 3.6132 1.3747
MARWA (Ours) 3.1050 0.2076

method, BioMaster (3.6132s). This efficiency gain is largely attributable to our strategy of supplying
the LLM with highly condensed, relevant information instead of lengthy, raw context. In extended
workflows, this results in significantly shorter prompt contexts for MARWA, leading to faster LLM
inference times compared to approaches that incorporate information more indiscriminately.

Retrieval Speed The most striking efficiency gain is in the retrieval phase. MARWA’s retrieval is
approximately 6.6 times faster than BioMaster’s (0.2076s vs. 1.3747s). This is a direct consequence
of our deliberate choice to employ a lightweight yet effective BERT-style model for retrieval, as
opposed to the larger, more computationally intensive embedding models (e.g., models like text-
embedding-3-large). This design ensures low-latency retrieval without compromising the quality of
the retrieved information.

The time consumption data, when viewed alongside the performance metrics, confirms that
MARWA’s architectural choices create an optimal balance. Our method of using a fast retriever
to find precise information, which in turn reduces LLM processing time, allows MARWA to achieve
the highest m Pass@1 score (0.40) and excel on most granular metrics. This demonstrates that our
efficiency gains are not achieved by sacrificing quality but are intrinsic to a more intelligent and
streamlined workflow. MARWA delivers state-of-the-art performance with practical and scalable
computational requirements.

D.7 FORMULA FOR EFFECTIVE COST PER SUCCESS (ECPS)

To provide a realistic assessment of cost-effectiveness, we calculated the Effective Cost Per Success
(ECPS) based on the GPT-4 Turbo API, which served as the backbone for our agents.

The ECPS is defined as the average monetary cost (in USD) required to achieve a single successful
workflow:

ECPS =
Total Monetary Cost

Total Successful Tasks
=

TMC
N ×m Pass@1

(3)

The Total Monetary Cost (TMC) is calculated by summing the costs of all input and output tokens
across all tasks:

TMC = ci · ((IS ×NS) + (IF ×NF)) + co · ((OS ×NS) + (OF ×NF)) (4)

Where ci is the price per input token. co is the price per output token. IS and OS are the average
input and output tokens for successful tasks. IF and OF are the average input and output tokens for
failed tasks. NS is the number of successful tasks. NF is the number of failed tasks. N is the total
number of tasks (N = NS +NF). m Pass@1 is the success rate of the method.

A lower ECPS value signifies higher cost-effectiveness, as it represents a lower real-world monetary
investment to achieve a successful outcome.

D.8 DETAILED FINDINGS FOR ABLATION STUDIES

We conducted ablation experiments to assess the contribution of each component in MARWA.

• Retrieval model Removing the retrieval model leads to the largest performance drop across
nearly all metrics. In particular, installation accuracy decreases by 0.19 and the overall

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

m Pass@1 score drops by 0.12, underscoring the critical role of retrieval in ensuring correct
tool installation and executable workflows.
• Selecting agent Disabling the Selecting agent results in higher workflow redundancy

(+0.04) while also reducing completion (-0.08) and pass rate (-0.06). This suggests that
the agent is effective in pruning unnecessary steps, thereby improving efficiency and exe-
cution reliability.
• Analyzing agent Removing the Analyzing agent causes completion to decrease (-0.10)

and redundancy to increase (+0.09). Although the drop in installation accuracy is rela-
tively small, the higher redundancy indicates that the agent is crucial for reasoning about
intermediate outputs and maintaining streamlined workflows.
• File system interface Without the file system interface, path accuracy suffers a sharp de-

cline (-0.33), and m Pass@1 decreases by 0.10. This demonstrates that access to and ma-
nipulation of the file system is essential for managing dependencies and maintaining correct
path references.

Overall, the ablation results confirm that each component of MARWA plays a distinct and com-
plementary role. The retrieval model is indispensable for correctness, the Selecting and Analyzing
agents ensure efficiency and completeness, and the file system interface secures accurate execution
environments.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

E CASE STUDY

E.1 ENVIRONMENT AND DEPENDENCY CONFLICTS

Scenario:
a standard ChIP-seq analysis workflow.
The plan involves two key steps:Peak Calling: Use MACS2, which requires Python 2.7.
Visualization: Use the modern tool deepTools to create heatmaps from the MACS2 output.
This tool requires Python >= 3.6.
Wrong Method：
Attempt to install both tools into the same environment
conda install -c bioconda macs2 -y
conda install -c bioconda deeptools -y
MARWA：
MARWA generates commands to create separate, stable environments
conda create -n env_macs2 -c bioconda macs2
conda create -n env_deeptools -c bioconda deeptools
Analysis：
The Wrong Method fails because it ignores the fact that some tools are incompatible within the same runtime.

Figure A.14: Case study: environment and dependency conflicts.

E.2 FILE PATH AND I/O ERRORS

Scenario:
a quality-control-to-alignment workflow
Wrong Method：
mkdir -p ./qc_output
fastp -i ./input/sampleA.fastq.gz -o ./qc_output/sampleA.clean.fastq.gz
bwa mem reference.fasta ./input/sampleA.fastq.gz > aligned.sam
MARWA：
mkdir -p ./qc_output
fastp -i ./input/sampleA.fastq.gz -o ./qc_output/sampleA.clean.fastq.gz
mkdir -p ./alignment_output
bwa mem reference.fasta ./qc_output/sampleA.clean.fastq.gz > ./alignment_output/sampleA.aligned.sam
Analysis：
The wrong method mistakenly uses the original raw file for alignment instead of the actual clean file generated
by the previous step, due to its lack of awareness of the real file system.

Figure A.15: Case study: file path and I/O errors.

E.3 TOOL PARAMETER MISCONFIGURATION

Scenario:
a variant calling workflow on a diploid organism.
Wrong Method：
This command uses the default haploid model for variant calling
bcftools mpileup -f reference.fasta aligned.sorted.bam | bcftools call -mv -o variants.vcf
MARWA：
This command correctly specifies the diploid ploidy for the sample
bcftools mpileup -f reference.fasta aligned.sorted.bam | bcftools call -mv --ploidy 2 -o variants.vcf
Analysis：
The wrong method uses the correct tool (bcftools) for variant calling, but omits a critical parameter.

Figure A.16: Case study: tool parameter misconfiguration.

E.4 LOGICAL FLAWS IN WORKFLOW DESIGN

Scenario:
An alignment-to-variant-calling workflow.
Wrong Method：
Tool Chain: BWA -> bcftools
MARWA：
Tool Chain: BWA -> Samtools -> bcftools
Analysis：
The wrong method omits the critical intermediate processing steps that are handled by .

Figure A.17: Case study: logical flaws in workflow design.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

F RUNNING INSTANCE

User Input:
name: WGS data analysis Genome assembly
question: I have some raw WGS sequencing data (FASTQ files

) on hand and want to do a complete genome assembly
file: './input/SRR11874161_1.fastq,./input/SRR11874161_2.

fastq'
file_description: 'Illumina WGS of E. coli'

Log:

input_files: [{'file_name': './input/SRR11874161_1.fastq
', 'file_format': 'FASTQ', 'data_type': 'raw sequencing
reads (Illumina WGS of E. coli)', 'paired_end': True},
{'file_name': './input/SRR11874161_2.fastq', '
file_format': 'FASTQ', 'data_type': 'raw sequencing
reads (Illumina WGS of E. coli)', 'paired_end': True}]

output_files: [{'file_format': 'FASTA', 'data_type': '
assembled genome contigs/scaffolds (final assembly)'},
{'file_format': 'GFA', 'data_type': 'assembly graph'},
{'file_format': 'TSV', 'data_type': 'assembly
statistics and quality metrics (e.g., N50, total length
, number of contigs)'}, {'file_format': 'HTML', '
data_type': 'assembly quality report (e.g., QUAST
report)'}]

analysis_goal: Starting from paired-end Illumina FASTQ
reads (./input/SRR11874161_1.fastq and ./input/
SRR11874161_2.fastq), perform a de novo whole-genome
assembly of E. coli: run read quality control, adapter
and quality trimming/filtering, optional error
correction; assemble the genome with an Illumina-
focused assembler (e.g., SPAdes/SKESA), followed by
scaffolding and polishing using the same reads; then
evaluate assembly quality (e.g., with QUAST) and
deliver the final contig/scaffold FASTA, assembly graph
(GFA), and summary metrics/reports.

Step 1:
toolname: fastp
function: Performs read quality control and adapter/

quality trimming (with optional overlap-based error
correction) on paired-end Illumina FASTQ reads prior to
de novo assembly.

description: fastp is a fast, multithreaded all-in-one
preprocessor for FASTQ reads. It automatically detects
and trims adapters in paired-end data using read
overlap analysis, and supports quality trimming via
sliding-window algorithms, per-read length filtering,
polyG/polyX tail trimming (important for NovaSeq/
NextSeq), and removal of low-complexity sequences. For
paired-end libraries, fastp can perform overlap-based
base correction: when R1 and R2 overlap, base
disagreements are corrected according to quality scores
, reducing random sequencing errors prior to assembly.
It reports comprehensive QC summaries (per-cycle
quality, GC content, duplication rates, adapter content

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

, overrepresented sequences) in both JSON and
interactive HTML formats. Typical applications include
cleaning short-read Illumina WGS data before assembly,
variant calling, or metagenomics. Strengths: very fast,
single-step QC+trimming+reporting, robust adapter
autodetection for PE reads, built-in correction for
overlapped regions. Limitations: error correction is
limited to overlapping regions and is not a full k-mer
based corrector (tools like BFC/Lighter provide deeper
correction if required); overly aggressive trimming/
filtering can reduce effective coverage and fragment
read pairs if parameters are set too stringently. This
tool addresses the first required step of the workflow
(read QC, adapter and quality trimming/filtering,
optional error correction). Its cleaned paired-end
FASTQ outputs are the correct inputs for the downstream
Illumina-focused assembler (e.g., SPAdes/SKESA). The
HTML/JSON QC reports are ancillary; the final assembly
deliverables (FASTA contigs/scaffolds and GFA graph,
plus QUAST metrics) will be produced by later tools.

inputformat: Paired-end FASTQ files (gzipped or plain).
Here: ./input/SRR11874161_1.fastq and ./input/
SRR11874161_2.fastq.

outputformat: Primary: cleaned/truncated paired-end FASTQ
files (e.g., SRR11874161_1.clean.fastq and
SRR11874161_2.clean.fastq), optionally with files for
unpaired reads if enabled. Secondary: a JSON summary (
fastp.json) and an interactive HTML QC report (fastp.
html). Mapping to user requirements: the cleaned FASTQ
files will be used by the assembler to generate the
required final assembly FASTA and GFA; the HTML report
here is read QC (not the final assembly quality report,
which will come later from QUAST).

conference: ['fastp', 'sickle', 'flash', 'rawtools', '
fastplong', 'short_reads_trim_seq', 'chopper', '
trimmomatic', 'bowtie_wrappers', 'rasusa']

toolname: fastp
description: fastp: Read QC, adapter removal, quality

trimming, and optional overlap-based error correction
for Illumina paired-end reads. It auto-detects adapters
, trims low-quality bases, filters poor reads, and can
correct mismatches in overlapping regions. Example:
Takes SRR11874161 R1/R2 FASTQ files and outputs cleaned
paired-end FASTQs plus HTML/JSON QC reports for
downstream assembly with SPAdes/SKESA.

used_reference_tool: True
toolid: 0
selected_input_files: [{'file_name': './input/

SRR11874161_1.fastq', 'file_format': 'FASTQ'}, {'
file_name': './input/SRR11874161_2.fastq', 'file_format
': 'FASTQ'}]

expected_outputs_info: Trimmed/filtered paired-end FASTQ
files (R1 and R2) suitable for assembly; accompanying
QC reports in HTML and JSON summarizing quality metrics
and trimming actions.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

installation_command: conda create -n fastp -c conda-forge
-c bioconda fastp -y && conda activate fastp

setup_command: mkdir -p ./output/fastp/
execution_command: fastp -i ./input/SRR11874161_1.fastq -I

./input/SRR11874161_2.fastq -o ./output/fastp/
SRR11874161_fastp_trimmed_R1.fastq -O ./output/fastp/
SRR11874161_fastp_trimmed_R2.fastq -h ./output/fastp/
SRR11874161_fastp_qc.html -j ./output/fastp/
SRR11874161_fastp_qc.json -c -w 8

2 channel Terms of Service accepted
Channels:
- conda-forge
- bioconda
- defaults
Platform: linux-64
Collecting package metadata (repodata.json): done
Solving environment: done

Package Plan

environment location: ./miniconda3/envs/fastp

added / updated specs:
- fastp

The following NEW packages will be INSTALLED:

_libgcc_mutex conda-forge/linux-64::_libgcc_mutex
-0.1-conda_forge

_openmp_mutex conda-forge/linux-64::_openmp_mutex
-4.5-2_gnu

fastp bioconda/linux-64::fastp-1.0.1-
heae3180_0

isa-l conda-forge/linux-64::isa-l-2.31.1-
hb9d3cd8_1

libdeflate conda-forge/linux-64::libdeflate-1.24-
h86f0d12_0

libgcc conda-forge/linux-64::libgcc-15.1.0-
h767d61c_4

libgomp conda-forge/linux-64::libgomp-15.1.0-
h767d61c_4

libstdcxx conda-forge/linux-64::libstdcxx-15.1.0-
h8f9b012_4

Downloading and Extracting Packages: ...working... done
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
To activate this environment, use
#
$ conda activate fastp
#
To deactivate an active environment, use
#

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

$ conda deactivate

run success

Step 2:
toolname: Unicycler (short-read mode)
function: De novo bacterial genome assembly from the

trimmed Illumina paired-end reads, producing the
primary assembly (FASTA contigs/scaffolds) and an
assembly graph (GFA) for downstream polishing and
evaluation.

description: Unicycler is a bacterial genome assembler
that orchestrates SPAdes to build a de Bruijn graph (
DBG) from short reads and then applies graph-bridging/
simplification strategies guided by paired-end linkage
to resolve repeats and produce high-quality contigs. In
short-read mode, it: (1) runs SPAdes to generate the
assembly graph and initial contigs, (2) constructs a
read-pair connectivity graph to identify reliable paths
through the DBG, (3) performs conservative/normal/bold
graph simplifications to bridge gaps and minimize
fragmentation, and (4) detects and circularizes small
replicons when strongly supported by the read evidence.
Typical applications include bacterial WGS assemblies
from Illumina data, generating outputs suitable for
downstream polishing (e.g., Pilon) and quality
assessment (e.g., QUAST). Strengths: produces both
FASTA and an assembly graph (GFA) that captures contig
connectivity; optimized for bacterial genomes; often
yields fewer fragments than running SPAdes alone due to
graph-bridging logic. Limitations: requires SPAdes (
and Bowtie2 for some internal steps) to be installed;
polishing is limited compared to dedicated polishers (
Pilon/Polypolish) and should be performed in later
workflow steps; performance depends on read quality/
coverage and complex repeats may remain unresolved with
short reads alone.

inputformat: Paired-end Illumina FASTQ reads (gz or
uncompressed). For this workflow: R1=./output/fastp/
SRR11874161_fastp_trimmed_R1.fastq, R2=./output/fastp/
SRR11874161_fastp_trimmed_R2.fastq.

outputformat: Primary outputs: (1) FASTA: assembled genome
contigs/scaffolds (e.g., assembly.fasta), satisfying
the 'FASTA assembled genome contigs/scaffolds'
requirement; (2) GFA: assembly graph linking nodes/
contigs (e.g., assembly.gfa), satisfying the 'GFA
assembly graph' requirement. Additional byproducts:
logs and intermediate graph files useful for
troubleshooting/visualization.

conference: ['unicycler', 'berokka', 'novoplasty', '
trycycler', 'socru', 'hifiasm_meta', 'bionano', '
getorganelle', 'mitobim', 'velvet_optimiser']

toolname: unicycler
description: Unicycler (short-read mode): de novo

bacterial genome assembly. It assembles trimmed
Illumina paired-end reads into high-quality contigs/

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

scaffolds and an assembly graph by running SPAdes and
performing graph-bridging/simplification. Example: from
trimmed SRR11874161 R1/R2 FASTQ files, produce
assembly.fasta and assembly.gfa for downstream
polishing (e.g., Pilon) and evaluation (e.g., QUAST).

used_reference_tool: True
toolid: 0
selected_input_files: [{'file_name': './output/fastp/

SRR11874161_fastp_trimmed_R1.fastq', 'file_format': '
FASTQ'}, {'file_name': './output/fastp/
SRR11874161_fastp_trimmed_R2.fastq', 'file_format': '
FASTQ'}]

expected_outputs_info: FASTA (assembled contigs/scaffolds)
, GFA (assembly graph), TXT/LOG (run log and summaries)
.

installation_command: conda create -n unicycler -c conda-
forge -c bioconda unicycler python=3.11 -y && conda
activate unicycler

setup_command: mkdir -p ./output/unicycler/
execution_command: bash -lc '
set -euo pipefail R1= ./output/fastp/

SRR11874161_fastp_trimmed_R1.fastq
R2= ./output/fastp/SRR11874161_fastp_trimmed_R2.fastq
OUT= ./output/unicycler
SAMPLE = SRR11874161
[-s $R1] && [-s $R2]
for f in \
$OUT/${SAMPLE}_unicycler_assembly.fasta \
$OUT/${SAMPLE}_unicycler_assembly.gfa \
$OUT/${SAMPLE}_unicycler_run.log ; do

if [-e $f]; then echo Error: output already exists:
$f >&2; exit 1; fi

done
for f in $OUT/assembly.fasta $OUT/assembly.gfa $OUT/

unicycler.log ; do
if [-e $f]; then echo Error: Unicycler default output

already exists: $f >&2; exit 1; fi
done
unicycler \
-1 $R1 \
-2 $R2 \
-o $OUT \
-t 8 \
--mode normal
[-s $OUT/assembly.fasta] && [-s $OUT/assembly.gfa]

&& [-s $OUT/unicycler.log]
mv $OUT/assembly.fasta $OUT/${SAMPLE}

_unicycler_assembly.fasta
mv $OUT/assembly.gfa $OUT/${SAMPLE}

_unicycler_assembly.gfa
mv $OUT/unicycler.log $OUT/${SAMPLE}_unicycler_run.log

'

Preparing transaction: done
Verifying transaction: done
Executing transaction: \

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

For Linux 64, Open MPI is built with CUDA awareness but
this support is disabled by default.

To enable it, please set the environment variable
OMPI_MCA_opal_cuda_support=true before

launching your MPI processes. Equivalently, you can set
the MCA parameter in the command line:

mpiexec --mca opal_cuda_support 1 ...

In addition, the UCX support is also built but disabled by
default.

To enable it, first install UCX (conda install -c conda-
forge ucx). Then, set the environment

variables OMPI_MCA_pml = ucx OMPI_MCA_osc = ucx before
launching your MPI processes.

Equivalently, you can set the MCA parameters in the
command line:

mpiexec --mca pml ucx --mca osc ucx ...
Note that you might also need to set UCX_MEMTYPE_CACHE=n

for CUDA awareness via UCX.
Please consult UCX's documentation for detail.

done
#
To activate this environment, use
#
$ conda activate unicycler
#
To deactivate an active environment, use
#
$ conda deactivate

Starting Unicycler (2025-08-29 02:32:26)
Welcome to Unicycler, an assembly pipeline for bacterial

genomes. Since you
provided only short reads, Unicycler will essentially

function as a SPAdes-
optimiser. It will try many k-mer sizes, choose the best

based on contig length
and graph connectivity, and scaffold the graph using

SPAdes repeat resolution.
For more information, please see https://github.com/rrwick

/Unicycler

Command: ./miniconda3/envs/unicycler/bin/unicycler -1 ./
output/fastp/SRR11874161_fastp_trimmed_R1.fastq -2 ./
output/fastp/SRR11874161_fastp_trimmed_R2.fastq -o ./
output/unicycler -t 8 --mode normal

Unicycler version: v0.5.1
Using 8 threads

The output directory already exists:
./output/unicycler

Dependencies:
Program Version Status
spades.py 4.2.0 good

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

racon not used
makeblastdb 2.17.0+ good
tblastn 2.17.0+ good

Choosing k-mer range for assembly (2025-08-29 02:32:28)
Unicycler chooses a k-mer range for SPAdes based on the

length of the input
reads. It uses a wide range of many k-mer sizes to

maximise the chance of
finding an ideal assembly.

SPAdes maximum k-mer: 127
Median read length: 150
K-mer range: 27, 53, 71, 87, 99, 111, 119, 127

SPAdes assemblies (2025-08-29 02:32:29)
Unicycler now uses SPAdes to assemble the short reads. It

scores the
assembly graph for each k-mer using the number of contigs

(fewer is better) and
the number of dead ends (fewer is better). The score

function is 1/(c*(d+2)),
where c is the contig count and d is the dead end count.

spades.py -o ./output/unicycler/spades_assembly -k 27 --
threads 8 --gfa11 --isolate -1 ./output/fastp/
SRR11874161_fastp_trimmed_R1.fastq -2 ./output/fastp/
SRR11874161_fastp_trimmed_R2.fastq -m 1024

spades.py -o ./output/unicycler/spades_assembly -k 27,53
--threads 8 --gfa11 --restart-from k27 -m 1024

spades.py -o ./output/unicycler/spades_assembly -k
27,53,71 --threads 8 --gfa11 --restart-from k53 -m 1024

spades.py -o ./output/unicycler/spades_assembly -k
27,53,71,87 --threads 8 --gfa11 --restart-from k71 -m
1024

spades.py -o ./output/unicycler/spades_assembly -k
27,53,71,87,99 --threads 8 --gfa11 --restart-from k87 -
m 1024

spades.py -o ./output/unicycler/spades_assembly -k
27,53,71,87,99,111 --threads 8 --gfa11 --restart-from
k99 -m 1024

spades.py -o ./output/unicycler/spades_assembly -k
27,53,71,87,99,111,119 --threads 8 --gfa11 --restart-
from k111 -m 1024

spades.py -o ./output/unicycler/spades_assembly -k
27,53,71,87,99,111,119,127 --threads 8 --gfa11 --
restart-from k119 -m 1024

K-mer Contigs Dead ends Score
27 too complex

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

53 894 10 9.32e-05
71 682 12 1.05e-04
87 522 10 1.60e-04
99 456 12 1.57e-04
111 400 13 1.67e-04
119 373 14 1.68e-04
127 351 14 1.78e-04 <-best

Read depth filter: removed 3 contigs totalling 908 bp
Deleting ./output/unicycler/spades_assembly/

Determining graph multiplicity (2025-08-29 02:42:13)
Multiplicity is the number of times a sequence occurs in

the underlying
sequence. Single-copy contigs (those with a multiplicity

of one, occurring only
once in the underlying sequence) are particularly useful.

Saving ./output/unicycler/002_depth_filter.gfa

Cleaning graph (2025-08-29 02:42:13)
Unicycler now performs various cleaning procedures on the

graph to remove
overlaps and simplify the graph structure. The end result

is a graph ready for
bridging.

Graph overlaps removed

Removed zero-length segments:
225, 227, 229, 233, 234, 235, 244, 245, 249, 253, 265,

267, 272, 273, 274,
284, 290, 292, 297, 305, 315, 325, 345

Removed zero-length segments:
223, 346

Removed zero-length segments:
343

Merged small segments:
324, 327, 329, 330, 332, 334, 335, 337, 338, 340, 341,

342, 344, 347, 348,
350

Saving ./output/unicycler/003_overlaps_removed.gfa

Unicycler now selects a set of anchor contigs from the
single-copy contigs.

These are the contigs which will be connected via bridges
to form the final

assembly.

73 anchor segments (4,877,761 bp) out of 309 total
segments (4,928,537 bp)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Creating SPAdes contig bridges (2025-08-29 02:42:14)
SPAdes uses paired-end information to perform repeat

resolution (RR) and
produce contigs from the assembly graph. SPAdes saves the

graph paths
corresponding to these contigs in the contigs.paths file.

When one of these
paths contains two or more anchor contigs, Unicycler can

create a bridge from
the path.

Bridge
Start

Path

End quality
-60

-199

62 63.1
-54

131

57 62.2
-47 -196 -> -265 -> 128 -> -113 -> 165 -> -228 -> 173 ->

174 -> -168 -> 76 -> -188 -> -281 -> -153 -> 96 ->
-204 65 10.3

-46 183 -> 297 -> -120 -> 222 -> -203 ->
-162 -> 181 -> 298 -> 130 -> 226 -> -171

73 16.2
-14 -205 -> -250 ->

180 -> -284 -> -182
71 34.5

-7 225 ->
-195 -> 209

68
37.3

3 158 ->
-81 -> -161

22
18.8

12 -109 -> 286 ->
-135 -> 300 -> 116

-45 24.3
26 161 ->

80 -> -158
-46

18.8
33 122 ->

-98 -> -154
-69

16.3
35

193

-54 62.4
38 -202 ->

110 -> -202

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

-52
26.1

40 -116 -> 302 ->
135 -> 280 -> 109

61 24.2
43 273 -> 122 -> 231 -> -121

-> -251 -> 180 -> 290 -> -182
66 19.3

44
-171

-64 63.2
47 -166 ->

103 -> -157
50

26.6
48 200 -> -104 -> -137 -> 219 -> 201 ->

-178 -> -198 -> 117 -> 138 -> 256 -> 186
-56 12.8

50 273 -> 122 -> 231 -> 160 -> -205
-> -251 -> 180 -> -284 -> 260 -> -154

55 21.7
53

140

70 62.1
55 -130 -> 304 -> -181 -> -163 ->

203 -> 221 -> 120 -> 301 -> -183
10 20.3

57
199

56 62.0
60 -186 -> -255 -> -138 -> 118 -> 198 ->

177 -> -201 -> -220 -> 137 -> -105 -> -200
42 14.7

62
194

-65 61.5
66 115 -> -291 -> -172 -> -187 -> -229 ->

285 -> 185 -> -233 -> 167 -> 303 -> 134
64 16.3

70 206 -> 176
-> -119 -> -215

31
31.0

Creating loop unrolling bridges (2025-08-29 02:42:14)
When a SPAdes contig path connects an anchor contig with

the middle contig
of a simple loop, Unicycler concludes that the sequences

are contiguous (i.e.
the loop is not a separate piece of DNA). It then uses the

read depth of the
middle and repeat contigs to guess the number of times to

traverse the loop and
makes a bridge.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Loop count Loop count Loop Bridge
Start Repeat Middle End by repeat by middle

count quality
38 -202 110 -52 0.51 0.88

1 39.4

Applying bridges (2025-08-29 02:42:14)
Unicycler now applies to the graph in decreasing order of

quality. This
ensures that when multiple, contradictory bridges exist,

the most supported
option is used.

Bridge type Start -> end Path
Quality

SPAdes 44 -> -64 -171
63.246

SPAdes -60 -> 62 -199
63.076

SPAdes 35 -> -54 193
62.400

SPAdes -54 -> 57 131
62.184

SPAdes 53 -> 70 140
62.119

SPAdes 57 -> 56 199
61.983

SPAdes 62 -> -65 194
61.468

SPAdes -7 -> 68 225, -195, 209
37.263

SPAdes -14 -> 71 -205, -250, 180, -284, -182
34.518

SPAdes 70 -> 31 206, 176, -119, -215
30.961

SPAdes 47 -> 50 -166, 103, -157
26.582

SPAdes 38 -> -52 -202, 110, -202
26.068

SPAdes 12 -> -45 -109, 286, -135, 300, 116
24.336

SPAdes 40 -> 61 -116, 302, 135, 280, 109
24.162

SPAdes 50 -> 55 273, 122, 231, 160, -205,
-251, 180, 21.712

-284, 260, -154
SPAdes 55 -> 10 -130, 304, -181, -163, 203,

221, 120, 20.315
301, -183
SPAdes 43 -> 66 273, 122, 231, -121, -251,

180, 290, 19.307
-182
SPAdes 3 -> 22 158, -81, -161

18.808
SPAdes 26 -> -46 161, 80, -158

18.802

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

SPAdes 33 -> -69 122, -98, -154
16.337

SPAdes 66 -> 64 115, -291, -172, -187, -229,
285, 185, 16.315

-233, 167, 303, 134
SPAdes -46 -> 73 183, 297, -120, 222, -203,

-162, 181, 16.239
298, 130, 226, -171
SPAdes 60 -> 42 -186, -255, -138, 118, 198,

177, -201, 14.735
-220, 137, -105, -200
SPAdes 48 -> -56 200, -104, -137, 219, 201,

-178, -198, 12.791
117, 138, 256, 186
SPAdes -47 -> 65 -196, -265, 128, -113, 165,

-228, 173, 10.287
174, -168, 76, -188, -281, -153, 96,
-204

Saving ./output/unicycler/004_bridges_applied.gfa

Bridged assembly graph (2025-08-29 02:42:14)
The assembly is now mostly finished and no more structural

changes will be
made. Ideally the assembly graph should now have one

contig per replicon and no
erroneous contigs (i.e. a complete assembly). If there are

more contigs, then
the assembly is not complete.

Saving ./output/unicycler/005_final_clean.gfa

Component Segments Links Length N50
Longest segment Status

total 178 240 4,938,037 156,616
617,816

1 155 209 4,670,836 157,869
617,816 incomplete

2 22 31 214,554 60,464
91,038 incomplete

3 1 0 52,647 52,647
52,647 incomplete

Assembly complete (2025-08-29 02:42:14)
Saving ./output/unicycler/assembly.gfa
Saving ./output/unicycler/assembly.fasta
run success

Step 3:
toolname: QUAST
function: Reference-free (or reference-guided) assembly

quality assessment to generate comprehensive assembly
statistics and an interactive HTML report.

description: QUAST (Quality Assessment Tool for Genome
Assemblies) evaluates draft genome assemblies by
computing contiguity, size, and composition metrics and
, when a reference is provided, alignment-based

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

misassembly statistics. Core methods include: (1)
reference-free statistics (N50/L50, NG50 if genome size
is known, total length, largest contig, number of
contigs above thresholds, GC%, ambiguous bases,
duplication, and k-mer-based composition summaries),
and (2) reference-guided evaluation via fast whole-
genome alignments (MUMmer/NUCmer) to report
misassemblies, relocations/inversions, indels, and
genome fraction. QUAST can optionally map reads back to
the assembly using standard short-read aligners (e.g.,
Bowtie2/BWA, invoked internally) to compute coverage
and support-based metrics. Strengths: widely used for
bacterial assemblies, produces both machine-readable
TSVs and an interactive HTML report with plots;
supports multiple assemblies for side-by-side
comparison. Limitations: without a suitable reference,
misassembly detection is limited to read/coverage-based
cues and general contiguity metrics; interpretation of
metrics requires context (e.g., expected genome size).
For this workflow, QUAST will take the Unicycler
contig FASTA and produce the required TSV statistics
and an HTML evaluation report, complementing the
existing FASTA/GFA outputs.

inputformat: Required: Assembled genome in FASTA (e.g., ./
output/unicycler/SRR11874161_unicycler_assembly.fasta).
Optional: paired-end FASTQ reads for coverage-based
metrics (e.g., ./output/fastp/
SRR11874161_fastp_trimmed_R1.fastq and ..._R2.fastq).
Optional: reference genome FASTA for alignment-based
misassembly analysis.

outputformat: HTML: interactive assembly quality report (
plots and summaries); TSV: assembly statistics (e.g.,
report.tsv with N50, L50, total length, GC%, number of
contigs, largest contig), plus additional tab-delimited
detail files (e.g., misassemblies.tsv when reference
provided). These fulfill the required QC/assembly
evaluation reports (HTML) and assembly metrics (TSV).

conference: ['MetaQUAST', 'quast', 'assembly-stats', '
merqury', 'compleasm', 'genomescope', 'jellyfish', '
cami_amber', 'art', 'velvet']

toolname: quast
description: QUAST: assembly quality assessment. Computes

contiguity and composition metrics (e.g., total length,
N50/L50, largest contig, GC%, number of contigs >
thresholds) and generates an interactive HTML report
and tabular summaries. Example: given the Unicycler
contig FASTA from SRR11874161, QUAST produces reference
-free assembly statistics and plots for review.

used_reference_tool: True
toolid: 1
selected_input_files: [{'file_name': './output/unicycler/

SRR11874161_unicycler_assembly.fasta', 'file_format': '
FASTA'}]

expected_outputs_info: A results directory containing:
HTML report (interactive summary), TSV/TSV tables (e.g
., report.tsv with N50, L50, total length, GC%, contig
counts), plain-text summaries (report.txt), and figure

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

files (PNG/PDF) for cumulative length and NG/N50 plots.
No reference provided, so outputs are reference-free
metrics only.

installation_command: conda create -n quast -c conda-forge
-c bioconda quast python=3.11 -y && conda activate
quast

setup_command: mkdir -p ./output/quast/
execution_command: bash -lc '
set -euo pipefail
ASM= ./output/unicycler/SRR11874161_unicycler_assembly.

fasta
OUT= ./output/quast
SAMPLE = SRR11874161
[-s $ASM]
for f in \
$OUT/${SAMPLE}_quast_report.html \
$OUT/${SAMPLE}_quast_metrics.tsv \
$OUT/${SAMPLE}_quast_summary.txt \
$OUT/${SAMPLE}_quast_report.pdf \
$OUT/${SAMPLE}_quast_metrics_transposed.tsv \
$OUT/${SAMPLE}_quast_Nx_plot.pdf \
$OUT/${SAMPLE}_quast_NGx_plot.pdf \
$OUT/${SAMPLE}_quast_cumulative_plot.pdf \
$OUT/${SAMPLE}_quast_Nx_plot.png \
$OUT/${SAMPLE}_quast_NGx_plot.png \
$OUT/${SAMPLE}_quast_cumulative_plot.png ; do

if [-e $f]; then echo Error: output already exists:
$f >&2; exit 1; fi

done
quast.py \
--threads 8 \
--min-contig 200 \
--output-dir $OUT \
$ASM

[-s $OUT/report.html] && mv $OUT/report.html $OUT/$
{SAMPLE}_quast_report.html

[-s $OUT/report.tsv] && cp $OUT/report.tsv $OUT/$
{SAMPLE}_quast_metrics.tsv

[-s $OUT/report.txt] && cp $OUT/report.txt $OUT/$
{SAMPLE}_quast_summary.txt

if [-s $OUT/report.pdf]; then cp $OUT/report.pdf
$OUT/${SAMPLE}_quast_report.pdf ; fi

if [-s $OUT/transposed_report.tsv]; then cp $OUT/
transposed_report.tsv $OUT/${SAMPLE}
_quast_metrics_transposed.tsv ; fi

for ext in pdf png; do
[-f $OUT/plots_${ext}/Nx_plot.${ext }] && cp $OUT/

plots_${ext}/Nx_plot.${ext } $OUT/${SAMPLE}
_quast_Nx_plot.${ext } || true

[-f $OUT/plots_${ext}/NGx_plot.${ext }] && cp $OUT/
plots_${ext}/NGx_plot.${ext } $OUT/${SAMPLE}
_quast_NGx_plot.${ext } || true

[-f $OUT/plots_${ext}/cumulative_plot.${ext }] && cp
$OUT/plots_${ext}/cumulative_plot.${ext } $OUT/${
SAMPLE}_quast_cumulative_plot.${ext } || true

done
'
2025-08-29 02:57:06

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Creating large visual summaries...
This may take a while: press Ctrl-C to skip this step..
1 of 2: Creating PDF with all tables and plots...
2 of 2: Creating Icarus viewers...
Done

2025-08-29 02:57:06
RESULTS:
Text versions of total report are saved to ./output/quast/

report.txt, report.tsv, and report.tex
Text versions of transposed total report are saved to ./

output/quast/transposed_report.txt, transposed_report.
tsv, and transposed_report.tex

HTML version (interactive tables and plots) is saved to ./
output/quast/report.html

PDF version (tables and plots) is saved to ./output/quast/
report.pdf

Icarus (contig browser) is saved to ./output/quast/icarus.
html

Log is saved to ./output/quast/quast.log

Finished: 2025-08-29 02:57:06
Elapsed time: 0:00:01.509758
NOTICEs: 1; WARNINGs: 0; non-fatal ERRORs: 0

Thank you for using QUAST!

run success

Step 4:
toolname: Bowtie2
function: Map the trimmed Illumina paired-end reads back

to the Unicycler assembly to generate high-quality read
-to-contig alignments required for assembly polishing (
e.g., with Pilon) and for downstream coverage/mapping
QC.

description: Bowtie2 is a fast, memory-efficient gapped
short-read aligner based on the Transform and a seed-
and-extend strategy. It is widely used to align
Illumina paired-end reads to a reference, supporting
local or end-to-end alignment modes with quality-aware
scoring and handling of small indels. In bacterial de
novo assembly workflows, Bowtie2 is the standard choice
to map cleaned reads back to assembled contigs,
producing the alignments that polishing tools (e.g.,
Pilon, POLCA) use to detect and correct residual SNP/
indel errors and small misassemblies. It also enables
coverage assessment and mapping statistics for
contamination checks and assembly evaluation. Strengths
: very fast and accurate for short reads, robust paired
-end handling, and good default presets (e.g., --very-
sensitive-local) for polishing. Limitations: not
designed for long reads; highly repetitive regions can
yield multi-mapping reads; large structural variations
are not its focus. Typical usage: build an index from
the Unicycler FASTA (bowtie2-build), align paired-end
trimmed reads (bowtie2 --very-sensitive-local -x index
-1 R1.fastq -2 R2.fastq -S out.sam), then convert/sort/

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

index with SAMtools to produce a coordinate-sorted BAM
for input to a polisher like Pilon. This step directly
addresses the current gap in the workflow (no read-to-
assembly alignments yet), enabling the polishing step
that will produce a higher-quality final FASTA.

inputformat: - Reference: FASTA assembly from Unicycler (e
.g., ./output/unicycler/SRR11874161_unicycler_assembly.
fasta)

- Reads: Paired-end trimmed FASTQ from fastp (e.g., ./
output/fastp/SRR11874161_fastp_trimmed_R1.fastq and ./
output/fastp/SRR11874161_fastp_trimmed_R2.fastq)

- Optional: unpaired reads (FASTQ) if present
outputformat: - Primary: SAM file containing read-to-

contig alignments (convertible to BAM/CRAM via SAMtools
)

- Downstream (recommended): coordinate-sorted, indexed BAM
(BAM + BAI) for polishing with Pilon

- Mapping statistics (stderr/log) that can inform coverage
-based QC and contamination checks

Mapping to user's final outputs: while Bowtie2 produces
intermediate alignment files (SAM/BAM) rather than the
final FASTA/GFA/HTML/TSV deliverables, these alignments
are necessary to run a polisher (e.g., Pilon) that
will improve the final FASTA assembly quality and
support comprehensive QC.

conference: ['bowtie2','racon', 'bowtie_wrappers', 'pilon
', 'necat', 'ngmlr', 'minimap2', 'rasusa', 'sickle', '
colibread']

toolname: Bowtie2
description: Function: Map trimmed Illumina paired-end

reads back to the Unicycler assembly to generate high-
quality read-to-contig alignments for polishing and
coverage QC. What it does: Builds an index from the
assembly FASTA and aligns paired reads, producing a SAM
alignment file suitable for conversion to sorted BAM
for tools like Pilon. Example: bowtie2-build
SRR11874161_unicycler_assembly.fasta idx; bowtie2 --
very-sensitive-local -x idx -1
SRR11874161_fastp_trimmed_R1.fastq -2
SRR11874161_fastp_trimmed_R2.fastq -S
SRR11874161_vs_assembly.sam

used_reference_tool: True
toolid: 0
selected_input_files: [{'file_name': './output/unicycler/

SRR11874161_unicycler_assembly.fasta', 'file_format': '
FASTA'}, {'file_name': './output/fastp/
SRR11874161_fastp_trimmed_R1.fastq', 'file_format': '
FASTQ'}, {'file_name': './output/fastp/
SRR11874161_fastp_trimmed_R2.fastq', 'file_format': '
FASTQ'}]

expected_outputs_info: Primary: SAM file of read-to-
assembly alignments. Typically followed by samtools to
produce a coordinate-sorted BAM (BAM + BAI) for
polishing (e.g., Pilon) and coverage/mapping QC.

Returning block of 716588 for bucket 7
Exited Ebwt loop

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

fchr[A]: 0
fchr[C]: 1218875
fchr[G]: 2468300
fchr[T]: 3712787
fchr[$]: 4936436
Exiting Ebwt::buildToDisk()
Returning from initFromVector
Wrote 5845162 bytes to primary EBWT file: ./output/Bowtie2

/SRR11874161_Bowtie2_index.rev.1.bt2.tmp
Wrote 1234116 bytes to secondary EBWT file: ./output/

Bowtie2/SRR11874161_Bowtie2_index.rev.2.bt2.tmp
Re-opening _in1 and _in2 as input streams
Returning from Ebwt constructor
Headers:
len: 4936436
bwtLen: 4936437
sz: 1234109
bwtSz: 1234110
lineRate: 6
offRate: 4
offMask: 0xfffffff0
ftabChars: 10
eftabLen: 20
eftabSz: 80
ftabLen: 1048577
ftabSz: 4194308
offsLen: 308528
offsSz: 1234112
lineSz: 64
sideSz: 64
sideBwtSz: 48
sideBwtLen: 192
numSides: 25711
numLines: 25711
ebwtTotLen: 1645504
ebwtTotSz: 1645504
color: 0
reverse: 1
Total time for backward call to driver() for mirror index:

00:00:02

run success

45

	Introduction
	Related Work
	Methodology
	Overall Architecture
	Auxiliary components
	Embedding
	file system interface

	Experiments
	Datasets
	Evaluation Framework
	Evaluation Metrics
	Small-Scale Dataset Validation
	Large-scale Dataset Validation
	Cost-Effectiveness Analysis
	Ablation Study

	Conclusion
	Prompt Templates
	Analyzing Agent
	Planning Agent
	Selecting Agent
	Generating & Executing Agent
	Debugging Agent
	Judging Agent
	Prompt Templates for Auxiliary components
	Prompt Templates for dataset
	Prompt Templates for LLM Evaluation

	Main Algorithm
	Dataset
	Small Dataset
	workflow data processing
	Large Dataset

	Experimental setup
	multi-positive contrastive loss
	Detail SAR Formula
	Score Criteria
	Baselines
	Detailed results on the Small Dataset
	Time consumption comparison
	Formula for Effective Cost Per Success (ECPS)
	Detailed Findings for Ablation Studies

	Case Study
	Environment and Dependency Conflicts
	File Path and I/O Errors
	Tool Parameter Misconfiguration
	Logical Flaws in Workflow Design

	Running instance

