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Abstract

Tabular data imputation algorithms allow to estimate missing values and use1

incomplete numerical datasets. Current imputation methods minimize the error2

between the unobserved ground truth and the imputed values. We show that this3

strategy has major drawbacks in the presence of multimodal distributions, and4

we propose to use a qualitative approach rather than the actual quantitative one.5

We introduce the kNNxKDE algorithm: a hybrid method using chosen neighbors6

(kNN) for conditional density estimation (KDE) tailored for data imputation. We7

qualitatively and quantitatively show that our method preserves the original data8

structure when performing imputation. This work advocates for a careful and9

reasonable use of statistics and machine learning models by data practitioners.10

1 Introduction11

Big data is often referred to as the "gold of the 21st century". But with ubiquitous large databases,12

missing data are a pervasive problem. They can introduce a bias, lead to wrong conclusions, or even13

prevent from using data analysis tools that require complete datasets.14

To mitigate this issue, data imputation algorithms have been developed. From the straightforward15

mean/mode imputation to recent artificial neural networks (ANN) models, a wide range of tools16

are available to impute incomplete datasets. This study focuses on tabular datasets, i.e. numerical17

data arranged in rows and columns in a form of a matrix. For tabular datasets, recent benchmarks18

argue that complex imputation methods do not perform better than simple traditional algorithms19

[Bertsimas et al., 2018, Poulos and Valle, 2018, Jadhav et al., 2019, Woznica and Biecek, 2020, Jäger20

et al., 2021]. In particular, the consensus is that the kNN-Imputer [Troyanskaya et al., 2001] and21

MissForest [Stekhoven and Bühlmann, 2012], in spite of being traditional and simple algorithms,22

generally perform better over a large range of datasets in various missing data scenarios.23

Data may be missing because it was not recorded, the record has been lost, degraded, or the data may24

also be censored. Missing data scenarios are usually classified into three types [Little and Rubin,25

2014]: missing completely at random (MCAR), missing at random (MAR) and missing not at random26

(MNAR). In MCAR the missing data mechanism is assumed independent of the dataset. In MAR,27

the missing data mechanism is assumed to only dependent on the observed variables. The MNAR28

scenario encompasses all other possible scenarios: the reason why data is missing may depend on the29

missing value itself. Most comparisons focus on the MCAR scenario.30

Tabular data imputation methods have always been evaluated using the RMSE between the estimated31

value and the ground truth. The higher the mean RMSE, the poorest the imputation method. This32

approach is of course intuitive, but is too restrictive for multimodal datasets: it assumes that for a set33

of observed variables, there exists only a unique answer to recover. For multimodal datasets, density34

estimation methods like the familiar Kernel Density Estimation (KDE) [Rosenblatt, 1956, Parzen,35

1962], appear of interest for data imputation. But despite some attempts [Titterington and Mill, 1983,36
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Leibrandt and Günnemann, 2018], density estimation methods do not handle well observations with37

missing values.38

In this paper, we propose to step back and look at simple datasets to demonstrate that current39

approaches for data imputation have serious shortcomings. To tackle them, we introduce a local40

density estimator tailored for data imputation. By leveraging the convenient properties of the kNN-41

Imputer and KDE, we develop kNNxKDE: a simple yet efficient algorithm for stochastic local data42

imputation. We visually show that our method performs better than standard methods, and evaluate43

the performances using the likelihood when available. We provide the code and the data used in44

this work for reproducibility. Interested readers may experiment with the hyperparameters of our45

algorithm.46

2 Current methods perform poorly for multimodal dataset47

This section demonstrates that conventional data imputation methods provide poor imputation with48

basic multimodal datasets. For this purpose, we generate three simple two-dimensional datasets and49

visually assess the imputation performances of four standard methods.50

2.1 Three simple datasets51

The first dataset is a bijection. x1 is sampled from a mollified uniform distribution on [0, 1] with52

standard deviation σ = 0.05. Then x2 = x1 + ε, where ε ∼ N(0, 0.1).53

The second dataset is a surjection, using a sine wave: x1 = 4πu, where u is sampled from a mollified54

distribution on [0, 1] with standard deviation σ = 0.05. Then x2 = sinx1 + ε, where ε ∼ N(0, 0.2).55

The surjection allows to show that most imputation algorithms perform well in the unambiguous case56

(when x2 is missing), but not with multimodal distributions (when x1 is missing).57

Finally, Dataset 3 displays a ring. It has been generated in polar coordinates: θ ∼ U [0, 2π] and58

r = 1.0 + ε, where ε ∼ N(0, 0.1). Euclidean coordinates are x1 = r cos θ and x2 = r sin θ.59

All three datasets have N = 500 observations and are plotted in Figure 1. The code used for60

generation and the datasets themselves are provided in supplementary materials. We have used a61

mollified uniform distribution for x1 in Datasets 1 and 2 to prevent from zero likelihood computation62

problems at the edges of the uniform distribution.63
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Figure 1: Three basic synthetic datasets with N = 500 observations. Dataset 1 is a bijection, Dataset
2 is a surjection, and Dataset 3 uses polar coordinates (not a function in the euclidean space).

2.2 Four standard data imputation methods64

Here, we present the four data imputation methods used in this work: the kNN-Imputer, MissForest,65

MICE and GAIN. This choice is of course arbitrary, but illustrates well the current state of affairs66

regarding tabular data imputation [Bertsimas et al., 2018, Poulos and Valle, 2018, Yoon et al., 2018,67

Jadhav et al., 2019, Woznica and Biecek, 2020, Jäger et al., 2021]68

• The kNN-Imputer [Troyanskaya et al., 2001] computes distances between pairs of obser-69

vations using a Euclidean distance that can handle missing values (called nan-Euclidean70
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distance). It imputes missing values by looking at one column at a time and averaging over71

the k nearest neighbors that have an observed value for that column. Therefore, different72

neighbors can be used to impute two missing entries in the same observation. One needs to73

tune the hyperparameter k for the number of neighbors. The scientific consensus puts the74

kNN-Imputer often on par with MissForest as for the best tabular data imputation method.75

• MissForest [Stekhoven and Bühlmann, 2012] is an iterative imputation algorithm. It begins76

by filling all missing values with initial estimates (e.g. the column mean), and then loops77

through all columns, one at a time, performing a regression of that specific column onto all78

other columns using Random Forests. It stops when the imputed dataset is stable enough79

(following a user-defined threshold). The number of trees has to be tuned. MissForest has80

shown great flexibility and successful data imputation results.81

• MICE stands for Multiple Imputation Chained Equations [van Buuren and Groothuis-82

Oudshoorn, 2011]. Similar to MissForest, it is an iterative imputation algorithm that uses83

a regressor (linear regressions for MICE) to predict each column successively after filling84

all missing entries with initial guesses. This algorithm has no hyperparameter to optimize.85

MICE has shown good imputation results and is appreciated for its simplicity and absence86

of hyperparameter tuning, but it fails at capturing non-linear dependencies.87

• Finally, GAIN is a GAN neural network tailored for tabular data imputation which claims88

state-of-the-art imputation results [Yoon et al., 2018]. GAIN smartly revisits the GAN89

architecture by working with individual cells rather than whole observations. It has benefited90

from a lot of attention for tabular data imputation. However, recent benchmarks show91

that its performances are mediocre in practice [Jäger et al., 2021]. GAIN has several92

hyperparameters to tune: batch size, hint rate (amount of correct labels provided to the93

discriminator), number of training iterations, and weight parameter α for the generator loss94

(balances RMSE loss for the observed cells and adversarial loss for the generated cells). We95

decide to follow the authors’ recommendations and fix: batch size Nbatch = 128, hint rate96

rh = 0.9 and α = 100. We only optimize the number of iterations.97

2.3 Imputation results98

We introduce missing values for each dataset in a MCAR scenario with 20% missing rate. If an99

observation has both features removed, we repeat the process until at least one feature is present.100

After missing values have by injected, we normalize the dataset in the range [0, 1] using the minimum101

and maximum value of each feature.102

For each data imputation algorithm and for each dataset, we perform a grid search of the hyperparam-
eter than best minimizes the normalized RMSE (NRMSE):

NRMSE =

√√√√ 1

Nmiss

n∑
i=1

d∑
j=1

(xij − x̂ij)2mij

where mij = 1 if cell (i, j) is missing (mij = 0 otherwise) and Nmiss =
∑n

i=1

∑d
j=1 mij is the103

total number of missing entries in the dataset. The best hyperparameters, presented in Table 1, are104

used to impute each dataset one more time. The optimized imputation results are plotted in Figure 2.105

Table 1: Hyperparameter search results for each imputation method and dataset

Data imputation method

kNN-Imputer MissForest MICE GAIN

Dataset 1 k = 30 neighbors Ntrees = 10 X Niter = 500
Dataset 2 k = 30 neighbors Ntrees = 30 X Niter = 200
Dataset 3 k = 75 neighbors Ntrees = 30 X Niter = 100

We believe that Figure 2 provides meaningful insight regarding the current state of tabular data106

imputation. The scientific consensus is that the kNN-Imputer and MissForest provide overall better107

data imputation quality, which is somewhat recovered here. MICE uses linear regression between108

features and cannot capture non-linear dependencies. Despite its flexible architecture, GAIN do not109

recover missing values, even for Dataset 1. GAIN is hard to train properly.110
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Figure 2: Imputation results for the three synthetic datasets by the four selected imputation methods
with optimized hyperparameters. Blue dots correspond to complete observations, orange dots have
observed x2 but imputed x1, and red dots have observed x1 but imputed x2. The kNN-Imputer,
MissForest and MICE perform well on Dataset 1. The kNN-Imputer and MissForest can impute x2

for Dataset 2, but they cannot impute x1. No method can properly impute Dataset 3. GAIN provides
the worst imputation results and cannot even impute Dataset 1.

Both the kNN-Imputer and MissForest average over several predictions. This is why the imputation111

of x1 in Dataset 2 lies between the two sine waves, and imputations for both x1 and x2 in Dataset112

3 are inside the ring. While averaging over several predictions often lead to better estimates, this113

strategy deteriorates the imputation quality if the missing value distribution is not unimodal.114

MICE performs imputation by assuming linear dependency between features in the dataset. It is115

therefore no surprise if MICE can very well impute Dataset 1 but fails at imputing Dataset 2 and116

Dataset 3. Once the MICE algorithm has converged, the imputed orange and red dots follow almost117

perfectly the center of mass of all points in the dataset.118

GAIN provides surprisingly disappointing imputation results. While ANNs are flexible models, the119

generator and the discriminator of GAIN fail to capture the non-linear relationship between x1 and120

x2 in all three datasets. Because of its innovative and complex framework, GAIN suffers from a121

complicated training process, which leads to bad imputation results. We have tried to train GAIN122

several times with various hyperparameters, but always end up with similar imputation quality.123

3 kNNxKDE124

To address the issues presented in Section 2, we propose a local stochastic imputer using kernel125

density estimation with Gaussian kernels. We adapt the KDE algorithm to missing data settings: only126

the conditional density of missing features given the observed features is estimated.127

We use a methodology analogous to the kNN-Imputer to look for neighbors, but we work with128

missing patterns instead of working column by column. The reason of this choice is that working129

with one column at a time may lead to incoherent imputations as the selected neighbors for different130
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columns are different. Therefore, some imputed observations may be incompatible with the dataset131

structure. For a dataset with D columns, we have up to 2D − 2 possible missing patterns. Indeed,132

each cell may either be missing or not (hence 2D choices) but we do not account for complete cases133

(nothing to impute) and completely unobserved cases (without even an observed cell).134

For each pair of observations in the normalized dataset, we compute the distance dij using the
nan-Euclidean distance [Dixon, 1979]:

dij =

√
D

|Dobs|
∑

k∈Dobs

(xik − xjk)2

where D is the total number of columns in the dataset, Dobs = {k ∈ J1, DK | mik = mjk = 1} is
the set of indices for commonly observed features in observations i and j and |Dobs| is its cardinality.
These pairwise distances are then passed to a softmax function in order to define probabilities:

pij =
e−τdij∑
j e

−τdij

We use the "soft" version of the kNN algorithm, and introduce the temperature hyperparameter τ .135

Instead of selecting a fixed number of neighbors per observation, we use a neighborhood where136

nearest neighbors have stronger weights. In a similar fashion as Frosst et al. [2019], the notion of137

temperature controls the tightness of each observation’s neighborhood.138

Given a missing pattern, we first select all data to impute and potential donors. Data to impute is139

the subset of data which has the current missing pattern, and potential donors are the subset of data140

where at least all columns in the current missing pattern are observed. For an incomplete observation141

i in the subset of data to impute, pij is the probability of choosing observation j from the subset of142

potential donors. We have
∑

j pij = 1. Algorithm 1 shows the pseudo-code of the kNNxKDE.143

The kNNxKDE has three hyper-
parameters. The temperature τ
for the softmax probabilities, the
(shared) standard deviation h of
the Gaussian kernels, and the num-
ber Ndraws of total sampled neigh-
bors. The temperature τ controls
the breadth of the selected neigh-
borhood. The standard deviation
h corresponds to the width of the
Gaussian kernels. The effects of τ
and h are discussed in Section 4.
The last hyperparameter is the num-
ber Ndraws of imputation samples
to be returned. It determines the
resolution of the estimated density.
Besides the obvious computational
resources, there are no drawbacks
to setting a high number of imputa-
tion samples Ndraws.

Algorithm 1: Pseudo-code for the kNNxKDE
Data: The incomplete dataset X
min/max normalization;
for each missing pattern do

Ximp ← data_to_impute;
Xdon ← potential_donors;
dij ← nanEuclDist (Ximp, Xdon);
if dij is NaN then

dij ←∞;
end
pij ← softmax (−τdij);
for each row in Ximp do

r ← sample Ndraws indices in Xdon with prob pij ;
e← sample Ndraws from e ∼ N (0, h);
imputation_samples← Xdon[r] + e;

end
end
min/max renormalization;
Return: imputations_samples

144

4 Results on synthetic datasets145

In Subsection 4.1, we show the performances of the kNNxKDE on the three artificial datasets and we146

discuss the effect of the hyperparameters τ and h. In Subsection 4.2, we use the log-likelihood of the147

imputed sample as an attempt to quantify imputation quality. We show that, for multimodal datasets,148

using the likelihood is more appropriate than the RMSE. All experiments use the MCAR setting to149

artificially introduce missing data with 20% missing rate.150
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4.1 Qualitative evaluation of the kNNxKDE algorithm151

We show that the proposed method provides imputation samples that preserve the structure of the152

original dataset. For now, we fix the hyperparameters of the kNNxKDE at their default values:153

h = 0.03, τ = 50.0 and Ndraws = 10000. Figure 3 shows the imputation with a sub-sampling154

size Nss = 10. The sub-sampling size is only used to show the variability in the imputation results155

by sampling several times. If x1 is missing, we sample Nss possible values given x2 (the orange156

horizontal trails of dots), and if x2 is missing, we draw Nss possible estimates given x1 (the red157

vertical trails of dots).158
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Figure 3: Several imputation results from the kNNxKDE algorithm. Each missing entry has been
imputed Nss = 10 times to show the variability of the estimates. The imputed values match with the
structure of the observed data (larger blue dots).

Another way to visualize the distribution of the conditional distribution for each missing value159

is to look at the univariate density provided by the kNNxKDE algorithm. For each dataset, we160

have selected two observations: one with missing x1 and one with missing x2. Figure 4 shows six161

univariate densities returned by the kNNxKDE algorithm with default hyperparameters values. In the162

upper left corner of each panel, the observed value is shown for reference. On each panel, a thick163

dashed line indicates the (unknown) ground truth. We see that the ground truth always falls in one of164

the modes of the estimated imputation density.165
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Figure 4: Example of conditional density distributions from the kNNxKDE algorithm with default
hyperparameter values. Each histogram has Ndraws = 10000 samples. Thick dashed lines correspond
to the (unobserved) ground truth and the observed value is in the upper-left corner.

For Dataset 2, when x1 is missing (upper middle panel of Figure 4), the kNNxKDE returns a166

multimodal distribution. Indeed, given the observed x2 = −0.88, three separate ranges of values167

could correspond to the missing x1. Similarly, Dataset 3 shows bimodal distributions both for x1 or168

x2, corresponding to the two possible ranges of values allowed by the ring structure.169

We now focus on Dataset 2 to experiment with the hyperparameters h and τ . Figure 5 shows how the170

imputation quality changes when we vary the softmax temperature τ , and the effects of the Gaussian171

kernel bandwidth h are shown in Figure 6.172
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Figure 5: Evolution of the imputation quality as the softmax temperature τ varies. The Gaussian
kernel bandwidth is fixed at h=0.03. We see that if τ is too low, the imputation has a large variance.
If τ is too high, the imputation could be biased.

The value of the softmax temperature τ plays an important role in the data imputation quality, as can173

be seen in Figure 5. Recall that τ constrains the neighborhood range for each observation. The lower174

τ , the looser the neighborhood, and irrelevant observations could be sampled. This results in a large175

scatter (leftmost panel). Conversely, the higher τ , the tighter the neighborhood. Missing values will176

be imputed using very few other observations and multimodality can be overlooked. This can be seen177

on the rightmost panel, where the sampling variability is only due to the Gaussian kernel bandwidth.178

Tuning τ means finding a good balance in the bias/variance tradeoff.179
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Figure 6: Change in the imputation quality when the Gaussian kernel bandwidth h varies. The
softmax temperature is fixed at τ = 50. We see that if h is too low, the imputation sample is very
close to the observed data. If h is too high, the imputation sample is too scattered.

Now, the kernel bandwidth h controls the amount of fit to the observed data (c.f. Figure 6). The180

lower h, and the closer to the observed data the imputation sample will be. This can result in spiky181

univariate distributions. In the limit where h = 0.0, the conditional distribution for each missing value182

becomes a multinomial distribution with probability given by the softmax function computed with183

the pairwise distances. On the contrary, the higher h and the higher the variability of the imputation184

sample. Unlike τ , a bandwidth h too narrow does not mean that multimodality will be overlooked.185

With low h, the univariate distribution for a multimodal conditional probability will show distinct186

pronounced peaks. If h is too high, the different modes may collapse into a larger distribution with187

high variance.188

4.2 The log-likelihood to measure imputation quality189

Here, we compute the normalized RMSE (NRMSE) for the three datasets after imputation with all190

standard methods and the kNNxKDE algorithm. We compare the NRMSE with the log-likelihood191

score, which we can also compute since we know the generative process of the synthetic datasets.192

When performing a single imputation with the kNNxKDE algorithm, we draw a unique random193

sample from the resulting imputation distribution.194
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For each dataset and each imputation method, we repeat 100 times the following process: we introduce195

missing values, normalize the dataset, impute with the selected method using best hyperparameters196

(c.f. Table 1) and compute the NRMSE. Table 2 shows the mean and the standard deviation of the197

NRMSE. As already discussed in Section 2, the kNN-Imputer, MissForest and MICE have a low198

RMSE for Dataset 1, meaning that these methods recover well missing values. Larger NRMSEs for199

Datasets 2 and 3 quantify the poorer imputation quality. GAIN has a large RMSE, even for Dataset 1,200

as it could be anticipated from Section 2.201

Table 2: Normalized RMSE for the three datasets with all imputation methods. kNNxKDE does not
perform particularly well in terms of minimizing the NRMSE.

Data imputation method

kNN-Imputer MissForest MICE GAIN kNNxKDE

Dataset 1 0.075± 0.005 0.096± 0.005 0.075± 0.004 0.228± 0.026 0.111± 0.006
Dataset 2 0.192± 0.011 0.252± 0.019 0.250± 0.009 0.271± 0.023 0.267± 0.017
Dataset 3 0.295± 0.010 0.374± 0.022 0.294± 0.010 0.309± 0.027 0.419± 0.024

The kNNxKDE does not perform well with the RMSE. It has the largest NRMSEs, if we disregard202

GAIN. The justification we provide is that the kNNxKDE is not designed to accurately recover203

missing values. When performing a single imputation, the kNNxKDE algorithm selects a unique204

sample from the resulting imputation distribution. This is equivalent to selecting a single neighbor205

with the softmax probabilities – which may not even be the closest neighbor – and using a noisy copy206

of its observed values for imputation. This is an audacious choice, while the other imputation methods207

look for an optimal compromise. For multimodal distributions, sampling with the kNNxKDE cannot208

guarantee that we sample from the mode where the ground truth lies. For Dataset 3, where kNNxKDE209

shows the highest NRMSE, the imputation may be completely off (i.e., on the other side of the ring).210

We now compute the log-likelihood of the resulting imputed sample. Like with the NRMSE, for211

each dataset and each imputation method, we repeat 100 independent experiments with the best212

hyperparameters. The imputed data are renormalized back to their original range to compute the213

log-likelihood of the imputed samples. Table 3 shows the mean and the standard deviation of the214

log-likelihood.215

Table 3: Mean and standard deviation of the log-likelihood for the three datasets with all imputation
methods. The first column shows the log-likelihood of the original sample for reference.

Data imputation method

Ref. kNN-Imputer MissForest MICE GAIN kNNxKDE

Dataset 1 425 494± 9 450± 14 495± 11 −234± 231 408± 15
Dataset 2 79 −2214± 299 −525± 150 −2691± 261 −1482± 600 −54± 33
Dataset 3 -481 −2251± 196 −893± 117 −2361± 209 −2117± 319 −509± 15

This time, kNNxKDE performs best for Datasets 2 and 3. For Dataset 1, the kNN-Imputer, MissForest216

and MICE have a larger log-likelihood than the original sample because these methods average over217

several predictions and therefore remove the variability in their predictions: the imputed sample is218

very close to the ground truth and shows a high likelihood under the generative model (c.f. Figure 2).219

The log-likelihood of the imputed samples by GAIN is poor regardless of the dataset. MissForest220

shows interestingly decent results as it benefits from the iterative imputation mechanism and the221

random forest flexibility to capture non-linear dependency (unlike MICE).222

With the log-likelihood as the new evaluation metric, the kNNxKDE now provides the best imputed223

samples. Each imputed observation may be far from its ground truth – hence the large NRMSE in224

Table 2, but it conforms to the data structure – hence the large log-likelihood in Table 3.225

5 Discussion226

We have shown the limits of the RMSE for data imputation problems, and have introduced a new227

data imputation method. In this last section, we talk about the limitations and the strengths of the228
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kNNxKDE algorithm, and summarize the main findings. We also provide recommendations for data229

scientists and statisticians, be it for industry, research or public organizations.230

5.1 Limits231

The obvious major drawback of the kNNxKDE is that we do not provide a clear way to optimize it.232

We showed that our method performs best in terms of likelihood, but real-world datasets do not come233

with a likelihood. Therefore, we are left with two options: either we use visual inspection and plots234

to assess the data imputation quality, or we optimize τ to minimizing the RMSE (c.f. Appendix A).235

Also, the kNNxKDE algorithm may not be suited for highly dimensional datasets. Not only can236

it become computationally expensive, but its performances shall also worsen. Indeed, because of237

the curse of dimensionality, initially close observations may end up far apart if similar features238

are unobserved. This effect becomes even more problematic in high missing rates settings: as we239

work with missing rate patterns, observations with few observed features will have a small number240

of potential donors. This problem can be mitigated if the dataset has many observations. As a241

consequence, calibrating the kNNxKDE algorithm in high dimensions is particularly challenging.242

Pairplots may be used to visually assess the imputation quality, but become inconvenient in high-243

dimension settings. Also, pairplots only display pairwise correlations and may overlook higher order244

structures (c.f. Appendix B).245

5.2 Strengths246

If minimizing the imputation RMSE is an intuitive strategy for tabular data imputation, it cannot247

capture the complexity of multimodal datasets. In practice, given an incomplete observation, if two248

different imputations are consistent with the rest of the observed dataset, we have no objective way of249

choosing one over the other. The kNNxKDE offers to not choose between these two options instead250

of averaging over them both. It returns a imputation sample that provides more information that a251

single point estimate.252

Unlike the kNN-Imputer which impute column after column, the kNNxKDE works with successive253

missing patterns. This allows to generate imputed samples which are consistent with the whole254

dataset. Since all missing features are imputed at the same time, this strategy cannot return anomalous255

imputed samples.256

5.3 Conclusion257

The main motivation of this work was to design an algorithm capable of imputing missing features258

of a dataset with several modes. Multimodality makes imputation ambiguous, as clearly distinct259

values may still be valid imputations. In this respect, we decide to use the likelihood as a metric260

of imputation quality, instead of the standard RMSE between ground truth and imputed samples.261

The kNNxKDE method does not aggregate estimations. Instead, it returns imputation samples all262

consistent with the observed dataset. If needed, minimizing the imputation RMSE is possible by263

averaging over the imputation samples, although we discourage from straightforwardly doing so as it264

may lead to inconsistent imputed observations (c.f. Appendix A).265

Ultimately, this work advocates for a qualitative approach of data imputation, rather than the current266

quantitative one. We believe that missing data imputation should be done carefully and meaningfully,267

as it influences subsequent data analysis. We provide the kNNxKDE algorithm, and we suggest trying268

it for practical tabular data imputation in various domains.269
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A Real-world dataset: minimizing the RMSE with kNNxKDE312

For practical purposes, one may remain interested in minimizing the RMSE between the imputed313

sample and the ground truth. This appendix shows how to use the kNNxKDE to obtain similar314

RMSE performances as standard data imputation methods. The imputation samples returned by315

the kNNxKDE allow for many ways of performing a single imputation. Rather that sampling the316

conditional distributions only once for imputation – like we did in Section 4 – we can compute317

appropriate statistics to estimate the missing values. Here, we use the mean for imputation.318

The hyperparameter τ of the kNNxKDE is tuned to minimize the imputation NRMSE when using319

the mean for the imputation. We use the Penguins dataset [Horst et al., 2020]: 342 penguins with 4320

features (beak length, beak depth, flipper length and body mass) organized in 3 classes. This dataset321
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Table 4: Mean and standard deviation of the NRMSE on the Penguins dataset with all imputation
methods. Optimal hyperparameters (shown below each method name) are obtained to minimize the
NRMSE. kNNxKDE(m) stands for imputation performed with the mean of the returned samples
from the kNNxKDE.

kNN-Imputer MissForest MICE GAIN kNNxKDE kNNxKDE(m)
40 neighbors 30 trees x 1200 iterations default τ = 15

0.136± 0.008 0.147± 0.012 0.154± 0.008 0.186± 0.026 0.219± 0.014 0.140± 0.012

is similar to the famous iris dataset. Results are reported in Table 4, where hyperparameters are322

optimized to minimize the NRMSE.323

As we can see, averaging over the conditional distributions leads to similar performances as with the324

standard kNN-Imputer. The difference is that we now tune the continuous hyperparameter τ , which325

defines how loose the neighborhood of each observation is, rather than the number of neighbors k for326

the standard kNN-Imputer.327

Note that, while the resulting imputation minimizes the RMSE, this may not preserve the structure of328

the original dataset any longer. If the original dataset is multimodal, the imputed dataset can present329

inconsistent observations.330

B Synthetic data in 3d: visualizing higher-order correlations331

We generate a dataset in 3-dimensions using spherical coordinates. Pairplots cannot help visualizing332

beyond pairwise correlations. But some structures may involve higher-order dependencies which333

traditional data imputation algorithms do not capture. For example, Figure 7 compares the imputation334

of the 3-d synthetic dataset with the kNN-Imputer and with the kNNxKDE. Table 5 presents the335

NRMSE and the log-likelihood for each method.336

kNNxKDE 
 and h = 0.03 τ = 50

NN-Imputer k
Nneigh. = 20

Figure 7: Visualization of the imputed 3-d spherical dataset (MCAR scenario with 20% missing rate):
kNN-Imputer (left panel) and kNNxKDE (right panel). Points colors indicate imputed components.
The kNN-Imputer creates artifacts (points inside the sphere) while the kNNxKDE preserve the
original dataset structure.

Regarding the NRMSE, the kNNxKDE performs bad. But using the log-likelihood as benchmark, we337

see that the random sample generated by the kNNxKDE is much more probable under the generative338

model, i.e. the imputed sample is consistent with the original dataset. The scatter of the imputed339

observations (right panel of Figure 7) can be adjusted with τ and h.340

Visual animations of the imputed samples with all five imputation methods are provided as supple-341

mentary materials, where we can notice the characteristics of each imputation method.342
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Table 5: Mean and standard deviation of the NRMSE on the Penguins dataset with all imputation
methods. Optimal hyperparameters (shown below each method name) are obtained to minimize the
NRMSE. kNNxKDE(m) stands for imputation performed with the mean of the returned samples
from the kNNxKDE.

kNN-Imputer MissForest MICE GAIN kNNxKDE
(hyperparams) 20 neighbors 15 trees x 1200 iterations default

NRMSE 0.252 0.276 0.248 0.257 0.385
Log-Lik. (Ref=−2130) −5683 −4023 −6309 −5793 −3008

Checklist343

The checklist follows the references. Please read the checklist guidelines carefully for information on344

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or345

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing346

the appropriate section of your paper or providing a brief inline description. For example:347

• Did you include the license to the code and datasets? [Yes] See Section xxx348

• Did you include the license to the code and datasets? [No] The code and the data are349

proprietary.350

• Did you include the license to the code and datasets? [N/A]351

Please do not modify the questions and only use the provided macros for your answers. Note that the352

Checklist section does not count towards the page limit. In your paper, please delete this instructions353

block and only keep the Checklist section heading above along with the questions/answers below.354

1. For all authors...355

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s356

contributions and scope? [Yes] Emphasis on quality imputation and multimodal datasets357

(b) Did you describe the limitations of your work? [Yes] See Section 5.1358

(c) Did you discuss any potential negative societal impacts of your work? [N/A]359

(d) Have you read the ethics review guidelines and ensured that your paper conforms to360

them? [Yes] To our knowledge, no potential negative or harmful societal impact. We361

have done our best for transparency and reproducibility362

2. If you are including theoretical results...363

(a) Did you state the full set of assumptions of all theoretical results? [N/A]364

(b) Did you include complete proofs of all theoretical results? [N/A]365

3. If you ran experiments...366

(a) Did you include the code, data, and instructions needed to reproduce the main experi-367

mental results (either in the supplemental material or as a URL)? [Yes] See supplemen-368

tary materials369

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they370

were chosen)? [Yes] Methodology and training procedures are extensively explained in371

Sections 2, 3 and 4372

(c) Did you report error bars (e.g., with respect to the random seed after running exper-373

iments multiple times)? [Yes] Standard deviation are used for error bars (Section374

4). Seeds have been used in the code (supplementary materials) when needed for375

reproducibility376

(d) Did you include the total amount of compute and the type of resources used (e.g.,377

type of GPUs, internal cluster, or cloud provider)? [No] We thought it was irrelevant,378

because rather fast with CPUs379

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...380

(a) If your work uses existing assets, did you cite the creators? [Yes] We use one existing381

dataset, whose creators have been credited382
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(b) Did you mention the license of the assets? [Yes]383

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]384

Code and synhtetic data in Supplementary materials385

(d) Did you discuss whether and how consent was obtained from people whose data you’re386

using/curating? [N/A]387

(e) Did you discuss whether the data you are using/curating contains personally identifiable388

information or offensive content? [N/A]389

5. If you used crowdsourcing or conducted research with human subjects...390

(a) Did you include the full text of instructions given to participants and screenshots, if391

applicable? [N/A]392

(b) Did you describe any potential participant risks, with links to Institutional Review393

Board (IRB) approvals, if applicable? [N/A]394

(c) Did you include the estimated hourly wage paid to participants and the total amount395

spent on participant compensation? [N/A]396
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