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Abstract. Neural semantic parsing approaches have been widely used for Ques-
tion Answering (QA) systems over knowledge graphs. Such methods provide the
flexibility to handle QA datasets with complex queries and a large number of
entities. In this work, we propose a novel framework named CARTON (Context
trAnsformeR sTacked pOinter Networks), which performs multi-task semantic
parsing for handling the problem of conversational question answering over a
large-scale knowledge graph. Our framework consists of a stack of pointer net-
works as an extension of a context transformer model for parsing the input question
and the dialog history. The framework generates a sequence of actions that can be
executed on the knowledge graph. We evaluate CARTON on a standard dataset
for complex sequential question answering on which CARTON outperforms all
baselines. Specifically, we observe performance improvements in F1-score on
eight out of ten question types compared to the previous state of the art. For logical
reasoning questions, an improvement of 11 absolute points is reached.

Keywords: Conversational Question Answering · Knowledge Graph · Context
Transformer · Stacked Pointer Networks.

1 Introduction

Recently, there has been an increased demand for chatbots and voice assistants to commu-
nicate and assist humans in different domains such as chitchat, medical, news, enterprise,
etc ([7]). Question answering is a common phenomenon in chatbot conversations to
seek specific information. While such questions inherit a conversational context, humans
also tend to ask questions that require complex reasoning to answer in a real-world
scenario. The complexity of questions may differ at various granularity (e.g., simple,

∗Denotes equal contribution to this research
†Work was done while the author was a student at University of Bonn



2 Plepi et al.

Table 1. An example dialog from CSQA dataset [19] describing various states of a conversation.

Turn State Utterance

T1
Simple Question USER: Can you tell me which cities border Verderio Inferiore ?

Response SYSTEM: Cornate d’Adda, Bernareggio, Robbiate

T2
Coreference Question USER: And which cities flank that one ?

Clarification SYSTEM: Did you mean Robbiate?

T3
Clarification Question USER: No, I meant Cornate d’Adda.

Response SYSTEM: Bottanuco, Busnago, Trezzo sull’Adda

T4
Logical Question

USER: Which ones share border with Robbiate and are not part of
Azerbaijan?

Response SYSTEM: Trezzo sull’Adda, Busnago, Bottanuco

logical, quantitative, and comparative). Table 1 presents a few examples from a complex
question answering dataset with a conversational context [19]. The example dialogue
has several question types and challenges. For example, in the first turn, the user asks
a simple direct question, and in the following turn, she asks a question that refers to
the context from the previous turn. Furthermore, in the last turn, there is a question that
requires logical reasoning to offer a multitude of complexity. Given these questions are
from the general knowledge domain, the information required to answer questions can be
extracted from publicly available large-scale Knowledge Graphs (KGs) such as DBpedia
[11], Freebase [1], and Wikidata [27].

Neural semantic parsing approaches for question answering over KGs have been
widely studied in the research community [9,13,8,5]. In a given question, these ap-
proaches use a semantic parsing model to produce a logical form which is then executed
on the KG to retrieve an answer. While traditional methods tend to work on small
KGs [28], more recent approaches also work well on large-scale KGs [8,21]. Often,
researchers targeting large scale KGs focus on a stepwise method by first performing
entity linking and then train a model to learn the corresponding logical form for each
question type [4,8]. Work in [21] argues that the stepwise approaches have two signifi-
cant issues. First, errors in upstream subtasks (e.g., entity detection and linking, predicate
classification) are propagated to downstream ones (e.g., semantic parsing), resulting in
accumulated errors. For example, case studies in previous works [29,8,4] show that entity
linking error is one of the significant errors leading to the wrong results in the question-
answering task. Second, when models for the subtasks are learned independently, the
supervision signals cannot be shared among the models for mutual benefits. To mitigate
the limitations of the stepwise approach, [21] proposed a multi-task learning framework
where a pointer-equipped semantic parsing model is designed to resolve coreference in
conversations, and intuitively, empower joint learning with a type-aware entity detection
model. The framework combines two objectives: one for semantic parsing and another
for entity detection. However, the entity detection model uses supervision signals only
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from the contextual encoder, and no further signal is provided from the decoder or the
semantic parsing task.

In this paper, we target the problem of conversational (complex) question answer-
ing over large-scale knowledge graph. We propose CARTON (Context trAnsformeR
sTacked pOinter Networks)- a multi-task learning framework consisting of a context
transformer model extended with a stack of pointer networks for multi-task neural se-
mantic parsing. Our framework handles semantic parsing using the context transformer
model while the remaining tasks such as type prediction, predicate prediction, and entity
detection are handled by the stacked pointer networks. Unlike [21] which is current
state-of-the-art, CARTON’s stacked pointer networks incorporate knowledge graph infor-
mation for performing any reasoning and does not rely only on the conversational context.
Moreover, pointer networks provide the flexibility for handling out-of-vocabulary [26]
entities, predicates, and types that are unseen during training. Our ablation study 5.1 fur-
ther supports our choices. In contrast with the current state of the art, another significant
novelty is that the supervision signals in CARTON propagate in sequential order, and all
the components use the signal forwarded from the previous components. To this end, we
make the following contributions in the paper:

– CARTON - a multi-task learning framework for conversational question answering
over large scale knowledge graph.

– For neural semantic parsing, we propose a reusable grammar that defines different
logical forms that can be executed on the KG to fetch answers to the questions.

CARTON achieves new state of the art results on eight out of ten question types
from a large-scale conversational question answering dataset. We evaluate CARTON
on the Complex Sequential Question Answering (CSQA) [19] dataset consisting of
conversations over linked QA pairs. The dataset contains 200K dialogues with 1.6M
turns, and over 12.8M entities. Our implementation, the annotated dataset with proposed
grammar, and results are on a public github6. The rest of this article is organized as
follows: Section 2 summarizes the related work. Section 3 describes the CARTON
framework. Section 4 explains the experimental settings and the results are reported in
Section 5. Section 6 concludes this article.

2 Related Work

Semantic Parsing and Multi-task Learning Approaches Our work lies in the areas
of semantic parsing and neural approaches for question answering over KGs. Works
in [6,15,31,16] use neural approaches to solve the task of QA. [15] introduces an
approach that splits the question into spans of tokens to match the tokens to their
respective entities and predicates in the KG. The authors merge the word and character-
level representation to discover better matching in entities and predicates. Candidate
subjects are generated based on n-grams matching with words in the question, and then
pruned based on predicted predicates. However, their experiments are focused on simple
questions. [31] propose a probabilistic framework for QA systems and experiment on a

6 https://github.com/endrikacupaj/CARTON
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new benchmark dataset. The framework consists of two modules. The first one model
the probability of the topic entity y, constrained on the question. The second module
reasons over the KG to find the answer a, given the topic entity y which is found in
the first step and question q. Graph embeddings are used to model the subgraph related
to the question and for calculating the distribution of the answer depended from the
question q and the topic y. [13] introduce neural symbolic machine (NSM), which
contains a neural sequence-to-sequence network referred also as the “programmer”, and
a symbolic non-differentiable LISP interpreter (“computer”). The model is extended
with a key-value memory network, where keys and values are the output of the sequence
model in different encoding or decoding steps. The NSM model is trained using the
REINFORCE algorithm with weak supervision and evaluated on the WebQuestionsSP
dataset [30]. [8] also present an approach that maps utterances to logical forms. Their
model consists of a sequence-to-sequence network, where the encoder produces the
embedding of the utterance, and the decoder generates the sequence of actions. Authors
introduce a dialogue memory management to handle the entities, predicates, and logical
forms are referred from a previous interaction. Finally, MaSP [21] present a multi-task
model that jointly learns type-aware entity detection and pointer equipped logical form
generation using a semantic parsing approach. Our proposed framework is inspired by
them; however, we differ considerably on the following points: 1) CARTON’s stacked
pointer networks incorporate knowledge graph information for performing reasoning
and do not rely only on the conversational context as MaSP does. 2) The stacked pointer
network architecture is used intentionally to provide the flexibility for handling out-of-
vocabulary entities, predicates, and types that are unseen during training. The MaSP
model does not cover out-of-vocabulary knowledge since the model was not intended
to have this flexibility. 3) CARTON’s supervision signals are propagated in sequential
order, and all the components use the signal forwarded from the previous component.
4) We employ semantic grammar with new actions for generating logical forms. While
[21] employs almost the same grammar as [8].

Other Approaches There has been extensive research for task-oriented dialog systems
such as [10] that induces joint text and knowledge graph embeddings to improve task-
oriented dialogues in the domains such as restaurant and flight booking. Work present in
[2] proposes another dataset, “ConvQuestions” for conversations over KGs along with
an unsupervised model. Some other datasets for conversational QA include CANARD
and TREC CAsT [24]. Overall, there are several approaches proposed for conversational
QA, and in this paper, we closely stick to multi-task learning approaches for CARTON’s
comparison and contributions.

3 CARTON

Our focus is on conversations containing complex questions that can be answered by
reasoning over a large-scale KG. The training data consists of utterances u and the
answer label a. We propose a semantic parsing approach, where the goal is to map
the utterance u into a logical form z, depending on the conversation context. A stack
of three pointer networks is used to fill information extracted from the KG. The final
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Fig. 1. Context Transformer with Stacked Pointer Networks architecture (CARTON). It consists of
three modules: 1) A Transformer-based contextual encoder finds the representation of the current
context of the dialogue. 2) A logical decoder generates the pattern of the logical forms defined in
Table 2. 3) The stacked pointer network initializes the KG items to fetch the correct answer.

generated logical form aims to fetch the correct answer once executed on the KG. Figure
1 illustrates the overall architecture of CARTON framework.

3.1 Grammar

We predefined a grammar with various actions as shown in Table 2 which can result
in different logical forms that can be executed on the KG. Our grammar definition is
inspired by [8] which MaSP [21] also employs. However, we differ in many semantics of
the actions and we even defined completely new actions. For example, find action is split
into find(e, p) that corresponds to finding an edge with predicate p to the subject e; and
find reverse(e, p) finds an edge with predicate p with object e. Moreover, per type is not
defined by [8] in their grammar. Table 3 indicates some (complex) examples from CSQA
dataset [19] with gold logical form annotations using our predefined grammar. Following
[14], each action definition is represented by a function that is executed on the KG, a
list of input parameters, and a semantic category that corresponds to the output of the
function. For example, set→ find(e, p), it has a set as a semantic category, a function find
with input parameters e, p. We believe that the defined actions are sufficient for creating
sequences that cover complex questions and we provide empirical evidences in Section 5.
Every action sequence can be parsed into a tree, where the model recursively writes



6 Plepi et al.

Table 2. Predefined grammar with respective actions to generate logical forms.

Action Description
set→ find(e, p) set of objects (entities) with subject e and predicate p
set→ find reverse(e, p) set of subjects (entities) with object e and predicate p
set→ filter by type(set, tp) filter the given set of entities based on the given type
set→ filter mult types(set1, set2) filter the given set of entities based on the given set of types
boolean→ is in(set, entity) check if the entity is part of the set
boolean→ is subset (set1, set2) check if set2 is subset of set1
number→ count(set) count the number of elements in the set

dict→ per type(p, tp1, tp2)
extracts a dictionary, where keys are entities of type1 and
values are the number of objects of type2 related with p

dict→ per type rev(p, tp1, tp2)
extracts a dictionary, where keys are entities of type1 and
values are the number of subjects of type2 related with p

set→ greater(num, dict) set of entities that have greater count than num
set→ lesser(num, dict) set of entities that have lesser count than num
set→ equal(num, dict) set of entities that have equal count with num
set→ approx(num, dict) set of entities that have approximately same count with num
set→ argmin(dict) set of entities that have the most count
set→ argmax(dict) set of entities that have the least count
set→ union(set1, set2) union of set1 and set2
set→ intersection(set1, set2) intersection of set1 and set2
set→ difference(set1, set2) difference of set1 and set2

the leftmost non-terminal node until the whole tree is complete. The same approach is
followed to execute the action sequence, except that the starting point is the tree leaves.

3.2 Context Transformer

The section describes the semantic parsing part of CARTON, which is a context trans-
former. The transformer receives input a conversation turn that contains the context of
the interaction and generates a sequence of actions. Formally, an interaction I consists
of the question q that is a sequence x = {x1, . . . , xn}, and a label l that is a sequence
y = {y1, . . . , ym}. The network aims to model the conditional probability p(y|x).

Contextual Encoder In order to cope with coreference and ellipsis phenomena, we
require to include the context from the previous interaction in the conversation turn.
To accomplish that, the input to the contextual encoder is the concatenation of three
utterances from the dialog turn: 1) the previous question, 2) the previous answer, and 3)
the current question. Every utterance is separated from one another using a < SEP >
token. A special context token < CTX > is appended at the end where the embedding
of this utterance is used as the semantic representation for the entire input question.
Given an utterance q containing n words {w1, . . . , wn}, we use GloVe [18] to embed
the words into a vector representation space of dimension demb. More specifically, we
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Table 3. Examples from the CSQA dataset [19], annotated with gold logical forms.

Question Type Question Logical Forms

Simple
Question
(Direct)

Q1: Which administrative territory
is the birthplace of Antonio Reguero ?

filter type(
find(Antonio Reguero,

place of birth),
administrative territorial entity)

Simple
Question
(Ellipsis)

Q1: Which administrative territories are
twin towns of Madrid ?
A1: Prague, Moscow, Budapest
Q2: And what about Urban
Community of Brest?

filter type(
find(Urban Community of Brest,

twinned administrative body),
administrative territorial entity)

Simple
Question
(Coreferenced)

Q1: What was the sport that
Marie Pyko was a part of ?
A1: Association football
Q2: Which political territory
does that person belong to ?

filter type(
find(Marie Pyko,

country of citizenship),
political territorial entity)

Quantitative
Reasoning
(Count) (All)

Q1: How many beauty contests and business
enterprises are located at that city ?
A1: Did you mean Caracas?
Q2: Yes

count(union(
filter type(

find reverse( Caracas, located in),
beauty contest),

filter type(
find reverse(Caracas, located in),

business enterprises)))

Quantitative
Reasoning
(All)

Q1; Which political territories are
known to have diplomatic connections
with max number of political territories ?

argmax(
per type(

diplomatic relation,
political territorial entity,
political territorial entity))

Comparative
Reasoning
(Count) (All)

Q1: How many alphabets are used as
the scripts for more number of languages
than Jawi alphabet ?

count(greater(count(
filter type(find(Jawi alphabet,

writing system), language)),
per type(writing system,
alphabet, language)))

Comparative
Reasoning
(All)

Q1: Which occupations were more number
of publications and works mainly
about than composer ?

greater(filter type(
find(composer, main subject),

occupations), and(
per type(main subject, publications,

occupations),
per type(main subject, work,

occupations)))

Verification
Q1: Was Geir Rasmussen born at that
administrative territory ?

is in(
find(Geir Rasmussen,

place of birth),
Chicago)
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get a sequence x = {x1, . . . , xn} where xi is given by,

xi = GloV e(wi)

and xi ∈ Rdemb . Next, the word embeddings x, are forwarded as input to the contextual
encoder, that uses the multi-head attention mechanism from the Transformer network
[25]. The encoder outputs the contextual embeddings h = {h1, . . . , hn}, where hi ∈
Rdemb , and it can be written as:

h = encoder(x; θ(enc))

where θ(enc) are the trainable parameters of the contextual encoder.

Logical Form Decoder For the decoder, we likewise utilize the Transformer archi-
tecture with a multi-head attention mechanism. The decoder output is dependent on
contextual embeddings h originated from the encoder. The decoder detects each action
and general semantic object from the KG, i.e., the decoder predicts the correct logical
form, without specifying the entity, predicate, or type. Here, the decoder vocabulary
consists of V = {A0, A1, . . . , A18, entity, predicate, type} where A0, A1, . . . , A18

are the short names of actions in Table 2. The goal is to produce a correct logical form
sequence. The decoder stack is a transformer model supported by a linear and a softmax
layer to estimate the probability scores, i.e., we can define it as:

s(dec) = decoder(h; θ(dec)), pt = softmax(W (dec)s
(dec)
t ) (1)

where s(dec)t is the hidden state of the decoder in time step t, θ(dec) are the model
parameters, W (dec) ∈ R|V |×demb are the weights of the feed-forward linear layer, and
pt ∈ R|V | is the probability distribution over the decoder vocabulary for the output token
in time step t.

3.3 Stacked Pointer Networks

As we mentioned, the decoder only outputs the actions without specifying any KG
items. To complete the logical form with instantiated semantic categories, we extend our
model with an architecture of stacked pointer networks [26]. The architecture consists
of three-pointer networks and each one of them is responsible for covering one of the
major semantic categories (types, predicates, and entities) required for completing the
final executable logical form against the KG.

The first two pointer networks of the stack are used for predicates and types semantic
category and follow a similar approach. The vocabulary and the inputs are the entire
predicates and types of the KG. We define the vocabularies, V (pd) = {r1, . . . , rnpd

}
and V (tp) = {τ1, . . . , τntp}, where npd and ntp is the total number of predicates and
types in the KG, respectively. To compute the pointer scores for each predicate or type
candidate, we use the current hidden state of the decoder and the context representation.
We model the pointer networks with a feed-forward linear network and a softmax layer.
We can define the type and predicate pointers as:

p
(pd)
t = softmax(W

(pd)
1 v

(pd)
t ), p

(tp)
t = softmax(W

(tp)
1 v

(tp)
t ), (2)
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where p(pd)t ∈ R|V (pd)| and p(tp)t ∈ R|V (tp)| are the probability distributions over the
predicate and type vocabularies respectively. The weight matrices W

(pd)
1 , W (tp)

1 ∈
R1×dkg . Also, vt is a joint representation that includes the knowledge graph embeddings,
the context and the current decoder state, computed as:

v
(pd)
t = tanh(W

(pd)
2 [st;hctx] + r),

v
(tp)
t = tanh(W

(tp)
2 [st;hctx] + τ),

(3)

where the weight matrices W (pd)
2 ,W

(tp)
2 ∈ Rdkg×2demb , transform the concatenation of

the current decoder state st with the context representation hctx. We denote with dkg the
dimension used for knowledge graph embeddings. r ∈ Rdkg×|V (pd)| are the predicate
embeddings and τ ∈ Rdkg×|V (tp)| are the type embeddings. tanh is the non-linear layer.
Please note, that the vocabulary of predicates and types is updated during evaluation,
hence the choice of pointer networks.

The third pointer network of the stack is responsible for the entity prediction task.
Here we follow a slightly different approach due to the massive number of entities that
the KG may have. Predicting a probability distribution over KG with a considerable
number of entities is not computationally feasible. For that reason, we decrease the
size of entity vocabulary during each logical form prediction. In each conversation, we
predict a probability distribution only for the entities that are part of the context. Our
entity “memory” for each conversation turn involves entities from the previous question,
previous answer, and current question. The probability distribution over the entities is
then calculated in the same way as for predicates and types where the softmax is:

p
(ent)
t = softmax(W

(ent)
1 v

(ent)
t ), (4)

where p(ent)t ∈ R|V
(ent)
k |, and V (ent)

k is the set of entities for the kth conversation turn.
The weight matrix W

(ent)
1 ∈ R1×dkg and the vector vt is then computed following the

same equations as before:

v
(ent)
t = tanh(W

(ent)
2 ([st;hctx]) + ek) (5)

where ek is the sequence of entities for the kth conversation turn. In general, the pointer
networks are robust to handle a different vocabulary size for each time step [26]. More-
over, given the knowledge graph embeddings, our stacked pointer networks select the
relevant items from the knowledge graph depending on the conversational context. In
this way, we incorporate knowledge graph embeddings in order to perform any reasoning
and do not rely only on utterance features. Furthermore, the [21] utilizes a single pointer
network that only operates on the input utterance to select the already identified entities.
Our stacked pointer networks do not use the input utterance but rather directly rely on
the knowledge graph semantic categories (types, predicates, and entities).

3.4 Learning

For each time step, we have four different predicted probability distributions. The first
is the decoder output over the logical form’s vocabulary, and the three others from the
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stacked pointer networks for each of the semantic categories (entity, predicate, and type).
Finally, we define CARTON loss function as:

Losst = −
1

m

m∑
i=1

log p
i [i=y

(t)
i ]

+
∑

c∈{ent,pd,tp}

I
[y

(t)
i =c]

logp
(c)

i [i=y
(ct)
i ]

 , (6)

where Losst is the loss function computed for the sequence in time step t, m is the
length of the logical form, y(t) is the gold sequence of logical form, and y(ct) is the gold
label for one of the semantic categories c ∈ {ent, pd, tp}.

4 Experimental Setup

Dataset and Experiment Settings We conduct our experiments on the Complex Se-
quential Question Answering (CSQA) dataset7 [19]. CSQA was built on the Wikidata
KG. The CSQA dataset consists of around 200K dialogues where each partition train,
valid, test contains 153K, 16K, 28K dialogues, respectively. The questions in the CSQA
dataset involve complex reasoning on Wikidata to determine the correct answer. The
different question types that appear in the dataset are simple questions, logical reasoning,
verification, quantitative reasoning, comparative reasoning, and clarification. We can
have different subtypes for each one of them, such as direct, indirect, coreference, and
ellipsis questions. We stick to one dataset in experiments due to the following reasons
1) all the multi-task learning framework has been trained and tested only on the CSQA
dataset. Hence, for a fair evaluation and comparison of our approach inheriting the evalu-
ation settings same as [19,21], we stick to the CSQA dataset. 2) other approaches [2,24]
on datasets such as ConvQA, TREC CAsT, etc are not multi-task learning approaches.
Further, we cannot retrain [19,8,21] on these datasets due to their missing logical forms
employed by each of these models.

We incorporate a semi-automated preprocessing step to annotate the CSQA dataset
with gold logical forms. For each question type and subtype in the dataset, we create
a general template with a pattern sequence that the actions should follow. Thereafter,
for each question, we follow a set of rules to create the specific gold logical form that
extracts the gold sequence of actions based on the type of the question. The actions used
for this process are the one in Table 2.

CARTON Configurations For the transformer network, we use the configurations
from [25]. Our model dimension is dmodel = 512, with a total number of H = 8 heads
and layers L = 4. The inner feed-forward linear layers have dimension dff = 2048,
(4 * 512). Following the base transformer parameters, we apply residual dropout to the
summation of the embeddings and the positional encodings in both encoder and decoder
stacks with a rate of 0.1. On the other hand, the pointer networks also use a dropout
layer for the linear projection of the knowledge graph embeddings. For predicates and
types, we randomly initialize the embeddings and are jointly learned during training.
The KG embeddings dimension of predicate and types match the transformer model
7 https://amritasaha1812.github.io/CSQA

https://amritasaha1812.github.io/CSQA
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dimension, dkg = 512. However, for the entities, we follow a different initialization.
Due to a significantly high number of the entities, learning the entity embeddings from
scratch was inefficient and resulted in poor performance. Therefore, to address this
issue, we initialized the entity embeddings using sentence embeddings that implicitly
use underlying hidden states from BERT network [3]. For each entity, we treat the tokens
that it contains as a sentence, and we feed that as an input. We receive as output the entity
representation with a dimension dent = 768. Next, we feed this into a linear layer that
learns, during training, to embed the entity into the same dimension as the predicates
and types.

Models for Comparison To compare the CARTON framework, we use the last three
baselines that have been evaluated on the employed dataset. The authors of the CSQA
dataset introduce the first baseline: HRED+KVmem [19] model. HRED+KVmem em-
ploys a seq2seq [23] model extended with memory networks [22,12]. The model uses
HRED model [20] to extract dialog representations and extends it with a Key-Value
memory network [17] for extracting information from KG. Next, D2A [8] uses a seman-
tic parsing approach based on a seq2seq model, extended with dialog memory manager
to handle different linguistic problems in conversations such as ellipsis and coreference.
Finally, MaSP [21] is the current state-of-the-art model and is also a semantic parsing
approach. It is a multi-task framework with entity detection, based on the transformer
architecture.

Evaluation Metrics To evaluate CARTON, we use the same metrics as employed by
the authors of the CSQA dataset [19] and previous baselines. We use the “F1-score” for
questions that have an answer composed by a set of entities. “Accuracy” is used for the
question types whose answer is a number or a boolean value (YES/NO).

5 Results

We report our empirical results in Table 4, and conclude that CARTON outperforms
baselines average on all question types (row “overall” in the table). We dig deeper into
the accuracy per question type to understand the overall performance. Compared to the
current state-of-the-art (MaSP), CARTON performs better on eight out of ten question
types. CARTON is leading MaSP in question type categories such as Logical Reasoning
(All), Quantitative Reasoning (All), Simple Question (Coreferenced), Simple Question
(Direct), Simple Question (Ellipsis), Verification (Boolean), Quantitative Reasoning
(Count), and Comparative Reasoning (Count). Whereas, MaSP retains the state of the art
for the categories of Clarification and Comparative Reasoning (All). The main reason
for weak results in Comparative Reasoning (All) is that our preprocessing step finds
limitation in covering this question type and is one of the shortcoming of our proposed
grammar8. We investigated several reasonable ways to cover Comparative Reasoning
(All) question type. However, it was challenging to produce a final answer set identical to
8 For instance, when we applied the preprocessing step over the test set, we could not annotate the

majority of the examples for the Comparative Reasoning (All) question type.
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Table 4. Comparisons among baseline models on the CSQA dataset having 200K dialogues with
1.6M turns, and over 12.8M entities.

Methods HRED-KV D2A MaSP CARTON (ours) ∆

Question Type (QT) F1 Score
Overall 9.39% 66.70% 79.26% 81.35% +2.09%

Clarification 16.35% 35.53% 80.79% 47.31% -33.48%
Comparative Reasoning (All) 2.96% 48.85% 68.90% 62.00% -6.90%

Logical Reasoning (All) 8.33% 67.31% 69.04% 80.80% +11.76%
Quantitative Reasoning (All) 0.96% 56.41% 73.75% 80.62% +6.87%

Simple Question (Coreferenced) 7.26% 57.69% 76.47% 87.09% +10.62%
Simple Question (Direct) 13.64% 78.42% 85.18% 85.92% +0.74%

Simple Question (Ellipsis) 9.95% 81.14% 83.73% 85.07% +1.34%

Question Type (QT) Accuracy
Overall 14.95% 37.33% 45.56% 61.28% +15.72%

Verification (Boolean) 21.04% 45.05% 60.63% 77.82% +17.19%
Quantitative Reasoning (Count) 12.13% 40.94% 43.39% 57.04% +13.65%
Comparative Reasoning (Count) 8.67% 17.78% 22.26% 38.31% +16.05%

the gold answer set. For instance, consider the question “Which administrative territories
have diplomatic relations with around the same number of administrative territories
than Albania?” that includes logic operators like “around the same number”, which
is ambiguous because CARTON needs to look for the correct answer in a range of
the numbers. Whereas, MaSP uses a BFS method to search the gold logical forms
and performance is superior to CARTON. The limitation with Comparative Reasoning
question type also affects CARTON’s performance in the Clarification question type
where a considerable number of questions correspond to Comparative Reasoning. Based
on analysis, we outline the following two reasons for CARTON’s outperformance over
MaSP: First, the MaSP model requires to perform entity recognition and linking to
generate the correct entity candidate. Even though MaSP is a multi-task model, errors at
entity recognition step will still be propagated to the underlying coreference network.
CARTON is agnostic of such a scenario since the candidate entity set considered for each
conversation turn is related to the entire relevant context (the previous question, answer,
and current question). In CARTON, entity detection is performed only by stacked pointer
networks. Hence no error propagation related to entities affects previous steps of the
framework. Second, CARTON uses better supervision signals than MaSP. As mentioned
earlier, CARTON supervision signals propagate in sequential order, and all components
use the signal forwarded from the previous components. In contrast, the MaSP model
co-trains entity detection and semantic parsing with different supervision signals.

5.1 Ablation Study

An ablation study is conducted to support our architectural choices of CARTON. To do
so, we replace stacked pointer networks module with simple classifiers. In particular,
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Table 5. CARTON ablation study. “W/o St. Pointer” column shows results when stacked pointers
in CARTON is replaced by classifiers.

Question Type (QT) CARTON W/o St. Pointers
Clarification 47.31% 42.47%

Comparative Reasoning (All) 62.00% 55.82%
Logical Reasoning (All) 80.80% 68.23%

Quantitative Reasoning (All) 80.62% 71.59%
Simple Question (Coreferenced) 87.09% 85.28%

Simple Question (Direct) 85.92% 83.64%
Simple Question (Ellipsis) 85.07% 82.11%

Verification (Boolean) 77.82% 70.38%
Quantitative Reasoning (Count) 57.04% 51.73%
Comparative Reasoning (Count) 38.31% 30.87%

Table 6. CARTON stacked pointer networks results for each question type. We report CARTON’s
accuracy in predicting the KG items such as entity, predicate, or type.

Question Type (QT) Entity Predicate Type
Clarification 36.71% 94.76% 80.79%

Comparative Reasoning (All) 67.63% 97.92% 77.57%
Logical Reasoning (All) 64.7% 83.18% 91.56%

Quantitative Reasoning (All) - 98.46% 73.46%
Simple Question (Coreferenced) 81.13% 91.09% 80.13%

Simple Question (Direct) 86.07% 91% 82.19%
Simple Question (Ellipsis) 98.87% 92.49% 80.31%

Verification (Boolean) 43.01% 94.72% -
Quantitative Reasoning (Count) 79.60% 94.46% 79.51%
Comparative Reasoning (Count) 70.29% 98.05% 78.38%

predicates and types are predicted using two linear classifiers using the representations
from the contextual encoder. Table 5 illustrates that the modified setting (w/o St. Point-
ers) significantly under-performs compared to CARTON in all question types. The
stacked pointer networks generalize better in the test set due to their ability to learn
meaningful representations for the KG items and align learned representations with the
conversational context. While classifiers thoroughly learn to identify common patterns
between examples without incorporating any information from the KG. Furthermore, our
framework’s improved results are implied from the ability of stacked pointer networks to
handle out-of-vocabulary entities, predicates, and types that are unseen during training.
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5.2 Error Analysis

We now present a detailed analysis of CARTON by reporting some additional metrics.
Table 6 reports the accuracy of predicting the KG items such as entity, predicate, or type
using CARTON. The prediction accuracy of KG items is closely related to the perfor-
mance of our model, as shown in Table 4. For example, in the Quantitative (All) question
type (Table 4), predicting the correct type has an accuracy of 73.46% which is lowest
compared to other question types. The type prediction is essential in such category of
questions, where a typical logical form possibly is: “argmin, find tuple counts, predicate,
type1, type2”. Filtering by the wrong type gets the incorrect result. Please note, there is
no “entity” involved in the logical forms of Quantitative (All) question type. Hence, no
entity accuracy is reported.

Another interesting result is the high accuracy of the entities and predicates in
Comparative (Count) questions. Also, the accuracy of type detection is 78.38%. However,
these questions’ accuracy was relatively low, only 38.31%, as reported in Table 4. We
believe that improved accuracy is mainly affected due to the mapping process of entities,
predicates, and types to the logical forms that is followed to reach the correct answer.
Another insightful result is on Simple (Ellipsis), where CARTON has a high entity
accuracy compared with Simple Question. A possible reason is the short length of the
question, making it easier for the model to focus on the right entity. Some example of
this question type is “And what about Bonn?”, where the predicate is extracted from the
previous utterance of the question.

We compute the accuracy of the decoder which is used to find the correct patterns of
the logical forms. We also calculate the accuracy of the logical forms after the pointer
networks initialize the KG items. We report an average accuracy across question types
for generating logical form (by decoder) as 97.24%, and after initializing the KG items,
the average accuracy drops to 75.61%. Higher accuracy of logical form generation shows
the decoder’s effectiveness and how the Transformer network can extract the correct
patterns given the conversational context. Furthermore, it also justifies that the higher
error percentage is generated while initializing the items from the KG. When sampling
some of the wrong logical forms, we found out that most of the errors were generated
from initializing a similar predicate or incorrect order of the types in the logical actions.

6 Conclusions

In this work, we focus on complex question answering over a large-scale KG containing
conversational context. We used a transformer-based model to generate logical forms.
The decoder was extended with a stack of pointer networks in order to include informa-
tion from the large-scale KG associated with the dataset. The stacked pointer networks,
given the conversational context extracted by the transformer, predict the specific KG
item required in a particular position of the action sequence. We empirically demonstrate
that our model performs the best in several question types and how entity and type
detection accuracy affect the performance. The main drawback of the semantic parsing
approaches is the error propagated from the preprocessing step, which is not 100%
accurate. However, to train the model in a supervised way, we need the gold logical
form annotations. The model focuses on learning the correct logical forms, but there is
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no feedback signal from the resulting answer generated from its logical structure. We
believe reinforcement learning can solve these drawbacks and is the most viable next
step of our work. Furthermore, how to improve the performance of Clarification and
Comparative Reasoning question type is an open question and a direction for future
research.
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