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A Survey on Neural Data-to-Text Generation
Yupian Lin, Tong Ruan, Jingping Liu, and Haofen Wang

Abstract—Data-to-text Generation (D2T) aims to generate textual natural language statements that can fluently and precisely describe
the structured data such as graphs, tables, and meaning representations (MRs) in the form of key-value pairs. It is a typical and crucial
task in natural language generation (NLG). Early D2T systems generated texts with the cost of human engineering in designing domain
specific rules and templates, and achieved acceptable performance in coherence, fluency, and fidelity. In recent years, the data-driven
D2T systems based on deep learning have reached state-of-the-art (SOTA) performance in more challenging datasets. In this paper,
we provide a comprehensive review on existing neural data-to-text generation approaches. We first introduce available D2T resources,
including systematically categorized D2T datasets and mainstream evaluation metrics. Next, we survey existing works based on the
taxonomy along two axes: neural end-to-end D2T and neural modular D2T. We also discuss the potential applications and the adverse
impacts. Finally, we present readers with the challenges faced by neural D2T and outline some potential future directions in this area.

Index Terms—Natural language processing, natural language generation, data-to-text generation, survey, deep learning

✦

1 INTRODUCTION

DATA-to-Text Generation refers to the task of generating
natural language from structured data such as graphs,

tables, and meaning representations. D2T is a classic and
important task in natural language generation. It plays
an essential role in human-computer interaction systems,
since natural language that accurately and fluently describes
structured data assists people in understanding data effi-
ciently and easily.

Evolution of D2T. In the initial development period
of the data-to-text generation, the traditional modular ap-
proaches that generate text based on heuristic rules or tem-
plates have occupied a dominant position. These traditional
modular approaches follow the pipeline architecture for
natural language generation. In 1992, McKeown [1] divided
the pipeline architecture into three stages, namely, docu-
ment planning, micro planning, and surface realization. In
1997, Reiter and Dale [2] further subdivided the pipeline
architecture into six modules, namely, (1) content determi-
nation, (2) discourse planning, (3) sentence aggregation, (4)
lexicalization, (5) referring expression generation, and (6)
linguistic realization.

However, these heuristic-driven approaches are not scal-
able or adaptable to new domains, paving the way for
statistical approaches based on probabilistic language gen-
eration process [3], probabilistic context-free grammar [4],
and others [5], [6], [7]. In 2013, word vectors [8] marked the
beginning of the era of language modeling based on neural
networks, and promoted the development of sequence-to-
sequence generation tasks such as Machine Translation [9]
[10], Text Summarization [11] and Dialogue [12]. Benefiting
from the success of the sequence generation tasks, the per-
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formance of D2T has been greatly improved by using the
neural end-to-end framework. Different from the traditional
modular approaches, the neural end-to-end D2T models
[13], [14], [15], [16], [17] directly modeled the corresponding
relationship between the structured data and the reference
text, avoiding the risk of error propagation. Although the
existing neural end-to-end D2T models can generate fluent
texts, there are still many problems, such as weak controlla-
bility, poor faithfulness, and low coverage. Thus, the neural
modular approaches, including the two-stage approaches
[18], [19], [20], [21] and neural template-based approaches
[22], [23], [24], [25], were explored by more researchers in
order to find a better balance between controllability and
efficiency. Specifically, the two-stage approaches decoupled
the content planning from neural end-to-end framework to
improve the controllability and faithfulness of generated
text. While the neural template-based approaches aimed to
learn latent and discrete templates from training data.

Motivations of This Survey. In 2017, the publication
of the WebNLG [26], RotoWire [27], and E2E [28] datasets
officially ushered in the era of data-driven neural D2T. Over
the past few years, a considerable number of studies have
applied deep learning to D2T and successively advanced
the SOTA performance. On the other hand, although D2T
studies have been flourishing for many years, to the best of
our knowledge, there are few reviews in this field so far [29].
Therefore, we conduct a up-to-date survey on neural D2T in
order to enlighten and guide researchers and practitioners.

Contributions of This Survey. We give an up-to-date
synthesis of the neural D2T researches, as well as the var-
ious deep learning technologies and architectures. To offer
constructive resources for D2T research community, we con-
solidate existing D2T datasets, and mainstream evaluation
metrics. Next, we give a detailed and thorough taxonomy
survey based on two axes: neural end-to-end D2T and neu-
ral modular D2T. We also discuss the potential applications
and the adverse impacts of neural D2T. Finally, we present
readers with the difficulties D2T systems confront, and then
highlight future directions in this field.
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Fig. 1. The illustration of D2T from three types of structured data. Top: Graph (WebNLG [26]). Middle: Table (RotoWire [27]). Bottom: MR (E2E [28]).

2 BACKGROUND

At the first, we give a formal formulation of the data-
to-text generation task. We then introduce the widely-used
D2T datasets from three types of structured data. Next, we
detail the evaluation metrics and summarize the traditional
approaches to D2T.

2.1 What is D2T?

Data-to-text generation aims to generate the textual output
that can accurately and fluently describe the non-linguistic
structured data. Structured data is usually stored in different
forms, including graphs, tables, and MRs. Figure 1 shows
examples of data-to-text generation from above types of
structured data.

There are two main problems to be solved in the task
of data-to-text generation: ”What to say” and ”How to
say”. Specifically, ”What to say” means to analyze and filter
given structured data, from which all or part of the data is
selected for abstraction and association. ”How to say” refers
to accurately and fluently describe the selected data through
natural language.

2.2 Datasets

At present, the datasets of data-to-text generation tasks are
mainly divided into three categories according to the types
of structured data: (1) graph-to-text generation, (2) table-to-
text generation, and (3) MR-to-text generation. Table 1 lists
the widely-used datasets for D2T.

2.2.1 Graph-to-Text Generation
Since the commonly used graph data mainly include Knowl-
edge Graph (KG) and Abstract Meaning Representation
(AMR) , graph-to-text generation can be further subdivided
into KG-to-text generation and AMR-to-text generation.

KG-to-Text Generation. WebNLG [26], released in 2017,
is a very classic dataset that contains sets of RDF triples
extracted from DBPedia. Later Enriched WebNLG [30] and
WebNLG+ [31] are constructed by adding German and
Russian corpora respectively on this basic WebNLG dataset
and enriching the resources of the modular architecture.
Similarly, the AGENDA [32] and WITA [33] are constructed
by extracting KB triples from the target text. But DART [34]
dataset is built by extracting triples from tables. KGTEXT
[35] dataset is constructed by using Wikipedia hyperlinks
to query the knowledge graph corresponding to the text.
EventNarrative [36] is a large-scale event-centric dataset
which is created by using matching algorithms to match
KG to text automatically. In addition, GenWiki [37] contains
1.3 million non-parallel text and graphs with shared content
for training unsupervised KG-to-text generation models.
TEKGEN [38] dataset is created using distant supervision
by aligning Wikidata triples to Wikipedia text.

AMR-to-Text Generation. AMR is a syntactic indepen-
dent semantic representation of sentences. It can represent
sentences as single-root directed acyclic graphs according
to semantic structure. Thus, AMR is well suited for se-
mantically related NLP tasks. In AMR-to-text Generation,
currently commonly used public datasets include AMR15
(LDC2015E86), AMR17 (LDC2017T10) [39] and AMR20
(LDC2020T02) [40]. These datasets are human-annotated
treebanks, which contain 19572, 39260, and 59255 cross-
domain natural language texts respectively. Each sample
contains a sentence and a corresponding AMR diagram.

2.2.2 Table-to-Text Generation

According to whether the data belongs to a specific domain,
the table-to-text generation can be subdivided into the fol-
lowing two categories:

Domain-specific Table-to-Text Generation. In the sports
domain, RotoWire [27] consists of textual descriptions of
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TABLE 1
List of datasets for D2T. ”Avg.Len” refers to the average length of samples. ”Plan” refers to whether it contains the content planning.

Type Sub.Type Datasets Domain Language Samples Avg.Len Plan Year

Graph-to-text

KG-to-text

WebNLG Wikipedia English 9.6K 22.69 No 2017
Enriched WebNLG Wikipedia English, German 32.9K 19.67 Yes 2018
WebNLG+ Wikipedia English, Russian 25.3K 20.57 Yes 2020
AGENDA Wikipedia English 40.7K 141.2 No 2019
WITA Wikipedia English 55.4K 18.8 No 2020
DART Wikipedia English 82.2K 21.6 No 2021
KGTEXT Wikipedia English 16M 20.2 No 2020
GenWiki Wikipedia English 1336.7K 21.46 No 2020
EventNarrative Wikipedia (EventKG) English 224.4K 50.58 No 2021
TEKGEN Wikipedia English 5723K 21.2 No 2021

AMR-to-text
AMR15 Discussion forum etc. English 19.5K 21.3 No 2015
AMR17 Discussion forum etc. English 39.2K 20.4 No 2017
AMR20 Discussion forum etc. English 59.2K 16.9 No 2020

Table-to-Text

Domain-specific

RotoWire Sports English 4.9K 337.1 No 2017
RotoWire-Modified Sports English 3.7K 384 No 2019
RotoWire-FG Sports English 7.5K 205.9 No 2020
ESPN Sports English 15.0K 9.5 No 2018
MLB Sports English 26.3K 542.05 No 2019
BioLeaflets Biomedical English 77.1K 412.9 No 2021
numericNLG Scientific English 1.3K 94 No 2021

Open-domain

WikiBio Wikipedia English 728.2K 26.1 No 2016
WikiPerson Wikipedia English 311.5K 88.3 No 2018
WikiTableText Wikipedia English 13K 13.91 No 2018
WikiTablePara Wikipedia English – 760 Yes 2018
WikiTableT Wikipedia English 15K 115.9 No 2021
Wiki3C Wikipedia English 10.2K – No 2021
ToTTo Wikipedia English 136.0K 17.4 No 2020
TabFact Wikipedia English 118K 13.8 No 2020
TWT Wikipedia English 177.7K 16.4 No 2021
LogicNLG Wikipedia English 37.0K 14.2 No 2020
Logic2Text Wikipedia (WikiTables) English 10.7K 16.77 No 2020

MR-to-Text

Slot-value pairs

E2E Restaurant English 51.4K 22.41 No 2017
Cleaned E2E Restaurant English 42.4K 22.9 No 2018
Czech D2T Restaurant English, Czech 5.2K – No 2019
ViGGO Video Game English 6.9K 25.01 No 2019
KVRET Multi-domain English 3.0K 47.25 No 2017
MultiWOZ Multi-domain English 10.4K 15.12 No 2018

Attribute-value pairs

SUMTIME Weather English 1.2K 16.2 No 2008
WEATHERGOV Weather English 22.1K 28.7 No 2009
RoboCup Sports English 1.9K 5.7 No 2008
CACAPO Multi-domain English, Dutch 21.0K 16.86 Yes 2020

basketball games and numerous statistical tables; Rotowire-
Modified [41] is a more reliable version of Rotowire; the
later version, Rotowire-FG [42], is constructed by using
sophisticated heuristics to remove redundant numbers and
irrelevant schedules. And ESPN [43] contains 15,054 NBA
game result headlines during 2006-2017 from the ESPN
website, paired with their corresponding game statistics. In
addition, MLB [13] consists of richer baseball game scoring
summaries and longer textual descriptions than RotoWire.
In the biomedical domain, BioLeaflets [44] consists of pack-
aging leaflets for approved medicines in Europe. The main
challenges of BioLeaflets include multi-section target text,
specialized medical vocabulary, and syntax. Moreover, the
tables in numericNLG [45] are numerical tables. The diffi-
culty lies in the need for numerical reasoning.

Open-domain Table-to-Text Generation. Open-domain
table-to-text generation mainly develops in three aspects.

(1) From short text to long text. WikiBio [46] is made up
of biographical tables along with the first sentence of each
biography article from Wikipedia. Compared to WikiBio,
WikiPerson [47] contains more sentences corresponding to
the table. WikiTablePara [48] is constructed by filtering
more than 2000 tables and finally retaining 171 tables, each

of which has a four-paragraph reference description. The
WikiTableT [49] is constructed by combining previous work
and WikiTableText [50] to generate the large-scale dataset.

(2) Controlled D2T for content fidelity. Wiki3C [51] is
designed for sensitivity around information fidelity hence
demonstrating the high capability of divergences. ToTTo
[52] includes tables with multiple patterns, and completes
the text generation innovation of controlled cells in terms
of content selection. In TabFact [53], each table corresponds
to two hypotheses for studying fact verification. TWT [54]
is constructed by repurposing ToTTo and TabFact, targeting
controlled D2T. It provides prefix-target pairs to control the
topic of generated text.

(3) D2T with logical reasoning. The significant difference
between LogicNLG [55] and the above-mentioned open-
domain datasets is that the former contains annotated state-
ments with rich logical inferences. Similarly, Logic2text [56]
consists of tables, corresponding texts, and logical forms
that describe the semantics of the target text via diversified
graphs. It not only simply describes the content of the
table, but also summarizes the information in the table
through logical reasoning such as count, superlative and
comparative.
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2.2.3 MR-to-Text Generation
In MR-to-text generation, the structured data is usually
expressed in the form of key-value pairs. Specifically, the
structured data in the dialogue system is expressed in
the form of slot-value pairs (SVP); the structured data in
scenarios where the data fields are relatively fixed, such as
news broadcasts and weather broadcasts, is often expressed
in attribute-value pairs (AVP).

SVP-to-Text Generation. E2E [28] consists of more than
50k combinations of a dialogue-act-based MR and 8.1 ref-
erences on average. In order to reduce the influence of se-
mantic noise matters, Cleaned E2E [57] is produced in 2018.
Moreover, Czech D2T [58] is the first Czech dataset targeted
at end-to-end D2T. ViGGO [59] contains approximately 7K
pairs of MRs and reference utterances about over 100 video
games. The KVRET [60] and MultiWOZ [61] are large-scale
multi-domain datasets containing thousands of dialogues.

AVP-to-Text Generation. SUMTIME [62] is a small
dataset for training the early weather forecasting report sys-
tem, which only contains 1,220 examples. Besides, WEATH-
ERGOV [63] is a larger dataset of 22,146 scenarios. RoboCup
[64] contains 1,919 scenarios from the 2001–2004 Robocup
finals. CACAPO [65] contains almost 21,052 examples from
human-written news texts in the multi-domain, together
with aligned attribute-value pairs. Moreover, CACAPO can
be used to train not only end-to-end D2T models but also
modular D2T models.

2.3 Evaluation Metrics
2.3.1 Automatic Evaluation Metrics
As shown in the table 2, current popular automatic eval-
uation metrics for D2T task can be roughly put into the
following three categories: (1) lexical similarity; (2) semantic
equivalence; (3) faithfulness.

(1) Lexical Similarity. Early traditional metrics measure
lexical similarity by calculating the overlap of n-gram at the
word level between the generated text and the reference
text, such as BLEU [66], ROUGE [67], METEOR [68], NIST
[69] and CIDEr [70]. Unlike the above metrics, CHRF [71] is
an metric to evaluate the quality of generated sentences at
the character level. CHRF++ [72] even integrates character
level and word level, and takes the average of the two as
the evaluation score. On the contrary, TTR (type-token ratio)
and Dist-n [73] are the diversity measure used to evaluate
the lexical richness of generated text. Specifically, Dist-n is
the number of distinct n-grams divided by total number of
generated words.

(2) Semantic Equivalence. More recently, metrics based
on the similarity of sentence embeddings have shown im-
proved correlations with human judgments at the sentence
level. These metrics, including BERTScore [74], BLEURT
[75], MoverScore [76], and FrugalScore [77], gain semantic
equivalence between the generated text and the reference
text by using the pre-trained language models. Besides,
FINE and ROUGH [78] also use a pre-trained neural net-
work model based on natural language inference (NLI) to
assess the semantic accuracy of D2T, especially for identify-
ing incorrect outputs.

(3) Faithfulness. In addition to measuring the semantic
consistency, the faithfulness of the generated text is also

TABLE 2
List of current popular automatic evaluation metrics for D2T task.

G: generated text. R: reference text. SenEmb: sentence embedding.

Category Description Metrics Year

Lexical
Similarity

Overlap of n-gram in (G, R) pair

BLEU 2002
ROUGE 2004

METEOR 2007
NIST 2002

CIDEr 2015
CHRF 2015

CHRF++ 2017

Lexical richness of G TTR 2014
Dist-n 2016

Semantic
Equivalence

Similarity of SenEmb in (G, R)

BERTScore 2020
BLEURT 2020

MoverScore 2019
FrugalScore 2022

Natural language inference FINE, ROUGH 2020

Faithfulness Faithfulness of G to the input

PARENT 2019
PARENT-T 2020
RG, CS, CO 2017
ESACn 2021

Pcover , Rhallu 2021

a very important target. The unfaithful generation usually
contains hallucinated content which can not be aligned to
any input structured data, especially in table-to-text genera-
tion. Thus, PARENT [79] and PARENT-T [80] are proposed
to evaluate the Faithfulness in table-to-text generation. RG,
CS and CO [27] are three extraction evaluation indicators,
which are usually used to evaluate the comprehensive ef-
fect (Relation Generation, Content Selection, and Content
Ordering) of table-to-text generation models in experiments
using RotoWire dataset. Similar to RG, ESACn [81] can
estimate the percentage of RDF entity collections that can
find a corresponding mention in the generated text. Based
on the alignment between source table records and recog-
nized entities in the generated text, Pcover and Rhallu [82]
can calculate the table record coverage and the ratio of
hallucinated entities in generated text.

2.3.2 Human Evaluation Metrics

For D2T, human evaluation is implemented to assess on
three metrics: Fluency (whether the generated text is fluent
without grammatical error), Faithfulness (whether the gen-
erated text is faithful to input), and Coherence (whether the
output is logically coherent and the order of expression is in
line with human writing habits) [83].

2.4 Traditional Approaches to D2T

The traditional approaches of D2T follow the pipeline ar-
chitecture for natural language generation. As shown in
Figure 2, McKeown [1] proposed a classical pipelined text
generation architecture that contained three stages: doc-
ument planning, micro planning, and surface realization.
Document planning and micro planning aim to solve the
”What to say” problem, then surface realization aims to
solve the ”How to say” problem.

(1) Document planning is also known as text planning,
discourse planning, or macro planning. It includes content
determination and document structuring. Content determi-
nation aims to discover and determine the major topics the
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text need to be covered. Document structuring needs to
determine the overall structure of the text.

(2) Micro planning is also known as sentence planning
which aims to convert a content plan into a sequence of
sentences or phrases. It usually consists of three modules:
aggregation, lexicalization, and referring expression gen-
eration. Aggregation is the process of grouping selected
structured data together into sentences. Lexicalization is the
process of deciding which specific words and phrases need
to be chosen to express the domain concepts and relations
between the structured data. Referring expression genera-
tion is the task of selecting suitable words and phrases to
identify domain entities.

(3) Surface realization contains structure realization and
linguistic realization. Structure realization aims to mark up
the text’s surface structure. Linguistic realization needs to
smooth the text by insert function words, reorder word
sequences, and select appropriate inflections and tenses of
words.

Different from the three stages, Reiter and Dale [2] pro-
posed another pipelined text generation architecture which
consisted of six modules: content determination, discourse
planning, sentence aggregation, lexicalization, referring ex-
pression generation, and linguistic realization. However,
discourse planning is equivalent to document structuring
in the document planning, and sentence aggregation is
equivalent to aggregation in the micro planning.

The traditional modular approaches to D2T can be classi-
fied into two categories: (1) template-based modular approaches
[84] and (2) statistical modular approaches [85]. The template-
based modular approaches applied hand-engineered rules
and templates to generate fixed format text. The statisti-
cal modular approaches are mostly based on probabilistic
language generation process [3], probabilistic context-free
grammar [4], and other probabilistic models. For exam-
ple, Liang, Jordan, and Klein [63] proposed a probabilistic
HSMM-based generative model which generates text from
tabular data including a set of records in three stages: record
choice, field choice, and word choice. It also used dynamic
programming style decoding algorithm [7] when generating
output text. Rather than breaking up the generation process
into a sequence of local decisions, Konstas and Lapata [4]
defined a probabilistic context-free grammar (PCFG) that
globally describes the inherent structure of the input tabular
data through a weighted hypergraph (or packed forest).
Nevertheless, content planning (or document planning) was
not executed in aforementioned probabilistic models. There-
fore, Konstas and Lapata [86] represented content plans with
grammar rules which are operated on the document level
and are embedded on top of the original PCFG.

3 NEURAL APPROACHES TO D2T

In recent years, neural end-to-end models for data-to-text
generation have became dominant and achieved the SOTA
results due to the rise of deep learning. Next, we first
explain why neural end-to-end approaches for D2T. Then
we survey neural end-to-end approaches to D2T in the light
of different network frameworks, training and inference
strategies. Finally, we discuss neural approaches with prior
of dividing the task into different modules.

Fig. 2. The traditional pipeline architecture for data-to-text generation.

3.1 Why Neural End-to-End for D2T?
Although the traditional modular method has better in-
terpretability, it still brings many problems. On the one
hand, a multi-module cascading system will bring unavoid-
able error propagation problems; on the other hand, tradi-
tional modular method requires feature engineering involv-
ing more domain-specific handcrafted rules and templates,
which are costly and not flexible enough.

In contrast, neural end-to-end approaches use the
encoder-decoder architecture to effectively simulate the cor-
relation between the output natural language text and the
input structured data. This architecture unifies the functions
of three stages (document planning, micro planning, and
surface realization) into the decoder, avoiding the problem
of error propagation. Moreover, using the data-driven neu-
ral network models can decrease the expense of creating
domain-specific rules and templates by hand.

3.2 Frameworks of Neural End-to-End D2T
As shown in the Figure 3, the basic neural end-to-end D2T
framework employed the attention-based encoder-decoder
architecture, which was previously used for both Machine
Translation [10] and Text Summarization [11]. In the basic
neural end-to-end D2T framework, the general aim of D2T
task is to find an optimal sequence Y conditioned on the
input X via the teacher-forced maximum likelihood estima-
tion (MLE), which can be formulated as:

Y = argmaxy

l∑
t=1

logP (yt|Y<t, X) (1)

where l represents the number of tokens of the generated
text Y , and P (yt|Y<t, X) is the conditional probability of
the next token yt based on its previous tokens Y<t and the
source structured data X .

Compared with introducing a coarse-to-fine aligner [87],
the attention-based encoder-decoder architecture performed
a better content selection [46]. Based on this basic frame-
work, many studies have improved it on the following
different components: (1) more powerful encoders are uti-
lized to enhance structured data representation; (2) distinct

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3304385

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: East China Univ of Science and Tech. Downloaded on February 15,2024 at 13:53:55 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, DECEMBER 2022 6

Fig. 3. The illustration of basic neural end-to-end data-to-text generation model which follows the attention-based encoder-decoder architecture.

decoding architectures are used to improve diversity, num-
ber reasoning, interpretability, and controllability. (3) copy
and point mechanism is applied to deal with the out-of-
vocabulary problem; (4) Transformer is utilized to better
and faster model the relations between structured data and
textual output; (5) to incorporate external knowledge, the
multiple encoders and pre-training technique are applied.

3.2.1 More Powerful Encoder for D2T

Compared with convolutional neural network(CNN) and
multi-layer perceptron (MLP), Recurrent Neural Networks
(RNN) is more suitable for modeling natural language text
with sequence structure.

(1) RNN-based Encoder. Widely-used variants of RNN
in the D2T task include long-short-term memory (LSTM),
GRU [88], and ARU [89]. However, the input structured
data need to be linearized before the RNN-based encoder,
which lost important structural information of the input.
To address this issue, hierarchical attention mechanism [13],
[14], [15] or dual attention mechanism [16], [17] was ex-
ploited in Table-to-text generation and MR-to-text generation
to capture structural feature of records and fields. Most
of the domain-specific tables are time series data (such as
the RotoWire dataset), which means that the description
of the current table may be affected by its historical data.
Therefore, [90] simultaneously modeled row, column, and
time dimension information by a hierarchical encoder to
enhance the table representation. As to encode input graph,
vanilla RNN requires specific modifications to capture the
structural information of non-sequential data, such as GTR-
LSTM triple encoder [91] and graph state LSTM [92].

(2) GNN-based Encoder. For the Graph-to-text generation,
the Graph Neural Networks (GNN) was a better choice to
encode the input graph than the LSTM. [93] replaced RNN
with Graph Convolutional Networks (GCN) to explicitly
encode the structural information of the input graph. [94]
enhanced the representation of AMR graphs by explicitly
encoding both top-down and bottom-up views of the input
graph with different Graph Neural Networks, such as Gated
Graph Neural Network [95], Graph Attention Network [96]

and Graph Isomorphic Network [97]. [98] introduced the
mix-order Graph Attention Networks as the graph encoder
to model the relationships between indirectly connected
nodes by integrating the higher-order neighborhood infor-
mation. Lightweight Dynamic Graph Convolutional Net-
works (LDGCNs) [99] also capture richer non-local inter-
actions by synthesizing higher order information through
a dynamic fusion mechanism. DCGCN [100] utilized an
artificial global node with direct edges to all other nodes
to allow global message exchange, thereby neglecting graph
topology as all nodes are directly connected. And the unified
GAT structure [101] could encode an input graph combining
both global and local node contexts, in order to learn better
contextualized node embeddings.

(3) Multiple Encoders. The ability of a single encoder to
model different features of the sequence is relatively limited.
Thus, [102] created a neural ensemble natural language gen-
erator that accumulated the top 10 predicted utterances from
three neural models with different encoder. Furthermore,
[103] combined bi-GMP (a variant of GTR-LSTM triple
encoder) and bi-GCN encoders in order to jointly learn the
local and global structure information of the RDF triples.
DUALENC [104] also adopted a dual encoding method
(graph encoder and plan encoder) to narrow the structural
gap between data encoder and text decoder.

3.2.2 Distinct Decoding Architectures for D2T

Decoding architectures can be divided into (i) Autoregres-
sive and (ii) Non-autoregressive. Existing SOTA models in
NLG tasks are mostly autoregressive where each generation
step depends on the previously generated tokens.

(1) Autoregressive Decoding (AR) or Autoregressive
Generation (AG) dynamically generates predictions in a
recurrent manner. Predominant decoding strategies for gen-
erating text from autoregressive language models can be cat-
egorized into three classes: (1) maximization-based strate-
gies, such as greedy search and beam search; (2) stochastic
strategies, such as top-k sampling [105] and nucleus sam-
pling [106]; (3) isotropic-based strategies, such as contrastive
search [107]. Some works employed multiple decoders in
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a manner similar to that of multiple encoders in order to
increase the description diversity of text generated. To be
specific, [108] proposed a training method based on diverse
ensembling to encourage models to learn latent distinct
sentence templates by a shared encoder and K separate de-
coders. Multi-Branch Decoder (MBD) [109] also duplicated
the decoder module into three distinct parallel modules
associated with content, hallucination, and fluency. Neural
Table Reasoning Generator (NTRG) [110] developed an-
other RNN-based equation decoder to generate additional
mathematical equations during decoding the target text,
improving the number reasoning capability of neural D2T.

(2) Non-autoregressive Decoding (NAR) or Non-
autoregressive Generation (NAG) that generates the entire
or partial output sequences in parallel has faster inference
speed than autoregressive decoding. [111] attempts to learn
a non-autoregressive policy [112] that generates text by
directly inserting or replacing spans of neighbor text at
arbitrary positions within a partially constructed generation,
which allows for more interpretable and controllable data-
to-text generation.

3.2.3 Copy and Point Mechanism for D2T
The point mechanism proposed by Pointer Network [113]
(Ptr-Net) facilitates copying words from the source text.
Pointer-Generator Networks (PG-Net) [114] is a hybrid be-
tween basic neural end-to-end model and the Ptr-Net. It
aims to deal with out-of-vocabulary (OOV) words through
copying words from the source text via the pointer. The
coverage mechanism was also used in Pointer-Generator
Networks to discourage repetition when generating output
words. Similar to the PG-Net, [115] and [116] also used the
copy mechanism to obtain word from source data.

3.2.4 Whole Transformer for D2T
Transformer [117], released in 2017, follows the encoder-
decoder architecture, using stacked multi-head scaled dot-
product self-attention (MHSA) and point-wise, fully con-
nected feed-forward networks (FFN) for both encoder and
decoder. It allows for significantly more parallelization than
the RNN. The MHSA mechanism can better capture the
dependency in the input and enable the encoding to be less
sensitive to any permutation noise [118]. Thus, Transformer
can reach a new SOTA performance in NLP tasks.

Compared to LSTM-based model with hierarchical at-
tention mechanism [13], [119] encoded the tabular data
with the hierarchical transformer encoder and achieved
better results in content selection. And [120] first applied
the Transformer to the task of AMR-to-text generation and
proposed a novel structure-aware self-attention approach
to better model the relations between indirectly connected
concepts in AMR graphs. In addition, Graph Transformer
[121] used a pairwise interaction function to compute the
semantic relations and used separate graph attentions on
the incoming and outgoing neighbors, which help in en-
hanced capturing of the semantic information provided
in the graph. Another version of the Graph Transformer
[122] has a fully-connected view on arbitrary input AMR
graphs, which allows direct communication between two
distant nodes. GraphWriter [32] also uses a similar Graph
Transformer to encode knowledge graphs in the AGENDA

dataset. Compared to utilizing an artificial global node
with direct edges to all other nodes in GNNs, the Graph
Transformer can have easier access to global information in
the input graph.

3.2.5 Incorporating external knowledge in D2T
The existing methods for incorporating external knowledge
can be divided into two types: (1) explicit fusion through
multiple encoders, typically, KBAtt [123] used the dual
attention mechanism (table attention and knowledge base
attention) on the table encoder and KB encoder to integrate
external background knowledge for table-to-text genera-
tion; (2) implicit fusion through pre-training on external
knowledge. The case in point is KGPT [35], which first
pre-trained the novel Transformer-based architecture on the
knowledge-grounded corpus KGTEXT and then fine-tuned
it on downstream D2T datasets.

3.3 Training and Inference Strategies for Neural D2T
3.3.1 Multi-task Learning for D2T
Based on the assumption that related tasks have similar
representation spaces, multi-task learning [124] leverages
the same training data by introducing additional auxiliary
tasks to enhance the representation learning capabilities of
neural models. In D2T, the multi-task learning can be used
to enhance the logical reasoning ability of model and obtain
structural information of input data.

Logical Reasoning for Fidelity. The crucial problem for
neural D2T is that, although being fluent and informative,
models frequently generate faithless descriptions that are
inconsistent with the structured data. A straightforward
way to improve the fidelity of neural text generation is
to separate symbolic operations from neural models [43].
While [125] utilized two auxiliary tasks, number ranking
and importance ranking, to supervise the numerical table
encoder to capture the numeric size relation and the im-
portance relation between records in different dimensions.
Content planning is another form of logical reasoning and
can be strengthened by multi-task learning. [126] adapted
the Transformer by modifying the input table representation
(record embedding) and introducing an additional objective
function for content selection modelling. [80] introduced
two content-matching constraint losses, including a table-
text disagreement constraint loss and a constrained content
matching loss with optimal transport, in order to generate
description texts faithful to tables.

Preserving Structural Information by Reconstruction.
To learn better node representations of the input AMR
graph, [127] proposed to optimize two simple but effective
auxiliary reconstruction objectives: link prediction objective
which requires predicting the semantic relationship between
nodes, and distance prediction objective which requires
predicting the distance between nodes. [128] also introduced
two types of auto-encoding losses to structure-aware Trans-
former for preserving input information, individually focus-
ing on different views of input graphs (linearized graphs
and the set of triples). TableGPT exploited multi-task learn-
ing with two auxiliary tasks that preserved table’s structural
information by reconstructing the structure from GPT-2’s
representation and improved the fidelity by aligning the
table and information in the generated text.
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TABLE 3
Summary of recent neural end-to-end approaches on D2T without using pre-training techniques. MTL: Multi-Task Learning.

LM: Language Modeling. VI: Variational Inference. RL: Reinforcement Learning. B: BLEU. BTS: BERTScore. PAT: PARENT. CO: Content Ordering.

Work Model MTL Strategy Performance Datasets
Encoder Attention Decoder ("/%) (LM/VI/RL) (B/BTS/PAT/...)

Coarse2Fine [87] LSTM %(Aligner) LSTM % LM B:61.01% WEATHERGOV
B:25.28% RoboCup

Table NLM [46] LSTM " LSTM % LM B:34.7% WikiBio
MELBOURNE [26] LSTM " LSTM % LM B:45.13% WebNLG(A)
Condi-Copy [27] MLP " LSTM % LM B:14.49%, CO:8.68% RotoWire

OpAtt [43] GRU " GRU % LM B:18.0% ESPN
B:14.96% RotoWire

Pointer+Pos [47] Bi-GRU "(Slot-aware) GRU % LM B:23.2% Wikipedia
TGen [28] LSTM " LSTM % LM B:69.25% E2E

Order planning [115] LSTM "(Hybrid) LSTM % LM B:43.91% WikiBio
Two-level LSTM [14] LSTM "(Hierarchical) LSTM " LM B:44.14% WikiBio

Richness RL [129] LSTM "(Force) LSTM % RL B:45.47% WikiBio
FGT [130] LSTM " LSTM % RL B:15.73%, RG(P%:82.99) RotoWire

ENT [13] LSTM "(Hierarchical) LSTM % LM B:16.12%, CO:20.17% RotoWire
B:11.51%, CO:24.51% MLB

KBAtt [123] LSTM "(Dual) LSTM % LM B:44.59% WikiBio
Field-gating [16] LSTM "(Dual) LSTM % LM B:44.89% WikiBio

Structural Enc. [17] LSTM "(Dual) LSTM % LM B:46.5%, PAT:54.0% WikiBio
B:67.5%, PAT:71.6% E2E

SeqGAN [51] LSTM "(Dual) LSTM % RL B:49.2%, PAT: 45.6% WikiBio
B:13.0% Wiki3C

Eff-Hie Enc. [90] LSTM "(Hierarchical) LSTM % LM B:16.24%, CO:20.70% RotoWire

GTR-LSTM [91] GTR-LSTM " LSTM % LM B:58.6% WebNLG(S)
B:34.1% WebNLG(U)

Graph state LSTM [92] Graph state LSTM " LSTM % LM B:33.0% AMR15
GCN Enc. [93] GCN " LSTM % LM B:53.5% WebNLG

Dual Graph Enc. [94] GNNs " LSTM % LM B:24.32% AMR15
B:27.87% AMR17

DCGCN [100] DCGCN " LSTM % LM B:30.4%, CHRF++:59.6% AMR17

Mix-Order GAT [98] 4-MixGAT " Trans.Dec % LM B:30.58% AMR15
B:32.46% AMR17

LDGCNs [99] LDGCNs " LSTM % LM
B:30.8%, CHRF++:61.8% AMR15
B:33.6%, CHRF++:63.2% AMR17
B:34.3%, CHRF++:63.7% AMR20

CGE-LW [101] CGE-LW " Trans.Dec % LM B:18.01%, CHRF++:46.69% AGENDA
B:63.69%, CHRF++:76.66% WebNLG

GMP+GCN [103] GMP+GCN " LSTM % LM B:57.09% WebNLG
B:57.76% Enriched WebNLG

DUALENC [104] DUALENC " LSTM % LM B:63.45% WebNLG(S)
B:36.73% WebNLG(U)

Ensem. Enc. [102] CNN+ Bi-LSTM " LSTM % LM B:65.76% E2E
Ensem. Dec. [108] Bi-LSTM " Multi-LSTM % LM B:74.3% E2E

NTRG [110] Bi-LSTM " Multi-LSTM % LM B:18.03%, CO:22.46% RotoWire
Hierarchical-k [119] Trans.Enc(2) "(MHSA) LSTM " LM B:17.5%, CO:18.90% RotoWire

GatedGAT [125] MLP+GatedGAT "(Dual) LSTM " LM B:24.52%, CO:25.23% RotoWire-FG
B:17.96%, CO:25.30% RotoWire

DATA-TRANS [126] Trans.Enc "(MHSA) Trans.Dec " LM B:20.22%, CO:23.32% RotoWire
IPOT [80] Trans.Enc "(MHSA) Trans.Dec " LM B:24.56%, PAT-T:56.1% WikiPerson

Graph Trans. [121] Trans.Enc "(MHGA) Trans.Dec % LM B:25.9% AMR15
B:29.3%, CHRF++:59.0% AMR17

Graph Trans. [122] Bi-GRU "(Global) Trans.Dec % LM B:27.4%, CHRF++:56.4% AMR15
B:29.8%, CHRF++:59.4% AMR17

SA Trans. [120] Trans.Enc "(SA) Trans.Dec % LM B:29.66%, CHRF++:63.00% AMR15
B:31.82%, CHRF++:64.05% AMR17

GR Trans. [127] Trans.Enc " Trans.Dec " LM B:32.1%, CHRF++:64.0% AMR15
B:33.9%, CHRF++:65.8% AMR17

Multiview-G2S [128] Trans.Enc "(SA) Trans.Dec " LM B:34.21% AMR17
B:62.89% WebNLG

Conf-PtGen [131] Trans.Enc " LSTM % VI B:65.58% WebNLG
B:44.21%, PAT(F1):54.35% WikiBio

Trans.+RL [132] LSTM " LSTM % LM+RL(self-critical) B:63.2%, PAT(F1):71.27% WebNLG
B:44.17%, PAT(F1):56.72% WikiBio

Inverse RL [133] Bi-GRU " GRU % Inverse RL B:28.42% Wikipedia

SeqPlan [134] LSTM " LSTM % VI (Interleaved) B:16.26%, CO: 16.7% RotoWire
B:14.29%, CO: 22.7% MLB
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3.3.2 Variational Inference for D2T
From MLE to Inverse KL Divergence. Training neural D2T
models through maximum likelihood estimation (MLE) is
the most widely used method. The objective of MLE is
equivalent to minimizing the cross entropy between the real
data distribution and the estimated probability distribution.
While [135] regards the maximum likelihood estimation as
minimizing the Kullback-Leibler (KL) divergence and then
approximately optimizes the inverse Kullback-Leibler diver-
gence between the distributions of the real and generated
sentences during training the KG-to-Text generation model.
Due to the nature that inverse KL imposes large penalty on
fake-looking samples, this method can significantly reduce
the probability of generating low-quality sentences.

What is VAE? Variational Auto-Encoder [136] is a
type of likelihood-based generative model via variational
inference to approximate the posterior of the model by
maximizing the evidence lower bound (ELBO) which need
to optimize the Kullback-Leibler divergence. When VAE is
applied to sequence-to-sequence generation where the input
and the output are denoted by X and Y respectively, its
optimization objective is defined as follows:

log Pθ(Y |X) ≥ Ez∼qϕ(z|X,Y )[log Pθ(Y |X, z)]

−KL(qϕ(z|X,Y ) ∥ P (z|X))
(2)

where Pθ(Y |X, z) denotes the decoder with parameters
θ, and qϕ(z|X,Y ) is obtained by an encoder with parame-
ters ϕ, and P (z|X) is a prior distribution (e.g. the Gaussian
distribution).

For logical table-to-text generation, the problem is that
the causal relationship between the table and the text is
more difficult to capture than the surface-level spurious
correlations. DCVED [137] proposed a de-confounded vari-
ational encoder-decoder in view of causal intervention, uti-
lizing variational inference to generate multiple candidates
that finally selected by a table-text selector based on surface-
level consistency and the logical fidelity. To address the
issue of hallucination in D2T, [131] employed the Variational
Bayes scheme to train the model so that it could generate
confident text by learning from the sampled sub-sequences
containing only parts of the target that were faithful to the
source. Besides, [134] inferred latent plans sequentially with
a structured variational inference model, while interleaving
the steps of planning and generation for long-form text.

3.3.3 Reinforcement Learning for D2T
What is GAN? The generative adversarial network (GAN)
[138] is a framework that adopts an adversarial training
process to estimate generative models. GAN contains a
generative model (Gϕ) that captures the data distribution
and tries to produce fake samples, and a discriminative
model (Dθ) that attempts to determine whether the samples
come from the model distribution or data distribution. The
training objective with value function can be formulated as:

min
Gϕ

max
Dθ

V (Gϕ, Dθ) = EX∼Preal
[logDθ(X)]

+EZ∼PGϕ
[log(1−Dθ(Z))]

(3)

where X are the real samples that obey the distribution
Preal , and Z are the generated samples which obey the
distribution PGϕ

.

Fig. 4. The illustration of SeqGAN. Left: Gϕ is trained by policy gradient
where the final reward evaluated via Monte Carlo search is provided by
Dθ . Right: Dθ is trained over the true data and the generated data.

GAN avoids the exposure bias problem caused by op-
timizing autoregressive model with MLE, and optimizes
the Jensen-Shannon (JS) divergence between the real data
distribution and the generative model distribution, which
will have a reasonable penalty for generating false samples.

JS(P ∥ G) =
1

2
KL(P ∥ M) +

1

2
KL(G ∥ M) (4)

where M = 1
2 (P +G) is the average of two distributions.

However, due to the existence of non-derivable sampling
operation, the traditional gradient optimization method can
not be directly used to optimize GAN during training. One
way to solve this problem is to transform it into a reinforce-
ment learning problem that does not require derivability.

Train GAN using Reinforcement Learning (RL). The
SeqGAN [139] considers the sequence generation procedure
as a sequential decision making process. As illustrated in
Figure 4, the generative model (Gϕ) is treated as an agent
(policy) of reinforcement learning and is trained via policy
gradient; the state is the generated tokens so far and the
action is the next token to be generated. To give the reward,
SeqGAN employs a discriminative model (Dθ)to evaluate
the sequence using Monte Carlo (MC) search to approximate
the state-action value and feedbacks the evaluation to guide
the learning of the generative model. For generating high-
quality language descriptions, RankGAN [140] employs a
ranker as the discriminative model to learn the relative
ranking information between the machine-written and the
human-written sentences. MaskGAN [141] even converts
the text generation task into a fill-in-the-blank task that fills
in missing text conditioned on the surrounding context.

In D2T, reinforcement learning can also improve the
factual consistency and information richness of generated
text. [51] adopted the SeqGAN to the table-to-text genera-
tion task and added a reward from the PARENT metric to
represent the information fidelity to the input table. [129]
took advantage of the reinforcement learning framework to
encourage the LSTM-based MR-to-text generator to cover
infrequent and rarely mentioned attributes, by maximizing
a mix reward which contains both the BLEU score and
the information richness of the generated description to-
wards the source attribute-value pairs. [130] also designed
a non-differentiable consistency verification signal which
optimized via reinforcement learning in order to inspect fact
discrepancy between generated texts and their correspond-
ing input data. [142] proposed a new reward, Clinical Re-
construction Score (CRS), to quantify the factual correctness
of reports with a BERT-based reconstructor, and designed
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the overall reward as a combination of ROUGE-L score
and CRS. PARENTing [132] proposed a training protocol
with a mixed objective function combining the standard
maximum-likelihood loss with a custom reinforcement loss,
which was optimized via self-critical policy gradient based
on the PARENT score. While [133] posed the table-to-text
generation task as Inverse Reinforcement Learning (IRL)
problem and designed a set of intuitive and interpretable
reward components that were linearly combined to get the
reward function of Maximum Entropy IRL framework on
the basis of [47].

3.3.4 Pre-training for D2T

Why Pre-training? In NLP, pre-trained models (PTMs) on
large unannotated corpora have been proved to be benefi-
cial for the downstream NLP tasks [159]. The advantages
of pre-training technique can be summarized as follows:
(1) Pre-training on the huge unannotated text corpora can
learn universal language representations and help with the
downstream tasks; (2) Pre-training provides a better model
initialization, which usually leads to a better generalization
performance and speeds up convergence on the down-
stream task; (3) Pre-training can be regarded as a kind of
regularization to avoid overfitting on small data.

According to the architectures of backbone network,
pre-trained language models (PLMs) can be divided into
four categories: (1) LSTM as backbone network, including
ELMo [160] , LM-LSTM [161], Shared LSTM [162], and
CoVe [163]; (2) Transformer encoder (Trans.Enc) as backbone
network, including BERT [164], XLNet [165], SpanBERT,
RoBERTa [166], UniLM [167] and UniLM2 [168]; (3) Trans-
former decoder (Trans.Dec) as backbone network, including
GPT [169], GPT-2 [170], and GPT-3 [171]; (4) full standard
Transformer architecture as backbone network, including
BART [172], T5 [173] and the multi-lingual version (mBART
[174], mT5 [175], MASS [176], XNLG [177]). “Trans.Enc” and
“Trans.Dec” mean the encoder and decoder part of the stan-
dard Transformer architecture, respectively. Their difference
is that the decoder part uses masked self-attention with a
triangular matrix to prevent tokens from attending their
future (right) positions. Therefore, “Transformer decoder” is
naturally suitable for text generation tasks. Denoising auto-
encoding as pre-training task used by BART can make the
encoder robust to noisy input [178].

At present, the pre-trained language models commonly
used in the D2T task involve: GPT-2, GPT-3, KGPT, T5,
BART and so on. However, there is a significant gap in the
adaptation of the universal pre-trained language models to
specific downstream tasks. In D2T, this gap is mainly re-
flected in the difference between the topological information
contained in structured data itself and the sequential text
[179]. As shown in Figure 5, the two basic paradigms for
utilizing the pre-trained language models for D2T are Fine-
tuning and Prompting, which both aim at adapting the PLMs
to D2T, thereby narrowing the gap above.

(1) Pre-training and Fine-tuning.
Fine-tuning GPT-based model. In 2020, [143] explored

the possibility of directly fine-tuning GPT-2 to predict tar-
get text on a sequential representation of AMR graphs. It
outperformed the previous SOTA on automatic evaluation

Fig. 5. The frameworks of two main paradigms to utilize the pre-trained
models for D2T task. Left: Fine-tuning can update all parameters of the
PTMs. Right: Prompting freezes the parameters of the PTMs (gray) and
only updates small additional parameters for few-shot learning. It con-
sists of prefix-tuning that prepends prefixes (red) at every transformer
layer and prompt tuning that prepends the embeddings of prompt tokens
(purple) to the embedded input.

metrics and human evaluation experiments for AMR-to-
text generation. While [144] used the pre-trained language
model GPT-2 as the generator, serving as the “innate lan-
guage skill”, in the few-shot D2T model based on [16].
Similar to [144], [55] also applied GPT-2 as the generator
to decode description from a table by fine-tuning GPT-2
on LogicNLG dataset. Instead of encoding the input table
by additional table encoder, TableGPT [145] only employed
GPT-2 as the whole model for few-shot Table-to-text gen-
eration. Structured table was reasonably transformed into
text sequence by utilizing a table transformation module.
After fine-tuning GPT-2 using the D2T task’s training data,
[146] introduced a specialized semantic fidelity classifier
(SFC) to assess how accurately the generated text reflects the
input data. Besides, data augmentation is another frequently
used method to alleviate the problem of insufficient training
samples [180].

Fine-tuning T5/BART-based model. Directly adopting
a pre-trained model with the encoder-decoder architecture,
such as T5 and BART, for D2T is also an option [149] [150].
For instance, [151] fine-tuned T5 on D2T datasets by repre-
senting the structured data as a flat string (linearization),
leading to state-of-the-art results on diverse benchmarks
spanning MultiWOZ, ToTTo, and WebNLG. However, this
method failed to fully utilize the structure information of
the input data. To better capture the structure and inter-
dependence of facts in the KG, [153] leveraged the power
of T5 with two additional position embeddings, including
triple role embeddings and tree-level embeddings. Instead
of directly fine-tuning the PTMs on the training set, they first
fine-tuned T5 on a noisy, but larger corpus crawled from
Wikipedia before fine-tuning it on the WebNLG dataset.
Similarly, STTP [154] further pre-trained BART on the pre-
processed WDCWebTable corpus by three self-supervised
tasks including masked table language modeling, adjacent
cell prediction, and context reconstruction. [152] even inves-
tigated the robustness to permutation of graph linearization
in T5-based graph-to-text generation models, and found
that: 1) models trained on the fixed, canonical linearizations
failed to generalize to meaning-preserving alternatives; 2)
graph denoising objectives under the framework of multi-
task learning would drive substantial improvements. [155]
also proposed a relation-biased breadth-first search (BFS)
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TABLE 4
Summary of recent neural end-to-end approaches on D2T with pre-training techniques. MTL: Multi-Task Learning. LM: Language Modeling.

VI: Variational Inference. RL: Reinforcement Learning. B: BLEU. PAT: PARENT. PPL: Perplexity. BRT: BLEURT. FT: Fine-tuning. PT: Prefix-tuning.

Work PTMs Backbone Paradigm Year Multi-task Strategy Performance Datasets
("/%) (LM/VI) (B/BTS/PAT/...)

GPT-2 [55] GPT-2 Trans.Dec FT 2020 % LM B:49.6%, PPL:6.8% LogicNLG

DCVED [137] GPT-2 Trans.Dec FT 2021 % VI B:48.9%, NLI-Acc: 73.8% Logic2Text
B:49.5%, NLI-Acc: 76.9% LogicNLG

GPT-2 [143] GPT-2 Trans.Dec FT 2020 % LM B:33.02%, BTS(F1):94.63% AMR17

LM+switch [144] GPT-2 Trans.Dec FT 2020 % LM
B-4(500 e.g.):41.7% WikiBio
B-4(500 e.g.):40.3% Wikipedia(Books)
B-4(500 e.g.):42.2% Wikipedia(Songs)

TableGPT [145] GPT-2 Trans.Dec FT 2020 " LM
B-4(500 e.g.):45.6% WikiBio
B-4(500 e.g.):42.2% Wikipedia(Books)
B-4(500 e.g.):42.3% Wikipedia(Songs)

DATATUNER [146] GPT-2 Trans.Dec FT 2020 % LM

B:52.9%, CIDEr:3.7 WebNLG
B:37.7%, CIDEr:3.9 AMR17
B:43.6%, CIDEr:2.0 Cleaned E2E
B:53.6%, CIDEr:2.7 ViGGO

KGPT [35] KGPT Trans.Dec FT 2020 % LM
B:64.11% WebNLG
B:68.05% E2E
B:45.06% WikiBio

AMG [147] UniLM Trans.Enc FT 2020 % LM
B-4:49.02%, PAT:51.86%, PAT-T:44.7% WikiBio
B-4:43.88%, PAT:48.59%, PAT-T:42.69% Wikipedia(Books)
B-4:45.09%, PAT:46.9%, PAT-T:37.36% Wikipedia(Songs)

NMT [148] MASS-like Transformer FT 2020 % LM B:26.3%, SER:1.9 Czech D2T

T5+STA [149] T5 Transformer FT 2020 % LM
B:59.70%, CHRF++:75.40% WebNLG

B:49.72%, BRT:0.6424 AMR17
B:25.66%, CHRF++:63.7%, BRT:-0.089 AGENDA

CycleGT [150] T5 Transformer FT 2020 % LM
B:55.5%, CIDEr:3.81 WebNLG
B:44.56%, BRT:0.54 WebNLG+

B:41.59%, CIDEr:3.57 GenWiki

T5-Large [151] T5 Transformer FT 2020 % LM
B:64.7% WebNLG

B:49.5%, PAT:58.4% ToTTo
B:35.1% MultiWOZ

Scaffolding [152] T5 Transformer FT 2021 " LM B:45.14%, BTS:76.54% AMR17
Two-step FT [153] T5 Transformer FT Twice 2021 % LM B:66.07%, BTS:96.21%, PAT:71.6% WebNLG

STTP [154] BART Transformer FT 2021 % LM B:64.92% WebNLG
B:82.63% WEATHERGOV

RBFS [155] BART Transformer FT 2021 " LM
B-4:61.88%, CIDEr:6.03 WebNLG
B-4:25.15%, CIDEr:3.23 AGENDA
B-4:48.46%, CIDEr:5.19 GenWiki

Prefix-tuning [156] GPT-2 Trans.Dec PT 2021 % LM
B:63.4%, TER:0.34 WebNLG

B:70.3%, CIDEr:2.47 E2E
B:46.7%, BTS:94%, BRT:0.40 DART

Control Prefixes [157] T5 Transformer PT 2021 % LM

B:67.32%, TER:0.3096 WebNLG
B:55.41%, TER:0.392, BRT:0.63 WebNLG+

B:44.15%, CIDEr:2.04 Cleaned E2E
B:53.6%, TER:0.4275, BTS:95% DART

PCG [158] BART Transformer PT 2022 % LM
B(500 e.g.):49.4%, PAT(500 e.g.):51.8% WikiBio
B(500 e.g.):45.6%, PAT(500 e.g.):49.3% Wikipedia(Books)
B(500 e.g.):44.5%, PAT(500 e.g.):46.0% Wikipedia(Songs)

strategy for KG linearization in few-shot KG-to-text gen-
eration with BART-based model, which adopted multi-task
learning with an auxiliary KG reconstruction task. For low-
resource language scenarios, [148] pre-trained a 6-layers
full Transformer model via machine translation task on a
parallel corpus, previous to fine-tuning the model on the
Czech D2T dataset [58].

(2) Pre-training and Prompting. As the parameter size of
the pre-trained model continues to increase, so does the cost
of fine-tuning the pre-trained model, due to this way mod-
ifies all parameters of the pre-trained model. While prompt
learning methods [181] , instigated by the arrival of GPT-3,
adapt pre-trained language models to downstream applica-
tions by using the task-specific prompt together with the
input. Prompt tuning [182] uses a single prompt represen-
tation that is prepended to the embedded input. It only re-

quires storing a small task-specific prompt for each task, and
enables mixed-task inference using the original pre-trained
model. For text generation tasks, prefix-tuning [156], [183] ,
which keeps language model parameters frozen and instead
optimizes a sequence of continuous task-specific prompt
vectors (prefix) that prepended at every transformer layer
in PTMs, is more effective than prompt-embedding tuning.
Control Prefixes [157] extends this method by combining
prefix-tuning with controlled text generation, empowering
the model to have finer-grained control during text genera-
tion. It incorporates attribute-level learnable representations
into different layers of a pre-trained transformer, allowing
for the generated text to be guided in a particular direction.
Impressively, large language models which contain hun-
dreds of billions (or more) of parameters can solve few-shot
D2T through in-context learning [184].

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3304385

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: East China Univ of Science and Tech. Downloaded on February 15,2024 at 13:53:55 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, DECEMBER 2022 12

3.4 Neural Modular Approaches to D2T

Although the data-driven end-to-end approaches are quite
straightforward, avoiding the hassle of manually formu-
lating templates and grammar rules, this method has two
main drawbacks: (1) lack of explicit utilization of linguistic
knowledge; (2) lack of effective means to control the quality
of the generated text. By comparing pipeline and end-to-end
approaches, [185] discovered that having explicit intermedi-
ate steps during generation resulted in better texts. [186]
also demonstrated that properly aligning input sequences
during training leads to highly controllable generation. It
proves that introducing a content planning stage before text
generation can effectively enhance controllability and faith-
fulness. Therefore, the two-stage method for neural D2T has
been paid more and more attention by researchers. And
neural template-based approaches also have been explored
for interpretable and controllable D2T. Table 5 summarizes
recent neural modular approaches on D2T.

3.4.1 Two-Stage: Content Planning and Text Generation

Relationship to traditional pipeline architecture. Content
Planning aims to perform content selection and content
ordering on the input structured data, outputting a content
plan. This stage is equivalent to executing three modules
in traditional pipeline architecture: content determination,
discourse planning, and sentence aggregation. Text Gener-
ation aims to convert content plan into natural language
text that describes input accurately and fluently. Essentially,
it is equivalent to executing the other three modules in
traditional pipeline architecture, including lexicalization, re-
ferring expression generation, and linguistic realization.

Neural content planning (NCP) [18] is a typical two-
stage D2T model. It first generated a content plan, highlight-
ing which information should be mentioned and in which
order; and then the resultant content plan as input to the text
generation stage. Dynamic content planning (NDP) [194]
also dynamically selected the appropriate information from
the input data during text generation. Analogously, two-
stage method was used in the KG-to-text generation [19],
[20]. The content plan usually consists of a sequence of facts
in table [188], [189], or a sequence of predicates/relations
in RDF triples, or a sequence of keys in MRs, following the
order in references. Thus, planning-based hierarchical vari-
ational model (PHVM) [21] was conducive to long text gen-
eration by decomposing it into dependent shorter sentences
generation sub-task, treated as macro content planning [195]
at the paragraph level.

Although the content plan guides the text generation in
the second stage, it has the potential to cause false cascades,
resulting in a decrease in the quality of the generated text.
Thus, it is extremely important to ensure the correctness
of content plan in the first stage. To this end, [192] made
two improvements on the basis of the NCP model: (1)
designed contextual numeric value representations obtained
through a pre-trained ranking task; (2) designed integrated
rewards to verify content planning results. PlanGen [196]
distinctively formulated the intermediate content plan as an
ordered list of tokens, and regarded content planning as a
sequence labeling task. Based on a simple but homologous
content planner, PCG [158] adopted the prompt tuning in

Fig. 6. The illustration of PlanGen model, which is a typical D2T model
adopting two-stage method with PTMs. Left: stage 1 (content planning)
aims to solve the “What to say” problem. Right: stage 2 (text generation)
aims to sovle the “How to say” problem.

the second stage to control the factual contents and word
order of the generated text via two kinds of prefixes, which
were prepended to the input of BART encoder.

3.4.2 Neural Template-based Approaches to D2T

The neural template-based approaches [22], [187], [198],
[199], in contrast to traditional approaches that manually
constructed templates, first utilize the template generator
to generate latent and discrete templates with data slots to
be filled, after which it replicate the input’s factual infor-
mation to fill the slots. For example, [48] used the neural
TextGen module to convert the modified canonical triple
into a simple sentence-like template which would finally
be replaced with the original entities to produce a simple
sentence. Variational template machine (VTM) [23] explored
the difficulty of automatically learning reusable templates
from paired and non-paired data by means of variational in-
ference. Besides, Anchor-to-Prototype [191] and Prototype-
to-Generate [24] retrieved and selected a collection of pro-
totype descriptions from the training data in order to guide
the generation process. However, other research works [25],
[193] used some simple handcrafted templates to transform
each of the input triples into a single sentence, and then
performed several simple modules to generate the final
description, opening up the possibility for zero-shot domain
adaptation. And [200] explicitly inserts the simple designed
phrases corresponding to missing slots into the generated
text to improve semantic coverage.

4 APPLICATIONS OF D2T

4.1 Potential applications of D2T in various fields

Due to the widespread presence of structured data in the
real world, D2T models have many potential applications
in various fields. For example, in the medical field, D2T can
automatically generate the packaging leaflets of medicines
[44] or medical examination reports [142]; in the field of
journalism, D2T can be utilized to automatically generate
biographies [26], [30], [31], weather forecasts [62], [63] and
sports event broadcasts [13], [27], [41], [43], [59], [64]; in the
financial field, D2T can be used to generate stock market
comments [201] and restaurant reviews [28], [57], [58]; in the
field of scientific research, D2T can also automatically gen-
erate experimental analysis reports [45]. These demonstrate
the significant practical application value of D2T research.
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TABLE 5
Summary of recent neural modular approaches on D2T. MTL: Multi-Task Learning. B: BLEU. BTS: BERTScore. PAT: PARENT. BRT: BLEURT.

Work Backbone Pre-trained Paradigm Two-stage Template MTL Year Performance Datasets

HSMM [22] LSTM % % % " % 2018 B:59.8%, NIST:7.56 E2E
B:34.8%, NIST:7.59 WikiBio

DCM [187] LSTM % % % " % 2018 B:16.19%, CO:16.34% RotoWire
NCP [18] LSTM % % " % % 2019 B:16.50%, CO:18.58% RotoWire

3-stages [48] LSTM % % % " % 2019 B:33.3% WikiTablePara
BestPlan [19] LSTM % % " % % 2019 B:47.4%, CIDEr:2.692 WebNLG
PIVOT [188] LSTM % % " % % 2019 B:27.34%, NIST:6.8763 WikiBio

CSP+TG [189] Trans. % % " % " 2019 B:15.17%, CO:19.26% RotoWire-Modified

Segment. [190] LSTM % % " % % 2020 B:65.1%, Dist-3:911 E2E
B:46.1%, Dist-3:149 WebNLG

Anc2Pro [191] Trans. % % % " " 2020 B:49.9% WebNLG

DUV [192] LSTM % % " % " 2020 B:15.92%, CO:23.32% RotoWire-Modified
B:9.51%, CO:27.78% MLB

ITE [193] T5 " Fine-tuning % " % 2020 B:57.1% WebNLG
NDP [194] LSTM % % " % % 2021 B:16.67%, CO:20.67% RotoWire

Macro [195] LSTM % % " % % 2021 B:15.46%, CO:17.7% RotoWire
B:12.62%, CO:21.8% MLB

PlanGen [196] BERT/BART " Fine-tuning " % % 2021 B:65.42% WebNLG
B:49.2%, PAT:58.7%, BRT:0.249 ToTTo

Aug-plan [82] BART " Fine-tuning " % % 2021 B:31.16%, PAT:56.75% WikiPerson

SANA [197] Trans. % % " % " 2021 B:54.51%, PAT:61.01% WikiBio
B:30.29%, PAT:68.28% WikiPerson

P2G [24] T5 " Prefix-tuning % " " 2021 B(500 e.g.):50.1% WikiBio

3-STAGE [25] BART " % % " % 2022 B:43.94%(Zero-Shot) WebNLG
B:36.04%(Zero-Shot) E2E

4.2 The wider social impact of D2T

Even though the D2T models can be applied in various
fields to help people analyze and illustrate structured data,
there is still a crucial issue that needs to be addressed
urgently, which is the hallucination problem. This problem
can be further divided into two categories: (1) Intrinsic
hallucination, which means that the generated text contains
information that is unfaithful to the input; (2) Extrinsic
hallucination, which means that the generated text contains
non-factual information. Both intrinsic and extrinsic hal-
lucinations can cause extremely serious consequences for
the D2T models in practical applications, especially in the
healthcare field. To mitigate the impact of hallucinations,
SANA [197] introduced the non-autoregressive model into
the two-stage method, resulting in fewer hallucinations.
To eliminate the influence of hallucinations contained in
training corpus, [82] incorporated the auxiliary entity infor-
mation into the augmented plan and trained the plan-to-text
generator with the few-shot high-quality augmented plan
and text pairs. And [190] proposed to explicitly segment tar-
get text into fragment units and align them with their data
correspondences, which reduced intrinsic hallucinations.

5 CHALLENGES AND FUTURE DIRECTIONS

5.1 Challenges

Although existing neural data-to-text generation models can
generate fluent descriptions, there are still a number of
issues that need to be further addressed. Current challenges
mainly include the following five aspects:

(1) Weak Controllability. It is challenging to control
the text generation process using neural end-to-end D2T
models. Even though the two-stage method can somewhat
increase the controllability of generated content, there is still
a dearth of study on the style controllability of D2T.

(2) Low Coverage. Due to the weak controllability in the
generation process, the text generated by the neural D2T
model cannot fully describe the important information in
the input. For instance, some slot information in MRs is
omitted in the descriptions.

(3) Poor Faithfulness. Even if the generated text men-
tions all crucial information, it may contain content, called
hallucinations, inconsistent with the facts. This issue is
particularly evident in logical table-to-text generation which
requires numerical reasoning and becomes a significant
performance bottleneck.

(4) Inadequate Description Diversity. The same seman-
tic meaning can be expressed through different descriptions.
However, traditional automatic evaluation metrics mainly
measure the word similarity between the generated text and
the reference text, which limits the linguistic diversity [202].

(5) Loss of Structural Information. Linearization of
structured data severely loses its structural information. Al-
though the existing work can enhance the model’s ability to
capture the topological structure of the input data through
multi-task learning [127], [128], [145] and adding extra em-
bedding vectors [13], [14], [15], [16], [17], [104], [123], the
model’s ability to understand and restore the structure from
linearized tables and graphs remains insufficient.

5.2 Future Directions
Based on the above-mentioned challenges, future research
directions can be carried out from the following five points:

• Incorporating additional prior background knowl-
edge [203] into the learning process is conducive to
generate faithful and informative description via fact
checking [204].

• Since D2T will be applied in different domains and
scenarios, such as empathetic dialogue [205] in which

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3304385

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: East China Univ of Science and Tech. Downloaded on February 15,2024 at 13:53:55 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, DECEMBER 2022 14

the style of generated text needs to be controlled
based on the user’s response, so we expect the D2T
model to be able to describe the same content in
different styles in a controlled manner [206]. Thus,
style controllability of D2T will become an important
research direction and promote the development of
diversified descriptions.

• A better encoding technique is required to capture
the structural information in the input data since
there is still a topological structure gap between
structured data and linearization.

• The existing pre-trained language models (PLMs)
have the weakness of lacking the ability to perceive
and reason about numerical values. Consequently,
how to effectively enhance the numerical reasoning
ability of the PLMs-based D2T model will be a critical
research focus.

• It is also necessary to develop easy-to-use toolkits
and sophisticated systems for D2T [207], [208], [209].

6 CONCLUSION

The goal of this survey is to review recent studies on neural
D2T approaches in order to help new researchers in building
a comprehensive understanding of this field. We include in
this survey the background of the D2T research, a synopsis
of traditional techniques, the state-of-the-art at the moment,
challenges, and potential directions for future research. First,
we introduce preliminaries such as the definition of D2T
task, the three categories of D2T datasets that are currently
accessible, evaluation metrics based on various measures,
and traditional approaches to D2T. Next, we perform a
taxonomy survey based on two axes: neural end-to-end D2T
and neural modular D2T. We briefly illustrate the advan-
tages of the neural end-to-end D2T and the composition
of its basic framework, and further introduce the different
deep learning technologies applied in D2T. In neural mod-
ular D2T, we summarize the existing work of integrating
content planning and templates into the neural D2T, which
aims to improve controllability and interpretability. We also
discuss the potential applications in various fields and the
adverse impacts of D2T. Finally, we present readers with the
challenges in neural D2T and suggest some potential future
directions. We hope research in this field can benefit from
this survey.
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