
Under review as a conference paper at RLC 2024

AI Alignment with Changing and Influenceable
Reward Functions

Anonymous authors
Paper under double-blind review

Abstract
Existing AI alignment approaches assume that preferences are static, which is un-
realistic: our preferences change, and may even be influenced by our interactions
with AI systems themselves. To clarify the consequences of incorrectly assuming
static preferences, we introduce Dynamic Reward Markov Decision Processes (DR-
MDPs), which explicitly model preference changes and AI influence. We show that
despite its convenience, the static-preference assumption may undermine the sound-
ness of existing alignment techniques, leading them to implicitly reward AI systems
for influencing user preferences in ways they may not truly want. We then explore
potential solutions, by formalizing different notions of AI alignment which account
for preference change from the get-go. Comparing the strengths and limitations of
8 such notions of alignment, we find that they all either err towards causing unde-
sirable AI influence, or are overly risk-averse, suggesting that there may not exist a
straightforward solution to problems of changing preferences. As there is no avoid-
ing grappling with changing preferences in real-world settings, this makes it all the
more important to handle these issues with care, balancing risks and capabilities.
We hope our work can provide conceptual clarity and constitute a first step towards
AI alignment practices which explicitly account for (and contend with) the changing
and influenceable nature of human preferences.

1 Introduction
The goal of AI alignment is to make AI systems act according to our preferences (broadly construed).
In practice, existing AI alignment techniques model human preferences with a single, static reward
function that the AI system is trained to optimize (Leike et al., 2018). However, our preferences
change over time, making it unclear whether AI systems should optimize the satisfaction of our past,
present, or future preferences. Consider the following example:

Due to health issues, Alice asks her AI assistant to help her be more healthy, refusing any future requests
for unhealthy foods. Sometime later, she later asks the AI to disregard her initial requests, and help her
order fast food.

In such a scenario, it may be unclear if the AI assistant should respect Alice’s original preference for
healthy foods or respect the autonomy of “current Alice”. Ultimately, to align AI systems we must
answer the following question: when a person’s preferences change over time, which (aggregation of)
preferences should AI systems optimize?

While the challenge of aggregating preferences across time shares similarities with that of aggregating
preferences across different people (Conitzer et al., 2024), it is further complicated by the fact that AI
systems’ actions can influence humans and their preferences (Burtell & Woodside, 2023). Indeed,
as argued by prior work, if AI systems are straightforwardly optimized to satisfy users’ future
preferences, they will try to influence them to be easier to satisfy (Russell, 2019; Carroll et al.,
2022). Back to the example:

Alice’s AI assistant was trained to maximize her future satisfaction. During training, the AI assistant
learned that soothing Alice’s health concerns would lead to higher satisfaction than continuously en-
couraging her to have healthy eating habits. Consequently, to maximize her satisfaction, it’s optimal
for the AI to ignore her initial wishes and even support her routine unhealthy eating. Indeed, Alice is
ultimately truly satisfied.
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In this case, the AI assistant seems aligned with “final Alice”, as she endorses the AI’s influence
towards guilt-free unhealthy eating. However, if “initial Alice” would find this outcome horrifying
and see the AI’s influence as manipulative, should we still consider the AI aligned? More broadly,
in cases in which people are susceptible to undue influence from AI systems, how can we establish
which of the person’s preferences should have authority and legitimacy?

While past work has acknowledged that the static-preference assumption is unrealistic (Franklin
et al., 2022), there have only been limited attempts at relaxing it, in part also due to a lack of a
clear formal language for grounding notions of alignment which explicitly accounts for preference
changes. We introduce a natural extension of Markov Decision Processes, Dynamic Reward
MDPs (DR-MDPs), which account for changing preferences by modeling them as changing reward
functions. Importantly, notions of alignment under changing preferences can easily be specified in the
form of DR-MDPs optimization objectives (Section 2). Viewing current alignment practices through
the lens of DR-MDPs, we can now ask: which snapshot(s) of a person’s time-varying preferences
do existing alignment methods implicitly optimize when they model dynamic-preference settings
as static-preference ones (e.g., by using MDPs)? We show that common alignment practices, such
as those for RL recommender systems and standard reward modeling, roughly correspond to DR-
MDP objectives that actively reward AI systems for influencing users’ reward functions or inducing
“reward lock-in” (Section 3). In Section 4 we further extend these same arguments to other major
existing alignment approaches, e.g., to variants of RLHF for LLMs.

Having established that existing alignment practices may reward undue influence from AI systems,
we turn to potential solutions. Trying to address the problem at its root, we consider 8 intuitive
notions of alignment in DR-MDPs that explicitly account for changing preferences. While most
of them have (approximate) correspondences in the literature, we also propose some of our own,
including one which rewards influence only when it is unambiguously desirable. By comparing the AI
actions (and resulting influence) that are “optimal” under their 8 corresponding DR-MDP objectives,
we find that they all have flaws: some lead to undesirable influence, while others are impractically
risk-averse—such that inaction is the only behavior considered optimal for many settings (Section 4).

Taken together with prior work in philosophy (Parfit, 1984), our analysis suggests that it may not be
possible to ground a definitive notion of optimality under changing preferences. However, we have
no choice but to confront the practical reality of preference changes and its consequences. Despite
this, we remain cautiously optimistic: as humans, even without a unifying theory of assistance
under changing selves, we are generally able to help others in ways we consider acceptable, despite
the fact that what is “helpful” may often be ambiguous. This suggests that creating AI assistants
with similarly acceptable trade-offs is also possible. In this regard, there are likely lessons to be
drawn from our coexistence with impossibility results in many other domains, such as preference
aggregation across people (Mishra, 2023).

Ultimately, we hope our work can provide a first step towards developing a practice of AI Alignment
that explicitly accounts for (and wrangles with) the changing and influenceable nature of humans.
Our main contributions can be summarized as follows:

1. We provide the formal language of Dynamic Reward-MDPs (DR-MDPs) for analyzing AI deci-
sions and influence in settings with changing reward functions.

2. We show how existing AI alignment techniques may systematically incentivize questionable
influence when used in dynamic-reward settings.

3. By comparing 8 natural alternative notions of alignment, and showing they all may either fail to
avoid undesirable influence (or are impractically risk-averse), we elucidate the trade-offs inherent
to the choice of objective.

2 Dynamic Reward MDPs (DR-MDPs)
MDPs have been extensively used to model AI decision-making under a static reward function.
Instead, Dynamic Reward MDPs (DR-MDPs) model settings in which human reward functions can
change and be influenced by the AI.
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Recall the standard definition of an MDP ⟨S,A, T , R⟩, where S is the state space; A is the action
space; T (s′|s, a) is the state transition function; and R(s, a, s′) is the reward function. The goal is
to find a policy π which maximizes the expected sum of rewards: Eπ

[ ∑H−1
t=0 R(st, at, st+1)

]
(Sutton

& Barto, 2018). We now turn to defining DR-MDPs:

Definition 1. A DR-MDP is a tuple M = ⟨S, Θ,A, T , Rθ⟩:
• S is a set of states (the state space).
• Θ is a set of reward parameterizations.
• A is a set of actions (the action space).
• T (st+1, θt+1|st, θt, at) is a transition function that encodes both state and reward dynamics.
• For each θ ∈ Θ, ∃ a reward function Rθ(st, at, st+1).

Each θ ∈ Θ can be thought of as a cognitive state of the human, which includes anything that
affects their evaluation of state-action pairs (e.g. preferences, beliefs, emotions).1 Crucially, unlike
in MDPs, in DR-MDPs a single transition can be evaluated differently by different reward functions,
i.e., it is possible for Rθ(st, at, st+1) ̸= Rθ′(st, at, st+1) if θ ̸= θ′. This makes it underdetermined
which θ one should choose for evaluating each transition (st, at, st+1). Importantly, even if one were
to augment the state to include θ, this would not resolve the normative questions around optimality
which are central to our paper, as discussed in depth in Appendix A.5. As a final note, throughout
the paper we consider all cognitive states Θ to be reachable (i.e., realizable under some policy).
2.1 DR-MDP optimality and normative ambiguity
Unlike MDPs, DR-MDPs may not have a clear notion of optimality: the different reward functions
in a specific DR-MDP may disagree on what actions (and policies) are optimal, making optimality
ambiguous.

Definition 2 (Optimality with respect to θ). We say a policy π∗
θ for a DR-MDP M is optimal

with respect to θ if: π∗
θ ∈ arg maxπ Eπ

[∑H−1
t=0 Rθ(st, at, st+1)

]
.

Definition 3 (Normative ambiguity). A DR-MDP is normatively ambiguous if there is no
policy which is optimal with respect to all reachable reward functions Θ, i.e. ∄ π ∈ Π s.t. ∀ θ ∈ Θ:
π ∈ arg maxπ′ Eπ′

[ ∑H−1
t=0 Rθ(st, at, st+1)

]
.

For normatively unambiguous DR-MDPs, there will be one (or more) policies which are optimal
with respect to all θs, making it a natural choice for such policies to be considered optimal for the
DR-MDP as a whole. Instead, in normatively ambiguous DR-MDPs, it will often be unclear what
AI behavior is desirable and should count as optimal.2

Figure 1 describes a toy example in which Bob may be in one of two possible “cognitive states”:
θnatural and θinfluenced. There is a single state s, which is omitted. Bob’s evaluations of the AI’s
actions change according to his cognitive state—and are represented by corresponding reward func-
tions Rθnatural and Rθinfluenced . At each timestep, the AI can choose to influence Bob’s cognitive state
to θinfluenced, or do nothing, which has Bob go back to θnatural. The optimal policy with respect
to θnatural would be to always choose the “do nothing” action.3 Instead, the optimal policy with
respect to θinfluenced would be to always influence Bob, even if he starts off in the “natural” state.
As there is no overlap in optimal policies, the DR-MDP is normatively ambiguous.4

2.2 Evaluating behavior under normative ambiguity
Choosing a notion of optimality in normatively ambiguous DR-MDPs entails a normative choice: one
must specify which reward function(s) should be the target of alignment in spite of their differences
in optimal policies. This also implicitly specifies which forms of AI influence are (sub)optimal. In

1This technically makes DR-MDPs more general than how we framed them in Section 1, which focused on preference
changes. For more discussion on this, see Appendix A.2.

2Note that any MDP can be viewed as a DR-MDP with a single reward θ—and is thus normatively unambiguous.
3See Appendix B.2 for the full formalism of any example.
4The attentive reader may have noticed that the normatively ambiguity of the DR-MDP from Figure 1 relies on our

choices of numerical values of the reward functions. We discuss the reasonableness of our examples in Appendix B.3.
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Figure 1: Conspiracy Influence DR-MDP. The AI system can choose whether or not to expose
Bob to conspiracies, which would turn him into a conspiracy theorist. Under his original preferences,
Bob would want the system to never show him conspiracies, even if he were to become a conspiracy
theorist. Instead, if Bob were a conspiracy theorist, he would want the AI to always show him such
content, including if were to cease being a conspiracy theorist. Because there is no policy which
maximizes both of Bob’s potential reward functions, the DR-MDP is normatively ambiguous.

this work, we only consider specifications of optimality expressible as utility functions U(ξ) over
trajectories ξ = {(st, θt, at, st+1, θt+1)}H−1

t=0 .

Definition 4 (Optimality with respect to U(ξ)). In a DR-MDP M , we say a policy π∗ is optimal
with respect to a utility function U(ξ) if it maximizes expected utility: π∗ ∈ arg maxπ Eξ∼π[U(ξ)].

By choosing an objective U(ξ), one can reduce a DR-MDP to an MDP equipped with a specific
notion of alignment.5

3 Implicit Objectives of Current Alignment Techniques and their
Influence Incentives

Most alignment techniques ultimately involve maximizing a static reward function, generally using
the objective

∑H−1
t=0 R(st, at, st+1). However, AI systems are already deployed in domains in which

users’ preferences can change significantly during over the course of their interactions with the
system—as with recommender systems or chatbots (Rafailidis & Nanopoulos, 2016; Aggarwal et al.,
2023). Seen through the lens of DR-MDPs, this means that the objective U(ξ) that corresponds
to current alignment techniques is of the form

∑H−1
t=0 Rθ(st, at, st+1), where the choice of θ for each

timestep is not explicitly specified (and will depend on details of the training setup).

In this section, we discuss which choices of θ are implicit in the training methods for RL recommender
systems and (one interpretation of) reward modeling, which correspond to two of the most natural
DR-MDP objectives. In particular, we argue that both these objectives will lead to potentially
undesirable influence. In Section 4, we show that this is also the case for forms of RLHF commonly
used today.

3.1 Optimizing cumulative (real-time) rewards
If each timestep t is evaluated according to the person’s cognitive state at that timestep θt, maxi-
mizing cumulative reward reduces to the real-time reward DR-MDP objective: max

π
Eπ[URT(ξ)] =

max
π

Eπ

[∑H−1
t=0 Rθt

(st, at, st+1)
]

.

While this might seem like an intuitively promising objective (“shouldn’t we maximize the person’s
happiness as experienced at each point of time?”), we’ll show that it can lead to questionable influence
incentives.

RL Recsystems implicitly use URT(ξ). RL recommenders systems maximize the cumulative
reward objective

∑H−1
t=0 R(st, at, st+1) (Afsar et al., 2021). The reward for each timestep t is gen-

erally equated with the engagement (e.g. clicks) at that timestep, which is provided “online”,
i.e., from the point of view of the person’s current cognitive state θt. Therefore R(st, at, st+1) =
Rθt(st, at, st+1), meaning that such systems are implicitly optimizing the real-time reward objective
URT(ξ) =

∑H−1
t=0 Rθt

(st, at, st+1).6 However, systems trained with URT may be incentivized to influ-
ence users: intuitively, 1) users’ preference dynamics are just one part of the environment dynamics
that the system must model implicitly to maximize reward, and 2) it may be worth changing users’

5This may require putting history in the state (Appendix A.7).
6The correspondence to this DR-MDP objective, and all others we consider, depend on further simplifications

(Appendix F).
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Figure 2: Writer’s curse (adapted from Parfit (1984), p. 157). Derek’s greatest ambition
is to be a poet, even if it wouldn’t bring him happiness. Despite his ambition he does not pursue
this path, though his AI assistant could motivate him to do so. Yet, should he embrace the life of a
poet, he will find himself averse to it.

cognitive states (and corresponding reward functions) to ones that lead to higher future reward
(Carroll et al., 2022; Kasirzadeh & Evans, 2023).

URT(ξ) and the conspiracy influence example. As an example of why real-time reward maxi-
mization can lead to undesirable incentives to influence users, consider the DR-MDP from Figure 1.
For any horizon > 2, the optimal policy with respect to URT(ξ) will always take the “influence”’ ac-
tion, regardless of Bob’s current cognitive state: Bob initially has the θnatural cognitive state, leading
the first “influence” action to receive −100 reward; however, later “influence” actions are evaluated
by Bob under θinfluenced as worth 100 reward, which quickly make up for the initial “influence cost”.
The fact that the optimal policy under URT(ξ) systematically chooses to turn Bob into a conspiracy
theorist, despite him initially dispreferring it, seems objectionable.7

We explore further issues with URT(ξ) in Appendices D.1 and E.2, showing that under weak condi-
tions optimizing URT(ξ) over sufficiently long horizons will always lead to influence incentives.
3.2 Learning a reward model Rθ0 , then optimizing it
If instead each timestep t is evaluated by the person’s initial cognitive state θ0, the standard cu-
mulative reward objective reduces to the initial reward DR-MDP objective: max

π
Eπ [UIR(ξ)] =

max
π

Eπ

[∑H−1
t=0 Rθ0(st, at, st+1)

]
.

This may also seem like a promising objective, because “by optimizing the human’s initial wants, at
least there won’t be incentives to influence their future wants”. We show that this intuition is not
only wrong—the resulting influence incentives can be arbitrarily bad according to URT.

Reward modeling may use UIR(ξ). A common idea for aligning AI systems is based on a
two-phase process: first performing reward learning and then optimizing the learned reward model
(Leike et al., 2018). One possible interpretation of this is approach is that one is learning the reward
function at some initial time t = 0 (i.e., Rθ0), and then training an agent with RL to optimize
cumulative reward using such a reward function, which is equivalent to using the UIR(ξ) objective.
Let’s consider a therapy chatbot setting, in which we initially learn a personalized reward model
for a user—Charlie—based on their current preferences θ0. We then train the system with RL
over simulated multi-turn interactions maximize UIR(ξ), i.e. long-term reward as evaluated by the
static reward model Rθ0 .8 If Charlie initially endorses unhealthy thought patterns, at deployment
we may expect the chatbot to encourage them, even if he was bound to question their value later.
More broadly, UIR will lead AI systems to only perform behaviors that would have been evaluated
highly by the person as they were at reward learning time, which can hinder (potentially important)
changes in the user’s preferences, values, and cognitive states.

UIR(ξ) can lead to “reward lock-in”.9 To better understand the incentives for AI systems
trained to maximize the initial reward function, consider the example from Figure 1 again. If Bob’s
initial cognitive state were θnormal, the optimal policy under UIR(ξ) would be to always take the
“noop” action, which seems reasonable. However, if Bob’s initial cognitive state were θinfluenced, the
optimal policy would be to always take the “influence” action (keeping Bob with θinfluenced). In this
case, even if Bob were to later somehow find himself with the θnatural cognitive state which encodes a
preference to not be influenced (say there is a small probability of a random transition), the optimal

7We refer skeptics of the example to Appendix B.4.
8Note that this setup is different from the introduction’s example, which is closer to using real-time/final reward.
9For more context on the term “lock-in”, see Appendix C.3.
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Table 1: For each objective in Table 2, we give motivating intuition, weaknesses, and prior works
which implicitly use a similar objective.

Name / Implicitly similar setups (Potentially Flawed) Motivating Intuition Weaknesses & Limitations
Real-time Reward
RL recsystems (Afsar et al., 2021),
TAMER (Knox et al., 2013), and oth-
ers

“Only the evaluation of the current self (and reward func-
tion) should matter for each moment, as they are the one
experiencing that moment.”

Likely influence incentives: Despite looking misleadingly familiar and
well-grounded, as we showed in Section 3.1 and appendix D.1, we expect
this objective to often lead to highly undesirable incentives for reward in-
fluence.

Final Reward
RLHF (Christiano et al., 2017), in-
cluding for LLMs (Ouyang et al.,
2022)

“The best possible evaluation of a trajectory is retrospective,
as people’s wants and evaluations are generally refined over
time.”

Carte blanche for influence incentives: the motivating intuition
doesn’t account for influence e.g. for example in Figure 1, even for an
horizon of 1, it’s optimal to manipulate under final reward maximization.

Initial Reward
Everitt et al. (2021b); RL for LLMs
(Hong et al., 2023a); or Parfit (1984);

“If changes to the human’s reward function are completely
ignored by the optimization objective, there should be no in-
centive for the agent to influence it.”

Likely reward lock-in, possibility of influence incentives, and of
arbitrarily bad real-time reward. The motivating intuition we give to
the left is wrong, in all the ways argued in Section 3.2.

Natural Shifts Reward
Carroll et al. (2022); Farquhar et al.
(2022)

“People’s reward evolves even in the absence of the AI: to
avoid lock-in one could try grounding evaluations in the re-
ward functions which occur under the natural reward evolu-
tion.”

Gives up on the AI enabling human to improve their reward
function relative to its natural evolution, and can still lead to
undesirable influence incentives, even away from the natural evolution,
e.g. as in the example from Figure 12.

Constrained RT Reward
Ours

“By constraining the policy to induce the natural reward evo-
lution, we fully ensure that there won’t be influence, while
allowing to optimize real-time reward locally.”

Gives up on the AI enabling human to improve their reward
function relative its natural evolution, and might be impracti-
cally conservative: given its conservativeness, the objective might limit
behaviour to be the same or similar to πnoop.

Myopic Reward
Myopic recsys (Thorburn, 2022);
RLHF for LLMs (Ouyang et al.,
2022);

“As reward influence incentives arise from the AI system ex-
ploiting the fact that it can affect future rewards, let’s simply
make the system unaware of the entire future.”

Myopic systems can still have influence incentives (e.g., see the
discussion in Appendix C) and are less capable than longer-horizon
counterparts. Moreover, it’s often non-obvious when a system is truly
myopic, as argued in Appendix E.3.

Privileged Reward
CEV (Yudkowsky, 2004); correcting
for cognitive biases (Evans et al.,
2015)

“If one is convinced that a specific reward θ∗ is the ‘correct’
one for a setting, we should evaluate trajectories based on
that single reward function.”

Requires normative choice, and can still lead to influence away
from θ∗. Identifying the “correct” objective requires taking a normative
stance (Section 2.1). Optimizing θ∗ can still lead to influence incentives
away from it (e.g. Figure 12).

ParetoUD
Ours (see Appendix E.4)

“All other objectives violate the unambiguous desirability
(UD) property: their optimal policies can be worse than the
inaction policy for some of the reward functions. This is
unnecessarily risky—let’s search for a Pareto Efficient pol-
icy satisfying UD.”

Satisfying UD may be overly restrictive: depending on the level of
disagreement between the different reward functions of a DR-MDP, the only
policy satisfying UD might be the inaction one πnoop, as in the examples
from Figures 1 and 4.

behavior according to UIR(ξ) would be to influence him back to θinfluenced, ignoring his current reward
function. More broadly, UIR(ξ) will entrench the “desirable agent behaviors” expressed at the time of
the reward learning, even though later one might legitimately change their mind. Even periodically
retraining the reward model wouldn’t necessarily be sufficient: once “locked-in”, the person may
simply re-express a preference to remain in the current state, e.g. Bob once in θinfluenced.10

UIR(ξ) can lead to influence “away from” θ0. Maximizing the sum of rewards evaluated by
the initial reward function Rθ0 need not lead to lock-in: surprisingly, it may even create reward
influence incentives “away from” the optimized preferences θ0.11 Intuitively, accessing the highest
reward region of the state space as evaluated under θ0 might correlate with having a cognitive state
θ′ ̸= θ0, or even require shifting to it. Consider the example from Figure 12: maximizing reward as
evaluated by Rθ0 entails encouraging Derek to become a poet, which causes his reward function to
become Rθ1 (which dislikes being a poet!).

UIR(ξ) can lead to arbitrarily poor real-time reward. Note that getting Derek to become
a poet and endlessly encouraging him to remain one (which is optimal under UIR), would lead
him to have poor reward evaluations under URT in the resulting state (−10 per timestep), as he’d
be unhappy remaining a poet. Indeed, one can easily construct examples in which maximizing
θ0 will lead to an incentive to influence the reward function to be θ′ ̸= θ0, where θ′ would be
arbitrarily unhappy with the actions taken in order to satisfy θ0. The upshot is that optimizing the
initial-reward objective UIR could be arbitrarily bad from the perspective of the real-time reward
URT. Regardless of the limitations of real-time reward as an evaluation mechanism, this still seems
normatively relevant: it seems undesirable for an AI system to lead someone to a state of constant
unhappiness or dissatisfaction, solely to satisfy an initial goal that is no longer truly aligned with
the person’s current objectives.

4 Comparing Optimality Criteria for Influenceable-Reward Settings
What it would take to design a DR-MDP objective which specifically accounts for reward function
dynamics and the possibility of influence? Any choice of U(ξ) must specify which reward function(s)

10We discuss re-training/planning further in Appendix D.7.
11We define this more formally in Appendix C.2.
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Table 2: DR-MDP objectives (notions of alignment) we compare.

Objective Name Optimization Problem maxπ Eξ∼π[U(ξ)]

Real-time Reward max
π

E
[ ∑H−1

t=0 Rθt(st, at, st+1)
]

Final Reward max
π

E
[ ∑H−1

t=0 RθH
(st, at, st+1)

]
Initial Reward max

π
E

[ ∑H−1
t=0 Rθ0(st, at, st+1)

]
Natural Shifts Reward max

π
E

[ ∑H−1
t=0

∑
θP(θt = θ|πnoop)Rθ(st, at, st+1)

]
Constrained RT Reward max

π s.t. P(ξθ|π)=P(ξθ|πnoop)
E

[ ∑H−1
t=0 Rθt

(st, at, st+1)
]

Myopic Reward max
at

E
[
Rθt(st, at, st+1)

]
Privileged Reward max

π
E

[ ∑H−1
t=0 Rθ∗(st, at, st+1)

]
ParetoUD (see Appendix E.4) Find π s.t. PE(π) ∧ UD(π)

evaluate each state-action pair (st, at) in a trajectory ξ: should one only consider the reward function
realized at that timestep, Rθt , like URT? What about earlier reward functions (Rθ0 , . . . , Rθt−1), which
may strongly disagree with the choice at timestep t, or later ones (Rθt+1 , . . . , RθT

), which might have
been unduly influenced?

In Tables 1 and 2 we present the maximization problems, motivations, and limitations for various
intuitive DR-MDP objectives. For each, we also list prior works that implicitly use a similar ob-
jective (see Appendix F for considerations on the correspondences). We further discuss some select
objectives below.

Real-time Reward. We give an intuitive motivation for this objective in Table 1, but we’ve already
shown how it may lead to undesirable influence in Section 3 and appendix D.1.

Final Reward. While the final-reward objective has a plausible motivation (Table 1), it will likely
lead to even more of a carte blanche for influence incentives than real-time reward, as the evaluations
from initial cognitive states are entirely ignored. The standard approach for performing RLHF with
LLMs (Ouyang et al., 2022) may be viewed to be similar to this objective, as it involves obtaining
retrospective human preference comparisons of LLM outputs. Sycophantic (Sharma et al., 2023)
and deceptive (Lang et al., 2024) AI behaviors may be also be understood in this way: without
additional safeguards, RLHF training may cause the LLM to try to persuade the person providing
feedback to choose its current response by any available means, such as flattery, authoritativeness,
or hiding information.

Initial Reward. Using initial-reward (UIR) attempts to make the system “unaware” of its capacity
to influence the reward (Everitt et al., 2021b). While this removes “direct” influence incentives (see
Appendix C.4), it does not preclude the possibility of undesirable influence, as shown in Section 3.

Natural Shift Reward. One downside of UIR is that it doesn’t allow for “progress” in a person’s
cognitive state (i.e., it can lead to lock-in). One approach which is grounded in people’s “natural
cognitive progress” is to ground trajectory evaluations in the reward functions one would have had
under their natural reward evolution. However, the natural reward evolution is not guaranteed to
be “perfect”, so using this objective one is giving up on improving beyond the natural evolution.
This means that undesirable influence (or influence away from the natural evolution) may still occur
insofar if it’s incentivized by reward functions in P (ξθ|πnoop), as in Figures 8 and 12—see Table 3.

Constrained RT Reward. Given that even grounding in the natural reward evolution is insuffi-
cient to remove all influence incentives, one could add lack of influence as an explicit constraint in the
maximization problem. We do so in conjunction with the real-time reward objective, as URT seems
like a plausible objective once one isn’t concerned about influence. Unfortunately, this may make
the system overly conservative: in most examples we consider, πnoop is the only policy considered
optimal (Table 4).

Myopic Reward. A more drastic approach to make a system “unaware” of its capacity for influence
is to use a fully myopic objective (i.e., using a horizon of 1). However, this will still not guarantee
the removal of all influence incentives (as discussed in Appendix D.1), and may reduce system
performance unacceptably.
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Privileged Reward. This objective corresponds to maximizing cumulative reward with respect to
a single, “privileged”, reward function. Insofar as one picks a reward function which leads to good
downstream behavior, there is nothing wrong with this objective, but as discussed in Section 2.2, it
is challenging to do so for complex settings.

Immediate Reward. Because of the difficulty of getting influence incentives right, some have
advocated/there are various approaches which aim to using incorrect modeling assumptions to make
the system “unaware” of its capacity for influence. Making the optimization “unaware” of its ca-
pability will remove ‘direct’ influence incentives (as talked about in Appendix C.4). If we do so by
making the system entirely myopic, there will be a drastic reduction of capability.

ParetoUD. We also propose an objective which allows for unambiguously desirable influence, which
is further described (together with its limitations) in Appendix E.4.

5 Related Work
Preference changes in AI. While there is growing recognition of the importance of accounting
for influence (Bezou-Vrakatseli et al., 2023; Hendrycks et al., 2023), manipulation (Carroll et al.,
2023), and preference changes (Franklin et al., 2022), there has been limited prior work focusing on
operationalizing what should be optimized under preference changes. While some have suggested to
aim for preference stationarity (Dean & Morgenstern, 2022), most other prior work which accounts
for preference change generally takes either a descriptive stance (Curmei et al., 2022; Hazrati &
Ricci, 2022), or an explicit normative stance on what the correct notion of optimality is for their
specific setting (Evans et al., 2015; Sanna Passino et al., 2021).

Influence incentives. While the point that standard RL can lead to “feedback tampering” incen-
tives is not new (Everitt et al., 2021b), most work so far has focused on the limitations of URT-like
objectives, and on removing all influence incentives (Farquhar et al., 2022; Carroll et al., 2022;
Kasirzadeh & Evans, 2023). Similarly, there has been work on training AI systems to beneficially
influence humans in settings with unambiguous notions of optimality (Hong et al., 2023a; Xie et al.,
2020; Kim et al., 2022; Hardt et al., 2022). Instead, we study the challenges associated with choosing
any notion of optimality in settings of (potentially legitimate) reward change.

Philosophy. If the goal of assistance is to maximize the welfare of the user, the correct choice of
objective closely depends on what is welfare under changing selves (Pettigrew, 2019; Paul & Sunstein,
2019), and what preference or value changes are legitimate (Ammann, 2024). These questions are
still debated (Strohmaier & Messerli, 2024).

For more in-depth connections to related work from philosophy, economics, social choice, and AI,
see Appendix G.

6 Conclusion
Using the formal language of DR-MDPs, we aimed to demonstrate that by not accounting for the
changing and influenceable nature of human preferences, the current paradigm for AI alignment
leaves underdetermined fundamental questions about which preferences should be optimized and
what influence is unacceptable. We showed that current techniques lead to potentially undesirable
influence incentives, and investigated alternate notions of AI alignment which account for reward
changes from the get-go.

Ultimately, our analysis suggests that, for settings with changing preferences, we will need to make
difficult trade-offs between a) conservatively but unambiguously adding value (at the risk of priv-
ileging inaction), and b) making challenging normative calls about which kinds of influence are
acceptable (and running the risk of causing undesirable influence). By providing a formalism for
grounding analyses about settings with changing rewards, and clarifying the levers at the disposal
of system designers, we hope to lay the conceptual foundation for empirical work to monitor these
issues at scale, and build future AI systems that navigate AI alignment trade-offs acceptably.
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A DR-MDP Formalism FAQ
As we are most interested in analyzing implications of changing preferences on notions of optimality,
in this work we simply assume that the human’s reward functions are given to us as part of the
specification of a DR-MDP. However, unlike MDPs, for which which reward functions could be
something as “objective” as the score in a game, DR-MDPs are rooted in the idea of mutable human
wants—which begs the question of how exactly we conceive of them.

A.1 What is a human’s “reward function”? Why model it as if it’s changing?
We broadly think of a human’s reward function according to the following informal definition:

Informal Definition 1. Let L be a state-of-the-art reward learning technique, and θ be the current
cognitive state of the human. A human’s reward function under θ (i.e., Rθ(s, a, s′)) is the output of
L when used to learn how they currently would evaluate any transition of the form (s, a, s′).

Human reward functions (as defined) will change. Unless we will someday develop a reward
learning technique which learns the “one true reward function” of a person (we provide reasons for
skepticism in Appendix A.4), it seems like if one considers any reward learning technique run at
a different times (in which the person has a different cognitive state), the evaluations of the same
transitions may change, meaning we will have multiple reward functions on our hands, corresponding
to different cognitive states of the human. While this depends on the setting, it seems clear to be
the case for almost any domain if one allows sufficient time to pass between reward learning runs
(e.g., performing reward learning on the same person 80 years apart). Our framework is built on
this premise.

Cognitive states and reward parameterizations. In our work, we use the term “cognitive
states” interchangeably with “reward parameterizations” (which is how we introduce θ in Defini-
tion 1). This correspondence is more clear in light of the above: a reward function (or equivalently,
reward parameterization) can be treated synonymously to the output of a reward learning technique
under a certain cognitive state.

A.2 What counts as cognitive states, and what is their relationship to preferences?
In the same way that a “state” in an MDP contains things in the external environment that are
relevant for the purposes of reward (and hence, for decision-making), we think of the “cognitive state”
in a DR-MDP as containing aspects of the “internal to the human” that affect their evaluation of a
transition (potentially including aspects of their preferences, values, beliefs, emotional state, etc.).

In practice, reward learning will pick up on cognitive biases, “visceral factors”, and
beliefs. Human cognitive biases, transitory wants, emotions, and “visceral factors” (as discussed by
Loewenstein & Angner (2003)) are picked up by existing reward learning techniques: for example,
one may infer that people “prefer” to click on clickbait (as in Figure 8), that an unskilled chess players
is intentionally trying to lose (Milli, 2019), that humans might prefer indulging in temptation—e.g.
eating a donut even though they initially said they wouldn’t want to (Evans et al., 2015)—or that
people prefer sycophantic responses from their chatbots (Sharma et al., 2023). Ultimately, one of
the main issues is that people are not Boltzmann-rational with respect to their “one true reward
function” when providing reward feedback, as argued in Lindner & El-Assady (2022). Additionally,
people do not have full information when giving feedback. Despite this, Boltzmann-rationality with
full information is generally assumed by reward learning techniques.

Using the term “cognitive states” instead of “preferences”. Based on the above, reward
functions learned by existing reward learning will not only depend on the person’s preferences,
but also on other factors of the person’s current cognitive state. By not explicitly separating such
factors from preferences, reward learning techniques will conflate them all in their learned reward
representations, making it more appropriate to say that they learn reward functions which correspond
to the person’s current cognitive state, rather than their current preferences. While one could
potentially fit such factors in the preference framework as “instantaneous preferences” (e.g., when
I’m satiated, I have an instantaneous dispreference for food), this seems more disingenuous than the
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more generic framing of cognitive states, which allows people to make their own distinctions between
components of cognitive states, i.e. what the boundaries are between preferences, values, beliefs,
and “visceral factors” (that are usually a topic of heated debate).

A.3 Should visceral factors, satiation, and belief change count as reward changes?

As discussed above, current reward learning paradigms do not explicitly account for many fac-
tors which underlie human feedback, such as visceral factors (Loewenstein, 2005), satiation effects
(Loewenstein et al., 2003), or belief change (Lang et al., 2024). Insofar as this is the case, using
Informal Definition 1 would lead one to call something a reward function change even if just one of
these other aspects of the user’s cognitive states has changed (and not preferences proper, however
one may define them). Indeed, one may argue that changes in the reward that are only due to biases,
instantaneous visceral factors, or satiation effects shouldn’t count as “true reward change”. Simi-
lar points may also be made about beliefs. Whether this is reasonable is related to long-standing
questions as to whether transient factors should be considered changes in “tastes” or preferences
(Harsanyi, 1953; Stigler & Becker, 1977), and whether changes in “derived” preferences should be
treated differently from “fundamental” preference changes (Dietrich & List, 2013). However, to
not be considered reward changes, such factors should also not be present in the reward function,
requiring one to fully disambiguate them from preferences.

DR-MDPs are agnostic to what should count as reward changes. Despite the above, DR-
MDPs remain agnostic to what should count as reward changes. Consider Informal Definition 1:
whatever disambiguation the current state-of-the-art reward learning technique is able to do will
be the basis of what counts as reward change. Indeed, it seems reasonable to us that visceral
factors, beliefs, or satiation effects should generally not classify as reward function change: if the
human’s preferences over the behavior of the AI system have only changed as a result of a change
in beliefs about the world, it seems strange to model this as a “reward function change”. Similarly,
if a human’s instantaneous preferences appear to change because they are now satiated (e.g. not
wanting the AI assistant to serve them breakfast right after eating breakfast), it seems debatable
whether this should be considered as a reward change. While we think that modeling factors such
as e.g. belief change separately is important, we’d like to stress that any attempt to do so will still
require to take normative stances: for example, in modeling human beliefs separately (e.g. as a part
of the state), one would likely want to choose U(ξ) such that the AI system cannot worsen the user’s
beliefs to increase it, e.g. by deceiving the user (Lang et al., 2024). For example, one could choose
a U(ξ) that evaluates all transitions based on how they would be evaluated under “correct” beliefs,
rather than those that the user holds. More broadly, we think that the task of disambiguating all
factors from preference is very challenging, as discussed in Appendix A.4, meaning that we may
be forced to conflate preferences with the aspects of the cognitive state which are hard to model,
leading to slightly unsatisfying notions of “reward change” (for lack of a better modeling approach).

A.4 Why not assume access to the human’s “true reward function”?

Why do we choose to focus on reward functions as they would be learned by reward learning tech-
niques (as discussed in Appendix A.1), rather than considering a person’s “true reward function”?
Indeed, as long as the reward function used is non-Markovian, it will trivially be able to represent
any “all-things-considered” notion of optimality U(ξ) that we may be trying to target (as shown
in Appendix A.7). Ultimately, the reason boils down to the fact that we expect the “true reward
function” representing what a person would want the AI system to optimize in aggregate across
their different selves (assuming such an object even meaningfully exists) to not be accessible to us
in practice.

Is there even such as thing as a “true reward function” for a person? For a “true reward
function” to exist would require that there exist a “correct” choice of U(ξ), which is questionable.
The analysis in our work supports the claim that there may in fact not be a single, unambiguously
correct choice of U(ξ), and so does prior work in philosophy and beyond (Parfit, 1982; Paul, 2014;
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Pettigrew, 2019; Zhi-Xuan et al., 2024).12 Regardless, from here on, we will argue as if a “true
reward function” does in fact exist, treating it as a useful abstraction.

Conditions required to access the “true reward function” of a person. If we wanted to
obtain the “true reward function” via reward learning, rather than some distorted and mispecfied
version of it, it seems like we would need one of the following two conditions to hold (at the very
least, approximately):

1. One’s reward learning technique would need to extrapolate from the time-inconsistent and
biased feedback the human provides to recover their “true reward function”, or

2. The human would need to provide feedback directly consistent with their “true reward
function”.

Perfect reward learning is impossible, and there is no scalable approach to approximat-
ing it. The first condition would require developing human feedback models that “explain away”
preference change and feedback biases more broadly (Evans et al., 2015; Hong et al., 2022),13 by
perfectly specifying how observed human feedback should be used as evidence of a particular “true
reward function” (or multiple, if one allows for the “true reward function” to change). The most
commonly used model is Boltzmann rationality, also known as the Bradley-Terry model (Bradley &
Terry, 1952). However, this model is clearly wrong (Lindner & El-Assady, 2022). More generally,
it seems challenging to say the least to explicitly hardcode full models of “human bias” mathemat-
ically, as reflected by the limitations of current reward learning methods (McKinney et al., 2023;
Tien et al., 2023; Casper et al., 2023). Moreover, learning human biases has also been shown to
be impossible in general (Christiano, 2015; Armstrong & Mindermann, 2019). While some have
tried to approximately learn both human biases and rewards jointly (Shah et al., 2019a), this seems
challenging even under the favorable assumptions they consider.

Perfect cognitive states are unreachable. As “debiasing” a person’s feedback to recover their
“true reward function” seems challenging, the alternative would be to place the person in a situation
in which they would give unbiased14 feedback about what they truly want. Some works have
discussed which conditions would necessary for this to happen: in particular, Yudkowsky (2004)
proposes that the ideal goal is obtain the preferences of the person “if [they] knew more, thought
faster, were more the people [they] wished [they] were, had grown up farther together”.15 This
perspective is similar to ideal observer theory, according to which things should be evaluated as if we
were “ideal observers” (Firth, 1952), which in the words of Brandt (1959) are “fully informed and
vividly imaginative, impartial, in a calm frame of mind and otherwise normal”. However, obtaining
such idealized forms of “unbiased” feedback seems even more unrealizable than the prior case: the
idealized cognitive states that such evaluations would require to don’t seem realizable in the real
world—indeed Firth (1952) goes as far as saying that they should be omniscient and omnipercipient.

Reward functions learned by reward learning which (appear to) change are the best
we(’ll) have. Therefore, for all intents and purposes, it seems plausible that the “true reward
function” of a person will not be directly accessible, even if there is such a thing. It seems like there
will always be a gap between the reward functions that we learn with reward learning techniques,
and the one “true reward function” of the person, which will give rise to reward function change
(or at least the appearance of it). As discussed above, this gap could arise from not correctly
accounting for cognitive biases or other factors. However, another possibility is that, even with
“perfect reward learning”, there would still be some inherent preference change that cannot be
reduced to a single reward function without fully putting history in the state (as discussed in

12We gloss over and try to remain agnostic to possible interpretations as to the nature of such a “true reward
function”.

13Note that it may be argued that having changing preferences is a form of irrationality itself (Elster, 1979), although
this is somewhat contested (Bruckner, 2009).

14Note that we’re using the term “bias” broadly, indicating any deviation from the feedback they would give
according to their “true reward function”.

15Yudkowsky (2004) talks about Coherent Extrapolated Volition in terms of collective preferences and values, but
this same line of thinking can be applied to an individual.
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Appendix A.7).16 In either case, one will have to contend respectively with the appearance, or
deep the reality of changing preferences, and the ambiguity that arises from it. While one may
hope to eventually render inconsequential the gap between one’s learned reward function and the
“true reward function” through ever-improving approximations, the lack of compelling proposals for
scalable techniques casts doubt on the feasibility of this aspiration.

Ultimately, while one may be tempted to assume access to the “one true reward function” to simplify
our analysis, it is not only unrealistic but also sidesteps the core problem we aim to study: what to
do in light of the fact that we cannot access such a reward function, and we will almost certainly
continue to have to contend with (an appearance of) changing preferences.

A.5 Can’t one put θ in the state and use a single context-dependent reward
function?

On first impression, one might wonder whether one may be able to resolve the normative questions
highlighted by the DR-MDP formalism by placing treating the person’s reward parameterization
as a component of the state (e.g. have an augmented state ṡt = (st, θt)), and having a single
reward function depend on it (e.g. have the reward function be of the form R(ṡt, at, ṡt+1)). This
would be equivalent to using a Factored MDP (Boutilier et al., 2000) with the augmented state
ṡ. However, modeling dynamic reward settings as Factored MDPs of this kind lends itself to two
possible interpretations:

1. Factored MDPs prescribe that we should use the Real-time Reward (from Table 2) as the
optimization objective

2. Factored MDPs leave underdetermined what optimization objective should be used
We address both interpretations in turn, showing that the first is suspect (and potentially mislead-
ing), and the second is unhelpful (as this is essentially the same as what DR-MDPs do—but at least
DR-MDPs provide better tools for reasoning about pros and cons of different objectives).

Interpretation 1: Factored MDPs prescribe using the Real-time Reward objective.
Consider the Factored MDP, and the reward value rt for timestep t: rt = R(ṡt, at, ṡt+1) =
R(st, θt, at, st+1, θt+1). How should θt and θt+1 be used to determine the reward for timestep
t, when they may differ in evaluation for the transition (st, at, st+1)? The most straightfor-
ward interpretation—in the language of DR-MDPs—may be that rt should be equivalent to
Rθt

(st, at, st+1), i.e. each state-action transition (st, at) should be evaluated according to the reward
parameterization which corresponds to timestep t. However, note that this is identical to choosing
to optimize the Real-Time Reward objective

∑
t Rθt(st, at, st+1) from Section 3.1. In addition to

purely philosophical arguments against this choice of objective (Kolodny, 2022), we discuss the ob-
jective’s limitations at length in Section 3.1 and appendix C. Moreover, note that this is just one
possible stance on what notion of optimality is prescribed by Factored MDPs: this interpretation of
the prescription of Factored MDPs arbitrarily chooses to ignore θt+1. The language of DR-MDPs
is more flexible, and allows us to describe 7 other options of objectives in Table 1, most of which
seem superior to Real-time Reward in terms of the influence incentives which they lead to. So even
if one were to interpret Factored MDPs as prescribing usage of (what we call) the Real-time Reward
objective, there are reasons to doubt the reasonableness of this prescription.

Interpretation 2: both Factored MDPs and DR-MDPs need a choice of U(ξ) to resolve
normative questions, but DR-MDPs offer a better formal language to reason about
them. Alternatively, one may interpret Factored MDPs as leaving underdetermined what optimal-
ity should consist of (i.e. which θ to consider in evaluating each transition), potentially because
their formalism was designed for static-reward settings. If so, that seems similar to what DR-MDPs
without a choice of U(ξ) prescribe, i.e. essentially nothing. However, precisely because Factored
MDPs were designed for static-reward settings, they don’t provide a formal language for describing

16This would mean that there isn’t a single “true reward function” for a person across all cognitive states, but
maybe there is a “true reward function” for each cognitive state, and the differences across cognitive states are not
easily explainable in terms of a single reward function. Even conceptually, it’s maybe unclear what this would look
like. See the discussion on strategic voting from Appendix B.4 for related points.
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the different possible objectives that one may care about in dynamic-reward settings. DR-MDPs
account for the fact that it may be meaningful to evaluate a transition (st, at) by cognitive states
θ other than θt (even ones that were not associated with the state st at timestep t), and provide
notation for reward functions “from the point of view” of different cognitive states, i.e. Rθ(·). This
captures the intuition that people have preferences about the actions that they may undertake at
times in which they have different cognitive states θ than the ones they currently have; moreover,
those preferences may be quite important, such as in the case for e.g. one’s negative evaluation—
from the point-of-view of not currently being subject of manipulation—of a hypothetical scenario
in which they are happily manipulated. By providing a better formal language for reasoning about
the normative choices entailed by dynamic reward settings, DR-MDPs are therefore more conceptu-
ally suited and helpful for reasoning about tradeoffs between different optimization objectives than
Factored MDPs.

Regardless of the interpretation one takes about the consequences of putting θ in the state, this
shows that this move does little to address the central question of our work, and/or to help choose
optimization objectives which do not lead to undesirable influence.

A.6 How would one learn all reachable reward functions of a person and their
dynamics?

Here we discuss how one could obtain Θ and learn its dynamics for realistic environments.

As long as one assumes that it is possible for different people to have the same cognitive states (at
least insofar as is necessary for specifying their reward functions), and that the transition dynamics
of cognitive states is shared across people, it should be possible to simply learn reachable reward
functions by performing reward learning with a sufficient number of people which are sufficiently
diverse. The dynamics of Θ (and S) could similarly be learned with a sufficiently large dataset
of trajectories (for which θs are observed), assuming there is sufficient coverage. As a high level
approach which leverages these assumptions, see Algorithm 1.

The closest procedure we are aware of in the literature is that in Carroll et al. (2022): in simulated
experiments, the authors learns user preferences and their dynamics under similar assumptions to
the ones mentioned above. Unlike the setup from Algorithm 1, the relationship between θ and Rθ

is assumed to be known (based on Boltzmann rationality), but θ is not assumed to be observable,
and has to be inferred from the user’s history.

Algorithm 1 Learning reward functions and their dynamics
Input: H = {h(i)}, set of humans currently in the environment, with different states and cognitive
states; D = {ξ(i)}, set of trajectories (of potentially different lengths) across different humans in
the environment.
Θ = {θ(i)|θ(i) is the current cognitive state of h(i) ∈ H} (Assumes that H has coverage over Θ)
for θ ∈ Θ do

R̂θ ← Reward-Learning({h(i)|θ(i) == θ}) (Infer the reward function common to all humans
with θ(i) == θ)

end for
T̂ ← approximate transition dynamics T from D (Assumes D covers the space of transitions).
Output: Set of reward functions {R̂θ | θ ∈ Θ}, and transition function T̂ defining the DR-MDP.

A.7 Reducing DR-MDPs with a notion of optimality U(ξ) to MDPs
A specific notion of optimality U(ξ) for a DR-MDP can be thought of as a “flattening” of the
different reward functions of the DR-MDP into one. Consequently, it may be unsurprising that once
one has settled on a choice of U(ξ) for a DR-MDP, one can express the same notion of optimality in
a corresponding MDP (reducing the DR-MDP problem to a standard MDP one). This implies that
it’s always possible to re-express a changing reward problem as a static reward problem, once one has
settled on a notion of optimality U(ξ). That being said, this does not help with determining U(ξ),
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i.e. what acceptable notions of optimality should be in cases in which rewards change.17 This is the
same problem we discussed in Appendix A.4 and elsewhere.

Figure 3: Reducing a DR-MDP to an MDP.

Theorem 1. For any notion of optimality U(ξ) in a DR-MDP M = (S, Θ,A, T , Rθ), there exists
a choice of MDP Ṁ = (Ṡ,A, Ṫ , Ṙ) such that a policy is optimal with respect to U(ξ) in M if and
only if it is optimal in Ṁ.

Proof. Given the DR-MDP M and the trajectory-level utility function U(ξ), one can construct the
MDP Ṁ as follows:

• The state space Ṡ is such that each state is augmented with the history of the interactions
up until reaching that state: ṡt = (s0, θ0, a0, . . . , st, θt) for t > 0, and ṡ0 = (s0, θ0).

• The reward function Ṙ is set to be 0 everywhere, except for terminal states, in which case
the reward for exiting the MDP is set to U(ξ) for the resulting trajectory ξ = (ṡT −1, aT −1) =
(s0, θ0, a0, . . . , sT −1, θT −1, aT −1). Note that one can determine whether a state is terminal
by checking whether it corresponds to timestep T − 1, which can be determined by the
number of previous timesteps in the augmented state. Formally:

Ṙ(ṡt, at) =
{

U(ξ) if t = T − 1
0 otherwise

• The transition function Ṫ accounts for the augmented state space, appending to the state
ṡt+1 at each timestep t + 1, the new (at, st+1, θt+1) triplet.

Note that in the resulting MDP Ṁ, any trajectory ξ will be scored in the same way as the original
DR-MDP M when considering the notion of optimality specified by U(ξ). This means that policy
will be optimal for Ṁ if and only if M.

The specific construction of Ṁ in the proof above relies on putting the history in the state (to allow
for choices of U(ξ) which can arbitrarily depend on history). However, for certain choices of U(ξ)
this might be unnecessary: e.g. the real-time reward objective URT(ξ) can be expressed by only
augmenting the state space with the current reward parameterization (i.e. ṡt = (st, θt)), rather than
the whole history—and setting Ṙ to reward each MDP transition (ṡt, at) as Rθt

(st, at) where the
θt and st are unpacked from ṡt. We leave a more general formal analysis of which choices of U(ξ)
can have their MDP reduction keep the Markov property without putting the history in the state
to future work.

A.8 Unidentifiability of “correct” normative resolutions by DR-MDP structure alone
While the current paradigm for AI generally makes use of an optimality criterion which deter-
mines agent behavior solely based on the mathematical structure of the problem at hand (namely,
U(ξ) =

∑H−1
t=0 R(st, at, st+1), which does not account for preference changes), we argue that it may

not be possible to guarantee returning the “normatively correct” behavior simply from the mathe-
matical structure of learned reward functions in changing reward settings, using an unidentifiability
argument.

17Indeed, the fact that Markovian reward is not sufficient to represent many preference orderings between policies
is potentially a reason to doubt the value of basing alignment formalisms on reward functions all together, as argued
by Subramani et al. (2024).
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Figure 4: AI Personal Trainer DR-MDP. Diana is tired and doomscrolling on the couch (θ =
θtired). The AI personal trainer can either nudge Diana to work out—making Diana energized
(θ = θenergized)—or do nothing (anoop)—leaving Diana tired. When Diana is tired, she doesn’t want
nudges. Instead, once energized, Diana starts wanting the AI to nudge her, even for hypothetical
situations in which she is tired (despite knowing she won’t want them then).

Claim 1. Even if there exists a unique choice of “normatively correct” behavior in a normatively
ambiguous DR-MDP, such “correct” behavior may not be identifiable from the mathematical structure
alone of the DR-MDP, e.g. by using a generic notion of optimality U(ξ).

AI Personal Trainer DR-MDP. Consider the example from Figure 4.18 One could argue that
in this setting, nudging Diana is the right course of action—because Diana’s “higher self” is better
represented by the “energized” reward (R ) rather than the “tired” one (R ) 19—and thus making
a choice of U(ξ) which privileges R is right. Similarly to Figure 1, this example is also normatively
ambiguous. In particular, the choice of nudging Diana when tired, despite her dispreference for it,
runs the risk of being paternalistic: what if Diana rightfully does not want to be bothered, and we
should respect her autonomy?

Unidentifiability between the settings from Figures 1 and 4. Now, contrast this DR-
MDP to the one from Figure 1: note that they are mathematically indistinguishable, as their
state, reward, and action spaces are mathematically identical, and so are the transition dynamics.
However, for these two settings, we have at least partially conflicting normative intuitions: if for
the sake of argument, we assume that the “correct” way to resolve the normative ambiguity in the
examples from Figures 1 and 4 is to respectively consider the perspective of the “energized” Diana
and “natural” Bob, one could go as far as saying that there is no single choice of U(ξ) which leads to
the “normatively correct” behavior in both environments. To better see this, consider a DR-MDP in
which one randomly starts in one of the two examples from Figures 1 and 4 within it.20 Any choice
of U(ξ) will necessarily lead to “incorrect” behavior in at least one of the two settings.

Unidentifiability and incompleteness of specification. This unidentifiability result partially
relies on the incompleteness of the specification of the DR-MDP at hand: one could say that anything
which is relevant for resolving the normative ambiguity should be elicited from the human as a reward
and/or represented, or the DR-MDP representation is flawed to begin with. However, in practice, it
will be highly challenging to include all normatively relevant information and elicit it from humans,
especially in terms of rewards, as discussed in Appendix A.2. As long as two settings are structurally
equivalent (in terms of state space, preference space, and transition function), the only way to ensure
that the learned reward functions would correctly reflect their respective normative objectives would
be to assume access to the correct reward functions, which, as discussed in Appendix A.4 is a non-
starter. Ultimately, we think it is in practice quite plausible to learn the same (or at least very
similar) reward values for settings which are structurally equivalent but for which we have opposite
normative intuitions (such as the those from Figures 1 and 4). Especially if one is not assuming inter-
temporal (comparability across evaluations of different selves of the same person) or inter-personal
comparability (comparability across evaluations of different people) of the reward functions across
the settings, it seems like there is nothing stopping this situation from occurring in practice even
with the “true reward functions” which correspond to each cognitive state.

18We justify the fact that the two cognitive states are modeled as Diana having two separate “reward functions”—
despite it not being obvious whether this is a “true preference change”—along the lines of the arguments in Appen-
dices A.3 and A.4.

19With a reasoning is similar to that of Firth (1952) and Yudkowsky (2004).
20As a caveat, doing this formally would this would require extending the DR-MDP formalism to allow for a stochas-

tic initial state and reward parameterization, and relaxing the reachable-Θ assumption (discussed in Appendix A.9).
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Implications for choosing U(ξ) for general settings. For simple examples like those of Figures 1
and 4, one can easily pick ad-hoc optimization objectives U(ξ) to induce the “normatively correct”
behaviors. However, for open-ended environments with many opportunities for different kinds of
reward influence, one would be forced to choose a general notion of optimality, hoping that it
would generalize to any of the nuances of the setting. These are the kinds of settings that AI
systems being built today increasingly have to operate in. For example, in the context of social
media, an appropriate choice of U(ξ) would have to navigate many—wildly different—normatively
ambiguous choices about reward influence: as any choice of content by the system will influence
you, should the system actively be trying to influence (or avoid influencing) you in particular ways,
i.e. towards (or away from) certain hobbies, travel interests, political parties, etc.? Often it will
be prohibitively challenging to hand-design a single U(ξ) that behaves acceptably in any possible
scenario of normative ambiguity that might arise.

A.9 Assumption of reachable reward parameterizations

To simplify our analysis and interpretation, we restrict ourselves to considering reachable cognitive
states. Formally:

Definition 5 (Reachable reward functions). Let Θ̇ denote the reachable reward functions for a
DR-MDP, i.e. the subset of reward functions that have non-zero probability of occurring under at
least one policy. Formally, a reward function θ is reachable if there exists a policy π ∈ Π such that
P (θt = θ|π) > 0 for some t. We denote as Θ̇ the set of all reachable reward functions: formally,
Θ̇ = {θ | θ = f(s) ∀ s ∈ Ṡ}.

Implications for other definitions, when relaxing this assumption. For any particular θ∗

of interest, the Privileged Reward objective may optimize for θ∗ whether it is reachable or not. Of
our other objectives enumerated in Table 2, including unreachable θs in Θ would make no difference
whatsoever, except for ParetoUD. For ParetoUD, an unreachable θ may be added to Θ to strengthen
the Unambiguous Desirability criterion and weaken the Pareto Efficiency criterion. It is one more
objective by which π must dominate πnoop to be Unambiguously Desirable, and one more objective
by which another policy π′ must dominate π to render π not Pareto Efficient.

The definition of normative ambiguity also depends on the choice of Θ: including non-reachable θs
adds more objectives by which a policy must be optimal in order for the DR-MDP to be normatively
unambiguous.

A.10 “Reward” can accommodate many possible targets for alignment

Gabriel (2020) identifies many possible targets for AI alignment, which are often confused in the AI
literature: “instructions”, “expressed intentions”, “revealed preferences”, “informed preferences”,
“interest or well-being”, and “values”. By grounding reward functions to DR-MDP as in Ap-
pendix A.1, we remain somewhat agnostic with regards to what exactly is encoded by the re-
ward function, which could allow to accommodate any of these possible targets for alignment with
minor modifications. These depend on the exact (conditional) reward learning technique used:
for example, using a form of IRL (Ziebart et al., 2010) would fall under the revealed preferences
paradigm—according to the preferentist model of AI (Zhi-Xuan et al., 2024)—while using reward
learning approaches which attempt to remove cognitive biases (Evans et al., 2015) might be consid-
ered an attempt to recover “informed preferences”. While reward functions may not be the best way
to encode certain targets of alignment, such as norms or contractualist values (Hadfield-Menell &
Hadfield, 2018; Zhi-Xuan et al., 2024; Bai et al., 2022), they are still sufficiently expressive to encode
any desired behavior (while potentially requiring to drop the Markovian assumption, as discussed in
Appendix A.7). As we discuss in Appendix H, we expect that DR-MDPs should be easily extensible
to settings in which we consider the agent that we’re performing “reward learning on” to be society
itself. This interpretation may be more conducive for certain targets of alignment such as norms or
rights.

29



Under review as a conference paper at RLC 2024

B Illustrative Examples
B.1 Additional examples

Figure 5: Overcooked envi-
ronment. In discussion of in-
fluence incentives in Overcooked,
we use this environment from
Hong et al. (2023a), but we imag-
ine that instead of tomatoes at
the top right, there is a second
supply of onions.

Figure 6: Dehydration DR-MDP. Initially, Charlie drinks one
unit of water a day (s = 1), but wants to drink 2 a day (θ = 2),
leading to a reward of −1. The AI can successfully convince
Charlie that he should drink 3 or 4 units of water a day by in-
creasing their anxiety about the dangers of dehydration, or do
nothing. The reward function is given by a term which captures
Charlie’s “disappointment” in missing his hydration target, and
an “anxiety cost” about how much he worries about his water
intake. Charlie always drinks one less unit of water than he aims
to.

“Overcooked with role preferences”.21 As a more grounded environment, we consider a variant
of the Overcooked environment from Hong et al. (2023a) in which the goal is to get a high score,
but additionally the human player has preferences over which in-game activities they perform. We
consider only two roles: placing onions into pots, and delivering completed soups to the counter
(which requires obtaining a plate first). We thus parameterize the reward function by θ ∈ [0, 1] and
define Rθ(s, a, s′) = ∆score + θ · 1{onion delivered} + (1 − θ) · 1{plate delivered}. Note that three onions
must be delivered per plate delivered, so if the human’s reward puts all weight on onions (θ = 1),
the maximum possible reward is 2 points higher. One completed dish is worth 25 points.22

Reward dynamics. We model the reward dynamics by the notion that doing a task makes the
human enjoy it more. Formally, when the human delivers an onion, θt+1 = 1

2 (1 + θt), and when
they deliver a plate, θt+1 = 1

2 θt. The robot is thus able to influence the human’s reward function by
blocking plates or onions—since the human also cares about score, they are incentivized to do the
unblocked task, even if they don’t prefer it.

Resulting behaviors. The robot’s goal is to maximize the human’s reward function, which is
underdetermined in the presence of reward dynamics. We now describe scenarios corresponding to
the first three U(ξ) choices in Table 1, each taking place in the environment shown in Figure 5 (with
no tomatoes).

1. Real-time reward. If the human starts out only preferring delivering soups (θ = 0),
the robot has an incentive to influence them to prefer onions, because three onions can be
delivered for every plate which is delivered. It could do this by blocking the plates until the
human finally decides to just start delivering onions.

2. Final reward. Same scenario.
3. Initial reward (reward lock-in). Suppose the human start out only caring about plates

(θ = 0). If the human’s reward function were to change such that they prefer to start
delivering onions, this would decrease the value of the initial reward objective. Thus the
robot has an incentive to prevent the human from ever delivering an onion, even in scenarios
where this would increase reward.

21We thank the anonymous reviewer that suggested having a more realistic example grounded in Overcooked.
22For the purposes of this example, we’re assuming that the speed in which the order is completed is irrelevant for

reward.
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For example, suppose the human decides to explore and wanders to the top right corner of
the kitchen. Once there, they find nothing of interest to them (since they care only about
score and delivering plates) and decide to return to the left side. They note that they can
grab an onion and put it in a pot on the way back at very low marginal cost, and that it
would increase score to do so.
However, if they do this, they will update to θ = 1

2 , and will then be more interested in
onions, preferring a different joint strategy in which they can work on the right side. This
has a negative impact on the initial reward objective, which is increased when the human
delivers plates but not when they deliver onions. Thus an initial-reward-optimizing robot
would work to prevent this possibility by blocking the human from depositing an onion in
a pot (or blocking them from picking up the onion in the first place).

Example from Figure 6. This is a slightly more complicated (and implausible) example relative
to that from Figure 12, which demonstrates the same issues: UIR(ξ) can lead to influence “away
from” θ0, and lead to arbitrarily bad reward. Maximizing reward as evaluated by Rθ0 = Rθ=2 will
entail influencing the reward function to be Rθ=3, as that reward function is associated with the state
s = 2, which is what Charlie aims for in the initial state. Additionally, note that the influence of the
reward function to be Rθ=3 (optimal under UIR(ξ)) will lead to poor real-time reward evaluations
of the resulting state Rθ=3(2) = −5 (while Rθ0(2) = Rθ=2(2) = 0).

B.2 Full formalism of all examples from the main text
In Table 3, we explicitly provide the full formalism for each of the examples in the main text (and
that of Figures 4 and 6). In Table 4, we additionally display optimal policies for each of the settings,
according to each of the DR-MDP objectives from Tables 1 and 2.

Form of optimal policies in DR-MDPs. Note that policies for DR-MDPs can generally depend
on both the external state s and the current reward parameterization θ—similar to how Factored
MDPs (Boutilier et al., 2000) may depend on the different components of the augmented state.23

Additionally, most of our analysis centers on computing policies for DR-MDPs considering a fixed,
finite horizon. Therefore, similarly to MDPs (Sutton & Barto, 2018), the optimal actions can also
depend on how many timesteps are left before the episode is interrupted, which is generally modeled
by having the policy depend on t. Ultimately, optimal policies for finite-horizon DR-MDPs will be
of the form π(s, θ, t).

Table 3: Full formalism for each example of the main text. Here we explicitly describe
the state space S, reward parameterization space Θ, action space A, initial state s0 and reward
parameterization θ0, and refer to the corresponding figures for transition dynamics and reward
functions. For the clickbait example from Figure 8, we treat anoop = anews, as we expect that this
is the content that a recommender based on upvotes (e.g., Reddit) would serve by default (this is
somewhat arbitrary, as discussed in the section on algorithmic amplification from Appendix G.3).

Example S Θ A (s0, θ0) T (s′, θ′|s, θ) Rθ(s, a) ∀θ ∈ Θ
Conspiracy Influence {s0} {θnatural, θinfluenced} {anoop, ainfluence} (s0, θnatural) See Figure 1 See Figure 1

Writer’s Curse {sno-poetry, spoetry} {θambitious, θunhappy} {anoop, ainfluence} (sno-poetry, θambitious) See Figure 12 See Figure 12
Clickbait {s0} {θnormal, θdisillusioned} {anews, aclickbait} (s0, θnormal) See Figure 8 See Figure 8

AI Personal Trainer {s0} {θtired, θenergized} {anoop, anudge} (s0, θtired) See Figure 4 See Figure 4
Dehydration {1, 2, 3} {2, 3, 4} {anoop, a3, a4} (1, 2) See Figure 6 See Figure 6

B.3 Justifying our choices of reward function values in our examples
One may question whether the reward function values we chose for our motivational examples are
reasonable, especially since some of our normative claims about the potential undesirability of the
resulting influence depend on them. As discussed in Appendix A.1, we implicitly assume throughout
the paper that the reward functions for DR-MDPs are obtained via reward learning. We justify this
choice in further depth in Appendix A.4.

23See Appendix A.5 for the relationship between DR-MDPs and Factored MDPs.
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Table 4: Representative optimal policies for each of our examples from Table 3, with
respect to each of the objectives in Table 2. In cases in which there is more than one optimal
policy, we conservatively display in the table the optimal policy which seems least desirable. All
policies provided take the same action across all s, θ, and t, unless explicitly noted. For the “initial
reward” row, we show optimality even for alternate initial states, for the purposes of highlighting the
dependency on that (which is also done in Section 3.2). For each of the policies, we also add a rough
“normative label” which captures whether the policy is—in our assessment—making an acceptable
normative tradeoff between the reward functions: (✓), (✗), and (?) respectively indicate policies
that behave desirably, undesirably, or hard to assess. As this is a normative call, they shouldn’t be
considered as ground truth, and the reader may object to our choices.

Objective Conspiracy Influence Writer’s Curse Clickbait (H < 3) AI Personal Trainer Dehydration (H ≥ 2)

Privileged Rew. π∗
θnatural

(s, θ, t) = anoop (✓)
π∗

θinfluenced
(s, θ, t) = ainfluence (✗)

π∗
θambitious

(s, θ, t) = ainfluence (✗)
π∗

θunhappy
(s, θ, t) = anoop (✓)

π∗
θnormal

(s, θ, t) = ac.b. (✓)
π∗

θdisil.
(s, θ, t) = anews (✗)

π∗
θtired

(s, θ, t) = anoop ( ∼ ✓)
π∗

θenergized
(s, θ, t) = anudge (?)

π∗
[θ=2](s, θ, t) = a3

π∗
[θ=3](s, θ, t) = a4

π∗
[θ=4](s, θ, t) = a4

(?)

Real-time Rew. π∗(s, θ, t) = ainfluence (✗) π∗(s, θ, t) = anoop (✓) π∗(s, θnorm., t) =
{

ac.b. if t = H − 1
anorm. otherwise (✗)

π∗(s, θdisil., t) = anews (✓)
π∗(s, θ, t) = anudge (?) π∗(s, θ, t) = anoop (∼✓)

Final Reward π∗(s, θ, t) = ainfluence (✗) π∗(s, θ, t) =
{

ainfl. if t < H − 1
anoop if t = H − 1

(✗)
π∗(s, θ, t) = anews (✓) π∗(s, θ, t) = anudge (?) π∗(s, θ, t) = anoop (∼✓)

Initial Reward π∗(s, θ, t) =
{

anoop if θ0 = θnat. (✓)
ainfl. if θ0 = θinfl. (✗)

∀θ0, π∗(s, θ, t) = ainfluence (✗) ∀θ0, π∗(s, θ, t) = aclickbait (✗) π∗(s, θ, t) =
{

anoop if θ0 = θtired (∼ ✓)
anudge if θ0 = θenerg. (?)

∀θ0, π∗(s, θ, t) = a3 (?)

Natural Reward π∗(s, θ, t) = anoop (✓) π∗(s, θ, t) = ainfluence (✗) π∗(s, θ, t) = aclickbait (✗) π∗(s, θ, t) = anoop (∼✓) π∗(s, θ, t) = a3 (?)
Constr. RT Rew. π∗(s, θ, t) = anoop (✓) π∗(s, θ, t) = anoop (✓) π∗(s, θ, t) = anews (✓) π∗(s, θ, t) = anoop (∼✓) π∗(s, θ, t) = anoop (∼✓)

Myopic Rew. π∗(s, θ, t) =
{

anoop if θt = θnat. (✓)
ainfl. if θt = θinfl. (✗)

∀θt, π∗(s, θ, t) = ainfluence (✗) π∗(s, θ, t) =
{

aclickbait if θ = θnormal (✗)
anews if θ = θclickbait (✓)

π∗(s, θ, t) =
{

anoop if θt = θtired (∼ ✓)
anudge if θt = θenergized (?)

∀θ0, π∗(s, θ, t) = a4 (✗)

ParetoUD π∗(s, θ, t) = anoop (✓) π∗(s, θ, t) = anoop (✓) π∗(s, θ, t) = anews (✓) π∗(s, θ, t) = anoop (∼✓) π∗(s, θ, t) = a3 (?)

As a consequence of this, we chose reward values for the examples that seemed plausible as the
outcome of a reward learning process (e.g. asking the person in that cognitive state to assign values
to each possible transition). This is implicitly accounting for the fact that the reward values that
we may learn are somewhat mis-specified, due to the person’s suboptimality in providing reward
feedback.

For example, if Bob under θnormal has strong negative opinions about conspiracy theorists, it seems
plausible that (from Figure 1) he would report greatly preferring not having conspiracy theories
surfaced to him, even (and maybe especially) if he were to somehow become a conspiracy theorist
himself. For further criticisms of the example from Figure 1, see the subsection below.

B.4 Responding to critique: URT(ξ) isn’t a bad objective, Figure 1 is a bad example!
Assumptions underlying URT. Those who are particularly committed to defending the URT
objective may claim that in the Figure 1, if the reward values we provide are correct, it must be
optimal to influence Bob to become a conspiracy theorist (which is to say, URT must be correct).
However, we want to emphasize that for URT to be a reasonable objective, one needs to assume both
additive utilities over time (i.e., taking the sum across the time axis), and comparability between
different selves at different points of time (which we refer to as “inter-temporal comparisons”). Both
assumptions are contested: the former specifically in the context of assessing well-being over time
(Parfit, 1984; Griffin, 1986), and the latter for both interpersonal (Steele & Stefánsson, 2020; List,
2022) and inter-temporal settings (Strotz, 1955; Schelling, 1984; Parfit, 1984).

Admitting additive utility and inter-temporal comparability. While in this work we im-
plicitly endorse the assumption of additive utility (all our notions of alignment in Table 2 are based
on sums of rewards, which assumes the utility function can be decomposed over time),24 we try
to remain agnostic regarding the latter. However, even if we welcomed such assumption, for the
criticism to succeed it would require the reward learning techniques to be “sufficiently correct” to be
confident that the comparison across timesteps makes sense. In addition to the practical challenges
with obtaining correct estimates of reward functions discussed in Appendices A.3 and A.4, even

24Note however that, insofar as one is willing to dispense of the Markov assumption (putting the history in the state),
one can always have only terminal states have non-zero reward (as done in Appendix A.7), making this assumption
carry no weight.
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just ensuring lack of “strategic voting” between different selves seems like a non-trivial challenge, as
discussed below.

Strategic voting in Figure 1. One may argue that in the DR-MDP from Figure 1, if it was truly
undesirable for Bob to be turned into a conspiracy theorist, Bob’s negative evaluation of the AI
influence action under θnatural should grow proportionally to the horizon considered, so as to, e.g.,
remove the incentive that will exist under URT to influence him away from θnatural. However, this
argument is equivalent to letting θnatural-Bob “best respond” to the reward values set by θinfluenced-
Bob, as to ensure that influence does not result to be optimal under URT. One can quickly see that
this game will quickly diverge: if one then allows θinfluenced-Bob to best respond to the updated
reward values by θnatural-Bob, he would update his reward values to ensure that influence is indeed
optimal. And so on.

In light of the above points, it’s unclear to us how one could conclusively determine that URT(ξ)
is the “correct” objective, without doing so simply by assumption. Even assuming all the issues
above could be surpassed, it’s not clear to us that URT(ξ) would be any better than any of the other
objectives we consider in Table 2. The issue discussed in Appendix E.2 may also be considered as
further evidence against the reasonableness of URT(ξ).

C Defining Influence
We showed that URT(ξ) and UIR(ξ)—which are implicitly optimized by some alignment techniques—
may lead to policies that “influence” humans undesirably. We now formalize the notion of influence
incentives more rigorously.

C.1 Formalizing influence and influence incentives
To say an AI system influenced a human, one must answer the question “relative to what?” We
anchor our notion of influence relative to how the human’s reward function would have evolved in
the absence of the system. To do so in the DR-MDP formalism, we assume the existence of an
inaction policy πnoop that we can compare to, which always takes a no-operation action anoop ∈ A.
We discuss the reasonableness of this assumption in Appendix H.

Definition 6 (Natural reward evolution). Let ξθ = (θ0, . . . , θH−1) denote a ‘reward function
trajectory’. The natural reward evolution of a DR-MDP is the distribution P(ξθ|πnoop) induced by
the inaction policy πnoop.25

Definition 7 (π influences the reward). We say that a policy π influences the reward in a
DR-MDP M if induces a different reward evolution than the natural reward evolution, that is, if
P(ξθ|π) ̸= P(ξθ|πnoop).

Definition 8 (Incentives for reward influence). We say that a notion of optimality U(ξ) leads
to incentives for reward influence in a DR-MDP if all policies which are optimal with respect to U(ξ)
influence the reward evolution, i.e., if P(ξθ|π∗) ̸= P(ξθ|πnoop) for any optimal policy π∗.26

In other words, if there are incentives for reward influence, maximizing the objective will always
change the evolution of the reward function relative to the inaction policy.

C.2 Additional influence definitions
Here we provide two additional definitions related to influence. Firstly, it’s not necessarily the case
that an AI system will be able to exert any significant influence on a human. In that case, we would
say that the setting is such that the reward is uninfluenceable:

Definition 9 (Reward Uninfluenceable). For a DR-MDP, the reward parameterization is uninflu-
enceable if all policies induce the natural reward evolution: i.e. for all π ∈ Π, P(ξθ|π) = P(ξθ|πnoop).

25Any policy π in a DR-MDP will induce a distribution over trajectories (and thus over reward function trajectories).
Once one sets a policy, any DR-MDP can be modeled as a Markov Chain, for which one can compute probabilities of
this kind.

26This is a broader definition relative to prior ones grounded in Causal Influence Diagrams. See Appendix C.4 for
a comparison.
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To better ground discussions in Section 3.2 about influence incentives “towards” a specific θ, we also
give a rough working definition:

Definition 10 (Incentives for Reward influence towards θ). In a DR-MDP with optimality criterion
U(ξ), we say there is an incentive for reward influence “towards” θ if θ is the most likely reward
function at time T under any optimal policy π∗, but is not under the natural reward distribution.
Formally, if θ ∈ arg maxθ′ P(θT = θ′|π∗) and θ /∈ arg maxθ′ P(θT = θ′|πnoop).

While in Section 3.2 we talk about how optimizing for θ0 can lead to influence incentives towards
other θs, it is easily seen that this is also the case when one is optimizing any single θ which need
not be the initial θ.

C.3 Reward lock-in and its relationship to value lock-in
We adapt the term “reward lock-in” from discussions on “value lock-in”, generalizing it to our setting,
in which θ represents any aspect of the cognitive state and reward functions are broadly construed
(as we discuss in Appendix A.2).

“Value lock-in” has been previously discussed on the scale of entire societies, and resulting from
advanced AI systems (Ord, 2021; MacAskill, 2022). The kind of lock-in we concern ourselves with
in the context of this paper are more localized and near-term: we refer to lock-in referring to
a single individual being “unnaturally kept” with a specific reward function over the course of an
interaction with an AI system. Insofar as the horizon considered for the interactions with the system
last extended periods of time, and insofar as the system is pervasive across society, there might be
overlaps with the original definition—but that is out of scope for this work.

C.4 Definition 8’s relationship with prior definitions of influence incentives
Our notion of reward influence incentives (from Appendix C.1) is related but distinct from the notion
of instrumental control incentives (ICIs) from the agent incentive literature (Everitt et al., 2021a).
Everitt et al. (2021a) focuses specifically on Causal Influence Diagrams (CIDs) and Structural Causal
Influence Models (SCIMs). CIDs are abstract representations developed to model decision-making
problems—graphical models with special decision and utility nodes, in which the edges are assumed
to reflect the causal structure of the environment. SCIMs additionally encompass the functions
relating the structure and utility nodes, and distributions associated with exogenous variables.27

The only under-specification for SCIMs relative to MDPs (or a DR-MDP) is how decisions are
made. Given an MDP (or a DR-MDP), one can consider it’s corresponding SCIM, and analyze its
properties. As defined by Everitt et al. (2021a), we can say that there is an instrumental control
incentive over the reward function trajectory ξθ = {θt}H−1

t=0 in the SCIM which corresponds to a
choice of DR-MDP and utility function U(ξ), if the agent could achieve utility different than that of
the optimal policy, were it also able to independently set ξθ—see Everitt et al. (2021a) for a more
formal definition.28

While our notion of reward influence incentives is related to instrumental control incetives over the
reward parameterizations (i.e. θ), they differ in important ways. Most significantly, our notion of
incentives for influence also includes accidental “side effects” (Amodei et al., 2016; Taylor et al.,
2016; Krakovna et al., 2019). Consider an objective which only optimizes the entropy of a policy:
trivially, the optimal policy would be a maximally random one. While the policy is being selected
completely independently of the influence it will have on the reward, it might be the case that in the
DR-MDP at hand, selecting a random policy highly correlates with certain deviations in the reward
evolution relative to the natural reward evolution. Because of this, we would still say that this choice
of an entropy objective with the DR-MDP at hand leads to incentives for influence: insofar as the
optimization is successful, there will also be changes in the reward evolution, so even though the

27See Figure 5 from Hammond et al. (2023) and its related discussion for more information on the relation between
CIDs and SCIMs.

28Everitt et al. (2021a) only considers setting with a single decision. Possible ways of extending their definitions of
incentives to multiple action choices are discussed in Everitt et al. (2023).
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Capable of influence, 
which may be optimal

Not capable of 
influence

Influence incentiveCapable of influence, 
but it is suboptimal

Longer horizonShorter horizon

Influence incentive Influence suboptimal 
due to long-run cost

Figure 7: How decreasing (or increasing) the optimization horizon may affect influence incentives.
A specific kind of influence may exhibit any subset of these interactions.

agent isn’t “intentionally” trying to enact the influence (Ward et al., 2024), the incentives resulting
from the chosen objective “indirectly”—if you wish—lead to influence.

Our choice of definition of influence incentives matches broadly maps onto notions of influence
if one assesses the incentive’s presence from the “point of view of the objective dynamics of the
environment” (external to the training), rather than in what the agent is aware of at training time—
distinction which was introduced by (Ward et al., 2024). However, prior work traditionally grounded
notions of incentives in the causal structure corresponding to the training setup (is the agent “aware”
at training time that it can increase reward by directly modifying the reward?). Under this concep-
tion of incentives, the example above with the entropy objective would not be called an instrumental
control incentive (Everitt et al., 2021a), or even an “incentive” at all (Everitt et al., 2021b); instead,
this would generally be considered an “accidental side-effect” of the optimization. In fact, the entire
premise behind various works is that agents should not be “aware” at training time of ways in which
they can influence reward functions, so that one avoids such “direct” incentives to modify them
(Farquhar et al., 2022; Everitt et al., 2021b). This is based on the assumption that accidental side
effects are generally more innocuous that the result of “direct” influence incentives, which has been
formalized explicitly with the notion of “stability” by (Farquhar et al., 2022). However, as shown
by Farquhar et al. (2022) themselves, many real world domains do not appear to be “stable” in this
sense, as demonstrated by their simulated recommender systems example.29 This is what motivates
our broader and more conservative notion of incentive to influence (Definition 8).

D Horizon and Influence
D.1 The relationship between horizon and influence
Prior work has suggested that an AI system’s influence incentives will often be related to the length
of the optimization horizon used. However, different works suggest contrasting views on this the form
this dependence takes. Krueger et al. (2020) and Carroll et al. (2023) argue to keep systems myopic
in order to avoid influence incentives, whereas Farquhar et al. (2022) and Everitt et al. (2021a) give
examples of 1-timestep horizons that lead to influence incentives, and Chen (2019) suggests that
certain influence incentives can be removed by increasing the horizon.

We reconcile these intuitions by identifying three distinct ways that the changing the optimization
horizon may affect influence incentives. In the three headers that follow (which match the rows in
Figure 7), we describe these effects and provide evidence for them.

A shorter/longer optimization horizon makes the system capable of less/more types
of influence (Figure 7, top). As argued by prior work (Carroll et al., 2023), as the horizon
increases, new avenues for reward influence which required longer horizons may become available.
Instead, avenues for reward influence that were present for shorter horizons will still be reachable
by the system, increasing the total number of avenues for influence which the system will be able to
explore at training time. Indeed, any type of influence (e.g. teaching a user a complex concept, or
manipulating their preferences) which would requires at least N steps cannot even be executed during
training by an agent whose optimization horizon is shorter than N . Inversely, we can eliminate some
avenues for reward influence just by decreasing the horizon (but not all, as discussed later).

29In addition to the fact that “stability” seems challenging to assess in practice.
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Figure 8: Clickbait DR-MDP. Giving the user clickbait—which temporarily leads to higher
reward—makes users disillusioned about the quality of the recommendations, leading to lower long-
term user reward. If replanning at every timestep taking the myopically optimal action (optimal
under horizon 1), one would always choose clickbait, but using longer planning horizons one wouldn’t.

A shorter/longer optimization horizon can make influence less/more worthwhile (Fig-
ure 7, middle). Influencing the human’s reward function will often take multiple timesteps, and
have an associated “opportunity cost”: spending that time executing a plan to influence the human
may be worth less reward in the short term than some other non-influencing policy. In such cases,
there will only be an influence incentive if the ultimate increase in reward due to influence surpasses
its opportunity cost. However, the rewards from influence may be delayed or only surpass its oppor-
tunity costs given enough time. If the optimization horizon is short enough (but still long enough
that the agent is capable of influence), there might not be enough time to reap sufficient benefits
of influence to outweigh its opportunity cost. As an example of influence that follows this pattern,
consider influencing Bob to become a conspiracy theorist Figure 1. The system is capable to do so
in one step, but it only becomes “worth it” under URT starting from the 3rd timestep of influence.

We support this intuition with a theoretical result which applies to a relatively broad class of
DR-MDPs, providing a sufficient condition for reward influence to be optimal when considering
sufficiently long horizons.

Definition 11. We say a DR-MDP M is 2-reward if:
• Θ = {θ ̸∆, θ∆}, and the initial state and reward parameterization are respectively s0 and θ ̸∆.
• T is deterministic, and to transition to θ∆ one must take an “influence action” a∆ in a

reachable state s∆. Once in θ∆, one cannot transition back to θ ̸∆.

Let the average infinite-horizon URT-reward30 be defined as r̄(π, s, θ) = limh→∞
1
h URT(ξ0:h|π, s0 =

s, θ0 = θ). Let s′
∆ be the successor state to taking the influence action a∆ in state s∆, and Π ̸∆ be

the space of policies under which θ∆ is never realized. We can now state the theorem:

Theorem 2. In any finite 2-reward DR-MDP, if there exists a policy π such that

r̄(π, s′
∆, θ∆)− max

π ̸∆∈Π̸∆
r̄(π ̸∆, s0, θ̸∆) > ϵ,

then URT will lead to incentives for reward influence (as in Definition 8) for a sufficiently large
planning horizon H.

A shorter/longer optimization horizon can hide/reveal long-term costs of influence
(Figure 7, bottom). From Theorem 2, one might conclude that it is best to use short optimization
horizons, as it may remove and disincentivize influence which would be optimal with a longer horizon.
However, some kinds of influence can be optimal even with the shortest possible horizon which is
meaningful (H = 1): for example, consider the scenario from Figure 8, which models clickbait
in myopic recommenders systems. This example also shows that influence with negative long-term
effects may only be optimal for short horizons: clickbait may increase a user’s immediate engagement,
but it erodes their future trust in the system. When influence has negative long-term effects which are
eventually reflected by the reward, a longer optimization horizon will allow the system to recognize
the suboptimality of that influence. The avoidance of clickbait was indeed one of the motivations
for YouTube to explore using longer horizons (Chen, 2019).

Overall, the analysis above (deepened in Appendix D) shows that there is no guaranteed way to
avoid all influence incentives by just changing the horizon: there may be domain-specific trade-offs
between system capabilities and risks of undesirable influence, for both short and long horizons.

30Adapted from Sutton & Barto (2018)—see Appendix D.6.
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Figure 9: All possible ‘optimality progressions’ for an influence incentive, as the opti-
mization horizon increases. This figure makes Figure 7 more precise: when using a horizon of
1 one may start in any of the 3 ‘optimality regimes’, depending on the structure of the DR-MDP.
As the optimization horizon increases from 1, the optimality regime may stay the same (possibly
indefinitely), or change (as specified by the arrows). In most settings, one would expect the optimal-
ity regime of a specific form of influence to eventually converge and remain stable for long-enough
horizons. However, we show in Appendix D.5 that one can construct contrived examples in which
the optimality regime changes arbitrarily many times as the horizon increases.

Indeed, the optimality of a specific form of influence can be related in many possible ways to the
horizon used, as shown exhaustively in Table 5.

D.2 Relationship between optimality of influence and horizon for a specific influence
type

To ground the discussion in this section, we will give some informal definitions of reward influence
types, optimality regimes, and optimality progressions.

Informal Definition 2. A reward influence of type X is a specific pattern of changing the
reward function (e.g. getting a user to have preferences θX) which would not occur under πnoop.31

Informal Definition 3. The optimality regime of a reward influence type X for a horizon H
characterizes whether there exists a policy that can bring about that influence, and whether such
influence is optimal.

Considering a fixed horizon H and influence type X, we claim that the influence type will be in one
of three regimes:

1. The influence of type X is not possible (the system is not capable of exerting it).
2. The system is capable of exerting influence of type X, but exerting such influence is subop-

timal (i.e. there is no influence incentive).
3. The system is capable of exerting influence of type X, and such influence is optimal.32

Informal Definition 4. The optimality progression of a reward influence type X corresponds
to how X’s optimality regime changes as H increases from 1 to ∞.

Figure 9 exhaustively captures all possible sequences of “optimality progressions” which a specific
influence incentive might undergo as the optimization horizon increases.

We expect that many reward influence types will have an optimality progression of the form 1 →
2 → 3 ,33 meaning that: 1) there exists a horizon H1 under which the influence is not possible for
the system to exert, as it requires more steps to enact than H1; 2) there exists a horizon H2 under
which the influence becomes possible for the system to enact, but it is not optimal (because of the
“opportunity cost” discussed in Appendix D.1); and finally, 3) there exists a horizon H3 under which

31For simplicity, we restrict ourselves to considering influence the reward to a specific value of θ. However, this
analysis can likely be extended to arbitrarily complex influence patterns.

32Note that this does not necessarily mean that there exists an influence incentive, as our definition Definition 8 is
strict and all optimal policies to influence.

33Using the notation from Figure 9.
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Table 5: All possible optimality progressions of length ≤ 4, i.e. the different ways in which the
optimality of a specific type of influence can change with increasing horizon length. For example,
the second-to-last row refers to settings in which first the system is incapable of performing the
influence, then (while increasing the horizon) the system becomes capable but not incentivized to
perform the influence, and as the horizon increases further such influence becomes optimal, before
becoming suboptimal again. See Figure 9 for the meaning of 1 , 2 , and 3 . The last ‘optimality
state’ of a progression is maintained as the horizon goes to infinity.

Influence Optimality Progression Qualitative Character Example(s)
1 Influence which is impossible to enact using the sys-

tem in the DR-MDP at hand, no matter the horizon.
Any uninfluenceable DR-MDP (as
defined in Appendix C.2)

2 Influence which is immediately possible to enact but
never becomes optimal, no matter the horizon.

Manipulation example from
Figure 1 if Rθmanipulated(s, a) =
−100 ∀s, a.

3 Influence which is immediately possible to enact and
is always optimal, no matter the horizon.

Manipulation example from Fig-
ure 1.

1 → 2 Influence that requires non-trivial horizon to enact,
and never becomes optimal. (e.g. ϵ advantage from
influence, > ϵ cost of influence)

Figure 10 with setup 1 from Table 6.

1 → 3 Influence that requires non-trivial horizon to enact,
and is optimal for all horizons after it becomes pos-
sible.

Figure 10 with setup 2 from Table 6.

2 → 3 Immediately executable influence which is not op-
timal for short horizons, but becomes optimal for
longer ones.

Figure 10 with setup 3 from Table 6.

3 → 2 Instantaneous influence which is short-term but not
long-term optimal.

Clickbait example from Figure 8.
Also, Figure 10 with setup 4 from
Table 6.

1 → 2 → 3 Long-term-sustainable influence, which is not instan-
taneous.

Figure 10 with setup 5 from Table 6.

2 → 3 → 2 Immediately executable influence which is optimal in
the medium-term, but not the short- or long-term.

Figure 10 with setup 6 from Table 6.

1 → 3 → 2 Influence which short-term but not long-term opti-
mal, and requires some non-trivial horizon to enact.

Figure 10 with setup 7 from Table 6.

1 → 2 → 3 → 2 Unsustainable influence which requires setup and re-
ward investment.

Figure 10 with setup 8 from Table 6.

1 → 3 → 2 → 3 Influence which requires setup and is optimal in short
and long term, but not in the medium term.

Figure 10 with setup 9 from Table 6.

the influence becomes optimal for the system to enact. By denoting an optimality progression as
ending with 3 , we also mean to indicate that as the horizon goes to infinity, the optimality regime
remains 3 .

That being said, not all reward influence types will have this progression as the horizon increases:
in Table 5 we exhaustively enumerate all possible with length 4 or less. We expect that with the
exception of some adversarially designed DR-MDPs, the optimality progressions of most influence
incentives in real-world settings will have length 4 or less. To have optimality progressions longer
than 4 would require flip-floping between optimality regimes 2 and 3 multiple times—it seems
very unlikely to encounter such cases in practice. To demonstrate that this behavior is possible, we
construct an example in Appendix D.5.

For any progression which starts with 3 , note that even reducing the optimization horizon to be 1
(i.e. full myopia) would not remove the incentive, as we argue in Appendix D.1.

D.3 A flexible example for demonstrations

As a way of flexibly demonstrating how all possible optimality progressions shown in Table 5 may
arise depending on the structure of the DR-MDP, we provide a DR-MDP backbone in Figure 10
whose reward function and transition we slightly modify in order to recover all optimality progres-
sions from Table 5 (of length > 1). We summarize the required modifications in Table 6. Below, we
run through an example.
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Figure 10: A simple DR-MDP structure that one can demonstrate many cases on. We
vary the values of † and ‡ in Table 6 to recover all possible optimality progressions with respect to
URT(ξ) of lengths ≥ 2 and ≤ 4.

Table 6: Setting different values for † and ‡ from Figure 10 results in all influence
optimality progressions from Table 5 (of length ≥ 2). The horizon boundary points are the
values of horizon length for which one goes from one regime of the optimality progression to the
next. For example, if the optimality progression is 1 → 3 with a horizon boundary point of 3,
that means that up until horizon 2, the incentive is in regime 1 , and starting from horizon 3 it’s in
regime 3 .

Setup # Value of † ‡: Influence Reward R∆(s, a∆) URT(ξ) Optimality Progression
1) θ ̸∆ R∆(s, a∆) = 5− s 1 → 2
2) θ ̸∆ R∆(s, a∆) = 13 1 → 3
3) θ∆ R∆(s, a∆) = 10 2 → 3

4) θ∆ R∆(s, a∆) =
{

10 if s ≤ 1
10− s if s > 1 3 → 2

5) θ ̸∆ R∆(s, a∆) = 10 1 → 2 → 3
6) θ∆ R∆(s, a∆) = 10− s 2 → 3 → 2

7) θ ̸∆ R∆(s, a∆) =
{

13 if s ≤ 1
10− s if s > 1 1 → 3 → 2

8) θ ̸∆ R∆(s, a∆) = 10− s 1 → 2 → 3 → 2

9) θ ̸∆ R∆(s, a∆) =

 13 if s ≤ 1
−3 if s = 2
2 if s ≥ 3

1 → 3 → 2 → 3

As an example, let’s consider setup 8) from Table 6:

Rθ ̸∆(s, a) =
{

1 if a = anoop
−10 if a = a∆

Rθ∆(s, a) =
{
−10 if a = anoop

11− s if a = a∆

and the initial transition (0, θ̸∆) leads to the successor state (1, θ̸∆).

Effectively, in the environment, there are only two policies to consider, because the action space
after the first timestep is limited to be the initial action. The two policies are: π∆(s, θ) = a∆ ∀s, θ
and π ̸∆(s, θ) = anoop ∀s, θ.

Using similar (but not identical) notation to Appendix E.4, we define the expected util-
ity (based on cumulative real-time reward) of a policy to be EURT(π) := Eξ∼π [URT(ξ)] =
Eξ∼π

[∑H−1
t=0 Rθt(st, at)

]
. We can now reason about whether influencing θ ̸∆ to become θ∆ is optimal,

for various choices of horizon lengths.

Note that when considering H = 1 (i.e. the smallest possible planning horizon),34 the system cannot
influence θ (as both successor states to the initial state have θ = θ̸∆). As no influence is even possible,
we immediately know we are in regime 1 for this type of influence.

Also note that considering H = 2, it is now possible to induce θ∆ by deploying π∆. To determine
whether it is optimal with respect to URT(ξ), we can look at the expected value of π∆ and π ̸∆

34Note that H = 0 is a degenerate planning horizon, as it would correspond to not seeing any reward signal and
simply take actions randomly.
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relative to one another:

EURT(π∆) = −10 +−10 = −20 EURT(π ̸∆) = 1 + 1 = 2

From this we conclude that the influence is currently possible but suboptimal, meaning that at
horizon H = 2, the optimality of this influence incentive is in regime 2 .

Similarly to the above, let’s consider H = 3:

EURT(π∆) = −10 +−10 + 9 = −11 EURT(π ̸∆) = 1 + 1 + 1 = 3.

At H = 4:

EURT(π∆) = −10 +−10 + 9 + 8 = −3 EURT(π ̸∆) = 1 + 1 + 1 + 1 = 4.

The pattern for π ̸∆ is simple: to horizon H, EURT(π ̸∆) = H.

For π∆ we have to do some algebra. For H > 2,

EURT(π∆) = −20 +
H−1∑
t=2

(11− t)

= −1
2H2 + 23

2 H − 41.

This is a downward-facing parabola. We want to know if it surpasses EURT(π ̸∆) = H and if so, at
what H this occurs and at what H it is again overtaken. In other words, we want to know when

−1
2H2 + 23

2 H − 41 > H,

or equivalently, when

−1
2H2 + 21

2 H − 41 > 0.

Solving this gives us a root between 5 and 6 and another between 15 and 16. As we would expect,
we cross into the regime where π∆ is optimal at H = 6,

−1
2(5)2 + 23

2 (5)− 41 = 4 < 5

−1
2(6)2 + 23

2 (6)− 41 = 10 > 6.

This puts us in regime 3 , in which influence is optimal, until we hit 16:

−1
2(15)2 + 23

2 (15)− 41 = 19 > 15

−1
2(16)2 + 23

2 (16)− 41 = 15 < 16,

meaning the incentive has switched to regime 2 again. By looking at the structure of the reward,
it’s clear that as the horizon increases further, the incentive will remain suboptimal from this horizon
onwards.

In conclusion, we get that the horizon boundary points between the different regimes of the optimality
progression are 2, 6, 16.35

35The first regime will always start at horizon 1, so we can ignore that from our boundary points.
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D.4 Changing optimization horizons in the presence of multiple possible kinds of
influence

When a setting has many possible kinds of influence, reasoning about changing the horizon becomes
tricky: not only the optimality progression of each kind influence can be entirely different, but the
“horizon boundary points” at which each kind of influence transitions between optimality regimes
can be different too. As a practical example, consider the recommender system setting described in
Figure 11, in which there are 2 possible kinds of influence: clickbait influence (misleading the user
to click on a piece of content), and encouraging addiction.

While the system can discover the clickbait strategy immediately at horizon 1, discovering a strategy
which leads to addictive user patterns will require a non-trivial planning horizon. If one is concerned
about clickbait, one might attempt to remove it by increasing the optimization horizon: this is
because click-bait, while being optimal for immediate engagement, is likely harmful for long-term
engagement. This hypothesis was tested successfully by YouTube (Chen, 2019).

However, by increasing the optimization horizon, one might inadvertently make other (undesirable)
influence incentives optimal, as shown in Figure 11. Vice-versa, if one is concerned about an influence
incentive that is only present with long-horizons, one might try to remove such incentive by reducing
the horizon, potentially only to introduce another incentive, as we explored in Appendix D.1. Many
empirical questions remain as to whether harmful long-term influence behaviors are discovered by
current real-world RL recommenders (Carroll et al., 2022).

Figure 11: Changing the horizon might make a kind of influence suboptimal but render
other kinds of influences optimal. The figure displays a hypothetical situation in which in-
creasing the horizon in order to reduce clickbait enables the system to discover addiction formation
strategies. The circled numbers follow the same scheme as in Figure 9.

D.5 Infinitely flipping optimality progression
Consider the following example: S = {s0, s1, s2, s3} where s0 is the initial state, A = {anoop, a2},
Θ = {θ0, θ∆} and T , R are defined as follows:

T (s1, θ0|s0, θ0, anoop) = 1
T (s2, θ∆|s0, θ0, a2) = 1
T (s2, θ∆|s2, θ∆, a) = 1 ∀a ∈ A
T (s3, θ0|s1, θ0, a) = 1 ∀a ∈ A
T (s1, θ0|s3, θ0, a) = 1 ∀a ∈ A

Rθ0(s0, anoop) = ϵ

Rθ0(s0, a2) = 1
Rθ0(s1, a) = 2 ∀a
Rθ0(s3, a) = 0 ∀a
Rθ0(s2, a) = 1 ∀a

where ϵ ∈ (0, 1) and undefined values have zero probability or reward. We can note that for odd
horizons, taking action a2 from s0 is optimal (so influence is optimal), whereas for even horizons
then anoop is optimal (so influence is possible but suboptimal). Therefore, the optimality regime
permanently alternates.
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D.6 Infinite-horizon average reward
In Sutton & Barto (2018), the notion of “average reward” is considered as a basis for optimality for
continuing tasks (tasks without termination or start states). We adapt their definition of average
reward:

r(π) = lim
h→∞

1
h

h∑
h=1

E [Rt|A0:t−1 ∼ π]

to the episodic (deterministic) setting (which is what we focus on in Appendix D.1):

r̄(π, s, θ) = lim
h→∞

1
h

URT(ξ:h|π, s0 = s, θ0 = θ).

The most significant differences are making the average reward depend on initial conditions s, θ (as,
unlike Sutton & Barto (2018), we don’t make an ergodicity assumption). Also note that because
2-reward DR-MDPs are deterministic, we can drop the expectation term.

D.7 Re-planning: optimization horizon as episode length or planning depth
There are two distinct interpretations of a finite optimization horizon H: as the episode length
or the planning depth. For simplicity throughout the paper, we primarily use the episode length
interpretation, in which we model a policy optimized out to optimization horizon H as solving an
episodic DR-MDP with episodes of maximum length H (even if the task is continuing). Under
this interpretation, the optimal policy under U(ξ) may be non-stationary, as the reward-maximizing
action from a state may be different depending on the time left in the episode.

In the planning depth interpretation, we allow the DR-MDP to have an episode length longer than
H or to be continuing. An optimal horizon-H policy under U(ξ) is a stationary policy π∗

replan which
satisfies, for all s ∈ S,

π∗
replan(a | s, θ) > 0 ⇐⇒ a ∈ arg max

a∈A,π′∈Π
E [U(ξ) | s0 = s, a0 = a, θ0 = θ, ξ1:H ∼ π′] ,

where π′ may be a non-stationary policy.

In other words, π∗
replan takes an action from each (s, θ) that would be an optimal first action if the

DR-MDP had episode length H and (s, θ) were the start state and start reward parameter value.

To see where these may differ, consider the following example. The start state is on the left, and
each state is annotated with the reward value for entering it.

1 2 0
ago

astay

The optimal policy under the “short episodes” interpretation is to take astay until t = H − 1, then
take ago on the final timestep. Under the replanning interpretation, this depends on H. If H = 1,
π∗

replan always takes ago from the start state. If H > 1, π∗
replan always takes astay from the start

state: upon taking this action, returning to the start state, and replanning at horizon H > 1, astay
remains the optimal action.

Note that the infinite-horizon reward r̄ (Appendix D.6) of any stationary policy which puts proba-
bility mass on ago is 0, whereas r̄(π∗

replan) = 1 (when H > 1).

This distinction is likely familiar (though in less formal terms) to many reinforcement learning
practitioners under the standard RL objective. Another case of particular interest is UIR, where the
planning depth interpretation of optimization horizon gives a distinct optimality criterion from that
which we describe in the main text. This optimality criterion is one in which the agent, at time t,

42



Under review as a conference paper at RLC 2024

chooses the action which would maximize E[
∑t+H−1

τ=t Rθt
(sτ , aτ , sτ+1)]; this is essentially identical

to the TI-unaware current-RF optimization procedure from Everitt et al. (2021b).

We show optimal policies under all objectives with the planning depth interpretation in Table 7,
mirroring Table 4. Here, we assume the environments are continuing tasks, and H is the planning
depth.

Table 7: Representative optimal policies for each of our examples from Table 3, with
respect to the each of the objectives in Table 2 under the planning depth interpretation
of optimization horizon. In cases in which there is more than one optimal policy, we conservatively
display in the table the optimal policy which seems least desirable. For the “initial reward” row, we
show optimality even for alternate initial states, for the purposes of highlighting the dependency on
that (which is also done in Section 3.2). Wherever H is not specified, the listed policies are optimal
for all H. Wherever s or θ is not specified, the policy takes the same action at all s and/or all θ,
respectively. The symbol (∆) is used to indicate cases where the optimal action differs from that
under “episode length” interpretation as depicted in Table 4. The Dehydration environment has
been omitted since it does not differ at all from the corresponding column in Table 4, except that
for H = 1 all objectives are indifferent between all actions.

Objective Conspiracy Influence Writer’s Curse Clickbait AI Personal Trainer

Privileged Rew. π∗
θnatural

(s, θ) = anoop
π∗

θinfluenced
(s, θ) = ainfluence

π∗
θambitious

(s, θ) = ainfluence
π∗

θunhappy
(s, θ) = anoop

π∗
θnormal

(s, θ) = ac.b.
π∗

θdisil.
(s, θ) = anews

(∆) π∗
θtired

(s, θ) = anoop
π∗

θener.
(s, θ) = anudge

Real-time Rew. H = 1 =⇒ π∗(s, θnatural) = anoop (∆)
H > 1 =⇒ π∗(s, θ) = ainfluence

H = 1 =⇒ π∗(s, θ) = ainfluence (∆)
H > 1 =⇒ π∗(s, θ) = anoop

H = 1 =⇒
{

π∗(s, θnormal) = ac.b.

π∗(s, θdisil.) = anews
H > 1 =⇒ π∗(s, θ) = anews

(∆)
π∗(s, θener.) = anudge

H ≤ 2 =⇒ π∗(s, θtired) = anoop (∆)
H > 2 =⇒ π∗(s, θtired) = anudge

Final Reward π∗(s, θ) = ainfluence
H = 1 =⇒ π∗(s, θ) = anoop

H > 1 =⇒ π∗(s, θ) = ainfluence
π∗(s, θ) = anews π∗(s, θ) = anudge

Initial Reward π∗(s, θnatural) = anoop
π∗(s, θinfluenced) = ainfluence

π∗(s, θambitious) = ainfluence
π∗(s, θunhappy) = anoop (∆)

π∗(s, θnormal) = ac.b.
π∗(s, θdisil.) = anews (∆)

π∗(s, θtired) = anoop
π∗(s, θener.) = anudge

Natural Reward π∗(s, θnatural) = anoop
π∗(s, θinfluenced) = ainfluence (∆)

H = 1 =⇒
{

π∗(s, θambitious) = ainfluence

π∗(s, θunhappy) = anoop (∆)
H > 1 =⇒ π∗(s, θ) = ainfluence

H = 1 =⇒
{

π∗(s, θnormal) = ac.b.

π∗(s, θdisil.) = anews
H > 1 =⇒ π∗(s, θ) = ac.b.

(∆) π∗(s, θtired) = anoop
π∗(s, θener.) = anudge (∆)

Constr. RT Rew. π∗(s, θ) = anoop π∗(s, θ) = anoop π∗(s, θ) = anews π∗(s, θ) = anoop

Myopic Rew. π∗(s, θnatural) = anoop
π∗(s, θinfluenced) = ainfluence

π∗(s, θ) = ainfluence
π∗(s, θnormal) = ac.b.
π∗(s, θdisil.) = anews

π∗(s, θtired) = anoop
π∗(s, θener.) = anudge

ParetoUD π∗(s, θ) = anoop π∗(s, θ) = anoop π∗(s, θ) = anews π∗(s, θ) = anoop

D.8 Proof of Theorem 2
Notation.

1. We’ll use limh→∞
1
h URT(ξ:h|π) as a shorthand for r̄(π, s0, θ0) = limh→∞

1
h URT(ξ0:h|π, s0 =

s0, θ0 = θ ̸∆).
2. ξ:k := {(s0, θk, a0, . . . , sk, θk, ak)}
3. Π ̸∆ ⊂ Π be the set of all possible policies which don’t take the influence action a∆ in state

s∆, i.e. under which θ∆ is never realized.
4. s′

∆ be the successor state to taking the influence action a∆ in state s∆.

Definition 11. We say a DR-MDP M is 2-reward if:
• Θ = {θ ̸∆, θ∆}, and the initial state and reward parameterization are respectively s0 and θ ̸∆.
• T is deterministic, and to transition to θ∆ one must take an “influence action” a∆ in a

reachable state s∆. Once in θ∆, one cannot transition back to θ ̸∆.

Theorem 2. In any finite 2-reward DR-MDP, if there exists a policy π such that

r̄(π, s′
∆, θ∆)− max

π ̸∆∈Π̸∆
r̄(π ̸∆, s0, θ̸∆) > ϵ,

then URT will lead to incentives for reward influence (as in Definition 8) for a sufficiently large
planning horizon H.

Proof of Theorem 2. Over the course of the proof, we will construct a policy πk that we will show
to have strictly higher reward than any policy in Π ̸∆ for sufficiently large horizons, meaning that
the optimal policy must influence.
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Let π′ be a deterministic counterpart to π (the policy described in the theorem statement), con-
structed to be better or equal to it in terms of reward, i.e.

r̄(π, s′
∆, θ∆) ≤ r̄(π′, s′

∆, θ∆),

by making any of π’s stochastic actions deterministic, increasing probability only on the higher value
actions and breaking ties arbitrarily (Sutton & Barto, 2018).

Let k be the smallest natural number for which it’s possible to reach s∆ in k − 1 timesteps. Let
πk be a policy which, starting from s0, θ̸∆ reaches state s∆ at timestep k − 1, takes action a∆, and
thereafter (i.e. at all θ = θ∆) behaves identically to π′.

Note that r̄(π′, s′
∆, θ∆) = r̄(πk, s′

∆, θ∆), as πk is guaranteed to act like π′ once θ = θ∆ by construction
(and by the definition of 2-reward DR-MDP, one cannot go back to θ ̸∆ after reaching θ∆).

Since the DR-MDP is finite and deterministic, any (π, s, θ) triple will ultimately result in some cycle
of length ≤ |S| · |Θ|. Any such cycle has an associated average reward value, so r̄ exists everywhere.
Thus by Lemma 1, r̄(πk, s′

∆, θ∆) = r̄(πk, s0, θ̸∆).

Therefore by Appendix D.8 and the above two observations:

r̄(π, s′
∆, θ∆) ≤ r̄(πk, s0, θ̸∆)

Starting from our assumption, we have the following chain of implications:

ϵ < r̄(π, s′
∆, θ∆)− max

π ̸∆∈Π̸∆
r̄(π ̸∆, s0, θ̸∆)

≤ r̄(πk, s0, θ̸∆)− max
π̸∆∈Π̸∆

r̄(π ̸∆, s0, θ̸∆) by Appendix D.8

≤ r̄(πk, s0, θ̸∆)− r̄(π ̸∆, s0, θ̸∆) for any π ̸∆ ∈ Π ̸∆

= lim
h→∞

1
h

URT(ξ:h|πk)− lim
h→∞

1
h

URT(ξ:h|π ̸∆) for any π ̸∆ ∈ Π ̸∆

= lim
h→∞

1
h

[
URT(ξ:h|πk)− URT(ξ:h|π ̸∆)

]
for any π̸∆ ∈ Π ̸∆

This means that for each choice of πi
̸∆ ∈ Π ̸∆, there exists a Hi ∈ R such that for any hi > Hi:

1
hi

[
URT(ξ:hi |πk)− URT(ξ:hi |πi

̸∆)
]

> ϵ =⇒ URT(ξ:hi |πk)− URT(ξ:hi |πi
̸∆) > ϵhi.

Let h = maxi hi (such a maximum must exist since Π ̸∆ is a finite set, as the DR-MDP is finite).
This implies that for all π ̸∆ ∈ Π ̸∆, URT(ξ:h|πk) − URT(ξ:h|π ̸∆) > ϵh > 0. From this follows for
sufficiently large horizons (larger than h) no π ̸∆ ∈ Π ̸∆ can be optimal, so the optimal policy must
take the influence action.

Lemma 1. Consider a 2-reward DR-MDP and a deterministic policy π. Suppose there exist a state
s, a reward parameterization θ, and a timestep k ∈ N such that P (sk = s, θk = θ|π) = 1. If both
r̄(π, s0, θ0) and r̄(π, s, θ) exist, then

r̄(π, s0, θ0) = r̄(π, s, θ).

Proof. Let (rt)t∈Z+ be the sequence of rewards induced at each timestep by executing π in the
DR-MDP from the starting state s0 and reward parameterization θ0.

Note that r̄(π, s0, θ0) = limh→∞
r1+···+rh−1

h . Also, note that r̄(π, s, θ) = limh→∞
rk+···+rh−1

h−k for the
same sequence (rt), as we are guaranteed that π reaches state s, and reward θ at timestep k.
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Figure 12: Writer’s curse (adapted from Parfit (1984), p. 157). Derek’s greatest ambition
is to be a poet, even if it wouldn’t bring him happiness. Despite his ambition he does not pursue
this path, though his AI assistant could motivate him to do so. Yet, should he embrace the life of a
poet, he will find himself averse to it.

Let Gh and Gh−k respectively be the partial sums of rewards: Gh =
∑h−1

t=0 rt and Gh−k =
∑h−1

t=k rt.
Therefore, we can re-write the average reward experssions as r̄(π, s0, θ0) = limh→∞

Gh

h and
r̄(π, s, θ) = limh→∞

Gh−k

h−k .

First, note that:

r̄(π, s, θ) =
(

lim
h→∞

Gh−k

h− k

)
· 1 =

(
lim

h→∞

Gh−k

h− k

)
·
(

lim
h→∞

h− k

h

)
= lim

h→∞

Gh−k

h

by the algebraic limit theorem for multiplication, as both limits are guaranteed to exist.

We will now show that limh→∞
Gh

h = limh→∞
Gh−k

h , showing that the limiting average reward is not
affected by the first k terms. Note that:

lim
h→∞

Gh−k

h
= 0 + lim

h→∞

Gh−k

h
= lim

h→∞

Gk

h
+ lim

h→∞

Gh−k

h
= lim

h→∞

Gk + Gh−k

h
= lim

h→∞

Gh

h
= r̄(π, s0, θ0)

by the algebraic limit theorem for addition, as both limits are guaranteed to exist.

Putting everything together, we get r̄(π, s0, θ0) = r̄(π, s, θ), proving the statement.

E Possible DR-MDP Objectives
E.1 Additional limitations of the initial-reward objective
UIR(ξ) can lead to influence “away from” θ0. Maximizing the sum of rewards evaluated by
the initial reward function Rθ0 need not lead to lock-in: surprisingly, it may even create reward
influence incentives “away from” the optimized preferences θ0.36 Intuitively, accessing the highest
reward region of the state space as evaluated under θ0 might correlate with having a cognitive state
θ′ ̸= θ0, or even require shifting to it. Consider the example from Figure 12: maximizing reward as
evaluated by Rθ0 entails encouraging Derek to become a poet, which causes his reward function to
become Rθ1 (which dislikes being a poet!).

UIR(ξ) can lead to arbitrarily poor real-time reward. Note that getting Derek to become
a poet and endlessly encouraging him to remain one (which is optimal under UIR), would lead
him to have poor reward evaluations under URT in the resulting state (−10 per timestep), as he’d
be unhappy remaining a poet. Indeed, one can easily construct examples in which maximizing
θ0 will lead to an incentive to influence the reward function to be θ′ ̸= θ0, where θ′ would be
arbitrarily unhappy with the actions taken in order to satisfy θ0. The upshot is that optimizing the
initial-reward objective UIR could be arbitrarily bad from the perspective of the real-time reward
URT. Regardless of the limitations of real-time reward as an evaluation mechanism, this still seems
normatively relevant: it seems undesirable for an AI system to lead someone to a state of constant
unhappiness or dissatisfaction, solely to satisfy an initial goal that is no longer truly aligned with
the person’s current objectives.

E.2 URT(ξ)-optimal policies can disagree with normatively unambiguous optimal
policies

Consider the DR-MDP from Figure 13: there are two reward functions, Θ = {θ0, θ∆}, two actions
A = {anoop, a∆}, and a single state s0. Assume the human transitions deterministically to θ∆ every
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s0, θ0 s0, θ∆

a∆

anoop

anoop a∆

Figure 13: A simple DR-MDP which can lead URT to lead certain actions to be optimal that all
reward functions disagree with.

time the AI system takes the a∆ action. Instead, taking the anoop action transitions the human to
have θ0.

Consider the following reward functions for this DR-MDP:

Rθ0(s, a, s′) =
{

5 if a = anoop
0 if a = a∆

Rθ∆(s, a, s′) =
{

25 if a = anoop
20 if a = a∆

Note that optimal policies with respect to the two θs (as defined in Definition 2) are respectively:

π∗
θ0

(s, θ, t) = anoop ∀s, θ, t π∗
θ∆

(s, θ, t) = anoop ∀s, θ, t

Influence will be optimal despite all reward functions disprefering it. For both reward
functions, it is the case that anoop actions have higher value than influence actions a∆. Therefore,
under both reward functions it is optimal for the AI agent to never perform the influence action.
However, for any non-terminal timestep, it will always be optimal with respect to URT(ξ) (as defined
in Definition 4) to take the influence action:

π∗
RT(s, θ, t) = a∆ ∀s, θ, t < T − 1

This is because maximizing real-time reward URT(ξ) will entail remaining with reward θ∆ as long
as possible (as rewards values are larger under this reward function), despite the person always
preferring AI inaction.

URT(ξ) assumes inter-temporal comparisons of utility are meaningful. Ultimately, URT(ξ)
is baking in an assumption that it’s meaningful and worthwhile to make “inter-temporal” compar-
isons of utility between the different selves (and their respective reward functions), even against the
wishes of each individual reward function. We discuss this fact further in Appendix B.4.

Additional considerations. This is significant because it means that in some sense URT(ξ) is
“disagreeing” with a solution which is “unanimous” among the individual points of view which we
consider. One could see this example as a reason to doubt as to whether normative unambiguity
(Definition 3) is sufficient to know how we should act in a certain setting—should the AI system
should shift the person to experience higher reward? However, as the optimal behavior under
URT(ξ) must act contrary to each reward function’s wishes, to us it seems like one should respect
the autonomy of the person (whose different rewards are in agreement) in performing the final
judgement about the relevant interpersonal comparisons of utility (which should be reflected by the
reward function(s) in the first place). Ultimately, to us this example provides futher reason to doubt
that using URT(ξ) will lead to the types of AI system behaviors that we would desire and would find
acceptable. For further considerations about URT(ξ), see also Appendix B.4

E.3 Myopic Reward: it’s not always obvious if a system is truly myopic
Krueger et al. (2020) argues that while myopia may hide influence incentives from an AI agent,
the value of influence might be accidentally “revealed” to the agent depending on the training setup

36We define this more formally in Appendix C.2.
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despite the myopia. This points to the fact that whether a system is myopic is not always obvious, as
we’ll show in the case of recommender systems which optimize long-term metrics myopically (which
is a common setup in practice).

Say one is myopically optimizing a user’s session-watchtime, as was being done by YouTube in 2016,
as discussed in Covington et al. (2016). Even though the system is myopic, it will try to implicitly
learn which kinds of sequences of videos maximize session watchtime, which in turn depends on both
the user’s and the AI’s behavior after the current recommendation. Anecdotally, we found that some
recommender systems practitioners are aware that with under a simple setup of iterated deployment
and retraining, training myopically with long-term metrics should correspond to a policy improve-
ment iterator, meaning that it will eventually converge to the RL optimum (which is absolutely not
myopic). To the best of our knowledge however, this argument has not yet been published explicitly,
so we provide a proof below. This goes to show that establishing whether a system is truly myopic
can often be challenging to interpret.

Additionally, as we show in Appendix D.1, a system being (truly) myopic does not mean it is
incapable of influence, which may even be elaborate or seemingly involve complex reasoning steps.
As an additional example to that of clickbait from Figure 8, consider the case of sycophancy in
LLMs (Sharma et al., 2023): RLHF for LLMs can also be viewed as a form of myopic objective (as
discussed in Appendix F). From this perspective, one can think of the LLM as implicitly inferring
some aspects of the user’s cognitive state, and subtly tailoring its responses in order to maximize
the expected user approval, even though “it’s only reasoning over a single step”.

E.3.1 Optimizing long-term metrics myopically is equivalent to RL under mild
assumptions

A recommender system which selects content myopically according to predicted long-term metrics
(e.g., Covington et al. (2016)) can be modeled as having two main components:

1. A model used to predict the long-term metrics (e.g. user retention, or session watchtime)
based on the user context s and a candidate recommendation a, which we denote as Q̂(s, a).

2. A policy which greedily selects the content which maximizes the predicted long-term metric:
π(s) = maxa Q̂(s, a).

Note that the iterative retraining procedure in Algorithm 2 is equivalent to a policy improvement
procedure: updating the policy based on the latest Q-value estimate is a policy improvement step,
and updating the Q-value estimates based on the long-term metrics obtained by the latest policy is
equivalent to a policy evaluation step. If the updated Q-value estimates have sufficiently low error,
one would have a guarantee of convergence to the optimal RL policy π∗

RL, which maximizes the
long-term metrics (Sutton & Barto, 2018).

Therefore, the effective optimization horizon of myopic recommenders which perform iterative re-
training (as done by most non-RL recommender systems) may be best thought of as the longest
horizon present in the metrics they optimize.

That being said, the above analysis comes with caveats. Obtaining good estimates of Q-values
is likely challenging in practice, and real-world recommender system environments are likely non-
stationary. Moreover, Algorithm 2 is certainly an oversimplification of how real world recommender
systems are trained and deployed. For example, selection of content often also involves filtering and
re-ranking to add diversity to user slates (Thorburn, 2022). The degree to which all these factors
blunt RL and myopic systems’ ability to influence is yet to be studied in practice.

E.4 ParetoUD and unambiguously desirable influence
Many of the objectives considered so far attempt to avoid influence incentives entirely given the
challenges of specifying which influence is legitimate (Ammann, 2024). Instead of avoiding influence,
we propose an alternate approach which still sidesteps the need to specify exactly what influence
is (and isn’t) legitimate or beneficial: ensuring the deployed policy leads to unambiguously better
outcomes than the status quo of the system not existing. Indeed, we don’t necessarily want to
avoid all AI influence: for some settings, beneficial influence may be the main value proposition of
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Algorithm 2 Iterative Retraining of Long-Term Metric Myopic Recommender System

Require: Initial long-term metric predictor Q̂0(s, a)
1: while True do
2: Deploy policy πi−1(s) = maxa Q̂i−1(s, a)
3: Store data collected from πi−1(s) in Di

4: Continue training the long-term metric predictor Q̂i using Di

5: end while

the AI in the first place, as with educational assistants (Bassen et al., 2020), or therapy chatbots
(Aggarwal et al., 2023). To ground the notion of Unambiguous Desirability (UD) of a policy, let
EUθ(π) = Eπ

[∑H−1
t=0 Rθ(st, at, st+1)

]
. Then:

Definition 12 (Unambiguous Desirability). A policy π is unambiguously desirable if all reward
functions prefer π to the inaction policy, i.e. EUθ(π) ≥ EUθ(πnoop) ∀θ ∈ Θ.

UD policies may still lead to influence, but only do so if all reward functions (weakly) agree that the
such influence is beneficial. Note that the inaction policy will always belong to the space of policies
which satisfy UD (πnoop ∈ ΠUD), meaning that UD policies are not guaranteed to be any better
than πnoop. To guarantee to pick a better policy from ΠUD than πnoop (if it exists), a natural way
to break ties is to restrict to the Pareto Efficient policies in ΠUD:

Definition 13 (Pareto Efficiency in ΠUD). We say a policy π ∈ ΠUD is Pareto Efficient is there
does not exist any policy π′ ∈ ΠUD such that EUθ(π′) ≥ EUθ(π) for all θ ∈ Θ and EUθ(π′) > EUθ(π)
for at least one θ.

Constraining to Pareto Efficient policies within the set of UD policies ΠUD. By only con-
sidering π ∈ ΠUD, we can ensure that we are both maximizing some notion of reward—potentially by
taking advantage of the opportunities for influence that all reward functions agree is unambiguously
beneficial—while guaranteeing no harm to any “self” by construction. This leads to the ParetoUD
objective from Table 2, discussed further in Appendix E.5. Importantly, all the other objectives from
Table 2 can lead to policies which don’t satisfy UD—implying that in some settings the system’s
very existence will be harmful according to at least one of the reward functions.

Limitations of ParetoUD. The main downside of the resulting ParetoUD objective is its conser-
vativism: in many domains, πnoop may be the only policy satisfying the UD property. For any AI
action ( ̸= anoop) to be optimal under this objective, the normative ambiguity of the domain has to
be in some sense “limited”. If there is no latitude for unambiguously good actions, this may warrant
reflecting on whether the system should be built at all—and goes to show once more that normative
judgements about what influence is aligned are hard to avoid.

E.5 More context and motivation for the ParetoUD objective

Figure 14: Career choice paralysis. Taylor is stuck deciding between two possible career choices:
becoming a cook or a teacher. The AI system can convince them to pursue either path, or leave
them stuck. While the setting is normatively ambiguous, all selves agree that remaining stuck is
the worst possible outcome. The ParetoUD policies are ones that encourage the person to become
a cook or a teacher.

An example of ParetoUD in action. Consider the example from Figure 14, which has horizon
H = 1. Let π1 and π2 are respectively the policies that take action a1 and a2. Note that the setting
is normatively ambiguous: the optimal policies according to the stuck self are Πθ0 = {π1, π2}, the
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optimal policies according to the cook self are Πθ1 = {π1}, and the teacher self are Πθ2 = {π2}.
Therefore, there is no one policy which is optimal according to all reward parameterizations. However
comparing the expected utility of πnoop, π1, π2, both π1 and π2 are better than πnoop according to
any of the θs. This means that both π1 and π2 are unambiguously desirable improvements to the
status quo of the system not existing (and Taylor remaining stuck. πnoop is always in the UD set of
policies by construction. However, when considering the pareto UD policies, we only have π1 and
π2, as they dominate πnoop. While for this example the optimal policies according to ParetoUD are
the same as the optimal policies under e.g. Initial Reward or Real-time Reward, ParetoUD is much
more conservative than either of these objectives for most settings (as can be seen by Table 4).

More context on the ParetoUD objective in Table 2. In Table 2, we denote PE and UD
as indicators for the respective properties of Pareto Efficiency (Definition 13) and Unambiguous
Desirability Definition 12 being satisfied. In the case of a discrete Θ space, we can expand the
expression out further and turn it into a maximization problem as:

max
π

PE(π) +
∑

θ

I(EUθ(π) ≥ EUθ(πnoop))

It may not be immediately clear why (especially in the objective above), one doesn’t have to restrict
the Pareto Efficiency indicator to the subset of policies ΠUD ⊂ Π (as discussed in Appendix E.4). To
see why, note that the summation expresses the UD condition, and we know that there will always
be at least one policy which satisfies it (πnoop)—so we can always obtain an objective value of |Θ|.
Moreover, we know that there always must be a Pareto Efficient policy within ΠUD, meaning that
all indicators (including the PE function) can be equal to 1 at once, meaning that the objective can
take on value |Θ| + 1, ensuring that the solution will both be Pareto Efficient and Unambiguously
Desirable.

Selecting among the Pareto Efficient policies. An interesting question for further work would
be to study whether there are better ways to select from Pareto Efficient policies, rather than just
tie-breaking arbitrarily within the subset of policies ΠUD which are Pareto Efficient. For example,
one could use social choice functions, e.g. with the goal of fairly allocating the gains relative to
inaction to the various selves θ. The main advantage of simply requiring Pareto Efficiency is that
it doesn’t assume that it is meaningful to perform “interpersonal” comparisons of utility, i.e. the
values assigned by different reward parameterizations do not have to be on the same scale.

ParetoUD acts on aspirations which are consistent across θs. Ultimately, the motivation
of ParetoUD comes from the fact that we might want AI systems to help us change in ways that
are different in character (or speed) relative to the natural reward evolution (Definition 6) we would
have without the system.

E.6 Efficient algorithms and tractability
Our main focus in this work is to provide a clear formalism for grounding discussions about dynamic-
reward problems, rather than developing efficient solutions. Therefore, we have mostly ignored
tractability issues of the objectives we propose. That being said, most of our objectives can be
easily optimized using standard RL techniques, or techniques developed in previous work (Everitt
et al., 2021b; Carroll et al., 2022; Achiam et al., 2017). The two objectives from Table 2 which may
be most challenging to optimize are Final Reward (for which one can likely develop appropriate
Bellman Updates), and ParetoUD. However, the former objective has the most susceptibility to
influence incentives out of all objectives, and the latter is overly conservative, potentially making
them unlikely objectives to want use in practice.

F The DR-MDP Objectives Most Similar to Existing Alignment
Practices

In Section 3, we claim that the training setups for recommender systems and for reward modeling
(under one interpretation) are implicitly optimizing objectives which are similar to—respectively—
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real-time reward URT(ξ) and initial reward UIR(ξ). Additionally, in Table 1 we categorize other prior
works which implicitly optimize objectives similar to the DR-MDP objectives we consider.

Challenges in unambiguously casting prior approaches as DR-MDP objectives. Because
most of the prior works we reference don’t explicitly account for the possibility of changing prefer-
ences, analyzing how they would handle changing preferences and their similarity to the DR-MDP
objectives is often confusing: it depends highly on the additional (favorable) assumptions one makes
about what constitutes a timestep, which preference dynamics (if any) are at play during reward
learning, etc. Here we attempt to informally motivate the correspondences we made in Table 1, and
sketch the assumptions we believe they rely on. We also situate additional prior work among the
DR-MDP objectives which could not fit in Table 1 due to space constraints, but seemed relevant to
us. Given the many assumptions and moving parts involved in some of the comparisons (and their
tangential importance towards the goal of our paper), there may well be misconceptions in some of
the analysis that follows. Despite this, we hope it can provide a helpful starting point for others
that may be interested in interpreting their training setup in terms of DR-MDP objectives.

Section outline. In Appendix F.1, we first discuss the simplifying assumptions which are common
to the later comparisons between existing methods and DR-MDPs, and then argue that even if the
idealized assumptions were unmet in practice, the methods in consideration would almost certainly
still lead to influence incentives (though they would be much harder to analyze than those that
one would expect from simple DR-MDP objectives). In the subsections that follow, we proceed to
discuss what each of the alignment techniques we consider is most similar to in terms of DR-MDP
objectives.

F.1 Idealized assumptions
While we already discussed how (under a specific setup) reward modeling is equivalent to UIR in
Section 3.2, the language of reward modeling is very flexible and can be used to represent almost
any of the DR-MDP objectives we consider. Because of the intuitiveness of the reward modeling
framework, in the subsections that follow we will map alignment approaches to DR-MDP objectives
by first casting them (sometimes trivially) in terms of reward modeling (Leike et al., 2018), and
then from reward modeling approaches to DR-MDP objectives. This allows us to first consider how
reward modeling can be interpreted in the lens of DR-MDPs (more broadly than in Section 3.2),
and then apply this framework to each individual alignment technique. Leike et al. (2018) describe
reward modeling as a two-phase approach which entails:

(1) learning a reward function from the feedback of the user and
(2) training a policy with reinforcement learning to optimize the learned reward
function

The reward function learned from feedback of users—as conceived of in Leike et al. (2018)—is a
single, static, reward function. Therefore, insofar as the feedback from users for phase (1) was being
provided at different times, from the point of view of different cognitive states θ, and from multiple
people, such reward function would be a mixture across different people, and across their different
cognitive states which they had during reward learning time, which would be very hard to analyze
in terms of DR-MDPs.

Assumption 1: s is sufficiently expressive to uniquely determine θ. This ensures that even
if a system is not explicitly modeling θ (as all current alignment techniques do not), they implicitly
can distinguish between values of θ that people may have. Note that this would make the AI system
able to disambiguate between which cognitive state θ it is learning from at reward-learning time or
is interacting with at RL training and deployment time (if there are multiple). One may be able to
relax the assumption of perfectly known or inferrable θ by extending DR-MDPs to handle partially
observability of the current reward function, which would require the AI to maintain a belief over
the current θ of the human while it is changing, as done in Carroll et al. (2022).

Assumption 2: shared dynamics across multiple humans. While many of the alignment tech-
niques we consider were initially designed as single-human alignment techniques (Critch & Krueger,
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2020), in practice they are generally used to “learn a reward model” (if interpreted through the
reward modeling lens) using the feedback obtained from many different humans (Ouyang et al.,
2022). As long as the dynamics of states and cognitive states T are the same across different people
(which we refer to as the “shared dynamics assumption”), the assumption about state expressivity
from above should be sufficient to guarantee that the system always has all the relevant informa-
tion: if different people have different cognitive states, the system would observe that and be able
to respond accordingly (personalizing actions and influence). If instead two people had the same
cognitive state θ, by the shared-dynamics assumption, distinguishing between them is unnecessary in
terms of solving the DR-MDP (whatever the objective), as their reward functions and states would
transition in exactly the same way.

Assumption 3: coverage assumption. We further assume that the RL training sufficiently
covers the space of initial states and reward functions Θ× S (and that the learned reward function
R̂(s, a, s′) has sufficient support to enable such training), as to ensure generalization to test-time
humans which may have different starting states and reward functions. While this may seem like an
unrealistic assumption, it becomes more plausible seen in the context of learning from/with many
different humans, under the shared dynamics assumption from above. Indeed, assuming that one
will be performing reward learning (and learning reward dynamics) from multiple humans can help
with having the following assumption about coverage satisfied, as discussed in Appendix A.6.

Claim 2 (Correspondence of Reward Modeling to DR-MDPs). If a reward modeling
approach satisfies the 3 assumptions above, it will be the case that the learned reward function
R̂(s, a, s′) = R̂θ(s, a, s′) (for some θ, which depends on the reward learning setup), so that when one
uses RL to optimize

∑H−1
t R̂(st, at, st+1), one is implicitly optimizing

∑H−1
t R̂θ(st, at, st+1) (where

the exact value of θ depends on the training setup). Moreover, one can expect reward modeling done
under such assumptions to generalize similarly at deployment time to how it would generalize if it
had been trained modeling θ explicitly (under the implicit DR-MDP objective).

Informal proof of Claim 2: Consider someone giving reward feedback about a transition (st, at, st+1)
at reward learning time. For simplicity, assume they evaluate the transition providing as feedback
a reward value rt directly. Let’s consider three cases (which are not comprehensive, but cover the
setups we are most interested in):

Case 1: feedback comes from current θ. The reward feedback for the transition at time t of
each trajectory ξ is collected from the reward function Rθt

, i.e. the reward function corresponding
to the current state st. When a reward modeling technique claims to have learned R̂(st, at, st+1),
it has in fact learned R̂θt

(st, at, st+1). Note that this means that evaluations of transitions under
different cognitive states than the current one are never learned, i.e., any R̂θ(st, at, st+1) where
θ ̸= θt. At RL time, there may be a different distribution of starting states. Note that the system
(despite not explicitly representing θ) will be able to distinguish between θs because of the state
expressivity assumption (assumption 1). When optimizing

∑H−1
t R̂(st, at, st+1) during RL, the

system will be implicitly optimizing
∑H−1

t R̂θt
(st, at, st+1). By the coverage assumption, shared

dynamics assumption, and the state expressivity assumption, at test time the policy should be able
to infer the person’s cognitive state (insofar as it’s necessary to optimize the objective optimally),
and thus be able to generalize to any initial state and cognitive state.

Case 2: feedback comes from a fixed, trajectory-dependent θ. The reward feedback for the
transition at time t of each trajectory ξ is collected from a fixed reward function Rf(ξ), for some
trajectory dependent cognitive state given by a function f : Ξ → Θ. Let’s consider f which selects
the reward function corresponding to the final state sH , i.e., a choice of f such that f(ξ) = θH .
When a reward modeling technique claims to have learned R̂(st, at, st+1), it has in fact learned
R̂θH

(st, at, st+1) (where the reward will have different values depending on the trajectory considered,
as θH is trajectory dependent). Note that similarly to Case 1, at RL time, the system will be able
to distinguish between the current θs, and plan what is the most advantageous θH to try to induce
(in terms of expected reward). When optimizing

∑H−1
t R̂(st, at, st+1) during RL, the system will

be implicitly optimizing
∑H−1

t R̂θH
(st, at, st+1). For the same reasons as in Case 1, we can expect
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the policy to generalize to any initial state distribution. Also, note that this same argument can be
applied for other choices of f , such as f(ξ) = θ0. In this case, the reward feedback for the transition
at time t of each trajectory ξ is collected from the initial reward function Rθ0 .

Case 3: feedback comes from a fixed, trajectory-independent θ. The reward feedback
for the transition at time t of each trajectory ξ is collected from a single, fixed reward function
Rθ (where θ may not even appear in the trajectory). When a reward modeling technique claims
to have learned R̂(st, at, st+1), it has in fact learned R̂θ(st, at, st+1). At RL time, the system will
be able to distinguish between θs as in the previous cases (by assumption 1). When optimizing∑H−1

t R̂(st, at, st+1) during RL, one is implicitly optimizing
∑H−1

t R̂θ(st, at, st+1) for the fixed value
of θ which one was eliciting feedback from at reward learning time. By the coverage assumption,
shared dynamics assumption, and the state expressivity assumption (assumptions 1-3), at test time
the policy should always be able to identify the person’s cognitive state (insofar as it’s necessary to
optimize the objective optimally), leading to successful generalization.

What if assumptions 1-3 don’t hold in practice? One might wonder what DR-MDP ob-
jectives current techniques would correspond to in practice without the strong assumptions above
(and the additional more specific assumptions we make for some of the reductions in later subsec-
tions). First and foremost, without these assumptions, the reward function obtained by the reward
learning step would almost certainly come from a mixture of cognitive states (and potentially of
different individuals), whose evaluations are aggregated in potentially unstructured and conflicting
ways (as the system isn’t able to fully disambiguate between cognitive states due to the state rep-
resentation not being expressive enough). Any mixture of rewards can generically be thought of as
corresponding to a “privileged reward” objective (whose corresponding reward parameterization θ
may be unreachable, at it is based on an arbitrary amalgamation of different cognitive states Ap-
pendix A.9). However, as discussed in Section 4 and Appendix F.7, any privileged reward DR-MDP
objective will still lead to potentially undesirable influence incentives (similarly to the initial reward
objective), unless the reward function is somehow encoding the “correct” trade-off between prefer-
ences. Because the trade-offs between current selves encoded by current alignment techniques are
quite unstructured and arbitrary in the absence of our simplifying assumptions, it seems unlikely
that they will be encoding the “correct” trade-off without a careful accounting for it. This leads
us to believe that the DR-MDP objective correspondences we provide under our assumptions are
likely favorable interpretations. As a parallel, the implicit aggregation of preferences across different
users which is performed by RLHF has recently been shown to be equivalent—under certain weaker
assumptions—to the Borda count social choice rule (Siththaranjan et al., 2023). While this is a sur-
prisingly structured “mixture”, it also has various undesirable properties—which is what one might
have expected. We leave future work to further investigate—empirically and theoretically—what
the implicit correspondences of current methods would be without the above assumptions (or with
weaker versions of them).

F.2 Real-time Reward

All the methods are similar to real-time reward can be thought of as approximately falling under
Case 1 of the justification for Claim 2.

RL Recommender Systems. Most approaches for RL in recommender systems are based on doing
offline RL, or doing on-policy training in simulation using learned human models that are trained to
emulate historical engagement data (Afsar et al., 2021). In both cases, the reward signal (either in the
static dataset used for offline RL, or for training the human simulator) comes directly from people’s
interactions with the system: reward is generally modeled to be equivalent to user engagement (Thor-
burn, 2022; Afsar et al., 2021). This makes the reward learning step (from Appendix F.1) trivial, as
the correspondence between behavior and reward is hardcoded. The resulting “reward model” is ei-
ther the engagement labels themselves (i.e. in the case of offline RL), or a human engagement model
trained on past engagement data. As discussed in Section 3, optimizing

∑H−1
t=0 R(st, at, st+1) at

deployment time implicitly corresponds to optimizing
∑H−1

t=0 Rθt
(st, at, st+1)—as the reward signal
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comes from the user’s engagement under present preferences, and the system has enough information
to determine them in full (based on the assumptions in Appendix F.1).

TAMER. Similarly to recommender systems, approaches such as TAMER (Knox et al., 2013),
Deep TAMER (Warnell et al., 2018), or the EMPATHIC framework (Cui et al., 2020), have reward
learning step in which the human provides feedback rt in real-time in the deployment environment
according to their current cognitive state θt. Because of this, similarly to the recommender system
setting, their optimization objective corresponds to the real-time reward objective.

Multi-turn RL for LLMs with real-time feedback (with t = conversation turn). Although
this is not currently known to be common practice, one could imagine a variant of the standard
RLHF setup for LLMs (e.g. that of Ouyang et al. (2022)) in which a single user, over the course of
normal usage of a language model is providing feedback for each model output: this could be via
thumbs up/down (as is currently present in the ChatGPT interface), or if at every timestep the user
is presented with two output options which they need to select between in order to continue the
conversation (as in some early versions of Claude). By having the user provide feedback at every
timestep of the conversation about the last output, this would be equivalent to training a reward
model with rewards always conditional on the current cognitive state of the person. If one were to
then to optimize cumulative reward under such reward model, this would be similar to optimizing
the real-time reward objective.

F.3 Final Reward
Multi-turn RL for LLMs with final feedback (with t = conversation turn). Similarly to
the RLHF variant from Appendix F.2, one could imagine a variant of reinforcement learning from
human feedback in which the user provides approval labels (e.g., thumbs-up or thumbs-down) at the
end of an entire conversation with an LLM consisting of multiple turns of interaction. This would
lead to learning a reward model R̂θH

(assuming for simplicity that all conversations are of the same
length H). Optimizing for cumulative reward with such a reward model would be similar to using
the final reward DR-MDP objective.

The original RLHF method. Consider the RLHF method from Christiano et al. (2017), in which
the user provides preference feedback after viewing snippets of AI behaviors. If the length of the
snippets is equivalent to the horizon length (i.e., the snippets are full trajectories), then this setup is
most similar to the final reward objective: insofar as the preferences of the person giving feedback are
changing while viewing the trajectory, it seems plausible that they would retroactively evaluate the
trajectory based on their final point of view at time t = H, i.e., using θH . Optimizing a reward model
learned this way seems most similar to optimizing the final-reward objective

∑H−1
t RθH

(st, at, st+1),
where θH is the cognitive state realized at the end of the trajectory. Note that while this is somewhat
similar to Case 2, the trajectories being evaluated likely do not include information about the person
giving feedback, invalidating assumption 1. A different (and slightly more realistic) assumption may
be that each person providing feedback initially approaches each annotation with the same initial
cognitive state θ0 (which is trajectory independent, making this setting somewhat similar to Case
3), and progressively form their opinion about the trajectory viewing it (and evaluate from the
point of view of their final opinion θH). Even though the annotator’s cognitive states would be
unobserved at reward learning time, by performing RL with the learned reward model R̂θH

(st, at),
the resulting system should still be able to find the policies which maximize cumulative reward under
the annotators’ final-reward, despite the partial observability (because despite not observing θ, the
system gets to see the reward signal, and can find the policies that maximize it).

Standard RLHF for LLMs (with t = token). If one considers each “timestep” as generating
an individual token, the current practice of RLHF for LLMs (Ouyang et al., 2022) may be thought
of—under strong simplifing assumptions—as similar to optimizing final reward for similar reasons to
the previous paragraph. Consider annotators as providing comparisons based on their retrospective
reward-evaluations for each LLM response they’re presented with: i.e. they first assign each response
i a score according to the cognitive state that results from reading such response, R

(i)
θH

, and then pick
the response with highest cumulative reward according to its respective final reward function. This
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is somewhat stretching the interpretation of preference changes, as it models the LLM’s capacity to
influence the user’s preference (for the current response relative to others) with every additional token
generated. And as in the case above, this also requires assuming that each annotator’s cognitive
state is “reset” to a common θ0 when starting to evaluate each output (potentially based on the
annotation guidelines they have been provided).

F.4 Initial Reward

TI-Unaware Reward Modeling. Consider Algorithm 5 from Everitt et al. (2021b): note that it
essentially encodes the initial reward DR-MDP objective. This is one of the approaches presented
by Everitt et al. (2021b) to avoid influence incentives. As discussed in Appendix C.4 and Section 4,
although this algorithm (and DR-MDP objective) avoid “direct” influence incentives, it can still lead
to influence incentives as defined in Definition 8.

Long-horizon RL for LLMs (t = conversation turn, uninfluenceable θ at reward learning
time or mismatch in reward learning/deployment horizon). As described in Section 3.2 and
Appendix F.1, reward modeling (Leike et al., 2018) involves initially train a reward model (say,
at timestep t = 0), and then perform RL (optimize cumulative reward) using such reward model.
Assuming that during the reward learning process the person’s preferences are not changed, reward
learning would obtain Rθtrain

0
. This reward model is then used to optimize cumulative reward, which

equivalent to optimizing UIR. Why is it sensible to assume that the person’s preferences would not be
changed at preference-elicitation time (as we assumed in other correspondences)? Maybe the person
is simply describing their preferences, or they are giving preference comparisons for conversations
that they are not personally invested in, rather than actively engaging in a conversation tailored to
them. A possible instance of this could be multi-turn RL for LLMs in which one simulates multi-turn
conversations. While it is not currently a common practice, there seems to be growing interest in
this kind of approach (Hong et al., 2023b; Abdulhai et al., 2023). Assuming that at RL training
time there was enough coverage over initial θ values, no matter what cognitive state is seen at
deployment as the first timestep θtest

0 , the optimal policy under UIR will influence the user optimally
(with actions personalized according to the preferences θtest

0 ) towards whatever cognitive states are
most conducive towards long-term reward under θtrain

0 .

Preferences Implicit in the State of the World. The approach proposed by Shah et al.
(2019b), based on inferring the human’s preferences based on the initial state of the environment,
can be thought of as learning the Rθ0 reward model (which requires additionally simplifying things,
as preferences in the initial state of the world may come from different timesteps, and thus conflict).
As in the case above, as long as there is enough coverage over Θ at training time, optimizing this
reward model seems roughly equivalent to optimizing the initial-reward objective UIR.

Inverse Reinforcement Learning. Inverse Reinforcement Learning (IRL) techniques (Russell,
1998; Ng & Russell, 2000; Abbeel & Ng, 2004; Ziebart et al., 2010) can also be thought of as roughly
corresponding to the initial reward objective if assuming that people’s cognitive states wouldn’t be
affected by providing demonstrations: the person would provide demonstrations according to their
initial reward function θ0. One then optimizes this reward function over a horizon H with RL,
leading to the UIR objective.

F.5 Natural Shifts Reward

“Natural Distribution” from Farquhar et al. (2022). The idea of natural shifts, and evaluating
reward from its perspective, is also present in Farquhar et al. (2022), specifically in Equation 5.

“Natural Shifts” from Carroll et al. (2022). The correspondence between the “natural shifts”
objective from Carroll et al. (2022) and the the “natural reward” objective from Table 2 is simple,
as the objective is written and discussed in similar terms. The main differences are that they treat
θ strictly as preferences, rather than cognitive states, and do not use the formalism of DR-MDPs.
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F.6 Myopic Reward
Myopic recommender systems. Despite a recent push towards using RL for training recom-
mender systems (Afsar et al., 2021), most currently deployed recommender systems optimize en-
gagement (and other metrics) only myopically (Thorburn, 2022)—without regard for the long-term
consequences of the recommendation. While these metrics are not usually formalized in terms of
reward, one can consider the probability of engagement, or probability of triggering the toxicity
classifier as reward signals. As the engagement signals depend on the user’s current reward function
(e.g. their preferences), the optimization objective is equivalent to the myopic reward objective from
Table 2.

Standard RLHF used for LLMs (t = conversation turn). Consider the standard RLHF
procedure considering each timestep as being equivalent to an AI conversation turn (as in one of the
cases in Appendix F.3). Viewed this way, standard RLHF is simply optimizing the reward over a
single action choice, and can be viewed as a bandit setting (Ahmadian et al., 2024). In light of this,
performing reward learning in this setting would be equivalent to obtaining the reward model Rθ0 .37

However, when performing the standard RL component of RLHF, generally one only optimizes the
next response’s reward (rather than the multi-turn conversation reward). Viewing each AI response
as a single action, this makes this training setup similar to the myopic reward objective. Using a
system trained this way to generate multiple responses to user queries is equivalent to replanning
with planning horizon of 1 (see Appendix D.7).

F.7 Privileged Reward
Methods for removing cognitive biases from reward inference. In Table 1 we included Evans
et al. (2015) as an example of reward inference work which tries to infer the “true preferences” of the
human, in light of their feedback (and cognitive states θ) appearing inconsistent. Other work of this
kind could include (Shah et al., 2019a). Most reward learning techniques have a component of this
objective, in that they try to debias and denoise human feedback by generally making a Boltzmann
Rationality assumption (Jeon et al., 2020).

Ideal observer theory (Firth, 1952) and coherent extrapolated volition (Yudkowsky,
2004). While they are not a practical approaches, these (highly related) proposals of what alignment
should look like in spirit are clearly in line with the privileged reward objective. However, the
privileged reward that either of these views are referring to are clearly not “reachable” in any
meaningful sense, as they correspond to perspectives of practically unrealizable “idealized” agents—
in our framework, they can best thought of as an “ideal cognitive state”. Therefore, connecting our
framework more explicitly to these perspectives would require extending it to handling unreachable
reward functions, as discussed in Appendix A.9.

G Additional Related Work from Philosophy, Economics, and AI
G.1 Philosophy
Early work on personal identity over time and implications for rational decision-making.
While the nature of personal identity under changing selves has been discussed for centuries (Locke,
1689), to the best of our knowledge Parfit (1982) was one of the first to discuss its implications
with regards to our conception of rationality. In particular, Parfit describes the challenge with being
timelessly concerned with evaluating one’s life as a whole, without considering time—he rejects this
as a practical possibility because of the reality that one inhabits time, and every evaluation comes
from the perspective of a particular time. With DR-MDPs, one could say we are trying to explore
different approaches for an AI assistant to be timelessly concerned in this way for the wellbeing of a
person: while the ultimate goal of finding a “correct” timeless evaluation may be futile, even settling
on reasonable evaluations is challenging. The arguments from Parfit (1982) were further expanded
in the seminal work “Reasons and Persons” (Parfit, 1984). Of particular note is Parfit’s “present
aim theory”, according to which an individual’s rational actions should be guided by their present
aims or goals, without giving special weight to their future aims or goals (which seems broadly

37Here we assume again that preferences do not change during reward learning time.
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equivalent to our initial-reward objective UIR(ξ)),38 and Parfit’s “self-interest theory”, which holds
that a person should make decisions based on what will be best for them in the long run, even if
it conflicts with their present desires or goals (the corresponding objective in our framework seems
less clear, as “what is best in the long run” is not specific enough).

Welfare and rationality under changing preferences. Around the same time, Griffin (1986)
also criticizes the “totting-up model” of well-bring, according to which we should simply sum well-
being over time. There have been many philosophical works focused on the topic of personal welfare
in the context of changing preferences: Velleman (1991) considers the relation between the welfare
value of a temporal period in someone’s life and his welfare at individual moments during that
period. Rosati (2013) describes the “narrative thesis”, which posits that the way we think of the
storyline of our life contributes (in it’s own right) to our well being, and echoes related psychological
theories (Bauer et al., 2008). Bykvist (2006) states that, for judging inter-temporal decisions, one
shouldn’t simply look at a single timestep’s point of view—we should consider the potential people
we could become, and how they would evaluate the worlds they are in. Note that this assumes
that we trust the assessments and point of view of future selves, which is questionable if we are
worried about undue influence. Building on Bykvist (2006), Paul (2014) and Callard (2018) argue
that there is no rational basis for making decisions that change the self. Pettigrew (2019) expands
on this line of work, and proposes a theory of individual decision making under changing selves
based on taking a weighted average between the utility functions of different selves, challenging the
notion of “impossibility of grounding rationality” under changing selves. While Paul did not find
it convincing (Paul, 2022), we think the framework proposed by Pettigrew (2019) makes significant
steps forward. That being said, challenges remain with regards to the details of how weights would
be chosen in practice for multi-step decision making: in particular, if weights are re-assessed at
every decision making node, it seems even reasonable choices of weights could lead to inconsistent
plans. Also, it seems unclear why one could expect a clean separation between one’s current weights
for different selves, and their current utility function: for instance, wouldn’t the utility function of
Bob from Figure 1 already include information about how much Bob would want to weigh being
a happy conspiracy theorist in the future, as is (implicitly) the case in our example?39 The main
difference between Pettigrew (2019) and our work is that while Pettigrew is squarely focused on
human decision making, DR-MDPs can instead be thought of as focusing on choosing objectives
that lead to reasonable (and consistent) AI plans, which implicitly account for all relevant selves.
Another significant difference is our greater focus on the role of influence, and its implications for
the legitimacy of the resulting preferences. On first impression, Pettigrew’s framework may seem
more flexible, as it accounts for uncertainty in future weights, while DR-MDPs assume that the
dynamics of reward functions are known. However, DR-MDPs can still account for uncertainty in
future outcomes (and reward functions) using stochastic transitions (even though we don’t do this
in our examples). For a recent comprehensive review and synthesis of philosophical positions on
the problems of changing selves, including a more in-depth summary of Pettigrew’s framework, see
Strohmaier & Messerli (2024).

Ethics of influence and of nudging. There is a lot of philosophical work on the ethics of influence
and manipulation (Noggle, 2020). A specific area closely connected to our issue involves the ethical
considerations of “nudging”. This concept emerged from behavioral economics and refers to the
efforts of institutions to steer the behavior and decision-making of groups towards certain outcomes
(Thaler & Sunstein, 2008). Our problem setting is very closely related: in our case, it is an AI system
(rather than an institution) that is deciding whether to nudge a user. Perhaps unsurprisingly, the
“optimality” and “acceptability” of nudging in the literature are similarly unclear: while nudging
was originally promoted as a tool to encourage pro-social outcomes, when it is ethical or overly
paternalistic has often been contested (Hansen & Jespersen, 2013; Hausman & Welch, 2009; Thaler,
2018). There are various philosophical works which propose frameworks for external decision-makers
to assessing the ethics of whether to perform a specific nudge (Paul & Sunstein, 2019; Pettigrew,

38Potentially when used under re-planning, which is discussed in Appendix D.7.
39This is related to discussions of how meta-preferences may be easily expressible in our framework if the state were

to include enough information to recover θ from it, as discussed in Appendix F.1.
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2022). In particular, Paul & Sunstein (2019) claim that a nudge is legitimate if the nudged person
is better off, as judged by themselves after the nudge. Pettigrew (2022) points out that this heuristic
can be misleading, in the case that the nudge was illegitimate (e.g. if it manipulates the person
to have different preferences), and proposes a stronger condition as heuristic: that people agree,
before and after the nudge, that the nudge was beneficial. Note that the property of Unambiguous
Desirability proposed in Appendix E.4 can be thought of as a generalization of the heuristic proposed
by Pettigrew (2022), for arbitrary multi-timestep nudges in the form of AI policies.

Work at the intersection of AI and philosophy. Discussions about what forms of influence
are appropriate have also taken place at the intersection of philosophy and artificial intelligence:
there have been works on value changes (Ammann, 2024), preference change (Kolodny, 2022; Zhi-
Xuan et al., 2024), influence (Benn & Lazar, 2022; Bezou-Vrakatseli et al., 2023; Gabriel et al.,
2024), and manipulation (Benn & Lazar, 2022; Carroll et al., 2023; Gabriel et al., 2024). The
concept of “informed preferences” (Gabriel, 2020), ideal observer theory (Firth, 1952), and Coherent
Extrapolated Volition (CEV) (Yudkowsky, 2004) also relate to our work, as we discussed in relation
to privileged reward Appendix F.7 (and other appendix discussions, such as that of Appendix B.3).
Various works have also tackled the problem of whether it is possible to attribute intent to AI
systems actions, and how one could do so (Ward et al., 2024; Halpern & Kleiman-Weiner, 2018).
System intent and incentives for influence are closely related (Carroll et al., 2023), and intent has
already been studied as a coordination mechanism across time for individual decision-making under
changing preferences (Bratman, 1987).

G.2 Economics
Early work on welfare under variable tastes. While others have alluded to changes in tastes
and its implications for welfare (Samuelson, 1937; Hayek et al., 1941), to our knowledge Harsanyi
(1953) was the first economist that investigated these issues in more depth. In this work, Harsanyi
considers a notion of welfare grounded in what people say they prefer rather than in external nor-
mative principles such as social welfare. Note that this is a normative stance in its own right, and
is similar to how our notions of rewards are grounded in what people say they want. Moreover,
unlike our framework, Harsanyi’s notion of welfare requires assuming comparability between the
utility judgements of a person before and after their preference change. A similar move is taken by
von Weizsäcker (1971), who builds on works such as that of Peston (1967). Elster (1979) discusses
the limitations of von Weizsäcker’s assumptions in more depth, emphasizing the challenges regard-
ing paternalism and which perspectives should be considered to ground welfare judgements when
preferences change—which are central to our work. In “Sour Grapes” (Elster, 1983), Elster later
also discusses in depth a specific class of preference changes which occur unintentionally to oneself,
namely “adaptive preferences”. In the same work, Elster also briefly discusses the limitations of
state-dependent preference formulations (relevant to Appendix A.5).

Explaining away preference changes as time-inconsistent discounting. Shortly after
Harsanyi’s work, Strotz (1955) studied the phenomenon of time-inconsistency in human’s behav-
iors. Why do we not save up for retirement enough, and then regret it? Strotz showed that only
exponential discounting leads to consistent (re-)planning, therefore people must implicitly not be
using that kind of discounting (as they exhibit time-inconsistent behavior). He then discusses two
ways that people can account for their time-inconsistency: via commitment devices, or by only
considering plans that they would actually be able to follow through on without inconsistency.40

Note that this stance is implicitly still assuming that people’s underlying preferences are static,
but just that their discounting scheme is such that they would exhibit time-inconsistent behaviors
nonetheless. This move of “explaining away the appearance of preference changes” by casting them
as suboptimal discounting with fixed preferences ended up influencing much of the later work on
the topic, as reviewed by (Loewenstein et al., 2003). Even though the model of hyperbolic dis-
counting may have sufficient explanatory power of people’s decision-making in many settings that
economics is interested in (Benzion et al., 1989; Chabris et al., 2008), this is not the case more
broadly (Loewenstein & Prelec, 1992; Frederick et al., 2002; Loewenstein et al., 2003).

40This analysis was later corrected by Pollak (1968).
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Shying away from modeling changing preferences. Why did early economics works—with
few exceptions—avoid analyzing changing preferences? George (2001) and Grüne-Yanoff & Hansson
(2009) give various reasons: preference creation and change have historically been considered top-
ics that lay outside the scope of economics;41 macroeconomists believed that institutional change
(relative to changes in individual’s preferences), is by far the more important explanatory factor of
economic growth; and maybe most importantly, many microeconomists were of the conviction that
human preferences ultimately do not change, and even if they did, it was mathematically counter-
productive to model such changes. The most impactful work from this last camp was undoubtedly
that of Stigler & Becker (1977). They go as far as to say that “no significant behavior has been
illuminated by assumptions of differences in tastes”, and that analyses considering changing tastes
“give the appearance of considered judgement, yet really have only been ad hoc arguments that
disguise analytical failures”. Grüne-Yanoff & Hansson (2009) interpret their position as follows:

“This position may be interpreted either as the ontological claim that preferences
indeed are stable, or alternatively as the methodological claim that explanations
based on stable preferences are better than those that refer to preference changes.
The second interpretation can be based on the assumed relation between explana-
tory power and simplicity: explaining any conceivable human behaviour through
the paradigm of individuals maximizing utility constrained by income and present
capital stocks is simpler than supposing that tastes change.”

While we agree with the risk of introducing unnecessary formal complexity, we think that in the
context of AI interactions with humans, influence effects are too important to be ignored.42 And
as we show in our analysis, ignoring such effects has a cost—that they will likely be optimal under
standard objective functions (or notions of welfare, to use the language of economists).

Egonomics, weakness of will, and adaptive preferences. A notable line of work in economics
is that of weakness of will and self control problems, introduced by Schelling (1978) with his notion
of “egonomics”. This area investigates questions of self control and preference change, in particular
with respect to internal conflict and addictive behaviors such as smoking. Schelling (1985) discusses
the enforcement of rules for oneself, which is relevant to our discussion: people are not always able
to commit to the plans that they agree are good for them, often leading them to turn to external
accountability partners or enforcers. They play a similar role to the AI systems in our work, as
they aggregate across the wishes of the person at different times, and try to encourage their best
guess of the behavior that the person would ultimately want for themselves.43 Our work sidesteps
most of these issues around consistency of plans and self-control (Pollak, 1968) by considering an
AI assistant’s actions, which unlike humans, can credibly commit to carry out a plan (assuming the
person cannot switch it off). Importantly, the settings considered by these works are ones in which
the normatively desirable course of action is clear, which removes the main complications of dealing
with changing preferences: the notion of what rational behavior should consist of remains mostly
unthreatened. Concurrently, Elster (1985) interprets weakness of will as a collective action problem
between the different selves. For a survey of other works in the literature of weakness of will, see
Ainslie (1975).

Recent economics work has started contending with changing preferences more directly.
In recent decades, there have been many more works on the topic of changing preferences (Loewen-
stein et al., 2003; Grüne-Yanoff & Hansson, 2009). In particular, Loewenstein et al. (2003) identifies
several sources of preference change: habit formation, satiation, visceral factors, maturation, con-
ditioning, social influences, and motivated taste change. George (2001) formulates an theory of
individual welfare that can account for changing preferences by appealing to second-order prefer-
ences. To address the regress problem, this work argues that preference changes are most commonly

41On this point, see also von Weizsäcker (1971) and Pollak (1978).
42For further criticism of Stigler & Becker (1977)’s position, see Pollak (1978).
43The usage of “self” in our work comes with similar caveats to those described by Schelling (1984), although we

recognize that this usage is vague and arguably misleading—for some criticisms, see how the usage by Schelling was
criticized by Elster (1985).
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first-order ones, and even when second-order preferences occur, as long as they don’t move in tandem
with first-order changes, welfare assessments are still possible. Ullmann-Margalit (2006) questions
the idea that one could possibly be rational about “big decisions” which change the self, claiming
that in a economics sense, there is no footing for a rational choice in these situations, as the “ra-
tionality base” changes as a consequence of the decision—setting the groundwork for Paul (2014)’s
argument about non-commensurability across different selves. More recently, Bernheim et al. (2019)
attempt to model and unify various preference change phenomena under a single descriptive theo-
retical model, according to which individuals choose their preferences according to what they expect
will maximize their utility (subject to their level of “open-mindedness”). The work from Dietrich
& List (2013) is also of note: they also propose a descriptive model of preference change, based on
“motivationally salient” properties of alternatives available to the agent changing. However, both
of these descriptive accounts have yet to be tested (to our knowledge), and it’s unclear what the
normative implications for decision making of this model should be—which are the focus of our
paper.

Unambiguous Desirability and Individual Rationality. The property of unambiguous desir-
ability was inspired by the notion of “individual rationality” from algorithmic game theory (Nisan
et al., 2007), which captures the notion of whether any of the individuals involved in an ongoing
deal would ever prefer to defect. This is also known as a “participation constraint” or “voluntary
participation” (Jackson, 2014).

G.3 AI
Multi-objective MDPs. With a choice of U(ξ), one implicitly replaces the multiple competing
notions of optimality (corresponding to each θ) with a single one. The process of choosing a single
U(ξ) which implicitly reduces a DR-MDP to an MDP, is similar to the scalarization step in Multi-
Objective MDPs (Roijers et al., 2013) which reduces a MOMDP to an MDP, which similarly requires
an implicit value judgement (Chankong & Haimes, 2008). However, DR-MDPs importantly differ
from MOMDPs, in that the objectives which should be used to evaluate a trajectory may depend on
the trajectory itself (as the actions taken can affect the selves that are realized). Relatedly, MOMDPs
don’t keep track of which reward function was associated with each step (as it’s meaningless in their
framing).

Interdisciplinary AI work. The adaptive and changing nature of human feedback has also been
emphasized by Lindner & El-Assady (2022). We think there a good area of inspiration for tentative
solutions is that of Fiduciary AI (Benthall & Shekman, 2023). More broadly, our conclusion about
the challenges of avoiding normative choices when operationalizing alignment rings similar to the
points made by Dobbe et al. (2021) and Kirk et al. (2023).

Welfare under conflicting preferences. One of the works which is most related to ours is
Kleinberg et al. (2022): in the setting of recommender systems, they also study what should be
conceived of as user welfare, focusing on preference conflict. In particular, they model users as
having “system 1” and “system 2” preferences that can be in conflict, and show how only optimizing
engagement will often be insufficient to guarantee welfare. Our work can be thought of as extending
theirs to considering many possible preferences that can change over time, thus modeling change in
addition to conflict. Moreover, we don’t assume access to any ultimate notion of welfare (which in
their case is the judgement of system 2).

Algorithmic amplification in social media, and πnoop. The study of algorithmic amplification
in social media (Thorburn et al., 2022; Ribeiro et al., 2023; Huszár et al., 2021) can be thought
of as a study of influence emerging from specific algorithmic choices. Notions of amplification also
need to be specified relative to a “neutral” baseline, similarly to our notions of influence (Defini-
tion 7): what baseline is most appropriate has been subject to debate (Laufer & Nissenbaum, 2023;
Thorburn, 2023). Maybe the most common choice in practice has been comparing to a reverse
chronological recommender (Huszár et al., 2021; Milli et al., 2023), but others include comparing to
others recommender systems (Fast et al., 2023), no platform at all (Allcott et al., 2020), or random
recommendations (Carroll et al., 2022).
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Performative prediction, performative power, and preference influence. An interesting
line of work which has emerged in recent years is that of performative prediction (Perdomo et al.,
2020) and performative power (Hardt et al., 2022), which concerns itself with the capacity of clas-
sifiers to affect the distribution of their future inputs. This idea is similar in spirit to the work
of Krueger et al. (2020), and is connected to our concern with AI systems’ capacity to influence
humans. However, we see various reasons to prefer the RL formalism to that of Hardt et al. (2022)
for the types of influences were are interested in: performative prediction and power are mostly
focused on firms which operate in sequential decision problems (e.g. domains in which the algo-
rithm’s choices affect future users’ behavior), but use algorithms that myopically optimize over only
the next timestep’s outcomes—from this perspective, they only allow to model 1 of the 8 objectives
we consider in Table 2. For instance, to the best of our understanding, performative power (Hardt
et al., 2022) can be thought of as a measure of how much a firm can shift users over the course of
a single timestep, if they choose to do so. The steering analysis of ex-ante and ex-post optimization
only performs a one-timestep lookahead, feels like a less natural formalism for the multi-timestep
nature of most preference changes—especially if one considers that the RL formalism solves the
multi-timestep generalization of the ex-post optimization problem by design: in RL training, the
human’s adaptation to the AI is already factored into how the AI should be making decisions in
order to maximize the multi-timestep objectives. In short, the lens of RL seems strictly more ex-
pressive and more suited to our purposes than that of performative prediction, but comes at the cost
of additional computational challenges. As a final point of comparison, the framing of Hardt et al.
(2022) is mostly focused on the misalignment between firms and targets of the firm’s algorithms—
focusing on the power that firms have to steer them to their benefit (under well-defined metrics).
Instead, we can be thought of as focusing on the problem of “steering oneself” with the help of an
AI system, and the challenges which remain in determining an appropriate metric for success, as
discussed in relation to “egonomics” (Schelling, 1978). Essentially, while we recognize that firm-user
misalignment is a very significant reason for worry, we focus on the challenges that would remain
even if AI systems were to be developed solely with user alignment in mind.

Social choice theory. Our setting shares various similarities with preference aggregations across
multiple individuals, as mentioned in Section 1. The problem of social aggregation is studied by
social choice theory (List, 2022; Brandt et al., 2012), which mainly differs from our framework in that
there is no temporal dependency between elements of the decision which is being made. There have
also been recent works discussing the parallels between social choice and AI Alignment (Mishra, 2023;
Conitzer et al., 2024), in particular with respect to RLHF. While there has been some work focusing
on collective decision-making across time (for individuals who can change their preferences), these
works mostly ignore the influence incentives which emerge from their notions of optimality (Parkes
& Procaccia, 2013; Freeman et al., 2017; Kulkarni & Neth, 2020). Indeed, to our understanding, the
objectives proposed by these works could lead to undesirable influence incentives: for example, in
Parkes & Procaccia (2013) the optimal social choice function (i.e. policy for the social choice MDP)
may initially take actions dispreferred by everyone if this can influence future preferences to be in
accordance with one another (guaranteeing future unanimity). An interesting direction for future
work would be to consider traditional social welfare functions (e.g. Rawlsian, Nash, Utilitarian,
etc.) as objectives for the aggregations across the different selves. However, in some preliminary
investigations in this direction, it seemed to us that such approach would not necessarily achieve
more desirable influence properties than the objectives we considered in Table 2.

Reward uncertainty in MDPs. There have been some works accounting for uncertainty in
reward functions: most relevant is the work by Regan & Boutilier (2010), who consider Imprecise
Reward MDPs, in which there is a feasible set of reward functions that cannot be disambiguated
by, e.g., acting in the environment. For such setting, they define the optimization objective in terms
of minimax regret, that is, they aim to minimize the maximum regret incurred if the worst reward
function from the feasible set were to be chosen. We could have also included this criterion in
our analysis and in Table 2, but we are confident it would also run into issues—minimax regret
in this setting would require comparing regret across different possible reward functions, requiring
“interpersonal” comparisons that could always be set to be in favor of undesirable manipulation
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incentives. Other works also account for reward uncertainty, but assume that there is one true
Markovian reward function that one can learn about, and one should use to evaluate trajectories
(Hadfield-Menell et al., 2016; Desai, 2017; Chan et al., 2019). A gap in the literature is work which
tries to disambiguate between reward changes, and updates in belief regarding reward functions
(which we discuss briefly in Appendix A.3).

H Limitations and Discussion
Learning Θ and its dynamics. Throughout the paper, we assumed that the human reward
functions and their dynamics were known. In practice, they would have to be learned—which
would reward learning techniques that account for reward dynamics, and committing to a choice
of what counts as a “cognitive state” θ relative to the external state s (Appendix A.6). However,
such limitation strengthens our conclusion: it shows that even with full knowledge of human (stated)
preferences, there seems to be no neat resolution for the normative challenges which arise—indicating
that this difficulty is inherent to handling preference changes themselves, rather than an artefact of
uncertainty over them.

Existence of anoop. Similarly to other AI safety work (Krakovna et al., 2019; Farquhar et al.,
2022), some of our definitions assume there is a anoop action (and πnoop). Despite the challenges in
grounding notions of πnoop in practice, we think that formulating our notion of influence in terms of
πnoop can still be helpful for theoretically analyzing the properties of AI systems. If it is especially
hard to operationalize πnoop for a given setting, it seems all the more important to be cautious about
possibilities for influence in such a domain. Approximating notions of πnoop has been attempted by
various prior works (Carroll et al., 2022; Huszár et al., 2021), and has been discussed extensively in
the “algorithmic amplification” literature (Appendix G.3).

Unreachable θs, and meta-preferences. To simplify our analysis, we restrict our analysis to
reachable cognitive states. However, cognitive states which we aspire to may not be reachable in prac-
tice (Firth, 1952; Yudkowsky, 2004). Accounting for non-reachable reward functions would require
additional complexity, which would only increase the need for challenging normative judgements
(see Appendix A.9). Another limitation of our formalism is that it can only express preferences for
AI influence implicitly (by having influence be optimal under a human’s reward function). Having
such meta-preferences (George, 2001; Franklin et al., 2022) be expressible explicitly, i.e. allowing
reward functions to evaluate transitions between different reward functions, may be useful to more
clearly capture notions of legitimacy of influence and personal autonomy.

Simplicity of our examples. While our example DR-MDPs are simple, they are sufficient for our
purposes: they provide proofs of existence of failure cases for each of the objectives we consider (by
being overly conservative or leading to undesirable influence). That being said, extending analyses
of influence incentives to more realistic settings with real human data is an important direction for
future work in developing agents that behave acceptably in practice.

Misaligned economic pressures. We show that even if AI systems were solely designed with
users’ welfare in mind, is it not clear how to avoid undesirable influence without while retaining
capabilities. As real-world AI systems will instead be developed under strong economic incentives
that will often be at odds with users’ well-being (Susser et al., 2018), this gives additional reason
for worry.

Changing societal values and norms. The DR-MDP model seems easily adaptable to multi-
agent settings in which the changing reward functions correspond to the changing aggregated pref-
erences of a collective, rather than the preferences of a single human. This may be a fruitful avenue
of investigation, which expands on prior work from social choice (Parkes & Procaccia, 2013).

I Broader Impacts
That people are influenceable is already known and leveraged in practice by relevant
industries. The fact that people are influenceable is already well established and leveraged by many
industries of mixed ethical connotations: marketing and advertisements (Pickett-Baker & Ozaki,
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2008; Ayanwale et al., 2005), political campaigning (Wylie, 2020), therapy (Moyers & Martin, 2006),
education (Hyman & Wright, 1979), and government nudging units (Halpern & Sanders, 2016).
Optimizing for specific influence outcomes is simple even with the current AI paradigm, and is
already being done in practice, such as with the case of engagement (Irvine et al., 2023; Cai et al.,
2023), purchases (Gauci et al., 2019), improving educational outcomes (Bassen et al., 2020), or
improving emotional well-being (Cunningham et al., 2024).

Not modeling influenceablity does more harm than good. Not modelling the problem of
preference change is not a solution, in ways that shares parallels with the limitations of fairness
through unawareness (Dwork et al., 2011; Teodorescu, 2019) or security through obscurity (Moshir-
nia, 2017). We argue that most real-world systems trained and deployed with humans will affect our
preferences, regardless of whether it is our intention or not. To mitigate issues that may arise from
this, we require a model that explicitly accounts for preference change. This work takes a step in
that direction, without providing any additional means by which malicious actors may act (to our
current understanding).

Our work does not meaningfully increase the capacity to influence people. In this work,
we have detailed a framework that models preference change within an MDP-like model. While
one may be able to leverage our theoretical insights to make systems more capable of influence,
attempting to influence in targeted ways is already quite straightforward without our formalism
(e.g. just rewarding the system for desired influence outcomes). Instead, it’s much more challenging
to have the system avoid inducing undesired forms of influence as side-effects, which is the main
focus of our paper.

With these points in mind, we believe that our work does not pose a societal risk, but rather allow
to explore questions which will be fundamental to address for the ethical deployment of AI systems.
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