
Published as a conference paper at ICLR 2024

UNDERSTANDING CONVERGENCE AND GENERALIZA-
TION IN FEDERATED LEARNING THROUGH FEATURE
LEARNING THEORY

Wei Huang
RIKEN AIP
wei.huang.vr@riken.jp

Ye Shi∗
Shanghaitech University
shiye@shanghaitech.edu.cn

Zhongyi Cai
Shanghaitech University
caizhy@shanghaitech.edu.cn

Taiji Suzuki
The University of Tokyo & RIKEN AIP
taiji@mist.iu-tokyo.ac.jp

ABSTRACT

Federated Learning (FL) has attracted significant attention as an efficient privacy-
preserving approach to distributed learning across multiple clients. Despite ex-
tensive empirical research and practical applications, a systematic way to theo-
retically understand the convergence and generalization properties in FL remains
limited. This work aims to establish a unified theoretical foundation for under-
standing FL through feature learning theory. We focus on a scenario where each
client employs a two-layer convolutional neural network (CNN) for local training
on their own data. Many existing works analyze the convergence of Federated
Averaging (FedAvg) under lazy training with linearizing assumptions in weight
space. In contrast, our approach tracks the trajectory of signal learning and noise
memorization in FL, eliminating the need for these assumptions. We further show
that FedAvg can achieve near-zero test error by effectively increasing signal-to-
noise ratio (SNR) in feature learning, while local training without communication
achieves a large constant test error. This finding highlights the benefits of commu-
nication for generalization in FL. Moreover, our theoretical results suggest that a
weighted FedAvg method, based on the similarity of input features across clients,
can effectively tackle data heterogeneity issues in FL. Experimental results on both
synthetic and real-world datasets verify our theoretical conclusions and emphasize
the effectiveness of the weighted FedAvg approach.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017; Yang et al., 2019) is a distributed learning frame-
work that involves collaboratively training a global model with multiple clients while ensuring pri-
vacy protection. The pioneering work, Federated Averaging (FedAvg) (McMahan et al., 2017),
learns the global model by aggregating the local client models. It achieves satisfactory performance
with both IID and non-IID client data. Since then, with the growing importance of privacy protec-
tion, federated learning emerged as a hot area of research and application (Bonawitz et al., 2019;
Li et al., 2020a;b; 2023b). Numerous technologies and methods began to surface, encompassing a
wider range of fields and application scenarios, including smartphone applications (Li et al., 2019;
Yang et al., 2021), Internet of Things (IoT) devices (Nguyen et al., 2021; Khan et al., 2021), and
more.

Despite federated learning’s success, there has been limited research on understanding its conver-
gence and generalization properties when neural networks are used as client models. From a theoret-
ical perspective, many recent studies focus on the convergence of FedAvg using over-parameterized
neural networks. For example, Song et al. (2023) show FedAvg converges linearly to a solution that
achieves (almost) zero training loss through a special initialization strategy and network overparam-
eterization. Besides, Huang et al. (2021) present a class of convergence analysis for FL with the

∗Corresponding author

1

Published as a conference paper at ICLR 2024

help of a neural tangent kernel. Similarly, Deng et al. (2022) prove that FedAvg can optimize deep
neural networks with ReLU activation function in polynomial time. However, these analyses often
rely on linearizing assumptions in the weight space. Moreover, current generalization analyses in
FL draw from classical theories like VC dimension (Hu et al., 2022), PAC Bayes (Sefidgaran et al.,
2023), and convex loss (Chen et al., 2021). These theories often require strong assumptions, such
as Lipschitz continuity and (strong) convexity. As a result, they may not fully capture the success
of FL. The above works analyze either the convergence or generalization properties of FL, lacking
a unified theoretical framework for FL with the neural network.

To fill the theoretical gap in FL, we delve into the feature learning theory (Allen-Zhu & Li, 2023;
Cao et al., 2022) to establish a unified theoretical framework to analyze both the convergence and
generalization properties of FedAvg. We introduce a two-level data distribution that simulates data
collection in FL. For the input feature, we use a two-patch model that mimics the latent structure
of an image, containing both signal patches and noise patches. The signal patch is correlated to
the label while the noise patch represents the background of the image and has nothing to do with
the label. We then study the dynamics of a two-layer convolutional neural network in each client
with FedAvg by comparing the learning speed of signal and noise. Once we show that the neural
network in FedAvg achieves near zero training error, we then compare the generalization ability
between FedAvg and the local algorithm where no communication is allowed. Under a certain con-
dition, FedAvg can converge to the global minimum with small test errors, while the local training
achieves a high test error as it memorizes the noise from the training data. This demonstrates the
advantage of federated learning over standard local learning (without communication) with the help
of communication between clients. Our contributions are summarized as follows:

• We demonstrate the convergence properties of the FedAvg algorithm from a feature-learning per-
spective. This result goes beyond the conventional lazy training approach, which relies on lineariz-
ing assumptions in weight space to ensure network parameters remain close to their initialization
values throughout training. In contrast, our analysis does not depend on such assumptions and
reveals that FedAvg can achieve a near-zero training error within polynomial time.

• To the best of our knowledge, we are the first to rigorously establish the exact generalization
gap between FedAvg and local algorithms by leveraging effective signal-to-noise ratio in feature
learning theory. Specifically, under the same conditions, we demonstrate that the test error of
FedAvg exhibits an asymptotic behavior of o(1), whereas local training converges to a Θ(1) test
error. Additionally, our theoretical result reveals the importance of cooperation in FL based on the
similarity between input data among clients from feature learning theory.

• We have conducted comprehensive experiments on both synthetic and real-world datasets. The
simulation results validate our theoretical assertion regarding the superiority of weighted FedAvg,
a personalization method, and provide empirical support for our insights into the cooperative
aspects of this approach.

2 RELATED WORK

Federated Learning In FL, the global model is generated by weighted aggregation of the up-
loaded local models, where the weight is proportional to the local data sizes (McMahan et al., 2017;
Yang et al., 2019). However, when the data among clients is not independently and identically dis-
tributed, the global model produced by this aggregation mechanism may fail to fit either the global
data distribution or the local data distribution (Zhao et al., 2018; Li et al., 2022; Cao et al., 2023;
Cai et al., 2023; Li et al., 2024). To address issues arising from data heterogeneity, various aggre-
gation methods have been proposed. For instance, Li et al. (2022) leveraged validation sets to learn
aggregation weights tailored to each client’s local data distribution. In a different approach, Xu et al.
(2023) addressed an optimization problem for each client, identifying an optimal linear combination
of local classifier heads to serve as the new local classifier. Meanwhile, Li et al. (2023c) utilized
a proxy dataset to learn both the aggregation weights and the global weight shrinking factor. Ad-
ditionally, Ye et al. (2023) adjusted aggregation weights based on the disparities between local and
global category distributions to enhance performance.

Feature Learning Theory Different from neural tangent kernel (Jacot et al., 2018) or lazy training
Chizat et al. (2019), where weight updates during gradient descent training are relatively small,

2

Published as a conference paper at ICLR 2024

feature learning theory (Allen-Zhu & Li, 2023; Cao et al., 2022; Yang & Hu, 2021) states that weight
updates can be more substantial during gradient descent, allowing the network to learn patterns from
the data. The feature learning has been widely explored to provide interpolation to various neural
networks, such as graph neural network (Huang et al., 2023), convolutional neural network (Cao
et al., 2022; Kou et al., 2023), vision transformer (Jelassi et al., 2022; Li et al., 2023a); and different
training algorithms like Adam (Zou et al., 2023a), momentum (Jelassi & Li, 2022), OOD Chen
et al. (2023), and Mixup (Zou et al., 2023b; Chidambaram et al., 2023). Among the works related
to feature learning, Kou et al. (2023) investigate the optimization and generalization of two-layer
ReLU CNNs in centralized training scenarios. In contrast, our research delves into the application
of feature learning theory in Federated Learning (FL), introducing additional techniques tailored for
the FedAvg algorithm.

Theoretical Analysis of FL The convergence analysis of federated learning has been gaining
increasing attention. Initially, researchers explored convergence in FL without employing neural
network models for clients. For instance, Li et al. (2020c) analyzed the convergence of FedAvg
on non-iid data, establishing convergence rates for strongly convex and smooth problems. Wang
et al. (2020) provided a comprehensive framework for analyzing the convergence of federated opti-
mization algorithms, considering heterogeneous local training progress at clients. Subsequently, the
advent of over-parameterized neural networks sparked a new wave of convergence analysis for FL
(Huang et al., 2021; Deng et al., 2022; Song et al., 2022). These convergence analyses may highly
rely on linearizing assumptions in weight space to ensure network parameters remain close to their
initialization. In terms of generalization in FL, much of the existing research has been grounded
in classical theories that often require strong assumptions, such as Lipschitz continuity and (strong)
convexity. For example, works like (Mohri et al., 2019; Chen et al., 2021; Masiha et al., 2021; Hu
et al., 2022; Sun et al., 2023) have presented generalization results in FL based on these assump-
tions. Another research strand delved into variance reduction strategies for heterogeneous FL, as
exemplified by works like (Woodworth et al., 2020; Murata & Suzuki, 2021; Oko et al., 2022). In
contrast to these approaches, our work focuses on both the convergence and generalization of neural
networks in FL based on the feature learning theory, offering a unified theoretical framework for FL.

3 PRELIMINARY

3.1 NOTATIONS

We use lower bold-faced letters for vectors, upper bold-faced letters for matrices, and non-bold-faced
letters for scalars. For a vector v, its ℓ2-norm is denoted as ∥v∥2. For a matrix A, we use ∥A∥2
to denote its spectral norm and ∥A∥F for its Frobenius norm. When comparing two sequences, we
employ standard asymptotic notations such as O(·), o(·), Ω(·), and Θ(·) to describe their limiting
behavior. We use Õ(·), Ω̃(·), and Θ̃(·) to hide logarithmic factors in these notations respectively.
Lastly, sequences of integers are denoted as [n] = {1, 2, . . . , n}.

3.2 DATA MODEL

We assume there are K clients, and each client is associated with a distribution Dk. In this
work, we adopt a two-level distribution framework for FL (Yuan et al., 2021; Hu et al., 2022;
Wang et al., 2021). In the first level, we select a signal vector µk for client k through µk ∼
P (µ(1),µ(2), · · · ,µ(C)), where P is a discrete distribution assigning probabilities to each feature
vector µ(c) for c ∈ [C]. For simplicity, we assume every µc for c ∈ [C] are orthogonal to each other.
In the second level, the input feature associated to each client are sampled based on µk. In particular,
we utilize a two-patch model for feature generation (Allen-Zhu & Li, 2023; Shen et al., 2022; Huang
et al., 2023; Kou et al., 2023; Cao et al., 2022). Conditional on the Rademacher random variable
yk,i ∈ {−1, 1}, for each client k ∈ [K], the input with index i is generated from:

xk,i = [x
(1)
k,i ,x

(2)
k,i] = [yk,iµk, ξk,i], (1)

where noise vector ξk,i ∼ N (0, σ2
p(I −

∑C
c=1 µ

(c)µ(c)⊤/∥µ(c)∥22)), with σp being the strength of

noise. Note that
∑C
c=1 µ

(c)µ(c)⊤/∥µ(c)∥22 is introduced to ensure noise vector orthogonal to signal

3

Published as a conference paper at ICLR 2024

vector. We can recover IID by setting µ1 = µ2 = · · · = µK . Note that we use a two-patch model
that mimics the latent structure of an image. The signal patch is correlated to the label while the
noise patch represents the background of the image and has nothing to do with the label.

3.3 NEURAL NETWORK MODEL

We introduce a two-layer CNN model, denoted as fk, for every client k ∈ [K], which utilizes a
ReLU activation function, defined as σ(z) = max{0, z}. Given the input data x, the CNN’s output
is represented as fk(W,x) = F+1(W+1,x) − F−1(W−1,x). The sign is associated with the
neuron of second layer which are fixed as either +1 or −1. Furthermore, we define F+1(W+1,x)
and F−1(W−1,x) as follows:

Fj(Wj ,x) =
1

m

m∑
r=1

[
σ(w⊤

k,j,rx
(1)) + σ(w⊤

k,j,rx
(2))
]
, (2)

where m is the width, and wk,j,r ∈ Rd refers to the weight vector of the first layer in client k. The
symbol W collectively represents the model’s weights. Moreover, each weight in the first layer is
initialized from a random draw of a Gaussian random variable, wj,r ∼ N (0, σ2

0Id×d) for all r ∈ [m]
and j ∈ {−1, 1}, with σ0 regulating the initialization magnitude for the first layer’s weight.

3.4 OBJECTIVE FUNCTION AND FEDAVG

We denote the training set as Sk ≜ {xk,i, yk,i}nk
i=1 for k ∈ [K], and overall training set as S ≜

{Sk}Kk=1. We aim to minimize the empirical cross-entropy loss function:

LS(W) =

K∑
k=1

nk
n
LSk

(Wk) with LSk
(Wk) =

1

nk

nk∑
i=1

ℓ(yk,if(Wk,xk,i)), (3)

where ℓ(yf(W,x)) = log(1 + exp(−f(W,x)y)) is the logistic loss. Next, we introduce the
FedAvg training algorithm, which comprises two types of updates: gradient descent updates and
weight averaging updates. In each iteration, we first apply gradient descent by E epochs to the CNN
fk for client k ∈ [K]:

w
(t+1)
k,j,r = w

(t)
k,j,r − η∇wk,j,r

LS(W
(t)
k) = w

(t)
k,j,r −

η

nkm

nk∑
i=1

ℓ
′(t)
k,i σ

′(⟨w(t)
k,j,r, ξk,i⟩)jyk,iξk,i

− η

nkm

nk∑
i=1

ℓ
′(t)
k,i σ

′(⟨w(t)
k,j,r, yk,i · µk⟩)jµk, (4)

where we define the loss derivative as ℓ′k,i ≜ ℓ′(yk,ifk,i) = − exp(−yk,ifk,i)
1+exp(−yk,ifk,i)

. Then the server
update through weight averaging can be expressed as follows:

w
(t)
j,r =

K∑
k=1

nk
n
w

(t)
k,j,r, (5)

where wj,r is the weight at server, n =
∑K
k=1 nk is the total number of training samples. After

a certain number R of training loops until convergence, we examine the training through test error
defined as L0−1

Dk
(W

(t)
) = P(x,y)∼Dk

[yf(W
(t)
,x)<0].

4 MAIN RESULTS

4.1 COEFFICIENT DYNAMICS FOR FEDERATED LEARNING

In this section, we introduce our key theoretical findings that demonstrate the convergence and
generalization of federated learning. Through the application of the gradient descent rule outlined
in Equation (4) and Equation (5), we observe that local weights w

(t)
k,j,r for all client k ∈ [K] and

4

Published as a conference paper at ICLR 2024

server weights w(t)
j,r are a linear combination of the random initialization w

(0)
k,j,r, the signal vectors

µk, and the noise vectors ξk,i for i ∈ [nk] and k ∈ [K]. Consequently, for r ∈ [m], and k ∈ [K],
the decomposition of weight vector iteration can be expressed:

w
(t)
k,j,r =

K∑
k′=1

(α
(t)
k,k′,j,rw

(0)
k′,j,r + γ

(t)
k,k′,j,r∥µk′∥

−2
2 µk′ +

nk′∑
i=1

ρ
(t)
k,k′,j,r,i∥ξk′,i∥

−2
2 ξk′,i), (6)

w
(t)
j,r =

K∑
k=1

(α
(t)
k,j,rw

(0)
k,j,r + γ

(t)
k,j,r∥µk∥

−2
2 µk +

nk∑
i=1

ρ
(t)
k,j,r,i∥ξk,i∥

−2
2 ξk,i). (7)

where γ(t)k,k′,j,r, γ
(t)
k,j,r and ρ(t)k,k′,j,r,i, ρ

(t)
k,j,r,i for k, k′ ∈ [K], j ∈ {−1, 1}, r ∈ [m], i ∈ [nk],

serve as coefficients. We refer to Equation (6) and Equation (7) as the signal-noise decomposition
of w(t)

k,j,r. The normalization factors ∥µk∥−2
2 and ∥ξk,i∥−2

2 are introduced to ensure that γ(t)k,k′,j,r ≈
⟨w(t)

k,j,r,µk′⟩, and ρ(t)k,k′,j,r,i ≈ ⟨w(t)
k,j,r, ξk′,i⟩. To facilitate a fine-grained analysis for the evolution

of coefficients, we introduce the notations ψ(t)
k,k′,j,r,i ≜ ρ

(t)
k,k′,j,r,i1(ρ

(t)
k,k′,j,r,i ≥ 0), ϕ(t)k,k′,j,r,i ≜

ρ
(t)
k,k′,j,r,i1(ρ

(t)
k,k′,j,r,i ≤ 0). Consequently, we further express the vector weight decomposition (6,7)

as:

w
(t)
k,j,r =

K∑
k′=1

(α
(t)
k,k′,j,rw

(0)
k′,j,r + γ

(t)
k,k′,j,r∥µk′∥

−2
2 µk′ +

nk′∑
i=1

(ψ
(t)
k,k′,j,r,i + ϕ

(t)
k,k′,j,r,i)∥ξk′,i∥

−2
2 ξk′,i),

(8)

w
(t)
j,r =

K∑
k=1

(α
(t)
k,j,rw

(0)
k,j,r + γ

(t)
k,j,r∥µk∥

−2
2 µk +

nk∑
i=1

(ψ
(t)

k,j,r,i + ϕ
(t)

k,j,r,i)∥ξk,i∥−2
2 ξk,i). (9)

Our first key result is to turn the dynamics of weights into the dynamics of coefficients. To analyze
the feature learning process of federated learning during gradient descent training, we introduce an
iterative methodology, based on the signal-noise decomposition in (8) and (9) and gradient descent
update (4) and (5). The following lemma offers us a means to monitor the iteration of coefficients:

Lemma 4.1. The coefficients γ(t)k,k′,j,r, ψ
(t)
k,k′,j,r,i, ϕ

(t)
k,k′,j,r,i in decomposition (8), for all k, k′ ∈ [K],

follow the update rules governed by:

γ
(0)
k,k′,j,r, ψ

(0)
k,k′,j,r,i, ϕ

(0)
k,k′,j,r,i = 0, (10)

γ
(t+1)
k,k′,j,r = γ

(t)
k,k′,j,r −

η

nkm

nk∑
i=1

ℓ
′(t)
k,i σ

′(⟨w(t)
k,j,r, yk,iµk⟩)∥µk∥

2
21(k

′ = k), (11)

ψ
(t+1)
k,k′,j,r,i = ψ

(t)
k,k′,j,r,i −

η

nkm
ℓ
′(t)
k,i σ

′(⟨w(t)
k,j,r, ξk,i⟩)∥ξk,i∥

2
21(yk,i = j)1(k′ = k), (12)

ϕ
(t+1)
k,k′,j,r,i = ϕ

(t)
k,k′,j,r,i +

η

nkm
ℓ
′(t)
k,i σ

′(⟨w(t)
k,j,r, ξk,i⟩)∥ξk,i∥

2
21(yk,i = −j)1(k′ = k). (13)

Furthermore, the coefficients γ(t)k,j,r, ψ
(t)

k,j,r,i, ϕ
(t)

k,j,r,i in decomposition (9), for all k ∈ [K], are up-
dated according to the following rules:

γ
(t)
k,j,r =

K∑
k′′=1

K∑
k′=1

nk′

n
γ
(t)
k′,k′′,j,r1(µk′′ = µk), ψ

(t)

k,j,r,i =

K∑
k′=1

nk′

n
ψ
(t)
k′,k,j,r,i, ϕ

(t)

k,j,r,i =

K∑
k′=1

nk′

n
ϕ
(t)
k′,k,j,r,i.

(14)

The proof of Lemma 4.1 can be found in Appendix A. Lemma 4.1 provides us a new approach to
track the dynamics of neural network in FL. In particular, we study the learning speed ratio between
signal and noise, represented by Equations (10-14).

4.2 FEDAVG PROVABLY BENEFITS FROM COMMUNICATION

Before stating the main results, we demonstrate our setting and assumption for federated learning.
First, without loss of generality, we set the same training size for all clients and ℓ2 norm of signal

5

Published as a conference paper at ICLR 2024

vector is the same, namely n = n1 = n2 = · · · = nK , and ∥µ(1)∥2 = ∥µ(2)∥2 = · · · = ∥µ(C)∥2 =
∥µ∥2. Therefore n = nK. Our analysis will be made under the following set of assumptions:
Assumption 4.2. Suppose that:
(1) The dimension d is sufficiently large: d = Ω̃(max{n2, σ−2

q K2n∥µ∥22}).
(2) The size of training sample n and width of CNNs m adhere to n = Ω(polylog(d)), m =
Ω(polylog(d)). All network model share the same initialization.
(3) The learning rate η satisfies η ≤ Õ(KE min{∥µ∥−2

2 , σ−2
p d−1}). The standard deviation of

Gaussian initialization σ0 is chosen such that Θ̃(n)/(σpd) ≤ σ0 ≤ Õ(1)·min{(σp
√
d)−1, ∥µ∥−1

2 }.

Brief explanations for each assumption are provided: (1) The requirement for a high dimension in
our assumptions specifically aims to ensure that learning occurs in an adequately over-parameterized
setting. (2) It’s necessary for the sample size and neural network width to be at least polylogarithmic
in the dimension d. This condition guarantees that certain statistical properties of the training data
and weight initialization are maintained. (3) The condition on η and initialization σ0 is to ensure
that gradient descent can effectively minimize the training loss.

Finally, we introduce a critical quantity that plays an important role in our analysis. First, we define
the local signal-to-noise ratio (SNR) for each client as SNRk = ∥µk∥2/(σp

√
d) and the effective

signal-to-noise ratio in FedAvg, represented as SNRk =
√∑K

k′=1
⟨µk,µk′ ⟩
∥µk∥2

2
SNRk ≜

√
χkSNRk,

where we define χk =
∑K
k′=1

⟨µk,µk′ ⟩
∥µk∥2

2
. The signal-to-noise ratio serves as a measure of the relative

learning speed between the signal and noise. Given the aforementioned assumptions and definitions,
we present our main result on feature learning of FedAvg as follows:

Theorem 4.3 (Convergence of FedAvg). Suppose ϵ > 0, and let T = Θ̃(η−1Kmnσ−2
p d−1 +

η−1ϵ−1mnσ−2
p K2d−1). Under Assumption 4.2, then with probability at least 1− d−1, there exists

0 ≤ t ≤ T such that the training loss of FedAvg converges to ϵ, i.e., LS(W
(t)
) ≤ ϵ.

Theorem 4.3 demonstrates the global convergence of FedAvg on the training dataset by tracking
the signal learning and noise memorization trajectory. We demonstrate the detailed proof sketch
for convergence through feature learning theory in the next section and leave the complete proof in
Appendix B. Based on results in Theorem 4.3, we illustrate the generalization of FedAvg through
the following theorem:
Theorem 4.4 (Generalization of FedAvg). Under the same assumption as Theorem 4.3, there exists
0 ≤ t ≤ T such that if nχ

2
k∥µ∥4

2

Kσ4
pd

= Ω(1), the trained model by FedAvg achieves a small test loss:

L0−1
Dk

(W
(t)
) ≤ exp

(
−cnχ

2
k∥µ∥4

2

Kσ4
pd

)
. Here, χk =

∑K
k′=1

⟨µk,µk′ ⟩
∥µk∥2

2
. Otherwise, if n∥µ∥4

2

σ4
pd

= O(1), the

trained model by FedAvg achieves a large constant test error L0−1
Dk

(W
(t)
) = Ω(1).

Theorem 4.4 further demonstrates the separation condition based on the effective SNR for the gen-
eralization of FedAvg. In this result, the signal-to-noise plays a significant role. When the number
of sample n and effective SNR SNRk is strong enough, FedAvg can achieve a small test error. Con-
versely, if these conditions are not met, FedAvg may not generalize effectively to the test samples.

Based on theorem 4.4, we draw a comparison between FedAvg and local training. Note that the
SNR for FedAvg has an additional factor χk =

∑K
k′=1

⟨µk,µk′ ⟩
∥µk∥2

2
. This factor measures the overall

similarity of input features across clients and can also be interpreted as a metric for data heterogene-
ity. In the context of local training, χk = 1, which means the effective SNR simplifies to the vanilla
SNR. Given the conditions nχ2

k∥µk∥4
2

Kσ4
pd

= Ω(1) and n∥µk∥4
2

σ4
pd

= O(1), FedAvg achieves a small test
loss, while local training has a large test error.

Lastly, we interpret the effective SNR. In the case of the IID setting, we find that χk = K for
k ∈ [K], which can boost the performance of FedAvg mostly. On the other hand, when we consider
the non-IID, the smallest value that χk can achieve is 1, when all the input features are different
from each other. In this case, FedAvg performs worse than local training. These results point out
the importance of communication in FedAvg, suggesting that weighted FedAvg can further improve
the performance of FL, we examine this understanding in the experiment section.

6

Published as a conference paper at ICLR 2024

5 PROOF SKETCH

In this section, we provide a proof sketch for Theorem 4.3 and Theorem 4.4. The key idea is
to analyze the coefficients update function for k ∈ [K]. To achieve our optimization result, we
employ a two-stage dynamic analysis. Next, we demonstrate the generalization analysis based on
the expected test error.

5.1 ITERATIVE ANALYSIS OF COEFFICIENTS FOR CONVERGENCE

We adopt a two-stage dynamics analysis, inspired by Cao et al. (2022); Kou et al. (2023), to track
the behavior of these coefficients in FL based on the behavior of the loss derivative.

Stage 1 In the first stage, we adopt a small initialization for weights such that the neural network
at initialization has constant level cross-entropy loss derivatives for all training data and clients,
namely ℓ′(0)k,i = ℓ′[yk,if(W

(0),xk,i)] = Θ(1) for all i ∈ [n] and k ∈ [K]. This is guaranteed based

on assumption (4.2) regarding σ0. Consequently, we can replace the loss derivative ℓ′(t)k,i by their
constant upper and lower bounds in the analysis of the coefficients dynamics in Equations (10 - 14).
This simplifies the analysis significantly, and then we present our main conclusion in Stage 1:

Lemma 5.1. Under assumption 4.2, there exists T1 = Θ(η−1Knmσ−2
p d−1) such that

• maxr γ
(T1)
k,j,r = Θ(n · SNR

2

k) for j ∈ {±1}, and k ∈ [K].

• |ψ(t)

k,j,r,i| = Θ(1) for some j ∈ {±1}, r ∈ [m], i ∈ [n] and all k ∈ [K].

• maxj,r ϕk,j,r,i = O(1) for all i ∈ [n] and k ∈ [K].

The proof can be found in Appendix B.1. Lemmas 5.1 leverages the period of training when the
derivatives of the loss function are of a constant order.

It’s important to note that weight averaging plays a significant role in differentiating the learning
speeds between signal learning and noise memorization during this initial stage. In each client’s
local update via gradient descent, the learning speeds for signal learning and noise memorization
are determined by ∥µ∥2 and ∥ξ∥2, respectively (Cao et al., 2022). Our theoretical analysis further
reveals that, after the application of weight averaging, these learning speeds are approximately deter-
mined by χk∥µk∥2 and ∥ξ∥2, respectively. This distinction arises because, during communication,
clients with identical signal types can share their learning signal and preserve the signal magnitude.
In contrast, the independence of noise vectors across clients means that their magnitude has a sig-
nificant decrease. Consequently, communication in FedAvg slows down the learning speed of noise
memorization, thus enabling FedAvg to focus more on signal learning.

Stage 2 Building on the results from the first stage, we study the second stage of the training
process. During this phase, the derivatives of the loss no longer remain constant. We demonstrate
that the training error can be minimized to an arbitrarily small value. Importantly, the scale differ-
ences established during the first stage of learning continue to be maintained throughout the training
process, and the convergence of the FedAvg in all clients can be guaranteed:

Lemma 5.2. Suppose ϵ > 0, let T, T1 be defined in Theorem 4.3 and Lemma 5.1 respectively. Let
W

∗
be the collection of CNN parameters w∗

j,r = w
(0)
j,r + log(2/ϵ)

∑K
k=1(j · n · SNR

2

k ·
µk

∥µk∥2
2
+∑n

i=1 1(j = yk,i)
ξk,i

∥ξk,i∥2
2
). Then under the same conditions as Theorem 4.3, for any t ∈ [T1, T], it

holds that: 1
t−T1+1

∑t
s=T1

LS(W
(s)

) ≤ ∥W(T1)−W
∗∥2

F

η(t−T1+1) + ϵ.

Lemma 5.2 provides a convergence result for FedAvg. It suggests that as the training time increases,
the training loss approaches an arbitrarily small value.

7

Published as a conference paper at ICLR 2024

5.2 TEST ERROR ANALYSIS FOR GENERALIZATION

Finally, we consider a new data point (xk, yk) ∼ Dk drawn from the distribution for client k.
Theorem 4.4 indicates that FedAvg can achieve a low test error when both the sample size and
effective SNR are sufficiently large. However, in the absence of these conditions, the test error
achieved by FedAvg may exceed a certain constant. The proof can be found in Appendix B.3.

6 EXPERIMENTS

In this section, we first validate our theoretical findings through numerical simulations using syn-
thetic data. Then we demonstrate the effectiveness of FedAvg on real-world datasets.

6.1 FEDERATED LEARNING ON SYNTHETIC DATA

In this section, we conduct experiments to substantiate our theoretical findings using synthetic data
drawn from the two-level distribution in both IID and non-IID settings. For these experiments, the
client number is set to be K = 20 and all of them are selected in each communication round. Each
client is equipped with a two-layer ReLU CNN descried in Section 3.3, where width m = 50.

Then, we establish our synthetic dataset. The training data size is set to ntrain = 100 and the testing
data size is set to ntest = 2000 with instance dimension to d = 1000 for each client. We further
set the signal strength ∥µ∥2 = 2 and noise variance σp = 1 for all clients. We trained models for
E = 5 epochs in the local training phase and conducted R = 100 communication rounds in total.
All models are trained with the SGD optimizer whose learning rate is η = 1.

Feature Learning in IID setting. Under the IID setting, all clients share identical signal vectors,
denoted as, µ1 = µ2 = · · · = µ20. Figure 1 displays the training loss, training accuracy, test
loss, and test accuracy for both FedAvg and SingleSet (local training) on the dataset of the first
client. Notably, both FedAvg and local training successfully achieve small training loss and high
train accuracy, verifying results presented in Theorem 4.3. Furthermore, FedAvg displays superior
test accuracy compared to local training, validating theoretical results in Theorem 4.4.

Figure 1: Convergence behavior comparison of train loss, train accuracy, test loss, and test accuracy
on synthetic data. Both local training and FedAvg demonstrate convergence on the training set.
FedAvg outperforms significantly on the testing set.

6.2 WEIGHTED FEDAVG ON REAL-WORLD DATASET

To verify our theoretical conclusion in FL with data heterogeneity issues, we conducted experiments
in real-world datasets. In this case, the conventional aggregation strategy, which assigns model ag-
gregation weights based on local data sizes, may not be optimal due to the diverse signals across
clients. To address this, we enhanced collaboration between clients that exhibit similar signals. Par-
ticularly, we employ prototype similarity as a measure to approximate the signal similarity between
clients. This prototype similarity is then utilized to determine the aggregation weights for each
client, ensuring a more effective aggregation process.

Weighed FedAvg For each client k, we learn a well-trained model fk that is composed of a feature
extractor gk and a linear classifier ek. Supposing there are overall M classes, a prototype of the j-th
class in client k is defined as pjk = 1

|Sk,j |
∑

(X,y)∈Sk,j
gk(X). We concatenate all class prototypes

in client k to get the client prototype pk = concati∈|M |
[
pik
]
. This client prototype is updated after

8

Published as a conference paper at ICLR 2024

Table 1: Experimental Results for FL with Label Distribution Skew on CIFAR10 and CIFAR100.

Methods CIFAR10 CIFAR100
Pathological Dirichlet Pathological Dirichlet

SingleSet 20.08±0.13 38.60±0.02 6.59±0.18 6.97±0.11
FedAvg 40.16±7.18 33.11±7.06 13.99±0.79 17.34±0.47
FedPer 38.09±5.73 36.52±7.13 29.10±2.42 17.63±0.93
FedBN 65.71±0.67 61.25±3.78 42.54±0.53 25.64±3.46

Weighted FedAvg 60.32±0.31 60.52±0.30 31.88±0.56 18.82±0.36
+ Personalized BN 67.30±0.31 65.31±1.23 43.51±0.50 26.11±1.77

Table 2: Experimental Results for FL with Feature Skew on Digits

Methods Digits
MNIST SVHN USPS SynthDigits MNIST-M Avg

SingleSet 94.38±0.07 65.25±1.07 95.16±0.12 80.31±0.38 77.77±0.47 82.00±0.40
FedAvg 95.87±0.20 62.86±1.49 95.56±0.27 82.27±0.44 76.85±0.54 82.70±0.60
FedPer 96.21±0.02 67.61±0.04 96.53±0.02 83.88±0.02 76.85±0.54 81.89±0.03
FedBN 96.57±0.13 71.04±0.31 96.97±0.32 83.19±0.42 78.33±0.66 85.20±0.40

Weighted FedAvg 95.75±0.18 67.82±1.07 95.66±0.22 84.27±1.06 80.22±0.11 84.74±0.22
+ Personalized BN 96.11±0.02 75.36±0.04 96.41±0.06 84.74±0.03 82.02±0.04 86.93±0.02

the local training phase of each involved client. Different from the normal model aggregation in
FedAvg, we personalize the aggregation weights for each client model. Specifically, we determine
the aggregation weight sk,k′ of each involved client k for client k′ based on the client prototypes,
i.e., sk,k′ = exp(sim(pk,pk′)/τ)∑K

i=1 exp(sim(pk,pi)/τ)
, where τ > 0 is a temperature parameter and sim(·) is the

cosine similarity function. The default value of τ is set as 1. Then the server conducts personalized
weighted aggregation to produce weight Wk for k ∈ [K] with the formula Wk =

∑K
k′=1 sk,k′Wk′ .

Experimental settings We conducted experiments on three image classification datasets: CI-
FAR10, CIFAR100 (Krizhevsky et al., 2009), and Digits. These were chosen to address FL scenarios
with label distribution imbalance and feature shift data heterogeneity issues. For FL with label dis-
tribution skew using CIFAR10 and CIFAR100, clients possess distinct object category distributions.
We adopted similar “Pathological” and “Dirichlet” data partition strategies similar to (Marfoq et al.,
2022; Li et al., 2023b) to make the class distribution among clients distinct. In the “Pathological”
partition, we sampled eight/twenty classes for each client. And, in the “Dirichlet” partition, we em-
ployed a symmetric Dirichlet distribution with the default parameter α = 0.8 to divide the dataset
into sub-datasets. Conversely, for FL with feature skew using the Office dataset, each client has
a roughly similar category distribution but originates from diverse domains. We introduced two
baselines FedBN (Li et al., 2021) and FedPer (Arivazhagan et al., 2019), which separately person-
alize the Batch Normalization (BN) layers and the Classification Head for each local model. For a
fair comparison, we also personalize all BN layers for our Weighed FedAvg. For a more in-depth
exploration of this experiment setting, please refer to Appendix C.

Results The experimental outcomes for FL with label distribution skew are provided in Table 1,
while the results for FL with feature skew are showcased in Table 2. The results confirm that FedAvg
can outperform local training in almost all datasets and Weighted FedAvg can further enhance the
performance by increasing the communication efficiency, aligning with our theoretical predictions.

7 CONCLUSION

This work establishes a unified theoretical framework for the analysis of convergence and gen-
eralization in Federated Learning by leveraging feature learning theory. Based on a signal-noise
decomposition for weights, we can track the dynamics of signal learning and noise memorization,
providing convergence results. Furthermore, we demonstrate the generalization gap between Fe-
dAvg and local training through an effective signal-to-noise ratio. This result reveals how FedAvg
benefits from communication. As a pioneering study in feature learning within the context of FL,
our theoretical framework is limited to examining FedAvg with gradient descent optimization and
a certain data generalization model. Future work can extend our framework to consider stochastic
gradient descent and more advanced settings in FL.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant Number 24K20848 and RIKEN Incentive Re-
search Project 100847-202301062011. We thank the anonymous reviewers for useful suggestions
to improve the paper.

REFERENCES

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N Whatmough,
and Venkatesh Saligrama. Federated learning based on dynamic regularization. The Ninth Inter-
national Conference on Learning Representations, 2021.

Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and
self-distillation in deep learning. The Eleventh International Conference on Learning Represen-
tations, 2023.

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Fed-
erated learning with personalization layers. arXiv preprint arXiv:1912.00818, 2019.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, Brendan McMahan, et al. Towards
federated learning at scale: System design. Proceedings of machine learning and systems, 1:
374–388, 2019.

Zhongyi Cai, Ye Shi, Wei Huang, and Jingya Wang. Fed-CO2: Cooperation of online and offline
models for severe data heterogeneity in federated learning. Advances in Neural Information Pro-
cessing Systems, 36, 2023.

Yu-Tong Cao, Ye Shi, Baosheng Yu, Jingya Wang, and Dacheng Tao. Knowledge-aware federated
active learning with Non-IID data. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 22279–22289, 2023.

Yuan Cao, Zixiang Chen, Misha Belkin, and Quanquan Gu. Benign overfitting in two-layer convo-
lutional neural networks. Advances in neural information processing systems, 35:25237–25250,
2022.

Shuxiao Chen, Qinqing Zheng, Qi Long, and Weijie J Su. A theorem of the alternative for person-
alized federated learning. arXiv preprint arXiv:2103.01901, 2021.

Yongqiang Chen, Wei Huang, Kaiwen Zhou, Yatao Bian, Bo Han, and James Cheng. Towards un-
derstanding feature learning in out-of-distribution generalization. Advances in neural information
processing systems, 2023.

Muthu Chidambaram, Xiang Wang, Chenwei Wu, and Rong Ge. Provably learning diverse features
in multi-view data with midpoint mixup. In International Conference on Machine Learning, pp.
5563–5599. PMLR, 2023.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
Advances in neural information processing systems, 32, 2019.

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Local SGD optimizes over-
parameterized neural networks in polynomial time. In International Conference on Artificial
Intelligence and Statistics, pp. 6840–6861. PMLR, 2022.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
International conference on machine learning, pp. 1180–1189. PMLR, 2015.

Xiaolin Hu, Shaojie Li, and Yong Liu. Generalization bounds for federated learning: fast rates, un-
participating clients and unbounded losses. In The Eleventh International Conference on Learning
Representations, 2022.

Baihe Huang, Xiaoxiao Li, Zhao Song, and Xin Yang. Fl-ntk: A neural tangent kernel-based frame-
work for federated learning analysis. In International Conference on Machine Learning, pp.
4423–4434. PMLR, 2021.

10

Published as a conference paper at ICLR 2024

Wei Huang, Yuan Cao, Haonan Wang, Xin Cao, and Taiji Suzuki. Graph neural networks
provably benefit from structural information: A feature learning perspective. arXiv preprint
arXiv:2306.13926, 2023.

Jonathan J. Hull. A database for handwritten text recognition research. IEEE Transactions on
pattern analysis and machine intelligence, 16(5):550–554, 1994.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Samy Jelassi and Yuanzhi Li. Towards understanding how momentum improves generalization in
deep learning. In International Conference on Machine Learning, pp. 9965–10040. PMLR, 2022.

Samy Jelassi, Michael Sander, and Yuanzhi Li. Vision transformers provably learn spatial structure.
Advances in Neural Information Processing Systems, 35:37822–37836, 2022.

Latif U Khan, Walid Saad, Zhu Han, Ekram Hossain, and Choong Seon Hong. Federated learning
for internet of things: Recent advances, taxonomy, and open challenges. IEEE Communications
Surveys & Tutorials, 23(3):1759–1799, 2021.

Yiwen Kou, Zixiang Chen, Yuanzhou Chen, and Quanquan Gu. Benign overfitting for two-layer
relu networks. International Conference on Machine Learning, 2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Hongkang Li, Meng Wang, Sijia Liu, and Pin-Yu Chen. A theoretical understanding of shallow
vision transformers: Learning, generalization, and sample complexity. The Eleventh International
Conference on Learning Representations, 2023a.

Hongxia Li, Zhongyi Cai, Jingya Wang, Jiangnan Tang, Weiping Ding, Chin-Teng Lin, and Ye Shi.
FedTP: Federated learning by transformer personalization. IEEE Transactions on Neural Net-
works and Learning Systems, 2023b.

Hongxia Li, Wei Huang, Jingya Wang, and Ye Shi. Global and local prompts cooperation via optimal
transport for federated learning. arXiv preprint arXiv:2403.00041, 2024.

Li Li, Haoyi Xiong, Zhishan Guo, Jun Wang, and Cheng-Zhong Xu. SmartPC: Hierarchical pace
control in real-time federated learning system. In 2019 IEEE Real-Time Systems Symposium
(RTSS), pp. 406–418. IEEE, 2019.

Li Li, Yuxi Fan, Mike Tse, and Kuo-Yi Lin. A review of applications in federated learning. Com-
puters & Industrial Engineering, 149:106854, 2020a.

Shuangtong Li, Tianyi Zhou, Xinmei Tian, and Dacheng Tao. Learning to collaborate in decentral-
ized learning of personalized models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9766–9775, 2022.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE signal processing magazine, 37(3):50–60, 2020b.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
FedAvg on Non-IID data. International Conference on Learning Representations, 2020c.

Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. FedBN: Federated learn-
ing on Non-IID features via local batch normalization. The Ninth International Conference on
Learning Representations, 2021.

Zexi Li, Tao Lin, Xinyi Shang, and Chao Wu. Revisiting weighted aggregation in federated learning
with neural networks. International Conference on Machine Learning, 2023c.

11

Published as a conference paper at ICLR 2024

Othmane Marfoq, Giovanni Neglia, Richard Vidal, and Laetitia Kameni. Personalized federated
learning through local memorization. In International Conference on Machine Learning, pp.
15070–15092. PMLR, 2022.

Mohammad Saeed Masiha, Amin Gohari, Mohammad Hossein Yassaee, and Mohammad Reza Aref.
Learning under distribution mismatch and model misspecification. In 2021 IEEE International
Symposium on Information Theory (ISIT), pp. 2912–2917. IEEE, 2021.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning. In Interna-
tional Conference on Machine Learning, pp. 4615–4625. PMLR, 2019.

Tomoya Murata and Taiji Suzuki. Bias-variance reduced local sgd for less heterogeneous federated
learning. International Conference on Machine Learning, 2021.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Dinh C Nguyen, Ming Ding, Pubudu N Pathirana, Aruna Seneviratne, Jun Li, and H Vincent Poor.
Federated learning for internet of things: A comprehensive survey. IEEE Communications Sur-
veys & Tutorials, 23(3):1622–1658, 2021.

Kazusato Oko, Shunta Akiyama, Tomoya Murata, and Taiji Suzuki. Versatile single-loop method
for gradient estimator: First and second order optimality, and its application to federated learning.
14th International OPT Workshop on Optimization for Machine Learning in NeurIPS2022, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Milad Sefidgaran, Romain Chor, Abdellatif Zaidi, and Yijun Wan. Federated learning you may
communicate less often! arXiv preprint arXiv:2306.05862, 2023.

Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik. Personalized federated learning using
hypernetworks. In International Conference on Machine Learning, pp. 9489–9502. PMLR, 2021.

Ruoqi Shen, Sébastien Bubeck, and Suriya Gunasekar. Data augmentation as feature manipulation.
In International conference on machine learning, pp. 19773–19808. PMLR, 2022.

Bingqing Song, Ioannis Tsaknakis, Chung-Yiu Yau, Hoi-To Wai, and Mingyi Hong. Distributed
optimization for overparameterized problems: Achieving optimal dimension independent com-
munication complexity. Advances in Neural Information Processing Systems, 35:6147–6160,
2022.

Bingqing Song, Prashant Khanduri, Xinwei Zhang, Jinfeng Yi, and Mingyi Hong. Fedavg converges
to zero training loss linearly for overparameterized multi-layer neural networks. International
Conference on Machine Learning, 2023.

Zhenyu Sun, Xiaochun Niu, and Ermin Wei. Understanding generalization of federated learning via
stability: Heterogeneity matters. arXiv preprint arXiv:2306.03824, 2023.

Chong Wang, Weiqiang Ren, Kaiqi Huang, and Tieniu Tan. Weakly supervised object localization
with latent category learning. In Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part VI 13, pp. 431–445. Springer,
2014.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. Advances in neural information
processing systems, 33:7611–7623, 2020.

12

Published as a conference paper at ICLR 2024

Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMahan, Maruan Al-Shedivat,
Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, et al. A field guide to feder-
ated optimization. arXiv preprint arXiv:2107.06917, 2021.

Blake E Woodworth, Kumar Kshitij Patel, and Nati Srebro. Minibatch vs local SGD for heteroge-
neous distributed learning. Advances in Neural Information Processing Systems, 33:6281–6292,
2020.

Jian Xu, Xinyi Tong, and Shao-Lun Huang. Personalized federated learning with feature alignment
and classifier collaboration. The Eleventh International Conference on Learning Representations,
2023.

Chengxu Yang, Qipeng Wang, Mengwei Xu, Zhenpeng Chen, Kaigui Bian, Yunxin Liu, and Xu-
anzhe Liu. Characterizing impacts of heterogeneity in federated learning upon large-scale smart-
phone data. In Proceedings of the Web Conference 2021, pp. 935–946, 2021.

Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. International
Conference on Machine Learning, 2021.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept
and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):1–19,
2019.

Rui Ye, Mingkai Xu, Jianyu Wang, Chenxin Xu, Siheng Chen, and Yanfeng Wang. Feddisco:
Federated learning with discrepancy-aware collaboration. International Conference on Machine
Learning, 2023.

Honglin Yuan, Warren Morningstar, Lin Ning, and Karan Singhal. What do we mean by general-
ization in federated learning? The Tenth International Conference on Learning Representations,
2021.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with Non-IID data. arXiv preprint arXiv:1806.00582, 2018.

Difan Zou, Yuan Cao, Yuanzhi Li, and Quanquan Gu. Understanding the generalization of Adam in
learning neural networks with proper regularization. The Eleventh International Conference on
Learning Representations, 2023a.

Difan Zou, Yuan Cao, Yuanzhi Li, and Quanquan Gu. The benefits of mixup for feature learning.
Proceedings of the 40th International Conference on Machine Learning, 2023b.

A COMPLETE PROOF FOR COEFFICIENT ITERATION

In this section, we provide the proof for Lemma 4.1. This lemma plays a crucial role by transforming
the perspective from tracking weights to learning feature coefficients. The main idea combines
weight decomposition with gradient update rules. Before presenting the proof for Lemma 4.1, we
introduce several preliminary results concerning the inner product between noise vectors and signal
vectors, both inter- and intra-client:

Signal vector versus signal vector Between different clients, namely k and k′, according to our
assumption, µk is either orthogonal to µk′ or identical to µk′ .

Noise vector versus Noise vector It is known that all vectors are drawn from a Gaussian distribu-
tion, specifically, ξk,i ∼ N (0, σ2

p(I−
∑C
c=1 µ

(c)µ(c)⊤/∥µ(c)∥22)).
We employ the following lemma to demonstrate that noise vectors are almost orthogonal to each
other:

13

Published as a conference paper at ICLR 2024

Lemma A.1 (Cao et al. (2022)). Suppose that δ > 0, and d ≥ log(4n/δ), then with probability at
least 1− δ, we have

1

2
σ2
pd ≤ ∥ξk,i∥22 ≤ 3

2
σ2
pd,

|⟨ξk,i, ξk′,i′⟩| ≤ σ2
p

√
log(4n2/δ)d.

Remark A.2. The total number of samples in this work is nkK = n. Thus the union bound is taking
over n.

Signal vector versus Noise vector We consider the inner product between the noise vector and
the signal vector. According to our setting of the noise vector, namely, ξk, i ∼ N (0, σ2

p(I −∑C
c=1 µ

(c)µ(c)⊤/∥µ(c)∥22)), the noise vector is strictly orthogonal to the signal vectors.

The above statements collectively demonstrate that noise vectors and signal vectors are (nearly)
orthogonal to each other. They not only imply that the coefficient decomposition is guaranteed to
be unique with a high probability but are also rooted in theoretical analysis. Now, we are ready to
demonstrate the Lemma of coefficient iteration.

Lemma A.3 (Restatement of Lemma 4.1). The coefficients γ(t)k,k′,j,r, ψ
(t)
k,k′,j,r,i, ϕ

(t)
k,k′,j,r,i in decom-

position (8), for all k, k′ ∈ [K], follow the update rules governed by:

γ
(0)
k,k′,j,r, ψ

(0)
k,k′,j,r,i, ϕ

(0)
k,k′,j,r,i = 0, (15)

γ
(t+1)
k,k′,j,r = γ

(t)
k,k′,j,r −

η

nkm

nk∑
i=1

ℓ
′(t)
k,i σ

′(⟨w(t)
k,j,r, yk,iµk⟩)∥µk∥

2
21(k

′ = k), (16)

ψ
(t+1)
k,k′,j,r,i = ψ

(t)
k,k′,j,r,i −

η

nkm
ℓ
′(t)
k,i σ

′(⟨w(t)
k,j,r, ξk,i⟩)∥ξk,i∥

2
21(yk,i = j)1(k′ = k), (17)

ϕ
(t+1)
k,k′,j,r,i = ϕ

(t)
k,k′,j,r,i +

η

nkm
ℓ
′(t)
k,i σ

′(⟨w(t)
k,j,r, ξk,i⟩)∥ξk,i∥

2
21(yk,i = −j)1(k′ = k). (18)

Furthermore, the coefficients γ(t)k,j,r, ψ
(t)

k,j,r,i, ϕ
(t)

k,j,r,i in decomposition (9), for all k ∈ [K], are up-
dated according to the following rules:

γ
(t)
k,j,r =

K∑
k′′=1

K∑
k′=1

nk′

n
γ
(t)
k′,k′′,j,r1(µk′′ = µk), ψ

(t)

k,j,r,i =

K∑
k′=1

nk′

n
ψ
(t)
k′,k,j,r,i, ϕ

(t)

k,j,r,i =

K∑
k′=1

nk′

n
ϕ
(t)
k′,k,j,r,i.

(19)

Proof of Lemma A.3. First, we have proven that the vectors are both linearly independent and or-
thogonal, within each client and across different clients, with high probability. Consequently, this
ensures that the decomposition, as expressed in Equation (9), remains linear independent as the
dimensionality increases

Then, we demonstrate the dynamics concerning the gradient update for each client

w
(t+1)
k,j,r = w

(t)
k,j,r − η · ∇wk,j,r

LSk
(W

(t)
k)

= w
(t)
k,j,r −

η

nkm

nk∑
i=1

ℓ
′(t)
k,i · σ

′(⟨w(t)
k,j,r, ξk,i⟩) · jyk,iξk,i

− η

nkm

nk∑
i=1

ℓ
′(t)
k,i · σ

′(⟨w(t)
k,j,r, yk,i · µk⟩) · jµk.

At the same time, the weight decomposition can be expressed as:

w
(t)
k,j,r =

K∑
k′=1

(α
(t)
k,k′,j,rw

(0)
k′,j,r + γ

(t)
k,k′,j,r∥µk′∥

−2
2 µk′ +

nk′∑
i=1

ρ
(t)
k,k′,j,r,i∥ξk′,i∥

−2
2 ξk′,i).

14

Published as a conference paper at ICLR 2024

By compared with the coefficients of w(0)
k,j,r, µk, and ξk,i, on above two equations, for all k, k′ ∈

[K], we arrive the following results:

γ
(t+1)
k,k′,j,r = γ

(t)
k,k′,j,r −

η

nkm

nk∑
i=1

ℓ
′(t)
k,i σ

′(⟨w(t)
k,j,r, yk,iµk⟩)∥µk∥

2
21(k

′ = k),

ψ
(t+1)
k,k′,j,r,i = ψ

(t)
k,k′,j,r,i −

η

nkm
ℓ
′(t)
k,i σ

′(⟨w(t)
k,j,r, ξk,i⟩)∥ξk,i∥

2
21(yk,i = j)1(k′ = k),

ϕ
(t+1)
k,k′,j,r,i = ϕ

(t)
k,k′,j,r,i +

η

nkm
ℓ
′(t)
k,i σ

′(⟨w(t)
k,j,r, ξk,i⟩)∥ξk,i∥

2
21(yk,i = −j)1(k′ = k),

α
(t+1)
k,k′,j,r = α

(t)
k,k′,j,r.

Note that the gradient descent update (4) does not change the coefficients of w(0)
k,j,r. However, as we

will see later, the weight averaging operation will mix the initializations of weights among different
clients. Furthermore, observe that ℓ′(t)k,i < 0 by the definition of the cross-entropy loss. Therefore,

the signs of ψ(t+1)
k,k,j,r,i and ϕ(t+1)

k,k,j,r,i can be determined by j and yk,i.

Lastly, we illustrate the dynamics of weight averaging among clients. Examining the weight average
update (5) and weight decomposition (9), we find that:

w
(t)
j,r =

K∑
k=1

nk
n
w

(t)
k,j,r,

w
(t)
j,r =

K∑
k=1

(α
(t)
k,j,rw

(0)
k,j,r + γ

(t)
k,j,r∥µk∥

−2
2 µk +

nk∑
i=1

(ψ
(t)

k,j,r,i + ϕ
(t)

k,j,r,i)∥ξk,i∥−2
2 ξk,i).

By comparing the coefficients of w(0)
k,j,r, µk, and ξk,i in the above two equations, we derive the

following results:

α
(t)
k,j,r =

K∑
k=1

nk
n
α
(t)
k,j,r,

γ
(t)
k,j,r =

K∑
k′′=1

K∑
k′=1

nk′

n
γ
(t)
k′,k′′,j,r1(µk′′ = µk),

ψ
(t)

k,j,r,i =

K∑
k′=1

nk′

n
ψ
(t)
k′,k,j,r,i,

ϕ
(t)

k,j,r,i =

K∑
k′=1

nk′

n
ϕ
(t)
k′,k,j,r,i.

B COMPLETE PROOF FOR COEFFICIENT DYNAMICS

B.1 STAGE ONE: INCREASE OF SIGNAL LEARNING AND NOISE MEMORIZATION

According to the behavior of the loss derivative, we divide the entire training dynamics into two
stages. In the first stage, the loss derivative is close to a constant. Thus, we can simplify the
analysis of coefficient iteration dynamics by replacing the loss derivative with the corresponding
constant value. Before we conduct the proof for the main lemma in stage one, we list several useful
preliminary lemmas for random initialization.
Lemma B.1 (Cao et al. (2022)). Suppose that δ > 0, then with probability at least 1− δ, we have

|⟨w(0)
k,j,r,µ

(c)⟩| ≤
√
log(4mKC/δ)σ0∥µ(c)∥2,

|⟨w(0)
k,j,r, ξk′,i⟩| ≤

√
log(4mKn/δ)dσ0σp.

15

Published as a conference paper at ICLR 2024

With Lemma B.1 at hand, we are ready to demonstrate how the effect of initialization changes as we
control the variance of the weights’ initialization.

Lemma B.2. Denote that: β = 2maxk,i,j,r{|⟨w(0)
k,j,r,µk⟩|, |⟨w

(0)
k,j,r, ξk,i⟩|}. Suppose that σ0 ≤

[4
√
log(4KmnC/δ)]−1 min

{
∥µ∥−1

2 , (σp
√
d)−1

}
, then with probability at least 1 − δ, we have

β ≤ 1.

Proof. By Lemma B.1, with probability at least 1− δ, we can set an upper bound for β as follows:

β ≤ 4
√
log(4KmnC/δ) · σ0 ·max{∥µ∥2, σp

√
d}.

According to the exact condition for σ0, which is also a part of Assumption 4.2:

σ0 ≤ [4
√

log(4KmnC/δ)]−1 min
{
∥µ∥−1

2 , (σp
√
d)−1

}
, (20)

we conclude to verify the following inequality:

β ≤ 4
√
log(4KmnC/δ) · σ0 ·max{∥µ∥2, σp

√
d} ≤ 1. (21)

Next we bound the loss derivative in the first stage.

Lemma B.3. Suppose that γ(t)k,k′,j,r = O(1) and ψ(t)
k,k′,j,r,i = O(1), ϕ(t)k,k′,j,r,i = O(1) with k, k′ ∈

[K], and i ∈ [n], for t ∈ [0, T1], then we that

C1 ≤ −ℓ′(t)k,i ≤ 1, (22)

where C1 is a positive constant.

Proof. According to the assumption that for 0 ≤ t ≤ T1, we have maxk,k′,r γ
(t)
k,k′,j,r = O(1) and

maxk,k′,j,r ψ
(t)
k,k′,j,r,i = O(1) and maxk,k′,j,r |ϕ(t)k,k′,j,r,i| = O(1) for all i ∈ [n], the output function

satisfies:

Fj(W
(t)
j ,x) =

1

m

m∑
r=1

[
σ(w⊤

k,j,rx
(1)) + σ(w⊤

k,j,rx
(2))
]

(a)

≤ max
{
⟨w(0)

k,j,r,µ⟩, γ
(t)
k,j,r, ⟨w

(0)
k,j,r, ξ⟩, |ψ

(t)
k,j,r,i|, |ϕ

(t)
k,j,r,i|

}
(b)
= max

{
β, γ

(t)
k,j,r, |ψ

(t)
j,r,i|, |ϕ

(t)
j,r,i|

}
(c)
= O(1),

where (a) is by the weight decomposition (6), (b) is by the definition of β, and (c) is by Lemma B.2.

Next, we bound the loss derivative for t ∈ [0, T1] as follows:

−ℓ′(t)i =
exp(−fiyi)

1 + exp(−fiyi)
= O(1). (23)

Finally, we show the lower bound for −ℓ′(t)i :

−ℓ′(t)i =
exp(−fiyi)

1 + exp(−fiyi)

=
1

1 + exp (fiyi)

≥ 1

1 +O(1)
.

Similarly, we can obtain

C1 ≤ −ℓ′(t)k,i (W) ≤ 1,

by the relation w
(t)
j,r =

∑K
k=1

1
Kw

(t)
k,j,r and K = Θ(1).

16

Published as a conference paper at ICLR 2024

With the above results at hand, we are ready to present the outcomes of the first stage.
Lemma B.4 (Restatement of Lemma 5.1). Under assumption 4.2, there exists total number of local
update T1 = R1E = Θ(η−1Knmσ−2

p d−1) such that

• maxr γ
(T1)
k,j,r = Θ(n · SNR

2

k) for j ∈ {±1}, and k ∈ [K].

• |ψ(t)

k,j,r,i| = Θ(1) for some j ∈ {±1}, r ∈ [m], i ∈ [n] and all k ∈ [K].

• maxj,r ϕk,j,r,i = O(1) for all i ∈ [n] and k ∈ [K].

Proof of Lemma B.4. We first consider noise memorization. Define that for each i ∈ [n] and
k ∈ [K], Ψ(t)

k,k′,i = maxj,r |ρ(t)k,k′,j,r,i| = maxj,r{ψ(t)
k,k′,j,r,i,−ϕ

(t)
k,k′,j,r,i}. Similarly, we define

the coefficient after weight average Ψ
(t)

k,k′,i = maxj,r |ρ(t)k,k′,j,r,i| = maxj,r{ψ
(t)

k,k′,j,r,i,−ϕ
(t)

k,k′,j,r,i}.

Clearly we have Ψ
(0)
k,k′,i = 0 for all i ∈ [n] and k, k′ ∈ [K] by definition. Then by Equation (12)

and Equation (13) we have:

Ψ
(t+1)
k,k,i = Ψ

(t)
k,k,i +

η

nkm
· |ℓ′(t)k,i | · σ

′

(
⟨w(0)

k,j,r, ξk,i⟩+
K∑
k′=1

n∑
i′=1

Ψ
(t)
k,k′,i′ ·

|⟨ξk′,i′ , ξk,i⟩|
∥ξk′,i′∥22

+

K∑
k′=1

n∑
i′=1

Ψ
(t)
k,k′,i′ ·

|⟨ξk′,i′ , ξk,i⟩|
∥ξk′,i′∥22

)
· ∥ξk,i∥22

(a)

≤ Ψ
(t)
k,k,i +

η

nkm
· σ′

(
⟨w(0)

k,j,r, ξk,i⟩+ 2 ·
K∑
k′=1

n∑
i′=1

Ψ
(t)
k,k′,i ·

|⟨ξk′,i′ , ξk,i⟩|
∥ξk′,i′∥22

)
· ∥ξk,i∥22

(b)

≤ Ψ
(t)
k,k,i +

η

nkm
· ∥ξk,i∥22

(c)

≤ Ψ
(t)
k,k,i +

η

nkm
· 3/2σ2

pd, (24)

where the first inequality (a) follows from |ℓ′(t)k,i | ≤ 1, as stated in Equation (22) within Lemma
B.3; the second inequality (b) is due to the non-linear activation σ(x) = max{0, x}; and the last
inequality (c) is derived from Lemma A.1.

Before the first step of averaging weights, by taking a telescoping sum over t = 0, 1, . . . , E, we
obtain:

Ψ
(E)
k,k,i ≤

ηE

nkm

3

2
σ2
pd.

At the same time, by Equations (17) and (18), we obtain Ψ
(t)
k,k′,i = 0 with k ̸= k′ for i ∈ [n] and

t ∈ [E]. After t = E steps, we perform weight average operation in server. Then by Equation (19)
we have:

Ψ
(E)

k,i ≤ 1

K

ηE

nkm

3

2
σ2
pd.

Note that noise vectors ξk,i are almost independent of each other. Thus, during the first weight
averaging, the effect is directly reduced byK times. Besides, every client will store this information
after accepting the averaged weight from the server.

In the next E gradient descent steps at each client, by applying (24), we further obtain:

Ψ
(2E)
k,k,i ≤

ηE

Knkm

3

2
σ2
pd+

ηE

nkm

3

2
σ2
pd =

K + 1

K
· ηE

nkm

3

2
σ2
pd,

Ψ
(2E)
k,k′,i ≤

ηE

Knkm

3

2
σ2
pd, k′ ̸= k.

17

Published as a conference paper at ICLR 2024

In the second round of local updates, there are two sources of noise. The first originates from the
last return of weight averaging, and the second comes from the gradient descent update in the local
client. From this result, we find that the growth of noise memorization is akin to only E steps of
gradient descent update when K is a large number.

Again, after gradient descent, we apply second weight average operation in server and obtain the
following result:

Ψ
(2E)

k,i ≤ K + 1

K2
· ηE

nkm

3

2
σ2
pd+

K − 1

K2
· ηE

nkm

3

2
σ2
pd =

2K

K2
· ηE

nkm

3

2
σ2
pd.

During the second weight averaging operation, we calculate the coefficient of noise memorization
by averaging all weights. The first term K+1

K2 · ηb
nkm

3
2σ

2
pd results from averaging the coefficient on

client k. Moreover, the second term originates from the otherK−1 clients who stored the coefficient
during the first weight averaging operation. Together, applying Equation (19) yields

Ψ
(2E)

k,i ≤ 2

K
· ηE

nkm

3

2
σ2
pd,

which is equivalent to being divided byK compared to the local update without weight aggregation.
Similarly, we repeat the computation procedure and obtain the following results for the third round
of local updates plus the weight averaging operation:

Ψ
(3E)
k,k,i ≤

2

K
· ηE

nkm

3

2
σ2
pd+

ηE

nkm

3

2
σ2
pd =

K + 2

K
· ηE

nkm

3

2
σ2
pd,

Ψ
(3E)
k,k′,i ≤

2

K
· ηE

nkm

3

2
σ2
pd, k′ ̸= k,

Ψ
(3E)

k,i ≤ K + 2

K2
· ηE

nkm

3

2
σ2
pd+

2(K − 1)

K2
· ηE

nkm

3

2
σ2
pd =

3

K
· ηE

nkm

3

2
σ2
pd.

It is not hard to observe that after the third round of local updates and weight averaging, the noise
memorization is equivalent to the noise from local training divided byK. Using the same technique,
we can summarize that, given R1 ≥ 1 times of communication, at the end of stage one with R1 =
T1/E round of communication, the noise memorization has an upper bound:

Ψ
(R1E)
k,k,i ≤ K + (R1 − 1)

K
· ηE

nkm

3

2
σ2
pd,

Ψ
(R1E)
k,k′,i ≤ R1 − 1

K
· ηE

nkm

3

2
σ2
pd, k′ ̸= k,

Ψ
(R1E)

k,i ≤ R1

K
· ηE

nkm

3

2
σ2
pd.

Note that K+R1−1
K > R1

K given that K > 1.

On the other hand, we establish the lower bound for ψ
(t)

k,j,r,i and ϕ
(t)

k,j,r,i. We show for yk,i = j with
gradient descent update before weight average, we have:

⟨w(t)
k,j,r, ξk,i⟩ = ⟨w(0)

k,j,r, ξk,i⟩+
K∑
k′=1

nk′∑
i′=1

ψ
(t)
k,k′,j,r,i′∥ξk′,i′∥

−2
2 ⟨ξk,i, ξk′,i′⟩

+

K∑
k′=1

nk′∑
i′=1

ϕ
(t)
k,k′,j,r,i′∥ξk′,i′∥

−2
2 ⟨ξk,i, ξk′,i′⟩

(a)

≥ ⟨w(0)
k,j,r, ξk,i⟩+ ψ

(t)
k,k,j,r,i − 4

√
log(4n2/δ)

d

∑
k′

∑
i′ ̸=i

(|ψ(t)
k,k′,j,r,i′ |+ |ϕ(t)k,k′,j,r,i′ |)

(b)

≥ ⟨w(0)
k,j,r, ξk,i⟩+ ψ

(t)
k,k,j,r,i − 4C2n

√
log(4n2/δ)

d
,

where C2 is a positive constant, (a) is by Lemma A.1 and (b) is by ϕ(t)k,k′,j,r,i = 0 when yk,i = j and
ψk,k′,j,r,i ≤ C2.

18

Published as a conference paper at ICLR 2024

Let Ψ(t)
k,k′,i = maxj=yk,i,r

{
⟨w(0)

k,j,r, ξk′,i⟩+ ψ
(t)
k,k′,j,r,i − 4C2n

√
log(4n2/δ)

d

}
. At initialization, it

is easy to check that:

Ψ
(0)
k,k′,i≥σ0σp

√
d/4− 4C2n

√
log(4n2/δ)

d

(c)
> 0.

where (a) is by the following condition:

σ0 ≥ C3n
√
log(4n2/δ)/(σpd). (25)

Then, we can compute the growth of Ψ(t)
k,k,i as follows:

Ψ
(t+1)
k,k,i = Ψ

(t)
k,k,i −

η

nkm
ℓ
′(t)
k,i · σ

′

(
⟨w(0)

k,j,r, ξk,i⟩+
K∑
k′=1

nk′∑
i′=1

Ψ
(t)
k,k′,i ·

|⟨ξk′,i′ , ξk,i⟩|
∥ξk′,i′∥22

)
· ∥ξk,i∥22

(a)

≥ Ψ
(t)
k,k,i +

ηC1

nkm
· σ′

(
⟨w(0)

k,j,r, ξk,i⟩+
K∑
k′=1

nk′∑
i′=1

Ψ
(t)
k,k′,i ·

|⟨ξk′,i′ , ξk,i⟩|
∥ξk′,i′∥22

)
· ∥ξk,i∥22

(b)

≥ Ψ
(t)
k,k,i +

ηC1

nkm
· 1/2σ2

pd,

where (a) is by Lemma B.3 stating the lower bound of minus loss derivative, (b) is by Lemma
A.1 and Equation (25). Before the first step of weight average, we take a telescoping sum over
t = 0, 1, . . . , E, then gives

Ψ
(E)
k,k,i ≥

ηE

nkm

C1

2
σ2
pd.

At the same time, we claim Ψ
(t)
k,k′,i ≥ 0 with k ̸= k′ for i ∈ [n] and t ∈ [E] through Equations (18)

and (17). After t = E steps, we perform weight average operation in server. Then by Equation (19)
we have:

Ψ
(E)

k,i ≥ 1

K

ηE

nkm

C1

2
σ2
pd.

The next E gradient descent steps yields:

Ψ
(2E)
k,k,i ≥

ηE

Knkm

C1

2
σ2
pd+

ηE

nkm

C1

2
σ2
pd =

K + 1

K

ηE

nkm

C1

2
σ2
pd,

Ψ
(2E)
k,k′,i ≥

ηE

Knkm

C1

2
σ2
pd, k′ ̸= k.

In the second round of local update, there are two sources. The first source is from the previous
weight average update, and the second is from the gradient descent update in the local client. From
the result, we find the growth of noise memorization is close to only E steps of gradient descent
update whenK is a large number. Similarly, after gradient descent, we apply second weight average
operation in server and obtain the following result:

Ψ
(2E)

k,i ≥ K + 1

K2
· ηE

nkm

C1

2
σ2
pd+

K − 1

K2
· ηE

nkm

C1

2
σ2
pd =

2

K
· ηE

nkm

C1

2
σ2
pd.

It is not hard to observe that after the third round of local updates and weight averaging, the noise
memorization is equivalent to local training divided by K. Using the same technique, we can sum-
marize that, given R1 times of communication, at the end of stage one with R1 = T1/E ∈ Z+

round of communication, the noise memorization has lower bounds:

Ψ
(R1E)
k,k,i ≥ K + (R1 − 1)

K
· ηE

nkm

C1

2
σ2
pd,

Ψ
(R1E)
k,k′,i ≥ R1 − 1

K
· ηE

nkm

C1

2
σ2
pd, k′ ̸= k,

Ψ
(R1E)

k,i ≥ R1

K
· ηE

nkm

C1

2
σ2
pd.

19

Published as a conference paper at ICLR 2024

Finally, we confirm that

max
j=yk,i,r

ψ
(T1)

k,j,r,i ≥
ηT1

nkmK

C1

2
σ2
pd− ⟨w(0)

k,j,r, ξk,i⟩+ 4C2n

√
log(4n2/δ)

d

(a)

≥ ηT1
nkmK

C1

2
σ2
pd− ⟨w(0)

k,j,r, ξk,i⟩+ C3

(b)

≥ C4,

where the inequality (a) is by 4C2n
√

log(4n2/δ)
d ≤ C3 which holds when d ≥ C5 log(4n

2/δ)n2 and
the inequality (b) is by taking the value of T1 and Lemma B.2.

A the same time, we calculate the growth of γ(t)k,k′,j,r and γ(t)k,j,r. Using the iteration equation for the
coefficient of signal learning under local gradient descent in the first round, we have:

γ
(t+1)
k,k,j,r = γ

(t)
k,k,j,r −

η

nkm
·
nk∑
i=1

ℓ
′(t)
k,i σ

′(⟨w(t)
k,j,r, yk,iµk⟩)∥µk∥

2
2.

The next step is to provide an upper bound for signal learning at the first round of local updates.

γ
(t+1)
k,k,j,r

(a)

≤ γ
(t)
k,k,j,r +

η

m
· ∥µk∥22.

where (a) is by Lemma B.3. Before the first step of weight average, taking a telescoping sum over
t = 0, 1, . . . , E then yields:

γ
(E)
k,k,j,r ≤

ηE

m
∥µk∥22.

After t = E steps, we perform the weight averaging operation on the server through Equation (19).
Then, we have:

γ
(E)
k,j,r ≤

1

K

K∑
k′=1

⟨µk,µk′⟩
∥µk∥22

ηE

m
∥µk∥22.

Note that
∑K
k′=1

⟨µk,µk′ ⟩
∥µk∥2

2
counts the total similarity between signal vectors among clients. In the

case of i.i.d., this sum approaches the maximum value of 1. In the extreme non-i.i.d. case, where
no client shares the same class, this sum equals 1

K . For ease of derivation, we denote this sum
as χk ≜

∑K
k′=1

⟨µk,µk′ ⟩
∥µk∥2

2
. In the subsequent E gradient descent steps on each client, by applying

Equation (24), we further have:

γ
(2E)
k,k,j,r ≤

ηE

m

K∑
k′=1

⟨µk,µk′⟩
∥µk∥22

∥µk∥22 +
ηE

m
∥µk∥22

=

(
1

K

K∑
k′=1

⟨µk,µk′⟩
∥µk∥22

+ 1

)
· ηE
m

∥µk∥22

= (
χk
K

+ 1) · ηE
m

∥µk∥22.

In the second round of update, there are two sources. The first one arises from the last round of
weight averaging, and the second comes from the gradient descent update in the local client. Again,
after performing gradient descent, we apply a second weight averaging operation on the server and
obtain the following result:

γ
(2E)
k,j,r ≤

(χk
K

(
χk
K

+ 1) + (1− χk
K

)
χk
K

) ηE
m

∥µk∥22 = 2
χk
K

ηE

m
∥µk∥22.

Here, the first term χk

K (χk

K + 1) · ηEm ∥µk∥22 results from averaging the coefficient across χk clients
who share the same signal vector. Moreover, the second term (1− χk

K)χk

K
ηE
m ∥µk∥22 originates from

other K − χk clients who retained the coefficient during the first weight averaging operation.

20

Published as a conference paper at ICLR 2024

Similarly, we repeat the computation procedure and obtain the following results for the third round
of local update plus the weight averaging operation:

γ
(3E)
k,k,j,r ≤ 2

χk
K

· ηE
m

∥µk∥22 +
ηE

m
∥µk∥22 = (2

χk
K

+ 1) · ηE
m

∥µk∥22,

γ
(3E)
k,j,r ≤

χk
K

(2
χk
K

+ 1) · ηE
m

∥µk∥22 + (2
χk
K

)(1− χk
K

) · ηE
m

∥µk∥22 = 3
χk
K

· ηE
m

∥µk∥22.

We repeat the computation process and find that, given R1 times of communication, at the end of
stage one, with R1 = T1/E rounds of communication, the noise memorization has an upper bound:

γ
(R1E)
k,j,r ≤ ((R1 − 1)

χk
K

+ 1) · ηE
m

∥µk∥22,

γ
(R1E)
k,j,r ≤ R1

χk
K

· ηE
m

∥µk∥22.

Lastly, we provide the lower bound for signal learning in the first stage. It is known that

⟨w(t)
k,j,r,µk⟩ = ⟨w(0)

k,j,r,µk⟩+
K∑
k′=1

nk′∑
i=1

ψ
(t)
k,k′,j,r,i∥ξk′,i∥

−2
2 ⟨ξk′,i,µk⟩

+

K∑
k′=1

nk′∑
i=1

ϕ
(t)
k,k′,j,r,i∥ξk′,i∥

−2
2 ⟨ξk′,i,µk⟩

(a)
= ⟨w(0)

k,j,r,µk⟩,
where (a) is by the orthogonal relation between feature vector and noise vector.

It is known that there exists some r for which ⟨w(0)
k,j,r, yiµk⟩ > 0. Thus, for the first round of

gradient update, we have:

γ
(t+1)
k,k,j,r = γ

(t)
k,k,j,r −

η

nkm
·
nk∑
i=1

ℓ
′(t)
i · σ′(⟨w(t)

k,j,r, yiµk⟩) · ∥µk∥
2
2

(a)

≥ γ
(t)
k,k,j,r +

η

m
C1 · ∥µk∥22,

where (a) follows from the fact that C1 ≤ −ℓ′k,i ≤ 1. Before the first step of weight averaging,
taking a telescoping sum over t = 0, 1, . . . , E yields:

γ
(E)
k,k,j,r ≥

ηC1E

m
∥µk∥22.

After t = E steps, we perform the weight averaging operation on the server. Then, we have:

γ
(E)
k,k,j,r ≥

1

K

K∑
k′=1

⟨µk,µk′⟩
∥µk∥22

ηC1E

m
∥µk∥22.

Recall that χk ≜
∑K
k′=1

⟨µk,µk′ ⟩
∥µk∥2

2
counts the total similarity between the signal vectors among

clients. In the next E gradient descent steps on each client, by applying Equation (24) we further
have:

γ
(2E)
k,k,j,r ≥

ηC1E

mK

K∑
k′=1

⟨µk,µk′⟩
∥µk∥22

∥µk∥22 +
ηC1E

m
∥µk∥22

= (
χk
K

+ 1) · ηC1E

m
∥µk∥22.

Again, after gradient descent, we apply the second weight averaging operation on the server and
obtain the following result:

γ
(2E)
k,j,r ≥

(χk
K

(
χk
K

+ 1) + (1− χk
K

)
χk
K

) ηC1E

m
∥µk∥22

= 2
χk
K

ηC1E

m
∥µk∥22.

21

Published as a conference paper at ICLR 2024

During the second weight averaging operation, we calculate the coefficient of noise memorization
by averaging all weights. Similarly, we repeat the computation procedure and obtain the following
results for the R1-th round of local update plus weight average operation:

γ
(R1E)
k,k,j,r ≥ ((R1 − 1)

χk
K

+ 1) · ηC1E

m
∥µk∥22,

γ
(R1E)
k,j,r ≥ R1

χk
K

· ηC1E

m
∥µk∥22.

Finally, taking the value of T1 into the above inequality, we have:

γ
(T1)
k,j,r =

C1ηχk
m

· ∥µk∥22 ·
Cmn

ησ2
qd

= Θ(n · SNR
2

k).

B.2 STAGE TWO: CONVERGENCE ANALYSIS AND FEATURE LEARNING SCALE

In this section, we demonstrate how the learning scale of signal learning and noise memorization at
convergence completes the characterization of feature learning initiated in the first stage.

B.2.1 FEATURE LEARNING SCALE AT CONVERGENCE

In the second stage, we aim to prove the following scaling behavior of feature learning

0 ≤ ψ
(t)

k,j,r,i ≤ ψ
(t)
k,k,j,r,i ≤ log(T ∗), (26)

0 ≥ ϕ
(t)
k,j,r,i ≥ ϕ

(t)

k,k,j,r,i ≥ − log(T ∗), (27)

where t = RE for an integer R and T ∗ > T1.

The proof is by induction. Before proceeding with the main lemma, it is necessary to introduce
several technical lemmas that are fundamental to our argument.

Lemma B.5. Under Condition 4.2, suppose Equation (26) and Equation (27) hold at iteration t.
Then

ψ
(t)

k,j,r,i − 8n

√
log(4n2/δ)

d
log(T ∗) ≤ ⟨w(t)

j,r −w
(0)
j,r , ξk,i⟩ ≤ ψ

(t)

k,j,r,i + 8n

√
log(4n2/δ)

d
log(T ∗),

ϕ
(t)

k,j,r,i − 8n

√
log(4n2/δ)

d
log(T ∗) ≤ ⟨w(t)

j,r −w
(0)
j,r , ξk,i⟩ ≤ ϕ

(t)

k,j,r,i + 8n

√
log(4n2/δ)

d
log(T ∗),

for all r ∈ [m], j ∈ {±1}, i ∈ [n] and k ∈ [K]. Here we define w
(0)
j,r =

∑K
k=1

nk

n w
(0)
k,j,r.

Proof of Lemma B.5. It is known that, when yk,i = j:

⟨w(t)
j,r −w

(0)
j,r , ξk,i⟩ =

K∑
k′=1

nk′∑
i′=1

ψ
(t)

k′,j,r,i′∥ξk′,i′∥−2
2 · ⟨ξk′,i′ , ξk,i⟩

+

K∑
k′=1

nk′∑
i′=1

ϕ
(t)

k′,j,r,i′∥ξk′,i′∥−2
2 · ⟨ξk′,i′ , ξk,i⟩

(a)

≤ 4

√
log(4n2/δ)

d

K∑
k′=1

∑
i′ ̸=i

|ψ(t)

k′,j,r,i′ |+ 4

√
log(4n2/δ)

d

K∑
k′=1

∑
i′ ̸=i

|ϕ(t)k′,j,r,i′ |+ ψ
(t)

k,j,r,i

(b)

≤ ψ
(t)

k,j,r,i + 8n

√
log(4n2/δ)

d
log(T ∗),

22

Published as a conference paper at ICLR 2024

where the first inequality (a) is by Lemma A.1 and the last inequality is by |ψ(t)

k,j,r,i′ |, |ϕ
(t)

k,j,r,i′ | ≤
log(T ∗) in Equation (26). Similarly, we can show that when yi ̸= j:

⟨w(t)
j,r −w

(0)
j,r , ξk,i⟩ =

K∑
k′=1

nk′∑
i′=1

ψ
(t)

k′,j,r,i′∥ξk′,i′∥−2
2 · ⟨ξk′,i′ , ξk,i⟩

+

K∑
k′=1

nk′∑
i′=1

ϕ
(t)

k′,j,r,i′∥ξk′,i′∥−2
2 · ⟨ξk,i′ , ξk,i⟩

(a)

≤ 4

√
log(4n2/δ)

d

K∑
k′=1

∑
i′ ̸=i

|ψ(t)

k′,j,r,i′ |+ 4

√
log(4n2/δ)

d

K∑
k′=1

∑
i′ ̸=i

|ϕ(t)k′,j,r,i′ |+ ϕ
(t)

k,j,r,i′

(b)

≤ ϕ
(t)

k,j,r,i + 8n

√
log(4n2/δ)

d
log(T ∗),

where the first inequality is by Lemma A.1 and the second inequality is by |ψ(t)

k,j,r,i′ |, |ϕ
(t)

k,j,r,i′ | ≤
log(T ∗) in equation 26, which completes the proof.

Lemma B.6. Under Condition 4.2, suppose Equation (26) and Equation (27) hold at iteration t.
Then we have:

ψ
(t)
k,k,j,r,i − 8n

√
log(4n2/δ)

d
log(T ∗) ≤ ⟨w(t)

k,j,r −w
(0)
j,r , ξk,i⟩ ≤ ψ

(t)
k,k,j,r,i + 8n

√
log(4n2/δ)

d
log(T ∗),

ϕ
(t)
k,k,j,r,i − 8n

√
log(4n2/δ)

d
log(T ∗) ≤ ⟨w(t)

k,j,r −w
(0)
j,r , ξk,i⟩ ≤ ϕ

(t)
k,k,j,r,i + 8n

√
log(4n2/δ)

d
log(T ∗),

for all r ∈ [m], j ∈ {±1}, i ∈ [n] and k ∈ [K]. Here we define w
(0)
j,r =

∑K
k=1

1
Kw

(0)
k,j,r.

Proof of Lemma B.6. It is known that, when yk,i = j:

⟨w(t)
k,j,r −w

(0)
j,r , ξk,i⟩ =

K∑
k′=1

nk′∑
i′=1

ψ
(t)
k′,k,j,r,i′∥ξk′,i′∥

−2
2 · ⟨ξk′,i′ , ξk,i⟩

+

K∑
k′=1

nk′∑
i′=1

ϕ
(t)
k′,k,j,r,i′∥ξk′,i′∥

−2
2 · ⟨ξk′,i′ , ξk,i⟩

(a)

≤ 4

√
log(4n2/δ)

d

K∑
k′=1

∑
i′ ̸=i

|ψ(t)
k,k′,j,r,i′ |+ 4

√
log(4n2/δ)

d

K∑
k′=1

∑
i′ ̸=i

|ϕ(t)k,k′,j,r,i′ |+ ψ
(t)
k,k,j,r,i

(b)

≤ ψ
(t)
k,k,j,r,i + 8n

√
log(4n2/δ)

d
log(T ∗),

where the first inequality (a) is by Lemma A.1 and the last inequality is by |ψ(t)
k,k′,j,r,i′ |, |ϕ

(t)
k,k′,j,r,i′ | ≤

log(T ∗) in Equation (26). Similarly, we can show that when yi ̸= j:

⟨w(t)
k,j,r −w

(0)
j,r , ξk,i⟩ =

K∑
k′=1

nk′∑
i′=1

ψ
(t)
k,k′,j,r,i′∥ξk′,i′∥

−2
2 · ⟨ξk′,i′ , ξk,i⟩

+

K∑
k′=1

nk′∑
i′=1

ϕ
(t)
k,k′,j,r,i′∥ξk′,i′∥

−2
2 · ⟨ξk′,i′ , ξk,i⟩

(a)

≤ 4

√
log(4n2/δ)

d

∑
i′ ̸=i

|ψ(t)
k,j,r,i′ |+ 4

√
log(4n2/δ)

d

K∑
k′=1

∑
i′ ̸=i

|ϕ(t)k,k′,j,r,i′ |+ ϕ
(t)
k,k,j,r,i′

(b)

≤ ϕ
(t)
k,k,j,r,i + 8n

√
log(4n2/δ)

d
log(T ∗),

where the first inequality is by Lemma A.1 and the second inequality is by
|ψ(t)
k,k′,j,r,i′ |, |ϕ

(t)
k,k′,j,r,i′ | ≤ log(T ∗) in equation 26, which completes the proof.

23

Published as a conference paper at ICLR 2024

Lemma B.7. Under Condition 4.2. For any t > E, it holds that

⟨w(t)
j,r −w

(0)
j,r ,µk⟩ = j · γ(t)k,j,r

⟨w(t)
k,j,r −w

(0)
j,r ,µk⟩ = j · γ(t)k,k,j,r

for all r ∈ [m], j ∈ {±1}, and k ∈ [K].

Proof of Lemma B.7. For any time t > E, we have that

⟨w(t)
k,j,r −w

(0)
j,r ,µk⟩ = j · γ(t)k,k,j,r +

K∑
k′=1

∑
i′=1

ψ
(t)
k,k′,j,r,i′∥ξk′,i′∥

−2
2 · ⟨ξk′,i′ ,µ⟩

+

K∑
k′=1

∑
i′=1

ϕ
(t)
k,k′,j,r,i′∥ξk′,i′∥

−2
2 · ⟨ξk′,i′ ,µ⟩

= j · γ(t)k,k,j,r,

where the equation is by our orthogonal assumption between feature vector and noise vector.

Similarly,

⟨w(t)
k,j,r −w

(0)
j,r ,µk⟩ = j · γ(t)k,j,r +

K∑
k′=1

∑
i′=1

ψ
(t)

k,j,r,i′∥ξk′,i′∥−2
2 · ⟨ξk′,i′ ,µ⟩

+

K∑
k′=1

∑
i′=1

ϕ
(t)

k′,j,r,i′∥ξk′,i′∥−2
2 · ⟨ξk′,i′ ,µ⟩

= j · γ(t)k,j,r.

Lemma B.8. Under Condition 4.2, for 0 ≤ t ≤ T ∗, where T ∗ =
η−1poly(ϵ−1, ∥µ∥−1

2 , d−1σ−2
p , σ−1

0 , n,m, d) = R∗E, we have that

0 ≤ ψ
(t)

k,j,r,i ≤ ψ
(t)
k,k,j,r,i ≤ log(T ∗)

0 ≥ ϕ
(t)
k,j,r,i ≥ ϕ

(t)

k,j,r,i ≥ − log(T ∗),

0 ≤ γ
(t)
k,j,r ≤ γ

(t)
k,k,j,r ≤ nχkSNR2

k log(T
∗),

for all r ∈ [m], j ∈ {±1}, k ∈ [K] and i ∈ [n].

Proof of Lemma B.8. The proof relies on induction. At t = 0, the results are straightforward, given
that all coefficients are zero. We assume that there is a time RaE ≤ T ∗ for which the Lemma B.8
is valid for all moments 0 ≤ t ≤ (Ra − 1)E. Our goal is to demonstrate that the result also stands
true for t = RaE.

We first prove that Equation (27) holds for t = RaE, i.e., ϕ
(t)

k,j,r,i ≥ −β − 16n
√

log(4n2/δ)
d log(T ∗)

for t = RaE, r ∈ [m], j ∈ {±1}, k ∈ [K], and i ∈ [n]. Notice that ϕ
(t)

k,j,r,i = 0,∀j = yk,i.
Therefore, we only need to consider the case that j ̸= yk,i.

When ϕ
((Ra−1)E)

k,j,r,i ≤ −0.5β − 8n
√

log(4n2/δ)
d log(T ∗), by Lemma B.5 we have that

⟨w((Ra−1)E)
j,r , ξk,i⟩ ≤ ϕ

((Ra−1)E)

k,j,r,i + ⟨w(0)
j,r , ξk,i⟩+ 8n

√
log(4n2/δ)

d
log(T ∗) ≤ 0,

Then we have E steps of local update, and we find that, for τ ∈ [E]:

⟨w((Ra−1)E)+τ
k,j,r , ξk,i⟩ ≤ ⟨w((Ra−1)E)

j,r , ξk,i⟩.

24

Published as a conference paper at ICLR 2024

Therefore, we have,

ϕ
(RaE)

k,j,r,i = ϕ
((Ra−1)E)

k,j,r,i +
1

K

E∑
τ=1

η

nkm
ℓ
′((Ra−1)E)
i · σ′(⟨w((Ra−1)E+τ)

k,j,r , ξk,i⟩) · 1(yk,i = −j)∥ξk,i∥22

= ϕ
((Ra−1)E)

k,j,r,i

(a)

≥ −β − 16n

√
log(4n2/δ)

d
log(T ∗),

where the last inequality (a) is by induction hypothesis.

When ϕ
((Ra−1)E)

k,j,r,i ≥ −0.5β − 8n
√

log(4n2/δ)
d log(T ∗), we have that

ϕ
(RaE)

k,j,r,i = ϕ
((Ra−1)E)

k,j,r,i +
η

nkmK
·
E∑
τ=1

ℓ
′((Ra−1)E+τ)
i · σ′(⟨w((Ra−1)E+τ)

k,j,r , ξk,i⟩) · 1(yi = −j)∥ξk,i∥22

(a)

≥ −0.5β − 8n

√
log(4n2/δ)

d
log(T ∗)−O

(
ηEσ2

pd

nkmK

)
σ′
(
0.5β + 8n

√
log(4n2/δ)

d
log(T ∗)

)
(b)

≥ −0.5β − 8n

√
log(4n2/δ)

d
log(T ∗)−O

(
ηEσ2

pd

nkmK

)
(c)

≥ −β − 16n

√
log(4n2/δ)

d
log(T ∗),

where we use ℓ′(t)k,i ≤ 1, and ∥ξk,i∥2 = O(σ2
pd) by Lemma A.1, and Lemma B.6 in the first inequality

(a), the second inequality (b) is by 0.5β+8n
√

log(4n2/δ)
d log(T ∗) ≤ 1, and the last inequality (c) is

by η = O
(
nkmK/(σ

2
pdE)

)
in Assumption 4.2.

Next we prove Equation (26) holds for t = RaE. Direct computation leads to ψ
(t)

k,j,r,i,

ψ
(RE)

k,j,r,i = ψ
(E(R−1))

k,j,r,i − η

nkmK

E∑
τ=1

ℓ
′(ER−E+τ)
k,i · σ′(⟨w(RE−E+τ)

k,j,r , ξk,i⟩) · 1(yk,i = j)∥ξk,i∥22.

Let tb = RbE to be the last time t < T ∗ that ψ
(tb)

k,j,r,i ≤ 0.5 log(T ∗). Then we have that

ψ
(RaE)

k,j,r,i = ψ
(tb)

k,j,r,i −
η

nkmK
·
E∑
τ=1

ℓ
′(tb+τ)
i · σ′(⟨w(tb+τ)

k,j,r , ξk,i⟩) · 1(yk,i = j)∥ξk,i∥22

−
E∑
τ=1

∑
Rb≤R<Ra

η

nkmK
· ℓ′(RE+τ)
i · σ′(⟨w(RE+τ)

k,j,r , ξk,i⟩) · 1(yk,i = j)∥ξk,i∥22

(a)

≤ 2
ηEσ2

pd

nmK
+

∑
Rb≤R<Ta

ηE

nkmK
· exp(−σ(⟨w(t)

k,j,r, ξk,i⟩) + 1) · σ′(⟨w(t)
k,j,r, ξk,i⟩) · ∥ξk,i∥

2
2

(c)

≤ 0.25 log(T ∗) + 0.25T ∗ exp(− log(T ∗)) log(T ∗)

≤ 0.5 log(T ∗),

where the first inequality (a) is by Lemmas B.6 and A.1, the second inequality (b) is by η ≤
nkmK/(Eσ

2
pd) log(T

∗), ψ
(t)

k,j,r,i > 0.5 log(T ∗) and ⟨w(0)
k,j,r, ξk,i⟩ ≥ −0.5β due to the definition of

tb and β, (c) is by β ≤ 0.1 log(T ∗) and 8n
√

log(4n2/δ)
d log(T ∗) ≤ 0.1 log(T ∗).

Finally, we can prove that 0 ≤ γ
(t)
k,j,r ≤ γ

(t)
k,k,j,r ≤ nχkSNR2

k log(T
∗). Direct computation yields:

γ
(t+1)
k,j,r = γ

(t)
k,j,r −

E∑
τ=1

ηχk
nkmK

·
nk∑
i=1

ℓ
′(t+τ)
k,i · σ′(⟨w(t+τ)

k,j,r , yk,i · µk⟩)∥µk∥
2
2.

25

Published as a conference paper at ICLR 2024

Let Tc = RcE to be the last time t < T ∗ that γ(t)k,j,r ≤ 0.5 log(T ∗) · nSNR
2

k. Then we have that

γ
(Ta)
k,j,r = γ

(Tc)
k,j,r −

ηχk
nkmK

E∑
τ=1

nk∑
i=1

ℓ
′(Tc+τ)
k,i · σ′(⟨w(Tc+τ)

k,j,r , yk,iµk⟩)∥µk∥22

−
∑

Rc<R<Ra

ηχk
nkmK

E∑
τ=1

nk∑
i=1

ℓ
′(RE+τ)
k,i · σ′(⟨w(RE+τ)

k,j,r , yk,iµk⟩)∥µk∥22

(a)

≤ γ
(Tc)
k,j,r −

ηχk
nkm

E∑
τ=1

nk∑
i=1

ℓ
′(Tc+τ)
i · σ′(⟨w(Tc+τ)

k,j,r , yk,iµk⟩)∥µk∥22

+
∑

Rc<R<Ra

ηχk
nkm

E∑
τ=1

exp(−σ(⟨w(RE+τ)
k,j,r , yk,iµk⟩) + 1) · σ′(⟨w(RE+τ)

j,r , yk,iµk⟩)∥µk∥22

(b)

≤ γ
(tc)
k,j,r + 0.25 · nχkSNR2

k · log(T ∗) + 0.25T ∗ exp(− log(T ∗)nχkSNR2
k) log(T

∗)nχkSNR2
k,

where the first inequality (a) is by the sign of ℓ′k,i, the second inequality (b) is by Lemma B.3, prop-
erty of ReLU activation, η ≤ mK/(E∥µk∥22). Furthermore, we have used the following inequality,

⟨w(t)
j,r,µk⟩

(a)

≥ ⟨w(0)
j,r ,µk⟩+ γ

(t)
k,j,r

(b)

≥ −0.5β + 0.5nχkSNR2
k log(T

∗)

(c)

≥ 0.25nχkSNR2
k log(T

∗),

where the first inequality (a) is by Lemma B.7, the second inequality (b) is by γ
(t)
k,j,r >

0.5 log(T ∗)nχkSNR2
k and ⟨w(0)

j,r ,µk⟩ ≥ −0.5β due to the definition of Tc and β, the last inequality
(c) is by β ≤ 0.1nχkSNR2

k log(T
∗). Similarly, for Tc < t < Ta and yi = j, we can also upper

bound ⟨w(t)
j,r,µk⟩ as follows,

⟨w(t)
j,r,µk⟩

(a)

≤ ⟨w(0)
j,r ,µk⟩+ γ

(t)
k,j,r

(b)

≤ 0.5β + 0.5nχkSNR2
k log(T

∗)

(c)

≤ 0.5nχkSNR2
k log(T

∗),

where the first inequality (a) is by Lemma B.7, the second inequality (b) is by induction hypothesis
γ
(t)
k,j,r ≤ nχkSNR2

k log(T
∗), the last inequality (c) is by β ≤ 0.1nχkSNR2

k log(T
∗).

B.2.2 CONVERGENCE ANALYSIS

In this section, our proof is highly inspired by Cao et al. (2022) and Kou et al. (2023).

Lemma B.9. We choose the solution of FedAvg W
∗

as follows:

w∗
j,r = w

(0)
j,r + log(2/ϵ)

K∑
k=1

(
j · n · SNR

2

k ·
µk

∥µk∥22
+

nk∑
i=1

1(j = yk,i)
ξk,i

∥ξk,i∥22

)
.

Under the same conditions as Theorem 4.3, we have that

∥W(T1) −W∗∥F ≤ Õ
(
m1/2n1/2Kσ−1

q d−1/2
)
.

Proof of Lemma B.9. Recall that in the first stage and at time step T1 we know that:

w
(T1)
j,r = w

(0)
j,r +

K∑
k=1

(j · γ(T1)
k,j,r ·

µk
∥µk∥22

+

nk∑
i=1

ψ
(T1)

k,j,r,i ·
ξk,i

∥ξk,i∥22
+

nk∑
i=1

ϕ
(T1)

k,j,r,i ·
ξk,i

∥ξk,i∥22
).

26

Published as a conference paper at ICLR 2024

Then the distance between the two weights can be calculated as follows:

∥W(T1) −W
∗∥F

(a)

≤ ∥W(T1) −W
(0)∥F + ∥W(0) −W

∗∥F
(a)

≤
∑
k

√
mmax

j,r

γ
(T1)
k,j,r

∥µk∥2
+
∑
k,i

√
mmax

j,r

|ψ(T1)

k,j,r,i|
∥ξk,i∥2

+
∑
k,i

√
mmax

j,r

|ϕ(T1)

k,j,r,i|
∥ξk,i∥2

+O(m1/2 log(1/ϵ))

K∑
k=1

(
n · SNR

2

k∥µk∥−1
2 +

√
nmax

i
∥ξk,i∥−1

2

)
(b)

≤O(m1/2∥µk∥−1
2 n

K∑
k=1

SNR2
k) +O(Knm1/2σ−1

p d−1/2)

+O(m1/2 log(1/ϵ))(n

K∑
k=1

SNR
2

k · ∥µ∥−1
2 +Kn1/2σ−1

q d−1/2)

(c)

≤Õ(m1/2(n

K∑
k=1

SNR
2

k · ∥µ∥−1
2 +

√
nKσ−1

q d−1/2))
(d)

≤ Õ(m1/2
√
nKσ−1

q d−1/2),

where the first inequality (a) is by triangle inequality, the second inequality (b) is by the decompo-
sition of W

(T1) and the definition of W
∗
, the third inequality (c) is by Lemma B.4, and the last

inequality is by direct derivation, the last inequality (d) is by that σ2
qd ≥ K2n∥µ∥22 in Assumption

4.2.

Lemma B.10. Under the same conditions as Theorem 4.3, we have that
yk,i⟨∇f(W

(t)
,xk,i),W

∗⟩ ≥ log(2/ϵ) for all i ∈ [n], k ∈ [K] and T1 ≤ t ≤ T ∗.

Proof of Lemma B.10. Recall that f(W
(t)
,xk,i) = (1/m)

∑
j,rj ·

[
σ(⟨wj,r, yk,iµk⟩) +

σ(⟨wj,r, ξk,i⟩)
]
, so we have

yk,i⟨∇f(W
(t)
,xk,i),W

∗⟩

=
1

m

∑
j,r

σ′(⟨w(t)
j,r, yk,iµk⟩)⟨µk, jw

∗
j,r⟩+

1

m

∑
j,r

σ′(⟨w(t)
j,r, ξk,i⟩)⟨yk,iξk,i, jw

∗
j,r⟩

=
1

m

∑
j,r

σ′(⟨w(t)
j,r, yk,iµk⟩)2 log(2/ϵ) · n · SNR

2

k +
1

m

∑
j,r

σ′(⟨w(t)
j,r, yk,iµk⟩)⟨µk, jw

(0)
j,r ⟩

+
1

m

∑
j,r

σ′(⟨w(t)
j,r, ξi⟩)⟨yk,iξi, jw

(0)
j,r ⟩+

1

m

∑
i′

∑
j,r

σ′(⟨w(t)
j,r, ξk,i⟩)⟨yiξk,i, jξk,i′⟩

(a)

≥ 1

m

∑
j,r

σ′(⟨w(t)
j,r, yk,iµk⟩)2 log(2/ϵ)n · SNR

2

k −
1

m

∑
j,r

σ′(⟨w(t)
j,r, yk,iµk⟩)Õ(σ0∥µk∥2)

− 1

m

∑
j,r

σ′(⟨w(t)
j,r, ξk,i⟩)Õ(σ0σp

√
d) +

1

m

∑
j=yk,i,r

σ′(⟨w(t)
j,r, ξk,i⟩)2 log(2/ϵ)

− 1

m

∑
i′ ̸=i

∑
j,r

σ′(⟨w(t)
j,r, ξk,i⟩)⟨ξk,i, ξk,i′⟩ · ∥ξk,i∥

−2
2

(b)

≥ 1

m

∑
j,r

σ′(⟨w(t)
j,r, yk,iµk⟩)2 log(2/ϵ)n · SNR

2

k −
1

m

∑
j,r

σ′(⟨w(t)
j,r, yiµk⟩)Õ(σ0∥µk∥2)

− 1

m

∑
j,r

σ′(⟨w(t)
j,r, ξk,i⟩)Õ(σ0σp

√
d) +

1

m

∑
j=ỹi,r

σ′(⟨w(t)
j,r, ξk,i⟩)2 log(2/ϵ)

− 1

m

∑
i′ ̸=i

∑
j,r

σ′(⟨w(t)
j,r, ξk,i⟩)Õ(1/

√
d), (28)

27

Published as a conference paper at ICLR 2024

where the first inequality (a) is by Lemma B.1, and the definition of w∗
j,r, and the second inequality

(b) is by Lemma A.1, and we have used the following inequality:

⟨w(t)
j,r, ξk,i⟩ =

K∑
k′=1

nk′∑
i′=1

ψ
(t)

k′,j,r,i′∥ξk′,i′∥−2
2 ⟨ξk,i, ξk′,i′⟩+

K∑
k′=1

nk′∑
i′=1

ϕ
(t)

k′,j,r,i′∥ξk′,i′∥−2
2 ⟨ξk,i, ξk′,i′⟩

(a)

≥ ⟨w(0)
j,r , ξk,i⟩+ ψ

(t)

k,j,r,i − 8

√
log(4n2/δ)

d

K∑
k′=1

∑
i′ ̸=i

|ψ(t)

k′,j,r,i′ |

− 8

√
log(4n2/δ)

d

K∑
k′=1

∑
i′ ̸=i

|ϕ(t)k′,j,r,i′ |

(b)

≥ ⟨w(0)
j,r , ξk,i⟩+ ψ

(t)

k,j,r,i − 8C2n

√
log(4n2/δ)

d
(c)

≥ 2− 2
√

log(8mn/δ) · σ0σp
√
d− 8C2n

√
log(4n2/δ)

d
(d)

≥ 1, (29)

where C2 is a positive constant, (a) is by Lemma A.1 and (b) is by ϕ
(t)

k,j,r,i = 0 when yk,i = j and
ψk,j,r,i = O(1) for all i ∈ [n], (c) is by Lemmas B.1, and (d) is by conditions on d and σ0 stated in
Assumption 4.2.

Plugging Equation (29) into Equation (28) gives:

yi⟨∇f(W
(t)
,xk,i),W

∗⟩ ≥ 2 log(2/ϵ)− Õ(σ0∥µk∥2)− Õ(σ0σp
√
d)

(a)

≥ log(2/ϵ),

where the last inequality (a) is by σ0 ≤ Õ(1)min{(σp
√
d)−1, ∥µk∥−1

2 } in Assumption 4.2.

Lemma B.11 (Cao et al. (2022)). Under Assumption 4.2, for 0 ≤ t ≤ T ∗, the following result holds
for all k ∈ [K].

∥∇LSk
(W

(t)
)∥2F ≤ O

(
max

{
∥µk∥22, σ2

pd
})
LSk

(W
(t)
).

Lemma B.12 (Cao et al. (2022)). Under the same conditions as Theorem 4.3, we have that

∥W(t) −W
∗∥2F − ∥W(t+1) −W

∗∥2F ≥ ηLS(W
(t))− ηϵ

for all T1 ≤ t ≤ T ∗.

Lemma B.13. Under the same conditions as Theorem 4.3, let T = T1 +
⌊
∥W(T1)−W

∗∥2
F

2ηϵ

⌋
=

T1 + Õ(mη−1ϵ−1nK2σ−2
q d−1). Then we have LS(W

(t)
) ≤ ϵ for some T1 ≤ t ≤ T .

Proof of Lemma B.13. By Lemma B.12, for any t ∈ [T1, T], we have that

∥W(s) −W
∗∥2F − ∥W(s+1) −W

∗∥2F ≥ ηLS(W
(s)

)− ηϵ

holds for s ≤ t. Taking a summation, we obtain that

t∑
s=T1

LS(W
(s)

) ≤ ∥W(T1) −W
∗∥2F + ηϵ(t− T1 + 1)

η
(30)

for all T1 ≤ t ≤ T . Dividing (t− T1 + 1) on both side of Equation (30) gives that

1

t− T1 + 1

t∑
s=T1

LS(W
(s)

) ≤ ∥W(T1) −W
∗∥2F

η(t− T1 + 1)
+ ϵ.

28

Published as a conference paper at ICLR 2024

Then we can take t = T and have that

1

T − T1 + 1

T∑
s=T1

LS(W
(s)

) ≤ ∥W(T1) −W
∗∥2F

η(T − T1 + 1)
+ ϵ

≤
m1/2n1/2Kσ−1

q d−1/2

η(T − T1 + 1)
+ ϵ < 2ϵ,

where the second inequity is by Lemma B.9. Therefore, our choice that T = T1+
⌊
∥W(T1)−W

∗∥2
F

2ηϵ

⌋
.

Because the mean is smaller than ϵ, we can conclude that there exist T1 ≤ t ≤ T such that
LS(W

(t)
) < ϵ.

B.3 POPULATION LOSS

Consider a new data point (xk, y) ∼ Dk drawn from the distribution of client k. Moreover, by the
signal-noise decomposition, the learned neural network has parameter:

w∗
j,r = w

(0)
j,r + log(2/ϵ)

K∑
k=1

(
j · n · SNR

2

k ·
µk

∥µk∥22
+

nk∑
i=1

1(j = yk,i)
ξk,i

∥ξk,i∥22

)
,

for j ∈ {±1} and r ∈ [m]. The calculation of the test error follows the results established in
Theorems E.1 and E.3 from Kou et al. (2023).
Lemma B.14 (Restatement of Theorem 4.4). Let T be defined in Theorem 4.3. Under the same
conditions as Theorem 4.3, there exists 0 ≤ t ≤ T such that if nχ

2
k∥µ∥4

2

Kσ4
pd

= Ω(1) then the test error

satisfies LDk
(W

(t)
) ≤ exp

(
−cnχ

2
k∥µ∥4

2

Kσ4
pd

)
.

Proof of Lemma B.14. Recall that the test error is define as P(x,y)∼Dk
(y ̸= f(W

(t)
,x
)
) It is equiv-

alent to calculate that

P(x,y)∼Dk
(y ̸= f(W

(t)
,x
)
) = P(x,y)∼Dk

(yf(W
(t)
,x
)
< 0).

It is essential to calculate the output function of neural network which follows:

yf(W
(t)
,x
)
=

1

m

∑
j,r

σ(⟨w(t)
j,r, yµk⟩) +

1

m

∑
j,r

σ(⟨w(t)
j,r, ξk,i⟩).

We first calculate the signal learning part:

⟨w(t)
j,r, yµk⟩ = ⟨w(0)

j,r , yµk⟩+ jyγ
(t)
k,j,r +

K∑
k=1

n∑
i=1

(ψ
(t)

k,j,r,i + ϕ
(t)

k,j,r,i)⟨ξk,i, yµk⟩∥ξk,i∥−2
2

= Θ(yjγ
(t)
k,j,r).

Next, we calculate the noise vector part. It is known that ⟨w(t)
j,r, ξk,i⟩ is a Gaussian distribution with

mean zero. Let w̃(t)
j,r = w

(t)
j,r −

∑K
k=1 j · γ

(t)
k,j,r ·

µk

∥µk∥2
2

, then we have that ⟨w̃(t)
j,r, ξk,i⟩ = ⟨w(t)

j,r, ξk,i⟩
and

∥w̃(t)
j,r∥2 ≤ Θ(1/(σp

√
dn)

K∑
k=1

n∑
i=1

ψk,j,r,i). (31)

As a result, by the condition
γ
(t)
k,j,r∑K

k=1

∑nk
i=1 ψ

(t)
k,j,r,i

= Θ(
nχk∥µ∥2

2

nσ2
qd

), we have that:

P(x,y)∼Dk
(yf(W

(t)
,x
)
< 0) ≤ P(x,y)∼Dk

[∑
r

σ(⟨w(t)
j,r, yµk⟩) ≥

∑
r

σ(⟨w(t)
j,r, ξk,i⟩)

]

≤ exp

(
−cnχ

2
k∥µ∥42
Kσ4

pd

)
.

29

Published as a conference paper at ICLR 2024

C SUPPLEMENTS FOR EXPERIMENTS

C.1 EXPERIMENTAL DETAILS FOR WEIGHTED FEDAVG ON REAL-WORLD DATASET

Following the footsteps of the prior works (Acar et al., 2021; Shamsian et al., 2021), A ConvNet
LeCun et al. (1998) with two convolutional layers and three fully-connected layers is adopted for
experiments on CIFAR10 and CIFAR100 datasets. The real-world dataset comprises five distinct
sub-datasets exhibiting feature shift: SVHN (Netzer et al., 2011), USPS (Hull, 1994), SynthDigits
(Ganin & Lempitsky, 2015), MNIST-M (Ganin & Lempitsky, 2015), and MNIST (Wang et al.,
2014), where each domain serves as a client.

As for the Digits dataset, we utilized another ConvNet LeCun et al. (1998) similar to Li et al.
(2021) with four convolutional layers and three fc layers. For all experiments in this part, models
were trained with 300 communication rounds and all tasks were optimized with the SGD optimizer.
For experiments on CIFAR10/CIFAR100, we set the learning rate 0.03 and randomly sampled half
of the clients participating in each communication round. For experiments on Digits, the learn-
ing rate is set to 0.01 and all clients are involved in each communication round. Algorithms were
implemented on PyTorch Paszke et al. (2019) with an RTX 3090 Ti GPU. The learned models
are tested on the private test data of each client. To be specific, we run five times trials and re-
port their mean and std. Codes are available at https://anonymous.4open.science/r/
fed-feature-learning-31E9/.

C.2 FEATURE LEARNING PROCESS IN FL

We provide an experimental evidence to validate our theoretical analysis of feature learning for FL,
as shown in Figure 2. In this experiment, we engage two clients under the IID setting. Both the
data and neural networks are synthesized in accordance with our theoretical framework. Both data
and neural networks are synthetic by our theoretical setting. In the plot, we illustrate the learning
trajectory for client 1 for client 1 in terms of signal learning represented by maxj,r γj,r and noise
memorization represented by maxj,r ρj,r. We observe that, with the help of communication, the
signal learning keeps increasing without any degradation. In contrast, noise memorization exhibits
a marked decline with at each weight averaging. This observed behavior further reinforces our
theoretical analysis.

Figure 2: Feature learning trajectory of FedAvg on synthetic data. The signal learning (blue curve)
keeps increasing without any degradation. In contrast, noise memorizations (red curves) exhibit a
marked decline with at each weight averaging.

C.3 ADDITIONAL EXPERIMENT WITH HIGH DIMENSION SETTING

We further examine our theoretical result by experimental simulation with a high dimension setting.
The training data size is set to ntrain = 100 and the testing data size is set to ntest = 2000 with
instance dimension to d = 8000 for each client. The result is shown in Figure 3. These additional
experiments confirm that Federated Averaging (FedAvg) can indeed achieve better results than local
training methods, aligning with our theoretical predictions.

30

https://anonymous.4open.science/r/fed-feature-learning-31E9/
https://anonymous.4open.science/r/fed-feature-learning-31E9/

Published as a conference paper at ICLR 2024

Figure 3: Convergence behavior comparison of train loss, train accuracy, test loss, and test accuracy
on synthetic data. Both local training and FedAvg demonstrate convergence on the training set.
FedAvg outperforms significantly on the testing set.

Figure 4: Comparison results on each client under non-IID setting.

C.4 FEATURE LEARNING IN NON-IID SETTING

To simulate the non-IID scenario, we split 20 clients into four groups. Within each group, the signal
vectors are identical. However, signal vectors from different groups are orthogonal to each other.
Specifically, the client groupings are as follows: {k}k=1,{k}k∈[2,4], {k}k∈[5,10], and {k}k∈[11,20].
Besides, we implement the Weighted FedAvg algorithm, where each client only communicates with
those clients in the same group. The test accuracy on each client is demonstrated in Figure 4. The
findings indicate that as the number of members in a group increases, the performance of both
FedAvg and Weighted FedAvg improves. This aligns with our theoretical insights regarding the
generalization of Federated Learning (FL).

D ADDITIONAL DISCUSSION

D.1 NAME OF EMPLOYED MODEL AS CNN

Our choice to label the model as a CNN is based on the specific characteristics of the data model
we used. We adopt a two-patch model, where xk,i = [x

(1)
k,i ,x

(2)
k,i] = [yk,iµk, ξk,i]. We implement

a convolution operation using a single weight across these two patches, akin to applying a filter in
traditional CNNs. This is concisely represented as follows:

f =
1

m

m∑
r=1

[σ(w⊤
k,+1,rx

(1)
k,i) + σ(w⊤

k,+1,rx
(2)
k,i)]−

1

m

m∑
r=1

[σ(w⊤
k,−1,rx

(1)
k,i) + σ(w⊤

k,−1,rx
(2)
k,i)].

31

Published as a conference paper at ICLR 2024

Here the filter wk,j,r operates on two patch, with k ∈ [K] denoting the index of client, j ∈ {+1,−1}
corresponding to the weights value at the second layer, and r ∈ [m] as the filter index. Our approach
alongside fixing the second layer is consistent with the related works [Cao et al. (2022); Kou et al.
(2023)], where similar network structures applying weights across multiple data patches are identi-
fied as CNNs.

D.2 RELATION BETWEEN CONVERGENCE AND DATA HETEROGENEITY

The effect of data heterogeneity on convergence is a critical aspect of our analysis and highlights the
significant influence on convergence rates. As demonstrated in Theorem 4.4, we establish condition
related to the signal-to-noise ratio (SNR):

nχ2
k∥µk∥42
Kσ4

pd
= Ω(1)

with the effective SNR for each climent k given by SNRk =
(∑K

k′=1
⟨µk,µk′ ⟩
∥µk∥2

2

)
SNRk. In scenarios

with increased data heterogeneity, the term χk =
∑K
k′=1

⟨µk,µk′ ⟩
∥µk∥2

2
tends to decrease. To maintain

a consistent SNR level in such cases, it becomes necessary to reduce σ2
pd, which, according to the

convergence time in Theorem 4.3: T = Θ̃(η−1Kmnσ−2
p d−1 + η−1ϵ−1mnσ−2

p K2d−1) results in
slower convergence. On the contrary, reducing data heterogeneity will shorten the convergence
time.

D.3 EFFECT OF THE NUMBER OF LOCAL EPOCHS ON THE CONVERGENCE AND
GENERALIZATION OF FEDAVG

In our analysis, the term T in Theorem 4.3 represents the total number of local updates, defined as
T = RE, where R is the number of commutation rounds and E is the number of local epochs.

Under our assumption on the learning rate, where η ≤ Õ(KE min{∥µ∥−2
2 , σ−2

p d−1}), increasing
E may lead to slower convergence. This observation aligns with the empirical results reported
in McMahan et al. (2017). The impact of varying E on the required number of communication
rounds to achieve adequate convergence is demonstrated in Table 2 of McMahan et al. (2017), which
compares the communication rounds needed for the same training accuracy on MNIST.

Besides, it is important to note that a smaller E does not necessarily imply better generalization.
To explore this relationship further, we conducted additional experiments of FedAvg on CIFAR 10.
From Table 3 we can see that the generalization performance of FedAvg is not closely related to the
number of local epochs.

Table 3: Relation between local epochs and test accuracy.
E/R 1 20 40 60 80

5 48.18 66.28 66.24 64.98 64.55
10 54.17 64.6 64.48 63.44 64.5
15 54.34 64.1 63.91 63.44 64.33

32

	Introduction
	Related Work
	Preliminary
	Notations
	Data Model
	Neural network model
	Objective function and FedAvg

	Main Results
	Coefficient Dynamics for Federated Learning
	FedAvg Provably benefits from communication

	Proof Sketch
	Iterative analysis of Coefficients for Convergence
	Test error analysis for generalization

	Experiments
	Federated Learning on Synthetic Data
	Weighted FedAvg on Real-World Dataset

	Conclusion
	Complete Proof for Coefficient Iteration
	Complete Proof for Coefficient Dynamics
	Stage One: Increase of Signal Learning and Noise Memorization
	Stage Two: Convergence analysis and feature learning scale
	feature learning scale at convergence
	Convergence analysis

	Population loss

	Supplements for Experiments
	Experimental details for Weighted FedAvg on Real-World Dataset
	Feature learning process in FL
	Additional Experiment with high dimension setting
	Feature Learning in non-IID setting

	Additional Discussion
	Name of employed model as CNN
	Relation between convergence and data heterogeneity
	Effect of the number of local epochs on the convergence and generalization of FedAvg

