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Abstract

Temporal Knowledge Graph (TKG) reason-001
ing, aiming to predict future unknown facts002
based on historical information, has attracted003
considerable attention due to its great practi-004
cal value. Insight into history is the key to005
predict the future. However, most existing006
TKG reasoning models singly capture repet-007
itive history, ignoring the entity’s multi-hop008
neighbour history which can provide valuable009
background knowledge for TKG reasoning. In010
this paper, we propose Multi-Granularity His-011
tory and Entity Similarity Learning (MGESL)012
model for Temporal Knowledge Graph Reason-013
ing, which models historical information from014
both coarse-grained and fine-grained history.015
Since similar entities tend to exhibit similar016
behavioural patterns, we also design a hyper-017
graph convolution aggregator to capture the018
similarity between entities. Furthermore, we019
introduce a more realistic setting for the TKG020
reasoning, where candidate entities are already021
known at the timestamp to be predicted. Exten-022
sive experiments on three benchmark datasets023
demonstrate the effectiveness of our proposed024
model.025

1 Introduction026

Temporal Knowledge Graphs (TKGs), served as027

a way to represent and store dynamic knowledge,028

have shown great value in many applications, such029

as event prediction (Deng et al., 2020), question030

answering (Mavromatis et al., 2022) and recom-031

mendation (Liu et al., 2023b). In TKGs, each fact032

is represented as a quadruple, e.g., (Obama, sanc-033

tion, Russia, 2016-12-29) in Figure 1(a).034

Reasoning over TKGs can be performed under035

two primary settings, i.e., interpolation and ex-036

trapolation (Jin et al., 2020). Given a TKG with037

timestamps from t0 to tn, interpolation mainly038

aims at inferring missing facts that occur at time039

t (t0 ≤ t ≤ tn), while extrapolation attempts to040

(a) An example of similarity learning problem

(b) An example of history of different granularities of entity

Figure 1: Illustration of the two problems of TKG rea-
soning task.

predict facts that occur at time t (t > tn). In this pa- 041

per, we mainly focus on TKG extrapolation. Most 042

of existing extrapolation models (Jin et al., 2020; 043

Li et al., 2021b, 2022b; Liu et al., 2023a) assume 044

the candidate entities are unknown during the rea- 045

soning. However, there are cases that we already 046

know the candidate entities, e.g., suspects are often 047

identified beforehand in criminal investigations and 048

candidates are usually already determined before 049

the presidential election. In these cases, those ex- 050

trapolation models (Jin et al., 2020; Li et al., 2021b, 051

2022b; Liu et al., 2023a) cannot effectively utilize 052

the information of those candidate entities because 053

they treat all entities equally during the reasoning. 054

Therefore, we introduce a new setting called the 055

candidate entity known setting, where all the enti- 056

ties at t are known in advance. In contrast, if the 057

candidate entities at t are unknown during the rea- 058
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soning, we call this the candidate entity unknown059

setting. In this paper, both candidate entity known060

and unknown settings will be discussed.061

To predict what will happen in the future, we062

found that (1) searching for similar entities, ob-063

serving and understanding the evolutionary pat-064

tern of the actions of similar entities, and (2) delv-065

ing into the entity historical context from multi-066

granularity are crucial. Figure 1(a) shows an ex-067

ample of TKG similarity learning problem, where068

Obama and Biden both sanction Russia. However,069

since Obama and Biden are not connected in this070

example, vanilla graph convolution is unable to071

capture the interaction between them. To address072

this issue, we realize that both Obama and Biden073

share the same relation of sanction. Since hyper-074

graph convolution can enable information interac-075

tion among entities under the same relation, we076

therefore design a hypergraph convolutional aggre-077

gator to capture similarity information between078

them. Additionally, existing models (Jin et al.,079

2020; Li et al., 2021b) mainly focus on utilising080

the available temporal and structural information081

in the TKG for inference, ignoring the history in-082

formation. Even though some recent studies (Zhu083

et al., 2021; Li et al., 2022a; Xu et al., 2023) tried084

to find the correct answer from long-term global085

repeated history (i.e., fine-grained history), but they086

ignore the more generalised history. For instance,087

Figure 1(b) illustrates a temporal knowledge graph088

with several timestamps, where the task is to pre-089

dict the answer to the query (USA, sanction, ?, t).090

Most models (Zhu et al., 2021; Xu et al., 2023)091

prioritize repeated history, and return China as the092

answer. However the correct answer to the question093

is Russia which is a multi-hop neighbour of USA.094

To overcome this limitations, we further consider095

multi-hop neighbour entities (i.e., coarse-grained096

history) in TKG reasoning.097

To this end, we consider history at two levels098

of granularity (i.e., fine and coarse-grained his-099

tory) and entity similarity learning simultaneously,100

and propose the Multi-Granularity History and101

Entity Similarity Learning (MGESL) model for102

Temporal Knowledge Graph Reasoning. Specifi-103

cally, MGESL consists of three modules, i.e., (1)104

Entity Similarity Learning Module, which is used105

to capture the similarity between entities that share106

the same relation; (2) Temporal Evolution Mod-107

ule, which is used to aggregate and transfer the KG108

information from spatial and temporal views, re-109

spectively; (3) Multi-Granularity History Module,110

which is used to capture history from both coarse 111

and fine granularities. Our main contributions are 112

summarized as follows: 113

• We propose a TKG reasoning model MGESL, 114

which can simultaneously consider entity 115

similarity learning, coarse-grained and fine- 116

grained history. To the best of our knowledge, 117

we are the first to consider these features to- 118

gether. 119

• We design a novel hypergraph convolutional 120

aggregator to capture similarities between en- 121

tities, and utilize the coarse-grained history to 122

capture multi-hop historical contextual infor- 123

mation and fine-grained history for decoding 124

to make full use of historical information. 125

• Besides the candidate entity unknown setting, 126

we also propose another realistic TKG reason- 127

ing setting, i.e., the candidate entities are al- 128

ready known. Extensive experiments on three 129

benchmark datasets show that our proposed 130

MGESL model outperforms existing TKG rea- 131

soning methods under both settings. 132

2 Related Work 133

Since TKG interpolation is outside the scope of our 134

study, we mainly review the existing TKG reason- 135

ing models under the extrapolation setting. Many 136

extrapolation models utilise the available temporal 137

and structural information in TKG for inference. 138

RE-Net (Jin et al., 2020) utilizes heterogeneous 139

graph convolution (RGCN) (Schlichtkrull et al., 140

2018) to capture the structural information within 141

the same timestamp and employs a recurrent neural 142

network (RNN) to model the temporal informa- 143

tion between different timestamps. RE-GCN (Li 144

et al., 2021b) further constrains the evolution of 145

entities by incorporating additional static attributes. 146

However, they do not consider the history infor- 147

mation. CyGNet (Zhu et al., 2021) and CENET 148

(Xu et al., 2023) propose a copy mechanism to 149

find the correct answer among long-term global 150

history, i.e., the fine-grained history. TiRGN (Li 151

et al., 2022a) considers the sequential, repetitive 152

and cyclical patterns of historical facts. However, 153

they ignore the multi-hop neighbour history, i.e., 154

the coarse-grained history. xERTE (Han et al., 155

2021) employs a subgraph sampling technique to 156

construct interpretable reasoning graphs. CluSTeR 157

(Li et al., 2021a) and TITer (Sun et al., 2021) both 158
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Figure 2: Illustration of the proposed MGESL model. Entity Similarity Learning Module captures the similarities
between entities that share the same relation. Temporal Evolution Module aggregates and transfers the KG
information from spatial and temporal views, respectively. Multi-Granularity History Module models history from
both coarse and fine granularity.

utilize reinforcement learning to search for a series159

of historical facts for reasoning. HGLS (Zhang160

et al., 2023) captures the long and short history of161

an entity by constructing global graphs. However,162

all the above models do not consider the importance163

of entity similarity learning in TKG reasoning.164

3 Preliminaries165

A temporal knowledge graph can be defined as166

G = {G1,G2, ...,GT }, and T is the number of167

timestamps. The subgraph Gt = (E ,R,Ft) at t168

is a directed multi-relational graph, where E is the169

set of entities, R is the set of relations, and Ft is170

the set of facts at t. A fact in Ft can be formal-171

ized as a quadruple (s, r, o, t), where s, o ∈ E and172

r ∈ R. It describes that a fact of relation type r173

occurs between subject entity s and object entity o174

at time t.175

The extrapolation reasoning task aims to predict176

the missing object entity o or subject s via answer-177

ing query like (s, r, ?, tq) or (?, r, o, tq) based on178

the historical facts {(s, r, o, ti)|ti < tq}. For each179

quadruple (s, r, o, t), an inverse relation quadruple180

(o, r−1, s, t) is often added to the dataset (Vashishth 181

et al., 2020). Therefore, when predicting the miss- 182

ing subject of a query (?, r, o, tq), we can convert 183

it into predicting (o, r−1, ?, tq). Based on this, the 184

model in this paper only aims to predict the miss- 185

ing object entity. We use bold items to denote 186

vector embeddings. For example, H ∈ R|E|×d and 187

R ∈ R2|R|×d are used to represent the randomly 188

initial embedding of entities and relations respec- 189

tively, where d denotes the embedding dimension. 190

4 Methodology 191

4.1 Model Overview 192

The framework of MGESL is shown in Figure 2, 193

comprising three modules: (1) the Entity Similarity 194

Learning Module, (2) the Temporal Evolution Mod- 195

ule, and (3) the Multi-Granularity History Module. 196

First, the Entity Similarity Learning Module learns 197

the representation of entity with similarity infor- 198

mation. Next, the learned entity representation is 199

fed to the Temporal Evolution Module, where it 200

further learns about the structural and sequential 201

characteristics of recent facts. Then, it combines 202
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with historical context information learnt from the203

coarse-grained history in the Multi-Granularity His-204

tory Module. Finally, the entity representation is205

decoded under the guidance of the fine-grained his-206

tory.207

4.2 Entity Similarity Learning208

4.2.1 Pre-Learning Graph209

Inspired by the pre-training model (Devlin et al.,210

2019), we first construct a pre-learning graph and211

initially learn the representation of entities on212

the pre-learning graph. Entity similarity infor-213

mation is also learnt on this graph. For a TKG214

G, we ignore the time factor to merge the sub-215

graphs of the first L timestamps to form a pre-216

learning graph GL, i.e., GL = (E ,R,FL), where217

FL = {(s, r, o) | (s, r, o, t) ∈ Ft, 0 < t < L} is a218

set of facts.219

4.2.2 Hypergraph Convolution220

To effectively capture the similarity between enti-221

ties in the pre-learning graph, we design a hyper-222

graph convolutional network. First, we construct a223

hypergraph neighbourhood matrix D ∈ R|E|×2|R|,224

where Di,j = 1 means the ith entity is the sub-225

ject entity of the jth relation, otherwise it equals226

0. Please note that for simplicity, we have omit-227

ted the inverse relation in Figure 2. As stated in228

Section 3, for each relation, we only aggregate mes-229

sages from its subject entity through employing an230

inverse relation.231

First, messages from the subject entity are passed232

into the relation:233

X =
1

2
W1D

−1H +
1

2
W2R (1)234

where W1, W2 are the learnable weights. The235

result X ∈ R|2R|×d contains messages from the236

subject entities and the relation itself. Next, the237

relation message is passed into the subject entity:238

H1 = σ(
1

2
W3DX +

1

2
W4H) (2)239

where W3, W4 are the learnable weights and σ is240

the ReLU activation function. Through the above241

steps, we can initially learn the representation of242

entities H1, which incorporates the similarity infor-243

mation between entities.244

4.2.3 Structural Encoder245

Hypergraph convolution on the pre-learning graph246

mainly captures the similarity information between247

entities, but it cannot capture the inherent graph 248

structure information of the pre-learning graph. 249

Therefore, we utilize a heterogeneous graph convo- 250

lution network (Vashishth et al., 2020) as a struc- 251

tural encoder to aggregate information from multi- 252

ple relations and multi-hop neighbour entities on 253

the pre-learning graph, which is defined as follows: 254

hl+1
s = σ

(∑
(s,r,o)∈FL

1

cs
Wl

0(h
l
o + r) + Wl

1hl
s

)
(3) 255

where hl
s, hl

o denote the lth layer embeddings of 256

entities s, o respectively, r denotes the embedding 257

of relation r, cs is a normalizing factor equal to 258

the number of neighbours of s, Wl
0 and Wl

1 denote 259

the learnable weights of the lth layer, and σ is the 260

ReLU activation function. We denote the entity 261

embedding of the output of the last layer as H2. 262

For convenience, we denote Equation (3) as GCN. 263

Given that the meaning of relation r remains 264

consistent over time, we do not update relation 265

embedding in this paper to maintain its semantic 266

stability. Finally, we combine H1 and H2 to get the 267

entity representation H0, 268

H0 = αH1 + (1− α)H2 (4) 269

where α ∈ [0, 1] denotes hyperparameter, H0 de- 270

notes entity embedding obtained by learning on the 271

pre-learning graph, incorporating similarity and 272

structural information between entities. 273

4.3 Temporal Evolution 274

Future facts are usually closely related to recent 275

facts, and our temporal evolution module aims to 276

model recent facts. KGs naturally have graph struc- 277

ture information, while TKGs have the additional 278

dimension of time compared to KGs. Therefore, 279

we aggregate and transfer the most h recent times- 280

tamps of the timestamp t to be predicted in TKG 281

from both spatial and temporal views. To capture 282

the structural information between entities, we also 283

utilize the heterogeneous graph convolutional net- 284

work in Equation (3) for each timestamp, 285

Ht−1
gcn = GCN(Ht−1,R) (5) 286

where Ht−1 denotes the entity embedding at time 287

t−1 and the initial value of Ht−h at time t−h is the 288

output of the similarity learning module H0. Ht−1
gcn 289

denotes the entity embedding after aggregation by 290

GCN Encoder. In order to include the sequential 291
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dependencies of subgraphs at the previous times-292

tamps, we utilize the gated recurrent unit (GRU)293

to update the representations of entities,294

Ht = GRU(Ht−1
gcn ,Ht−1). (6)295

We denote the output of the last timestamp as Hf .296

4.4 Multi-Granularity History Learning297

4.4.1 Background Graph298

In order to more accurately model the representa-299

tion of entities and the connections between them,300

we construct a background graph GC based on301

the most recent C timestamps, similar to HGLS302

(Zhang et al., 2023). Specifically, when the can-303

didate entities are known, the steps to construct304

the background graph are as follows: (1) identify305

the position where each candidate entity appears in306

the recent C timestamps. (2) conduct breadth-first307

search from each candidate entity to extract their n-308

hop neighbours. (3) merge the common neighbours309

of candidate entities and add temporal edge r0 (a310

randomly initial vector) between identical entities311

across different timestamps. With the steps above,312

we have established a background graph for more313

accurate entity representation learning. When the314

candidate entities are unknown, we take all entities315

in TKG as candidates and then execute the above316

three steps to construct the background graph.317

4.4.2 Multi-head Attention GCN (MAGCN)318

We employ a heterogeneous graph convolution net-319

work that incorporates the multi-head attention320

mechanism to effectively capture entity represen-321

tation in the background graphs. First, all entities322

in the background graph are initialised by H for323

their initial embedding. Next, we combine the em-324

beddings of the subject entity, the relation, and the325

object entity to calculate their attention scores,326

βs,r,o = LeakyRelU(W5[hs ⊕ r ⊕ ho]) (7)327

where hs, ho and r denote the embeddings of en-328

tities s, o and relation r, respectively, W5 denotes329

learnable weight, and ⊕ is the concatenation oper-330

ation. After that, we further calculate their coeffi-331

cients based on the scores of each triple,332

αs,r,o =
exp(βs,r,o)∑

(s,ri,oi)∈Ns
exp(βs,ri,oi)

(8)333

where Ns denotes the set of all triples with s as334

subject entity. After that, we can attentively ag-335

gregate message from all neighbours of entity s in336

the background graph. The utilization of the multi- 337

head attention mechanism can enhance the stability 338

of the convolution. Formally, the aggregator is 339

defned as follows: 340

hl+1,c
s = ∥Mm=1 σ

(∑
(s,r,o)∈Ns

αm
s,r,oWl,m

6 (hl
o + r) 341

+Wl,m
7 hl

s

)
(9) 342

343

hl+1
s = Wchl+1,c

s (10) 344

where M denotes the number of attention heads, 345

∥ represents concatenation, hl
s and hl

o denote the 346

embedding of entity s and o after the lth layer ag- 347

gregation, r denotes the embedding of relation r, 348

Wl
6 and Wl

7 are learnable weights, and σ is the 349

ReLU activation function. Wc ∈ Rd×dM reduces 350

the dimension of hl+1,c
s from dM to d. We denote 351

the entity embedding of the last layer as Hg. 352

Finally, we use a gate mechanism to fuse the en- 353

tity embedding learnt from the temporal evolution 354

module with the entity embedding learnt from the 355

background graph, 356

Hz = σ(U)⊙ Hf + (1− σ(U))⊙ Hg (11) 357

where U ∈ R|E|×d denotes the gate vector, ⊙ de- 358

notes element-wise dot option, σ denotes sigmoid 359

function to map values to the range of 0 to 1. Fi- 360

nally, we obtain a representation of the entity Hz , 361

which incorporates the similarity information be- 362

tween entities, the entity’s recent temporal informa- 363

tion and contextual information. 364

4.4.3 Fine-grained History 365

Based on human experience in predicting future 366

facts, the answer to a query is often an entity that 367

is closely related to the current entity. Therefore, 368

we extract two kinds of fine-grained histories, i.e., 369

one-hop history neighbours and repeated history 370

answers (Li et al., 2022a). Specifically, for a query 371

(s, r, ?, t) the indicator vector Ps
t of one-hop history 372

neighbours for the entity s at t can be defined as 373

follows: 374

Ps
t = ps

0 ∨ ps
1 ∨ ps

2 ∨ ... ∨ ps
t−1 (12) 375

where ps
t denotes a vector where each element rep- 376

resents an entity. If the corresponding element of 377

an entity is 1, it means that the entity is a one-hop 378

neighbour of s at t, otherwise it is 0. The symbol ∨ 379

represents the bitwise OR operation. Similarly, we 380
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can calculate the repeated history answers indicator381

vector Ps,r
t ,382

Ps,r
t = ps,r

0 ∨ ps,r
1 ∨ ps,r

2 ∨ ... ∨ ps,r
t−1 (13)383

where ps,r
t denotes a vector where each element384

indicates whether a corresponding entity is an an-385

swer to the query (s, r, ?, t);it is 1 if the entity is an386

answer and 0 otherwise.387

4.5 Fine-grained History Guided Decoder388

4.5.1 Scoring Function389

We utilize ConvTransE (Shang et al., 2019) as de-390

coder to fuse the semantic information of s and r in391

query (s, r, ?, t). Since Hz already incorporates in-392

formation of the coarse-grained history, the scores393

caculated based on coarse-grained history can be394

defined as follows:395

pcoarse = softmax(ConvTransE(hs
t , r)Hz)

(14)396

where hs
t and r denote the embedding of subject397

entity s and relation r, respectively. For the fine-398

grained history (i.e., one-hop neighbour history399

and repeated history), we use these two vectors (Ps
t400

and Ps,r
t ) generated in section 4.4.3 to guide the401

decoder in scoring, i.e.,402

plocal = softmax(ConvTransE(hs
t , r)HzPs

t )
(15)

403

phistory = softmax(ConvTransE(hs
t , r)HzPs,r

t )
(16)

404

where plocal and phistory denote the scores guided405

by one-hop neighbour history and repeated history406

respectively. The final score is calculated as fol-407

lows:408

p = µ1pcoarse + µ2plocal + µ3phistory (17)409

where µ1, µ2, µ3 ∈ [0, 1] are hyperparameters and410

µ1 + µ2 + µ3 = 1.411

4.5.2 Training Objective412

Predicting the object entity based on a given query413

(s, r, ?, t) can be viewed as a multi-class classi-414

fication task (Jin et al., 2020), where each class415

corresponds to one entity. The learning objective416

is to minimize the following cross-entropy loss L417

during training:418

L = −
∑

(s,r,o,t)∈G
yet log p(o | s, r, t) (18)419

where p(o | s, r, t) is the final probability score of420

entity, yet ∈ R|E| is the label vector, of which the421

element is 1 if the fact occurs, otherwise is 0.422

5 Experiments 423

5.1 Setup 424

5.1.1 Datasets 425

We use three typical TKG datasets in our experi- 426

ments: ICEWS14 (Riloff et al., 2018), ICEWS18 427

(Jin et al., 2020), and ICEWS05-15 (Riloff et al., 428

2018). We divide them into training, validation, 429

and test sets with a proportion of 80%, 10%, and 430

10% by timestamps following (Li et al., 2021b, 431

2022a; Xu et al., 2023). The details of datasets 432

statistics are shown in Appendix A. 433

5.1.2 Baselines 434

Under the candidate entity unknown setting, we 435

compare our proposed MGESL model with three 436

kinds of baselines: (1) Static KG reasoning mod- 437

els, (2) Interpolated TKG reasoning models, and 438

(3) Current state-of-the-art extrapolated TKG rea- 439

soning model. Under the candidate entity known 440

setting, we mainly focus on comparing to the ex- 441

trapolated TKG reasoning models. For the details 442

of baselines under both candidate entity known and 443

unknown settings, please refer to Appendix B. 444

5.1.3 Training Settings and Evaluation 445

Metrics 446

We report a widely used time-aware filtered ver- 447

sion (Sun et al., 2021; Li et al., 2022a,b) of Mean 448

Reciprocal Ranks (MRR) and Hits@1/3/10. For 449

implementation details and parameter sensitivity 450

analysis experiments of MGESL, please refer to 451

Appendix C and D, respectively. 452

5.2 Results 453

Table 1 presents the MRR and Hits@1/3/10 results 454

of entity prediction on three TKGs under the can- 455

didate entity unknown setting. Specifically, our 456

proposed MGESL significantly outperforms all the 457

static models (i.e., the first block in Table 1) be- 458

cause they ignore the time dimension of the facts in 459

TKGs. MGESL also performs much better than the 460

temporal models for the interpolation setting (i.e., 461

the second block in Table 1) because MGESL ad- 462

ditionally captures temporally sequential patterns 463

by temporal evolution module. In comparison 464

to the current sate-of-the-art temporal models un- 465

der the extrapolation setting (i.e., the third block 466

in Table 1), our model also achieves notable im- 467

provements. Specifically, MGESL improves ap- 468

proximately 8.72%, 8.22%, 8.60%, and 7.16% on 469

ICEWS14 for MRR, Hit@1, Hit@3, and Hit@10, 470
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Model
ICEWS14 ICEWS18 ICEWS05-15

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

DistMult (Yang et al., 2015) 15.44 10.19 17.24 23.92 11.51 7.03 12.87 20.86 17.95 13.12 20.71 29.32
ConvE (Dettmers et al., 2018) 35.09 25.23 39.38 54.68 24.51 16.23 29.25 44.51 33.81 24.78 39.00 54.95
ComplEx (Trouillon et al., 2016) 32.54 23.43 36.13 50.73 22.94 15.19 27.05 42.11 32.63 24.01 37.50 52.81
ConvTransE (Shang et al., 2019) 33.80 25.40 38.54 53.99 22.11 13.94 26.44 42.28 33.03 24.15 38.07 54.32
RotatE (Sun et al., 2019) 21.31 10.26 24.35 44.75 12.78 4.01 14.89 31.91 24.71 13.22 29.04 48.16

TTransE (Jiang et al., 2016) 13.43 3.11 17.32 34.55 8.31 1.92 8.56 21.89 15.57 4.80 19.24 38.29
DE-SimplE (Goel et al., 2020) 32.67 24.43 35.69 49.11 19.30 11.53 21.86 34.80 35.02 25.91 38.99 52.75
TA-DistMult (Riloff et al., 2018) 26.47 17.09 30.22 45.41 16.75 8.61 18.41 33.59 24.31 14.58 27.92 44.21

RE-NET (Jin et al., 2020) 39.86 30.11 44.02 58.21 29.78 19.73 32.55 48.46 43.67 33.55 48.83 62.72
GyGNet (Zhu et al., 2021) 37.65 27.43 42.63 57.90 27.12 17.21 30.97 46.85 40.42 29.44 46.06 61.60
xERTE (Han et al., 2021) 40.79 32.70 45.67 57.30 29.31 21.03 33.51 46.48 46.62 37.84 52.31 63.92
RE-GCN (Li et al., 2021b) 39.42 30.13 43.80 57.08 27.51 17.82 31.17 46.55 38.27 27.43 43.06 59.93
TITER (Sun et al., 2021) 41.73 32.74 — 58.44 29.98 22.05 — 44.83 47.60 38.29 — 64.86
TLogic (Liu et al., 2022) 40.90 32.10 45.50 57.60 30.00 22.10 33.50 44.80 47.70 38.00 52.90 65.80
CEN (Li et al., 2022b) 42.20 32.08 47.46 61.31 31.50 21.70 35.44 50.59 45.27 34.18 — 66.46
TiRGN (Li et al., 2022a) 41.52 32.04 46.20 59.62 31.70 21.82 35.90 51.15 48.52 37.55 53.54 68.74
CENET (Xu et al., 2023) 41.30 32.58 — 58.22 29.65 19.98 — 48.23 47.13 37.25 — 67.61
DaeMon (Dong et al., 2023) — — — — 31.85 22.67 35.92 49.80 — — — —
HGLS (Zhang et al., 2023) 40.28 30.39 44.95 59.56 31.36 21.27 35.25 51.23 50.08 39.32 56.03 70.49
RETIA (Liu et al., 2023a) 41.61 31.66 46.36 60.61 31.23 21.55 35.07 50.17 >20Days >20Days >20Days >20Days

MGESL (ours) 45.88 35.43 51.54 65.70 34.18 23.66 38.64 54.89 53.78 42.52 60.40 75.04

Table 1: Performance on three datasets in terms of MRR (%), Hit@1 (%), Hit@3 (%) and Hit@10 (%) under the
candidate entity unknown setting. The best is highlighted in boldface, and the second is underlined.

Model
ICEWS14 ICEWS18 ICEWS05-15

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

RE-GCN (Li et al., 2021b) 46.19 34.97 51.79 67.97 33.90 23.20 38.06 55.11 54.98 43.50 61.52 76.49
TiRGN (Li et al., 2022a) 47.46 36.50 52.68 68.65 34.88 23.96 39.33 56.48 55.87 44.44 62.31 77.45
HGLS (Zhang et al., 2023) 47.00 35.06 — 70.41 29.32 19.21 — 49.83 46.21 35.32 — 67.12

MGESL (ours) 51.86 40.49 58.26 73.41 37.57 26.10 42.63 60.16 58.06 46.84 64.47 79.63

Table 2: Performance on three datasets in terms of MRR (%), Hit@1 (%), Hit@3 (%) and Hit@10 (%) under the
candidate entity known setting. The best is highlighted in boldface, and the second is underlined.

respectively. This is because our model can effec-471

tively capture the similarity information between472

entities by hypergraph convolution and model the473

representation of entities more accurately from mul-474

tiple granularities.475

Table 2 shows that MGESL also significantly476

outperforms other TKG extrapolation models under477

the candidate known setting. Specifically, MGESL478

improves approximately 9.27%, 10.93%, 10.59%,479

and 4.26% on ICEWS14 for MRR, Hit@1, Hit@3,480

and Hit@10, respectively. These improvements481

mainly arises from the background graph con-482

structed by the candidate entities which captures483

the coarse-grained history and the two kinds of fine-484

grained histories we extracted. The background485

graph allows us to comprehensively understand486

and analyze the connections between these entities487

and effectively find the correct answer. The fine-488

grained history can guide the model to converge489

quickly and make more precise predictions.490

5.3 Ablation Study 491

The ablation studies are performed on ICEWS14 492

with all four evaluation metrics. Seven sub- 493

models are compared, including (1) MGESL 494

without similarity learning module (MGESL w/o 495

SLM), (2) MGESL without temporal evolution 496

module (MGESL w/o TEM), (3) MGESL with- 497

out fine-grained history (MGESL w/o Fine), (4) 498

MGESL without coarse-grained history (MGESL 499

w/o Coarse), (5) MGESL without repeated history 500

(MGESL w/o Fine-his), (6) MGESL without one- 501

hop history neighbours (MGESL w/o Fine-loc), (7) 502

the original MGESL model (MGESL). 503

Table 3 shows the ablation results under the can- 504

didate entity unknown setting. When the similarity 505

learning module (SLM) and temporal evolution 506

module (TEM) are removed, the performance of 507

the model decreased by 3.87% and 4.73% for MRR 508

respectively, which indicates the effectiveness of 509

these two modules. We can notice that removing 510

the fine-grained history module (Fine) degrades 511

the performance of the model more severely com- 512
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Model
ICEWS14

MRR Hit@1 Hit@3 Hit@10

MGESL w/o SLM 44.10 33.89 49.37 63.35
MGESL w/o TEM 43.71 33.14 49.17 64.32
MGESL w/o Fine 42.20 32.14 46.78 61.93

MGESL w/o Coarse 42.94 33.07 48.08 61.59
MGESL w/o Fine-his 43.96 33.56 49.18 64.01
MGESL w/o Fine-loc 44.27 33.97 49.48 64.21

MGESL 45.88 35.43 51.54 65.70

Table 3: Ablation results under the candidate unknown
setting. The best performance is highlighted in boldface.

Model
ICEWS14

MRR Hit@1 Hit@3 Hit@10

MGESL w/o SLM 50.21 39.05 56.38 71.30
MGESL w/o TEM 49.69 38.57 55.91 70.58
MGESL w/o Fine 46.61 35.37 52.50 68.51

MGESL w/o Coarse 42.75 32.26 47.82 61.59
MGESL w/o Fine-his 50.00 38.77 56.03 71.83
MGESL w/o Fine-loc 49.97 38.68 56.35 71.98

MGESL 51.86 40.49 58.26 73.41

Table 4: Ablation results under the candidate known
setting. The best performance is highlighted in boldface.

pared to removing the coarse-grained history mod-513

ule (Coarse), which causes a 8.02% performance514

degradation for MRR compared with MGESL. This515

is because coarse-grained history may contain more516

noisy information compared to fine-grained history517

under candidate unknown setting. When either re-518

peated history or one-hop history neighbours is519

removed, the performance of the model declined520

by 4.18% or 3.51%, respectively.521

Table 4 shows the ablation results under the can-522

didate entity known setting. Performance declined523

when either the entity similarity module (SLM)524

or the temporal evolution module (TEM) is re-525

moved. In contrast to the candidate unknown set-526

ting, the candidate known setting demonstrates that527

removing coarse-grained history has a more sig-528

nificant impact on model performance compared529

to removing fine-grained history, causing a 17.2%530

performance degradation for MRR compared with531

MGESL. This is because when we have knowledge532

of the candidate entities, the background graph that533

we build using these entities can serve as an ef-534

fective means to understand and learn the relation-535

ships between them. Also, after removing repeated536

history or one-hop history neighbours, the perfor-537

mance of the model declined by 3.59% and 3.64%,538

respectively.539

(a) candidate unknown setting (b) candidate known setting

Figure 3: Convergence analysis results on ICEWS14 in
MRR.

5.4 Convergence Analysis 540

Figure 3 presents the convergence analysis results 541

of our study on ICEWS14 dataset. Obviously, after 542

the initial training epoch, "MGESL w/o Fine" falls 543

noticeably behind the other models in terms of 544

MRR metrics, and requires more epochs to attain 545

the optimal performance compared to the other 546

models as shown in Figure 3(a). This demonstrates 547

that fine-grained history can serve as a good guide 548

for the model to learn during the training process. 549

Similarly, as shown in Figure 3(b), we notice 550

that after the initial epoch of training, the results of 551

"MGESL w/o Fine" are still the lowest. Besides, 552

the results of "MGESL w/o Coarse" no longer re- 553

main almost the same with other models as in Fig- 554

ure 3(a). This phenomenon indicates that both 555

coarse-grained and fine-grained histories are cru- 556

cial in facilitating the model’s convergence during 557

training, particularly when the candidate entities 558

are known. The fine-grained history can make the 559

model converges faster, while the coarse-grained 560

history can improve the accuracy of the model to a 561

great extent. These findings further validate the ef- 562

fectiveness of our capturing historical information 563

from various granularities. 564

6 Conclusion 565

In this paper, we introduce the MGESL model for 566

TKG extrapolation. The model considers entity 567

similarity, coarse-grained history and fine-grained 568

history simultaneously. To capture entity similari- 569

ties, we design a hypergraph convolutional aggrega- 570

tor. We construct the background graph to capture 571

the coarse-grained history and extract two kinds of 572

fine-grained histories to guide the model reasoning. 573

Moreover, we introduce a more realistic setting 574

for TKG extrapolation, i.e., candidate entities are 575

known. Extensive experiments on three datasets 576

demonstrate the effectiveness of our model. 577
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Limitations578

Under the candidate entity known setting, we need579

to know all of the candidate entities in advance,580

which is not always realistic. Therefore, in our581

future work, we will focus on how to accurately582

predict candidate entities.583
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A Datasets 757

The statistics of the three TKG datasets used in our 758

experiments are summarized in Table 5.

# Datasets ICEWS14 ICEWS18 ICEWS05-15

# Entities 7128 23033 10488
# Relations 230 256 251
# Training 74845 373018 368868

# Validation 8514 45995 46302
# Test 7371 49545 46159

# Granularity 24 hours 24hours 24hours

Table 5: The statistics of the datasets. Granularity rep-
resents time granularity between temporally adjacent
facts.

759

B Baselines 760

Under the candidate entity unknown setting, we 761

compare our proposed MGESL model with three 762

kinds of baselines, i.e., (1) Static KG reasoning 763

models, i.e., DistMult (Yang et al., 2015), ConvE 764

(Dettmers et al., 2018), ComplEx (Trouillon et al., 765

2016), ConvTransE (Shang et al., 2019) and Ro- 766

tatE (Sun et al., 2019). (2) Interpolated TKG rea- 767

soning models, i.e., TTransE (Jiang et al., 2016), 768

DE-SimplE (Goel et al., 2020), and TA-DistMult 769

(Riloff et al., 2018). (3) Current state-of-the-art 770

extrapolated TKG reasoning models, i.e., RE-NET 771

(Jin et al., 2020), CyGNet (Zhu et al., 2021), 772

xERTE (Han et al., 2021), RE-GCN (Li et al., 773

2021b), TITER (Sun et al., 2021), TLogic (Liu 774

et al., 2022), CEN (Li et al., 2022b), TiRGN (Li 775

et al., 2022a), CENET (Xu et al., 2023), HGLS 776

(Zhang et al., 2023), RETIA (Liu et al., 2023a) 777

and DaeMon (Dong et al., 2023). For RE-GCN 778

(Li et al., 2021b) and TiRGN (Li et al., 2022a). 779

we remove the static information from the model 780

to ensure the fairness of comparisons between all 781

baselines. 782
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Under the candidate entity known setting, we783

mainly focus on comparing to the extrapolated784

TKG reasoning models, including RE-GCN (Li785

et al., 2021b), TiRGN (Li et al., 2022a) and HGLS786

(Zhang et al., 2023). In this setting, we assume787

that the entities in the timestamp to be predicted788

are all known. We propose this setting for the fol-789

lowing two reasons: (1) There are scenarios in re-790

ality where we already know the candidate entities791

and all we need to do is to find out the exact an-792

swer from these entities, such as presidential elec-793

tions where president is often chosen from multiple794

known candidates. (2) When entities are given to795

predict the relationship between them, the entities796

are also known. As the previous TKG extrapola-797

tion models were conducted under the candidate798

entity unknown setting, we intentionally revealed799

all the entities of the timestamp to be predicted.800

This means that these models only need to score801

and find the correct answer from the revealed can-802

didate entities, not from all entities in the TKG.803

C Implementation Details804

We employed a random search algorithm to sample805

a fixed number of combinations within the hyperpa-806

rameter space. Specifically, the embedding dimen-807

sion d ranges from 100, 200, and 300. The length808

of timestamps for pre-learning graph L ranges from809

30, 50, 80, and 100, while the length of timestamps810

for background graph C ranges from 10, 20, and811

30. The number of GCN convolutional layers and812

the hops of neighbours n were selected from 1, 2,813

and 3. The hyperparameter α ranges from 0.1 to814

0.9. The length of historical timestamps h is set to815

9 and the number of attention heads M is set to 5.816

Additionally, the parameters µ1, µ2 and µ3 ranges817

from 0.1 to 0.9 with a step size of 0.1, ensuring818

that their sum equals to 1. As to the best model819

configurations, we set the embedding dimension820

d to 200, L is 30 for candidate unknown setting821

and 50 for candidate known setting, α is 0.2 for822

candidate unknown setting and 0.5 for candidate823

known setting, C is 20 for the candidate unknown824

setting and 10 for the candidate known setting, n825

is 2, the layer of structural encoder and multi-head826

attention GCN are both 2. µ1, µ2 and µ3 are 0.3,827

0.5 and 0.2, respectively. Adam is used for param-828

eter learning, and the learning rate is set to 0.001.829

All experiments are conducted on NVIDIA Tesla830

A100 (40G) and Intel Xeon 6248R.831

D Sensitivity Analysis 832

After determining the optimal hyperparameters for 833

each setting by means of the random search algo- 834

rithm, we fix the other hyperparameters to analyze 835

the following specific hyperparameters. 836

(a) candidate unknown setting (b) candidate known setting

Figure 4: Performance of MGESL under different α-
values on ICEWS14 in MRR.

(a) candidate unknown setting (b) candidate known setting

Figure 5: Performance of MGESL under different L-
values on ICEWS14 in MRR.

(a) candidate unknown setting (b) candidate known setting

Figure 6: Performance of MGESL under different h-
values on ICEWS14 in MRR.

The value of α determines the weight of the Hy- 837

pergraph Convolution in the SLM module. Figure 838

4 demonstrates the performance of MGESL for 839

different α-values under different settings. When 840

α increases, the performance improves, indicating 841

that learning the similarity between entities through 842

the Hypergraph Convolution can improve the per- 843

formance of our model. However, as α continues 844

to increase, the performance declines, indicating 845
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(a) candidate unknown setting (b) candidate known setting

Figure 7: Performance of MGESL under different C-
values on ICEWS14 in MRR.

that inherent graph structure information of the pre-846

trained graph is also significant.847

The value of L determines the numbers of times-848

tamps for pre-learning graph in the SLM module.849

As shown in Figure 5, with L-values increasing,850

the model performance first improves and then de-851

clines. This suggests that an optimal number of852

timestamps for the pre-learning graph can improve853

the model’s performance, whereas an excessive854

amount may have adverse effects. This could be855

due to the fact that when we predict the facts in856

the nth timestamp, information from that times-857

tamp might have already been assimilated through858

pre-learning, potentially diminishing the model’s859

generalization ability.860

The value of h determines the length of the his-861

torical timestamps in TEM module. According to862

Figure 6, an increase in length results in a grad-863

ual improvement in the model’s performance under864

both settings. This suggests that more history times-865

tamps are beneficial to the model. For efficiency866

considerations, we opted for a history timestamp867

length of 9 in our experiments under both settings.868

The value of C determines the length of times-869

tamps of background graph. As shown in Figure 7,870

the performance of the model intially improves but871

later declines with the increase of C-values under872

both settings. This phenomenon may be attributed873

to the fact that excessively large background graph874

incorporates more additional noisy data, hindering875

the accurate modeling of entity representations.876
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