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Abstract
There is increasing interest in understanding similarities and differences between
convolutional neural networks (CNNs) and the visual cortex. A common approach
is to use some specific layer of a pre-trained CNN as a source of features to predict
brain activity recorded during a visual task. Associating each brain region to the
best predicting CNN layer reveals a gradual change over the visual cortex. However,
this winner-take-all mapping is non-robust, because consecutive CNN layers are
strongly correlated and have similar prediction accuracies. Moreover, this mapping
is usually performed on static stimuli, which ignores the temporal component of
human vision. When the mapping is performed on video stimuli, the features are
extracted frame-by-frame and downsampled using an anti-aliasing low-pass filter,
which removes high temporal frequencies that could be informative. To address
the first issue and improve the non-robust winner-take-all approach, we propose
to fit a joint model on all layers simultaneously. The model is fit with banded
ridge regression, where a separate regularization hyperparameter is learned for
each layer. By performing a selection over layers, this model effectively removes
non-predictive or redundant layers and disentangles the contributions of each layer.
We show that using a joint model increases prediction accuracy and leads to finer
mappings from CNN layers to the visual cortex. To address the second issue and
preserve more high frequency information, we propose to filter the features with a
set of band-pass filters. We show that using the envelopes of the filtered signals as
additional features further increases prediction accuracy.

Introduction
Convolutional neural networks (CNNs) were inspired originally by the anatomy of the brain, and
they have been remarkably successful in computer vision [1, 2]. However, these networks still fail in
many tasks that humans can perform easily. Therefore, there is increasing interest in understanding
the similarities and differences between CNNs and the brain. To investigate this issue, a common
method is to use some specific layer of a pre-trained CNN as a source of features to fit a brain
encoding model [3]. With this approach, many studies have shown that early CNN layers best predict
brain activity in low-level visual areas, while late layers best predict brain activity in intermediate
and higher-level visual areas, with gradual changes of layer mapping over the cortical surface
[4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. A similar approach has also been applied to speech [14, 15] and
language tasks [16, 17].

One problem with this approach is that there are strong correlations between CNN activations from
one layer to the next. This confound causes different layers to have similar predictive power in
encoding models [8, 16, 17, 18]. It is thus hard to separate which part of the predictive power is
specific to a layer and which part is shared with other layers. Most studies ignore this issue and select
the best-predicting layer for each voxel [5, 6, 8, 9, 14, 19, 11], but this winner-take-all approach is
not robust and it ignores potential complementarities between layers. Some studies use variance
partitioning [20] or canonical component analysis [21] to disentangle the different layers, but these
approaches cannot disentangle more than two or three layers.
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To address this issue, we use banded ridge regression, which has been shown to disentangle contribu-
tions from correlated feature spaces in encoding models [22]. Specifically, we fit a predictive model
using features from all layers at once, grouping the features by layers, and learning optimal regular-
ization for each layer through cross-validation. We show empirically that this joint model performs a
selection over layers, effectively removing non-predictive or redundant layers, and disentangling the
contributions of each layer on each voxel. Using this joint model increases prediction accuracy, and
leads to smoother cortical maps of layer mapping.

A second problem of the conventional approach is that it oversimplifies the temporal aspect of visual
processing. Indeed, most studies only use static image stimuli [5, 6, 7, 8, 11, 13], which entirely
ignores the temporal component of human vision. Some studies use video stimuli [8, 9] and extract
features frame by frame from an image-based CNN. Then, the features are downsampled to the brain
imaging sampling frequency (typically 0.5 Hz), using an anti-aliasing low-pass filter [8, 9]. However,
this low-pass filter is suboptimal, because it removes valuable high-frequency information contained
in the CNN activations. Indeed, a video stimulus induces brain activity linked to movement, and this
brain activity has been shown to be poorly predicted by low-pass filtered static features [23].

To address this issue, we first use video stimuli and extract features frame by frame from an image-
based CNN. Then, to preserve more high temporal frequency information, we filter the features with
a set of band-pass filters, and extract the envelope of the filtered signals. The envelopes are then used
as additional features which increase prediction accuracy of the model. Note that we specifically do
not use a video-based CNN to be able to compare both approaches on the same CNN architecture. We
expect further gain in prediction accuracy by using the set of band-pass filters on features extracted
from a video-based CNN.

These two methodological improvements pave the way for high-precision mappings between CNNs
and human brains, which may help both designing and interpreting CNNs, and defining high-
resolution information pathways over the cortical surface.

1 Conventional approach

The conventional approach for mapping CNN layers to brain regions [4, 5, 6, 7, 8, 9, 19, 11, 12, 13]
follows the voxelwise encoding model framework [24, 25]. First, brain activity is recorded while
subjects perceive a visual stimulus. Then, the same stimulus is presented to a pretrained CNN,
activations are extracted from intermediate CNN layers and preprocessed into features (see below).
Finally, a regression model is trained on each voxel to predict brain activity from the features.

1.1 Feature extraction

To extract features, each image of the stimulus is first presented to a pretrained image-based CNN.
Then, the activations of one convolutional or fully-connected layer are extracted (typically after ReLU
and max-pooling layers). With a video stimulus, features are extracted frame by frame from an image-
based CNN, before being down-sampled to the brain imaging sampling frequency (typically 0.5 Hz).
Next, a compressive nonlinearity x 7→ log(1 + x) is applied, and features are centered individually
along the train set. Then, to account for the delay between the stimulus and the hemodynamic
response, features are either convolved with a hemodynamic response function, or duplicated with
multiple temporal delays. This process is repeated for each CNN layer.

Limitations. With a video stimulus, the feature extraction process contains a down-sampling step
to match the brain imaging sampling frequency (typically 0.5 Hz). This down-sampling is typically
done with an anti-aliasing low-pass filter [8, 9]. However, this low-pass filter likely removes valuable
information from the CNN activations. Indeed, a video stimulus induces brain activity linked to
movement, and this activity has been shown to be poorly predicted by low-pass filtered features [23].

1.2 Winner-take-all model

In the conventional approach, a separate ridge regression [26] is fit to the features extracted from
each layer of the CNN independently. Then, the best layer is selected for each voxel, based on
cross-validated prediction accuracy. Finally, differences in terms of selected layers are analyzed
across the brain. The approach thus produces a mapping from CNN layers to brain regions.

2



Limitations. Because of correlation between layers, two layers can lead to very similar predictions
accuracies. In this case, the best-layer selection picks one layer over the other, even if the prediction
accuracy difference is small. The best-layer selection is thus non-robust. The winner-take-all
approach also ignores the possibility that one low-performing layer might contain information that is
not captured by the best-performing layer, and which might be relevant for brain prediction. In this
case, both layers would be complementary, in the sense that using both of them jointly would lead to
better performance than any single one individually.

2 Proposed approach

2.1 Temporal filtering

To address the limitations of downsampling during feature extraction, we propose to filter the layer
activations with eight complex-valued band-pass filters (of frequency bands [0, 0.5], [0.5, 1.5], ...,
[6.5, 7.5] Hz). These band-pass filters preserve information from different temporal frequency bands,
similarly to spatio-temporal features from [23]. Then, the amplitude of each filtered complex-valued
signal is computed to extract the envelope of the signal. The envelope is the slowly varying amplitude
modulation of the high-frequency signal. Finally, the envelope is down-sampled (with an anti-aliasing
low-pass filter). The features extracted with the eight filters were either used in separate models (one
per filter) or in a joint model with all features concatenated.

2.2 Joint model

To address the limitations of the winner-take-all model, we propose to use a joint model over all
layers simultaneously. In this model, features from all layers are concatenated and a ridge regression
is fit on all concatenated features. Fitting a joint model maximizes the model prediction accuracy by
taking into account possible complementarities between layers. Then, to map CNN layers to the brain
from the joint model, it is necessary to estimate the relative contribution of each layer to the model.
To do so, we adapt the product measure [27, 28], a variance decomposition measure that quantifies
relative importance at the level of individual features [29] (see Appendix A.1). Our adapted product
measure quantifies relative importance at the level of feature spaces. It is thus used to estimate the
relative contribution of each layer to the joint model.

Continuous layer mapping. To derive a layer mapping from the joint model, we use a weighted
average of layer indices, weighted by variance decomposition ratios. Starting from a variance
decomposition ρ ∈ Rm, where m is the number of layers, negative values are clipped to zero, and ρ is
normalized to sum to one. Then, the layer mapping is computed as a weighted average s =

∑m
i=1 iρi.

This formula leads to a continuous layer mapping, which increases both its robustness and its ability
to describe gradual changes over the cortical surface.

2.3 Banded ridge regression

One issue arises from the proposed approach. Because CNN activations are strongly correlated from
one layer to the next, a joint model tends to use almost all layers. Therefore, the continuous layer
mapping gives an estimate that is biased toward middle values. To solve this issue, we refine our
approach using banded ridge regression [22] instead of ridge regression. Banded ridge regression
is a generalization of ridge regression which uses a separate regularization hyperparameter per
feature space (see Appendix A.2). All hyperparameters are learned with cross-validation to adapt the
regularization strength to each feature space.

By varying regularization strength on each feature space, banded ridge regression is able to select
feature spaces that have good predictive power, and ignore those that have little predictive power
or that are redundant with other feature spaces. This process leads to a feature-space selection that
can improve the generalization performance on the test set. A feature-space selection also reduces
the number of features, following the principle of parsimony (Occam’s razor). The feature-space
selection mechanism of banded ridge regression is similar to the mechanism present in the group
lasso [30]. However, contrary to banded ridge regression, the group lasso does not optimize the
group scalings (see Appendix A.2). Banded ridge regression is also faster to estimate than the group
lasso on large numbers of voxels. In the case of continuous layer mapping, using fewer layers also
mitigates the bias toward middle values.
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Figure 1: Model comparison in terms of prediction accuracy. Prediction accuracy was estimated
with the R2 score computed on a test set. The R2 score was averaged over voxels predicted
significantly by at least one of the compared models. The average score was normalized by the
average noise ceiling R2

max. (Left) To describe the benefit of the joint model, three models were
compared: a winner-take-all model, a joint model fit with ridge regression, and a joint model fit with
banded ridge regression. The three models were compared in two settings, using either a low-pass
filter, or a set of low-pass and band-pass filters. In both settings, the joint models were better than
the winner-take-all model (p < 10−4, indicated by ***, paired t-test). Fitting with banded ridge
regression was better than fitting with ridge regression (p < 10−4). Between both filter settings,
the set of filters led to better predictions than the low-pass filter (p < 10−4). Overall, the proposed
approach increases prediction accuracy from 0.27 to 0.33 (+20%) compared to the conventional
approach. (Right) To further describe the benefit of each filter, a ridge regression was fit on each
combination of filter and layer. For every layer (except layer 4), the low-pass filter led to a lower
score than every band-pass filter (p < 10−4). Moreover, for every layer, concatenated features from
all filters outperformed the low-pass filter features (p < 10−4).

3 Results
This section presents a series of experiments comparing the proposed approach to the conventional
approach. The experiments used functional magnetic resonance imaging (fMRI) brain recordings of
a subject watching movie clips [23]. Feature extraction was based on a pretrained image-based CNN
“Alexnet” [31] implemented in PyTorch [32]. See Appendix A.3 for more details about model fitting.

3.1 Comparing prediction accuracy

To compare the proposed approach with the conventional approach, we fit multiple regression
models and estimated their prediction accuracy on a test set using the R2 score. To summarize the
performance of each model into a single score, the R2 score was averaged over all voxels significantly
predicted by at least one of the compared models (p < 0.01, permutation test, see Appendix A.4).
The average R2 score was normalized by the average noise ceiling R2

max (see Appendix A.5).

To investigate the benefit of our proposed approach, three models were compared: a winner-take-all
model, a joint model fit with ridge regression, and a joint model fit with banded ridge regression. All
three models were fit either on features extracted with a low-pass filter, or on features extracted with
a set of low-pass and band-pass filters. The results (Figure 1 (left)) first show that the joint model
outperformed the winner-take-all model, which demonstrates the benefit of using complementary
information from multiple layers. Second, the results show that fitting the joint model with banded
ridge regression instead of ridge regression further improved prediction accuracy. It thus demonstrates
the benefit of ignoring redundant layers to maximize prediction accuracy. Third, the results show
that using a set of filters instead of a low-pass filter further improved prediction accuracy, which
demonstrates that valuable information is contained in the high temporal frequencies. Finally, all
three improvements (the joint model, banded ridge regression, and the filter set) can be combined to
improve the average prediction accuracy from 0.27 to 0.33 (+20%).

To further detail the benefit of using the set of filters, a separate ridge regression was fit on each
combination of layer and filter, including concatenated layers and concatenated filters. The results
are listed in Figure 1 (right), where each column corresponds to a separate ridge regression fit. The
results show that for each layer (except layer 4), each band-pass filter outperformed the low-pass filter.
Furthermore, for each layer, concatenating features from all frequency bands (with both band-pass
and low-pass filters) outperformed the low-pass filter features. These results are consistent with what
is observed with spatio-temporal Gabor features [23].
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Figure 2: Model comparison in terms of sparsity at the layer level. To quantify sparsity at the
layer level, we estimated the contribution of each layer to the explained variance (R2 score). The
variance decomposition sums up to the R2 score normalized by the noise ceiling R2

max. (Left)
Comparison of three models in four individual voxels. The winner-take-all model (top) uses only
the best layer, ignoring potential complementarity between layers. The joint model fit with ridge
regression (middle) uses almost all layers to make the predictions. The joint model fit with banded
ridge regression (bottom) performs a feature-space selection leading to sparsity at the layer level, and
allowing multiple layers to be used simultaneously. (Right) To summarize this sparsity profile into a
single metric, the effective rank was computed on the variance decomposition. The effective rank
estimates the number of layers effectively used in each voxel. The histogram of effective rank over
voxels shows that banded ridge regression (vertical) led to a sparser model (smaller effective rank)
than ridge regression (horizontal). This increase in sparsity explains why banded ridge regression led
to better prediction accuracy than ridge regression (Figure 1).

3.2 Comparing layer sparsity

In the previous subsection, banded ridge regression is shown to outperform ridge regression in terms
of prediction accuracy. To explain this difference, we show in this subsection that banded ridge uses
fewer layers than ridge regression (i.e. it gives rise to a sparser model). This layer sparsity is similar
to the one induced by the group lasso [30] (see Appendix A.2). Figure 2 (left) shows examples of
variance decomposition over layers of different models. In each voxel shown, the joint model fit with
banded ridge regression effectively used fewer layers than when fitting with ridge regression.

To quantify layer sparsity over all significantly predicted voxels (p < 0.01, permutation test), we
computed the effective rank [33] based on variance decompositions over layers. Starting from a
variance decomposition ρ ∈ Rm, negative values were clipped to zero, and ρ was normalized to sum
to one. Then, the effective rank was defined as m̃ = exp(−

∑m
i=1 ρi log(ρi)). The effective rank is a

continuous measure of the number of layers effectively contributing to the model. It is equal to k
when the variation is equally split between k layers. Comparing the distribution of effective rank over
voxels, Figure 2 (right) shows that banded ridge regression led to a sparser joint model than ridge
regression. This sparsity explains why banded ridge regression led to better prediction accuracy than
ridge regression.

3.3 Comparing layer mapping
The proposed approach not only improves the prediction accuracy compared to the conventional
approach, but it also provides a finer mapping of CNN layers to the visual cortex. In the conventional
approach, each voxel is associated with the index of the best-predicting layer, leading to a discrete
layer mapping. In the proposed approach, a joint model is fit on all layers, and a continuous layer
mapping is computed based on the variance decomposition over layers. Figure 3 shows the layer
mapping projected on the cortical surface of the visual cortex. Compared to the discrete layer
mapping, the continuous layer mapping produced a smoother gradient over the cortical surface,
without requiring explicit smoothing or a smoothing prior. The continuous layer mapping built with
ridge regression has a reduced range of value, because the model tends to use all layers in each voxel
(Figure 2). This reduced range can be mitigated by using banded ridge regression rather than ridge
regression, to use only a subset of layers in each voxel.
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Figure 3: Model comparison in terms of layer mapping to the visual cortex The layer mapping
of each voxel is computed as a weighted average of the layer indices, weighted by the variance
decomposition over layers. For the winner-take-all model, it corresponds to the best-layer index. For
visualization, the layer mapping is projected on a flattened cortical surface using Pycortex [34]. (a)
The winner-take-all model gives a non-robust estimate of layer mapping, because the argmax operator
can flip from one layer to another due to small variations in prediction accuracy. (b) A joint model fit
on all layers gives a continuous measure of layer mapping, with a smooth gradient over the cortical
surface without using any smoothing. However, fitting the joint model with ridge regression gives a
biased estimate of layer mapping toward middle values, because its variance decomposition tends to
use all layers. (c) Fitting a joint model with banded ridge regression mitigates this bias thanks to its
feature-space selection. The proposed approach led to a finer layer mapping than the conventional
approach. (a’, c’) Zoomed views of (a, c). (d) Correspondence with the CNN architecture. The layer
mapping is derived from the layer indices of a pretrained Alexnet model [31].

Conclusion
Mapping CNNs to the visual cortex has drawn a lot of attention from both the Machine Learning
and the Neuroscience communities. The conventional approach is based on encoding models, which
provides a strong framework for model comparison. However, model comparison usually leads to a
winner-take-all approach where only the best model is considered, ignoring potential complementarity
between models. In this work, we propose to go beyond the winner-take-all approach by fitting
joint models over multiple feature spaces simultaneously. The contribution of each feature space
to the joint model can then be computed for further interpretation. To fit the joint model, banded
ridge regression can be used to induce sparsity at the feature-space level, improving both prediction
accuracy and model interpretation. Applied to CNN layer mapping, our approach leads to higher
prediction accuracy and to smoother cortical maps. We also highlight the limitation of low-pass
filtering when downsampling to the fMRI sampling frequency, and show how to improve it using a set
of band-pass filters. Our contributions could be applied to most applications based on the encoding
model framework, to improve both model performances and interpretations.
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A Appendix

A.1 Product measure

The product measure [27, 28] is a variance decomposition measure with many good properties
[28, 40, 41, 29]. In particular, the product measure gives a proper decomposition of the variance
explained in the training set

∑
j ρj = R2. Yet, this property holds only for ordinary least squares

and on the training set, because it uses the fact that the error vector y − ŷ is orthogonal to the
prediction vector ŷ. We thus adapt the product measure to decompose a definition of the R2 score
used for regularized regression method and/or on held-out data, R2 = 1− ||y − ŷ||2/||y||2, where y
is zero-mean [42]. We then define the variance explained by layer j as

ρj =

∑
t ŷj(2y − ŷ)∑

t y
2

. (1)

Here, ŷj is the sub-prediction ŷj = Xjbj , computed on layer Xj alone using the weights bj of the
joint model. Using the definition in (1), the variance explained R2 by the joint model is the sum
of the variance explained by all layers:

∑
j ρj = R2(ŷ). This is an essential property to interpret

the measure as a proper variance decomposition. Moreover, when the sub-predictions ŷj are all
orthogonal, the decomposition is identical to using the R2 scores computed on each sub-prediction,
ρj = R2(ŷj). Because in the case of ordinary least squares, the decomposition in (1) is equal to the
product measure on the training set, this paper simply refers to it as the product measure.

A.2 Banded ridge regression

Definition. In banded ridge regression, the features are grouped into m feature spaces. A feature
space i is formed by a matrix of features Xi ∈ Rn×pi , with n samples and pi features, and each
feature space is associated with a different regularization hyperparameter λi > 0. To model brain
activity y ∈ Rn on a particular voxel, banded ridge regression computes the weights b∗i ∈ Rp

i
(concatenated into b∗ ∈ Rp with p =

∑
i pi) defined as,

b∗ = argmin
b
||
∑
i

Xibi − y||22 +
∑
i

λi||bi||22. (2)

Similarly to ridge regression, the parameters b̂i are learned on the training data set, while the
hyperparameters λi are learned by cross-validation [22].

Related models Banded ridge regression is similar to the group lasso [30], in the sense that they
both lead to a selection of groups of features. However, contrary to banded ridge regression, the group
lasso does not optimize the group scalings. In fact, many fixed group scalings have been proposed in
the past for the group lasso, using either the square root of the number of features [30], the trace [43]
or the empirical rank of the feature kernels [44], or more exotic scalings [45, 46]. Instead, banded
ridge regression learns optimal scalings from the data, by maximizing cross-validation performances.

Banded ridge regression can also be formulated as a special case of multiple-kernel learning. Multiple-
kernel learning [43, 47] considers generalizations of kernel methods, where instead of a fixed kernel,
a collection of kernels is combined to improve the flexibility of the model. Multiple-kernel learning
methods traditionally learn the kernel combination jointly with the kernel model [48], yet learning the
kernel combination via cross-validation has also been proposed [49, 50, 51]. Banded ridge regression
is equivalent to multiple-kernel ridge when learning the kernel combination via cross-validation.

Banded ridge regression can also be linked with automatic relevance determination [52], which learns
different hyperparameters to induce sparsity at the feature level. Applying this approach to Bayesian
ridge regression leads to sparse Bayesian learning (also known as relevance vector machines) [53, 54],
which is the direct Bayesian counterpart of banded ridge regression.

A.3 Model fitting

Dataset. The preprocessed dataset consisted of 73211 cortical voxels recorded every two seconds.
Of the 3870 total time samples, 3600 samples were used in the train set (split into 12 runs of 300
samples) and 270 samples were used in the test set.
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Hyperparameter search. For all models, a leave-one-run-out cross-validation scheme was used to
select hyperparameters. For ridge regression, the regularization hyperparameter was selected with
a grid-search over 30 log-spaced values ranging from 10−5 to 1020. For banded ridge regression,
the regularization hyperparameters were selected with a random-search; a thousand normalized
hyperparameter candidates were sampled from a Dirichlet distribution, and were scaled by 30 log-
spaced values ranging from 10−5 to 1020. The best normalized candidate and the best associated
scaling were selected on each voxel. Finally, models were refit on the entire training dataset with the
selected best hyperparameters.

A.4 Significance testing

To test significance of the model prediction accuracy on each voxel, a permutation analysis was used.
First, brain responses in the training set were permuted by blocks of 5 consecutive time samples.
Then, a ridge regression model was fit on the permuted data, and prediction accuracy was computed
on the test set. Repeating this procedure 1000 times led to a distribution of prediction accuracy, under
the null hypothesis that there is no systematic relationship between model predictions and fMRI
responses. Statistical significance was defined as any prediction accuracy that exceeded 99% of all
of the permuted predictions (p = 0.01), and was calculated separately for each model. Because we
estimate statistical significance on multiple voxels, the probability of Type-I errors is largely increased.
Therefore, the false discovery rate was used to correct statistical significance levels and control the
rate of Type-I error [55]. To be able to compare the average prediction accuracy across models, the
average was computed on all voxels significantly predicted by at least one of the compared models.

To test significance of the difference in prediction accuracy between two models, a paired t-test was
computed over all voxels significantly predicted by at least on the two models.

A.5 Noise-ceiling estimation

Because of different sources of noise, a perfect prediction accuracy is impossible to reach. To estimate
the upper bound of prediction accuracy achievable in each voxel, the following analysis was used.
First, the experiment used in the test set was repeated q = 10 times. Then, the average brain response
was computed ỹ = 1

q

∑q
i=1 yi, where yi is the brain response at repeat i. All prediction accuracies

were computed with respect to the average response ỹ. Then, the signal power (also known as the
unbiased explainable variance, or noise ceiling) was computed with:

P =
1

q − 1

(
q var(ỹ)− 1

q

q∑
i=1

var(yi)

)
, (3)

where the temporal variance var(y) is defined by:

var(y) =
1

n− 1

n∑
t=1

(
y[t]− 1

n

n∑
t=1

y[t]

)2

. (4)

Finally, the maximum achievable R2 score was computed with R2
max = P

var(ỹ) .

In Figure 1, the prediction accuracy is computed with the R2 score with respect to the average
response ỹ, and averaged over significantly predicted voxels. The average score is then normalized
with the maximum achievable score R2

max averaged over the same voxels. In Figure 2, the prediction
accuracy is computed with the R2 score with respect to the average response ỹ, divided by the
maximum achievable scores R2

max.
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