
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MAVIS: MULTI-OBJECTIVE ALIGNMENT VIA VALUE-
GUIDED INFERENCE-TIME SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) are increasingly deployed across diverse applica-
tions that demand balancing multiple, often conflicting, objectives–such as help-
fulness, harmlessness, or humor. Aligning outputs to user-specific preferences in
such multi-objective settings typically requires fine-tuning models for each ob-
jective or preference configuration, which is computationally expensive and in-
flexible. We introduce MAVIS—Multi-Objective Alignment via Value-Guided
Inference-Time Search—a lightweight inference-time alignment framework that
enables dynamic control over LLM behavior without modifying the base model’s
weights. MAVIS trains a set of small value models, each corresponding to a dis-
tinct objective. At inference time, these value models are combined using user-
specified weights to produce a tilting function that adjusts the base model’s output
distribution toward desired trade-offs. The value models are trained using a sim-
ple iterative algorithm that ensures monotonic improvement of the KL-regularized
policy. We show empirically that MAVIS outperforms baselines that fine-tune
per-objective models and combine them post hoc, and even approaches the per-
formance of the idealized setting where models are fine-tuned for a user’s exact
preferences.

1 INTRODUCTION

Large Language Models (LLMs) have exhibited impressive performance across a wide range of
tasks, including question answering, summarization, and dialogue generation (Chiang et al., 2023;
Bai et al., 2022). However, generating outputs that satisfy a mix of competing goals, such as help-
fulness, harmlessness, or humor, requires models to balance multiple, often conflicting, objectives.
These trade-offs may vary depending on the user or application, motivating methods that support
flexible, runtime alignment. Existing approaches such as Reinforcement Learning from Human
Feedback (RLHF) (Ouyang et al., 2022) enable alignment by fine-tuning generative models using
learned reward functions, but they are computationally intensive and inflexible, which means that
new objectives or preferences necessitate retraining or maintaining multiple specialized models.

To address this issue, we introduce MAVIS - Multi-Objective Alignment via Value-Guided Inference-
Time Search - a lightweight and flexible inference-time alignment framework that enables dynamic
multi-objective control over LLM outputs without requiring full model fine-tuning. In MAVIS, the
output logits of a large reference model are modified at inference time to steer the behavior toward
desired objectives without deviating too much from the reference model’s behavior. Specifically,
MAVIS learns a set of token-level Q-functions, one for each objective of interest, using an iterative
method designed to approximate KL-regularized optimal policies. At inference time, the Q-values
are linearly combined using user-specified weights to produce a unified tilting function which adjusts
the reference model’s output distribution to reflect the desired trade-offs. The MAVIS approach is
illustrated in Fig. 1.

We will show that MAVIS can be implemented in a way that introduces minimal overhead and
supports integration with test-time search strategies. Importantly, it can expand the Pareto frontier
beyond what is possible using single-objective fine-tuning or policy mixtures. It avoids the need for
training a separate large model for each objective combination and eliminates the inefficiencies of
ensembling multiple fine-tuned models. Examples of how responses decoded using MAVIS improve
upon responses from the unguided generative model are provided in Fig. 2.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Overview of the MAVIS algorithm during the decoding of a single token. The generative
LLM πref is first queried to get a probability distribution over next tokens, then the tokens with the
highest probabilities are selected and evaluated by a set of value models, one for each of the M
objectives. The per-objective values are then combined according to the weights on the objectives
given by λ1 · · ·λM , and these combined values are used to re-weight the original probabilities of
the top tokens, forming a new probability distribution from which the next token is sampled.

Our main contributions are as follows:

• We introduce MAVIS, a novel inference-time alignment method that enables dynamic bal-
ancing of multiple objectives to expand the achievable Pareto frontier without repeatedly
fine-tuning the generative model.

• We develop an efficient training algorithm for learning value functions and prove monotone
improvement of the value-guided policy in the infinite-horizon MDP setting.

• We demonstrate seamless integration of MAVIS with test-time search methods, allowing
efficient decoding strategies that improve alignment quality and runtime performance.

2 RELATED WORKS

Traditional RLHF methods use PPO and DPO (Ouyang et al., 2022; Rafailov et al., 2023) to optimize
for a single reward function, making them ill-suited for settings where users may prioritize multiple
conflicting objectives. To address this, methods like Rewarded Soups (Rame et al., 2023) and Multi-
Objective Decoding (MOD) (Shi et al., 2024) train separate models for each objective and then
merge weights or combine outputs. However, these approaches require fine-tuning large models per
objective, limiting scalability.

Finetuning-free methods aim to steer LLM outputs without altering base weights. This is typically
achieved by training a separate value model to evaluate potential actions sampled from the LLM.
In Wan et al. (2024), a value model trained directly on rollouts from the LLM is used to guide a
tree search over the space of natural language completions. On the other hand, Snell et al. (2023)
uses implicit Q-learning to train a token-level value model on offline data. Our approach is most
closely related to Mudgal et al. (2024) and Han et al. (2024), which use value functions aligned with
the reference policy to approximate the optimal token sampling distribution for the KL-constrained
reward maximization problem. In contrast, we explicitly learn the optimal regularized Q-function
for each desired objective–yielding the correct token-level guidance under a single-objective RL
formulation. We also improve value model training with Monte Carlo rollouts for more accurate
targets during training.

A recent method, RMOD (Son et al., 2025), linearly combines per-objective value models to max-
imize worst-case reward across objectives. However, RMOD only estimates values under the ref-
erence policy and applies block-level rather than token-level reweighting. Our approach targets
user-preferred weightings and uses more optimistic Q-functions to guide decoding at each token.

In the single-objective setting, Zhang et al. (2025b) perform iterative policy improvement via
inference-time value guidance, but without constraining KL divergence from the reference policy.
Their method requires either maintaining multiple value models or distilling them into a single av-
eraged one. In contrast, we iteratively refine a single compact value model per objective while
maintaining control over deviation from the base policy.

A more comprehensive survey of related work is provided in Appendix A.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 METHODOLOGY AND ALGORITHMS

Figure 2: Top: Comparison of responses from πref

and MAVIS to a malicious request. Bottom: Sum-
maries from πref and MAVIS aligned for faithful-
ness. Factual errors from πref are marked in red.

In this section, we present the core components
of MAVIS. We formulate the KL-regularized
multi-objective alignment problem in the con-
text of language model decoding and introduce
a policy iteration framework for training token-
level value models aligned to specific objec-
tives. We then describe how these value models
are used at inference time to guide the gener-
ation process through a multi-objective tilting
procedure. For the sake of brevity, many prac-
tical implementation details are deferred to the
appendix.

3.1 INFERENCE-TIME
POLICY OPTIMIZATION

We begin by considering the problem of align-
ing the behavior of a pretrained language model
to a single objective without fine-tuning its
weights. Our goal is to derive a decoding pol-
icy that approximately solves a KL-regularized
Markov Decision Process (MDP), using only
inference-time modifications to a fixed refer-
ence policy πref, which is typically a base LLM
trained via next-token prediction.

Formally, decoding begins with a prompt x ∼
D, represented as a sequence of tokens. At each
time step t, the model appends a token at to
form a new state st+1 = x ⊕ a1:t, where a1:t
denotes the tokens generated so far. The action
space is the vocabulary Σ of the LLM, and tran-
sitions are deterministic since the only effect on
the state is the concatenation of at onto the end
of the sequence. Generation continues until a
terminal state is reached, defined as a sequence
that ends in an end-of-sequence (EOS) token or
has length |x|+ T . The full output sequence is denoted y.

Each objective m defines a reward function Rm(y|x) that evaluates the quality of the completed
response y conditioned on the prompt x. A common assumption for the multi-objective setting is that
each user specifies a vector λ on the M -dimensional simplex representing the relative importance
of each objective they care about. To support user-driven alignment, we aim to find a policy that
maximizes a weighted sum of per-objective rewards while staying close to πref, yielding:

max
π

E
x∼D

y∼π(·|x)

[Rλ(y|x)]− ηDKL

(
π
∣∣∣∣∣∣πref

)
(1)

where Rλ(y|x) =
∑M

m=1 λmRm(y|x) and η controls the degree of regularization. Here, π and πref

are understood as distributions over complete output sequences.

3.2 ACHIEVING OPTIMAL GUIDANCE FOR A SINGLE OBJECTIVE

In the single-objective case, a common approach to inference-time alignment is to tilt the next-token
distribution of πref by weighting it with the exponential of a Q-value function Q(st, ·):

π(at|st) ∝ πref(at|st) exp
(
1

η
Q(st, at)

)
.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

This is the strategy adopted by Han et al. (2024), which estimates Qπref
(st, at) =

E
y∼πref

[R(y)|st+1 = st ⊕ at], i.e. the expected final reward given that token at was chosen while

in state st. However, as shown in Zhou et al. (2025), using Qπref
is suboptimal: it may assign low

value to states that lead to high rewards if those trajectories have low probability under πref, because
the value function presumes continued generation under a suboptimal policy.

To address this, we propose to learn the optimal regularized value function associated with the
desired objective. By iteratively training value models based on the policies induced by previous
value models, we achieve increasingly better approximations of the optimal KL-regularized policy.
This procedure resembles soft policy iteration (Haarnoja et al., 2018), and yields the following
guarantee:
Theorem 1. Define the regularized value of a policy π as follows:

V π(st) = E
at∼π

[
Qπ(st, at)− η log

π(at|st)
πref(at|st)

]
(2)

Consider the following update rule applied over all state-action pairs which starts with π0 = πref:

Qk(st, at) = r(st, at) + γ E
st+1∼ρt(st,at)

[
V πk

(st+1)
]

(3)

πk ∝ πref(·|s) exp
(
1

η
Qk−1(s, ·)

)
(4)

Under standard conditions on πref and the MDP, repeated application of this update rule ensures
monotonic improvement in the Q-value for πk. Furthermore, if Qk converges to Q∗ then πk will
converge to the optimal policy.

A proof is provided in Appendix B. Intuitively, by training value models on the trajectories induced
by existing guided policies, the model becomes more optimistic about low-probability but high-
reward outcomes. At the same time, KL regularization ensures the learned policy avoids large
deviations from πref unless the expected reward justifies it. Note that following prior works (Han
et al., 2024; Zhou et al., 2025), we exploit the fact that Q(st, at) is equivalent to V (st ⊕ at) in
the language modeling setting and focus on training a value model that predicts the expected final
reward given an incomplete sequence.

Based on these insights, we develop a practical training algorithm tailored for text generation that
learns token-level value models using smaller LMs. This is presented in Algorithm 1. In the next
section, we extend this framework to support multi-objective alignment using results from Shi et al.
(2024).

3.3 MAVIS DECODING FOR MULTI-OBJECTIVE ALIGNMENT

To extend our single-objective results to the multi-objective setting, we draw inspiration from the
Multi-Objective Decoding (MOD) framework of Shi et al. (2024), which assumes access to an opti-
mal policy πm for each objective m. MOD constructs a decoding policy by manipulating the logits
of these models to approximate the combined distribution:

πλ(y|x) ∝
M∏

m=1

(πm(y|x))λm .

This form naturally arises under a bandit interpretation of text generation, where the model chooses
an entire sequence y in one step. If we substitute in the optimal KL-regularized policy for each
objective, of the form πm(y|x) ∝ πref(y|x) exp

(
1
ηRm(y|x)

)
, then:

πλ(y|x) ∝
M∏

m=1

[
πref(y|x) exp

(
1

η
Rm(y|x)

)]λm

= πref(y|x) exp

(
1

η

M∑
m=1

λmRm(y|x)

)
, (5)

which is exactly the optimal policy for maximizing the KL-regularized expected reward with the
mixed objective Rλ(y|x) =

∑
m λmRm(y|x).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

While the bandit-style derivation in equation 5 is theoretically accurate, it is computationally in-
feasible for language generation, where the action space consists of all possible token sequences.
Evaluating or sampling from such a distribution would require scoring every possible completion y,
which is an intractable operation for all but the simplest prompts.

Instead, MAVIS reframes the problem at the token level. Rather than computing rewards over entire
sequences, we use token-level state-action values Q∗

m(st, at) for each objective m, where st is the
current partial sequence (including the prompt) and at is a possible next token. In practice, we
learn V ∗

m(·) for each objective since as mentioned previously, Q∗
m(st, at) = V ∗

m(st ⊕ at). These
value models can be learned independently for each objective using the iterative algorithm from
Section 3.2, and allow us to capture long-term reward signals in a tractable manner.

This leads to the MAVIS decoding policy:

πMAVIS(at|st,λ) ∝ πref(at|st) exp

(
β

M∑
m=1

λmQ∗
m(st, at)

)
,

where β is an inference-time scaling parameter that controls how aggressively the reference policy
is tilted toward high-value tokens.

It is worth noting that MAVIS is better-suited for balancing objectives that favor mutually exclusive
actions than methods like MOD which ensemble the distributions from multiple generative models
fine-tuned for distinct objectives. This is because actions which do not optimally satisfy every
objective at once but lead to a higher weighted sum of rewards will also lead to a relatively high
weighted sum of values, while under an ensemble of distributions those actions may not end up with
significant probability since each model will concentrate probability on the best actions according
to its objective.

To make the MAVIS decoding strategy more practical to use, we restrict the value computation to
the top-k tokens under πref at each decoding step, reducing computational overhead while focusing
on plausible continuations. We also normalize the values of the top-k candidates such that β = 1

η

fully determines the magnitude of the value models’ influence on the token distribution. Since value
models which greedily maximize a reward while ignoring the KL divergence may have difficulty
identifying the long-term plan which gives the best tradeoff, we also introduce a KL penalty mul-
tiplier ζ for the value model. This leads to the loss function given in equation 6, where x is the
prompt, s is the sequence whose value is to be estimated, and Y is a set of complete sequences that
were continued from s. To target a certain maximum KL divergence during iterative training, users
can gradually scale up β to improve rewards and then find a value of ζ which allows the rewards to
remain high without the KL divergence exceeding the desired level.

L(x, s, Y) =

V i(s)− 1

|Y|
∑
y∈Y

[
R(y|x)− ζ log

πi(y|x)
πref(y|x)

]2

(6)

The procedure for training the single-objective value models is provided in Algorithm 1, while the
full decoding algorithm and the pseudocode for GET DATA are provided in Appendix C. More
details about the implementation of these algorithms are given in Appendix F.

4 EXPERIMENTS

We evaluate MAVIS on preference-based alignment benchmarks to identify its ability to balance
multiple objectives at inference time. This section describes the setup for our experiments and their
results.

4.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments using two publicly available preference datasets: the Anthropic
HH-RLHF dataset (Bai et al., 2022) and the OpenAI Summarize from Feedback dataset (Stiennon
et al., 2020). For the HH-RLHF dataset, we set the maximum response length to T = 128, and for

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Single-Objective Policy Iteration for MAVIS
Require: πref, # iterations I , D, R, max length T , tree depth L, Kroot, K, β, sequence of penalties
{ζi}Ii=1

N 0 ← GET DATA(πref, πref, D, R, T , L, Kroot, K)
Initialize V 0 from a pretrained LM with a regression head
Train V 0 on N 0

for i = 1 to I do
πi ←MAVIS(πref, V i−1, k, β)
N i ← GET DATA(πi, πref, D, R, T , L, Kroot, K)
Initialize V i ← V i−1

Train V i on N i with KL penalty multiplier ζi
return V I

Figure 3: Pareto front comparison between MAVIS and the baseline algorithms for (a) helpfulness
vs harmlessness, (b) helpfulness vs humor, (c) harmlessness vs humor.

the Summarize from Feedback dataset, we use T = 48. Full preprocessing details for both datasets
are provided in Appendix F.

Base Generative Model. For our generative LLM, we consider LLaMA-2 7B (Touvron et al., 2023)
on both datasets, and additionally test LLaMA-2 13B on the OpenAI Summarize from Feedback
dataset to demonstrate MAVIS’ ability to scale to larger models. For each dataset and generative
LLM combination, we perform supervised fine-tuning (SFT) on a curated subset of prompts from
the training split, primarily to teach the model the expected input–output format and response style.
See Appendix F for dataset-specific SFT details.

Reward Models. For the HH-RLHF dataset, we consider three objectives: helpfulness and harm-
lessness, for which we use GPT-2 large-based reward models, and humor, for which we use a
DistilBERT-based reward model. For the Summarize from Feedback dataset, we evaluate summary
quality (using a GPT-2 small-based model) and factual consistency (using a BART-based faithful-
ness reward model (Chen et al., 2021)). All models are publicly available; details and sources are
listed in Appendix F.

Value Models. We train one value model per objective using Algorithm 1. Each value model is
initialized from TinyLlama v1.1 (Zhang et al., 2024), replacing the language modeling head with a
regression head. For the first iteration, we train using data generated by πref; subsequent iterations
initialize from the previous model and use data collected from the updated MAVIS policy. If the
value models trained on data generated by πref do not achieve a higher average reward on the test
prompts than the corresponding PPO policy while having a similar or lower KL divergence, we
perform additional training iterations and introduce the KL penalty ζ as needed. Training hyperpa-
rameters are given in Appendix F.

MAVIS Hyperparameters. In experiments using LLaMA-2 7B we set the top-k sampling param-
eter to 15, and in experiments using LLaMA-2 13B we set it to 30. As described in Section 3.3,
MAVIS supports dynamic adjustment of the regularization parameters ζ (during training) and β (at
inference). Schedules for each objective are detailed in Appendix F.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 4: Performance comparison between MAVIS with beam search (5 beams) and baseline algo-
rithms with best-of-N (BON) (N=5) for (a) helpfulness vs harmlessness, (b) helpfulness vs humor,
(c) harmlessness vs humor.

Figure 5: (a/b) Pareto front comparison between MAVIS and the baseline algorithms for the Sum-
marize from Feedback dataset with Llama-2 7B (a) and Llama-2 13B (b) as the generative model.
(c) Performance comparison between MAVIS with beam search and baseline algorithms with best-
of-N (BON) where N and the number of beams are both 5.

Fine-Tuning Baselines. We compare MAVIS to several RL-based baselines that directly modify
model weights. The most direct baseline is Multi-Objective Reinforcement Learning from Human
Feedback (MORLHF), which fine-tunes the generative model to maximize a fixed convex combina-
tion of objectives for a given weighting vector λ. While MORLHF can in theory produce an optimal
model for each λ, it is computationally infeasible to fine-tune a new model for every possible con-
figuration. Moreover, MORLHF is sensitive to reward model variance and RL hyperparameters,
complicating consistent performance across the Pareto frontier. We also include comparisons to
Reward Soups (RSoup) (Rame et al., 2023) and MOD (Shi et al., 2024), which require only one
fine-tuned model per objective and combine model weights or logits at inference.

PPO Training Details. We fine-tune the base model using PPO on 10,000 randomly selected
prompts from the training set of each dataset. For multi-objective training, we vary λ1 ∈
{0.0, 0.2, 0.4, 0.6, 0.8, 1.0} and define the reward as λ1R1 + (1 − λ1)R2 for each pair of reward
models. The models with λ1 = 0.0 and λ1 = 1.0 serve as inputs to the RSoup and MOD baselines.
PPO hyperparameters are provided in Appendix F.

Evaluation. We evaluate all methods on 100 held-out prompts from the test or validation split of
each dataset. For each prompt, we generate three independent completions and report averaged
metrics. In addition to reward, we compute the KL divergence between the aligned policy π and the
base policy πref using the following approximation:

DKL

(
π
∣∣∣∣∣∣πref

)
≈ 1

N

N∑
i=1

Ti∑
t=1

log

(
π(at|st)
πref(at|st)

)
, (7)

where N is the number of generated sequences. This allows us to assess not only how well each
method aligns with its target objectives but also how far it deviates from the original model—a
critical trade-off in alignment tasks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.2 PERFORMANCE ON HH-RLHF

On the Anthropic HH-RLHF dataset, iterative training was crucial for matching the performance of
single-objective PPO-aligned models. We trained value models for up to four iterations depending
on the objective: four for helpfulness, three for harmlessness, and two for humor. We found that
MAVIS achieves rewards comparable to or exceeding those of PPO-aligned models with similar KL
divergence, except in the helpfulness case, where the value-guided policy exhibits a higher diver-
gence (See Table 1 in Appendix D for details). Nevertheless, the generated text remains coherent,
as can be seen from the sample generations in Appendix G.

For the multi-objective setting, we evaluate MAVIS against MORLHF, RSoup, and MOD. As shown
in Fig. 3, MAVIS consistently matches or exceeds the Pareto front achieved by MORLHF while
substantially outperforming the more practical RSoup and MOD baselines.

4.3 RESULTS ON SUMMARIZE FROM FEEDBACK

When applying MAVIS to Llama-2 7B on the OpenAI Summarize from Feedback dataset, we found
that a single iteration (iteration 0) of value model training was sufficient to outperform PPO-aligned
models in the reward–KL trade-off. As shown in Table 1 (Appendix D), MAVIS policies not only
match or exceed PPO in reward but also achieve lower KL divergence. In the multi-objective setting,
MAVIS consistently Pareto-dominates both RSoup and MOD, as illustrated in Fig. 5a.

When the generative model is Llama-2 13B, we found that an additional iteration of training allows
MAVIS to achieve a better tradeoff between reward and KL divergence in the single-objective case,
which is expected to extend to the multi-objective case as well. The pareto fronts for MAVIS,
RSoup, and MOD in this scenario are shown in Fig. 5b. We note that finetuning Llama-2 13B via
PPO was able to produce a much better policy for faithfulness than finetuning the smaller 7B model.
However, toward the right side of the Pareto front MAVIS clearly dominates the baselines as in the
Llama-2 7B case.

4.4 LEVERAGING TEST-TIME SEARCH WITH MAVIS

MAVIS supports integration with test-time search strategies such as beam search or Monte Carlo
Tree Search (MCTS) (Wan et al., 2024; Liu et al., 2024b). Because MAVIS provides interpretable
value estimates, we can efficiently rank and prune candidate sequences as frequently as desired.

To demonstrate this property, we implement a beam-style search guided by MAVIS value models
and compare it with best-of-N sampling applied to the baselines. Although the beam-style search
can produce more than N candidates, we keep only the top N according to the value models and
evaluate them with the reward models. As shown in Fig. 4 and Fig. 5c, MAVIS-based search yields
higher final rewards than the best-of-N baselines in almost all cases.

4.5 EFFICIENCY COMPARISON WITH RSOUP AND MOD

We analyze MAVIS in terms of computational efficiency relative to RSoup and MOD. Both baselines
require fine-tuning one model per objective, while MAVIS requires training small value models and
collecting data via rollouts. However, MAVIS data collection is trivially parallelizable, making
it efficient in large-scale distributed settings. Furthermore, data collected under πref can be reused
across objectives by simply applying different reward functions, which greatly accelerates producing
the “iteration 0” value models. Because value models are much smaller than the base LLM, their
training is faster and requires less memory. Thus we observe that while training for MAVIS may
take more time than training for RSoup or MOD, the difference between them will not be extremely
large. As an example, running PPO on the Llama-2 13B model to align with the summary quality and
faithfulness objectives required just under 17 GPU-hours total, whereas the process for collecting
data and training the value models required around 21.5 GPU-hours total.

RSoup requires all objective-specific models to share the same architecture, limiting flexibility.
MOD relaxes this constraint but incurs a high decoding cost due to multiple model forward passes.
MAVIS avoids both issues since the value models are independent of each other and each one in-
troduces much less overhead than a forward pass through the base model. Of course, even if each

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

λ1 λ2 λ3 MAVIS combined reward RSoup combined reward

0.4 0.4 0.2 0.768 0.549

0.6 0.2 0.2 1.054 0.837

0.2 0.6 0.2 1.33 1.038

0.4 0.3 0.3 0.966 0.736

0.3 0.4 0.3 1.019 0.775

0.34 0.33 0.33 1.023 0.787

Table 1: Reward comparison between MAVIS with a single distilled value model and rewarded
soups for combinations of three objectives. Objective 1 is helpfulness, objective 2 is harmlessness,
and objective 3 is humor.

value model is itself small, using several at once in order to consider multiple objectives could result
in compounded latency which is just as severe as running an additional large model. A promising
solution for scaling-up of the number of objectives is to train a single value model with one output
for each objective. Since we had difficulty directly training such a model on the value estimates
obtained from data collection (particularly when different numbers of iterations are required for dif-
ferent objectives), we instead opt to train separate per-objective value models first and then distill
them into a multi-output model. To demonstrate the feasibility of this approach, we took the value
models trained for the Anthropic-HH dataset and distilled them into one model. We compared the
performance of MAVIS using the distilled value model against the RSoups baseline for different
weightings of the helpfulness, harmlessness, and humor objectives. Specifically, we compare the
weighted sum of rewards achieved by each method in Table 1. For this experiment, we fix β = 5.
For every combination of weights tested, MAVIS with the distilled value model achieves a higher
combined reward. Additional details about value model distillation are provided in Appendix E.

Finally, MAVIS scales well in edge-device settings. While RSoup and MOD require storing multiple
copies or LoRA weight sets for the base model, which is an issue with large models, MAVIS only
requires storing the weights for at most M value models (which can also be LoRa weights rather than
full copies of a model). This makes MAVIS better-suited for deployment scenarios with memory
constraints.

5 CONCLUSION

We introduced MAVIS, a principled method for aligning with diverse preferences over conflicting
objectives which does not require modifying the weights of the generative LLM. We have shown
that MAVIS can surpass two established baseline methods for MORLHF across a broad range of
objective weightings and even match the performance of models fine-tuned for specific weightings.
When additional resources are available for training the value model or generating tokens at infer-
ence time, MAVIS exploits these resources to greatly improve its performance, allowing it to surpass
the baselines with best-of-N applied.

The advantages of MAVIS come at the cost of a one-time training procedure which may be signifi-
cantly more time-consuming than fine-tuning a single model for each objective. However, MAVIS
can be applied regardless of whether the weights of πref are available, and its performance and flex-
ibility easily justifies the implementation costs.

LLM Usage Disclosure: In preparing this work, we made use of LLMs for the purposes of generat-
ing code completions and snippets, searching for related works, and revising the text for readability.

REFERENCES

Akhil Agnihotri, Rahul Jain, Deepak Ramachandran, and Zheng Wen. Multi-objective prefer-
ence optimization: Improving human alignment of generative models, 2025. URL https:
//arxiv.org/abs/2505.10892.

9

https://arxiv.org/abs/2505.10892
https://arxiv.org/abs/2505.10892

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Mohammad Gheshlaghi Azar, Vicenç Gómez, and Hilbert J. Kappen. Dynamic policy programming.
Journal of Machine Learning Research, 13(103):3207–3245, 2012. URL http://jmlr.org/
papers/v13/azar12a.html.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernan-
dez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson,
Dario Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Ka-
plan. Training a helpful and harmless assistant with reinforcement learning from human feedback,
2022. URL https://arxiv.org/abs/2204.05862.

Mohamad Fares El Hajj Chehade, Soumya Suvra Ghosal, Souradip Chakraborty, Avinash Reddy,
Dinesh Manocha, Hao Zhu, and Amrit Singh Bedi. Bounded rationality for LLMs: Satisficing
alignment at inference-time. In Proceedings of the Forty-Second International Conference on
Machine Learning, 2025.

Sihao Chen, Fan Zhang, Kazoo Sone, and Dan Roth. Improving Faithfulness in Abstractive Sum-
marization with Contrast Candidate Generation and Selection. In Proceedings of the Annual Con-
ference of the Nations of the Americas Chapter of the Association for Computational Linguistics
(NAACL), 2021. URL https://cogcomp.seas.upenn.edu/papers/CZSR21.pdf.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
The Fortieth International Conference on Machine Learning, pp. 10835–10866, 2023.

Songyang Gao, Qiming Ge, Wei Shen, Shihan Dou, Junjie Ye, Xiao Wang, Rui Zheng, Yicheng
Zou, Zhi Chen, Hang Yan, Qi Zhang, and Dahua Lin. Linear alignment: A closed-form solution
for aligning human preferences without tuning and feedback. In The Forty-First International
Conference on Machine Learning, volume 235, pp. 14702–14722, 21–27 Jul 2024. URL https:
//proceedings.mlr.press/v235/gao24f.html.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In The Thirty-Seventh
International Conference on Machine Learning, pp. 1861–1870, 2018.

Seungwook Han, Idan Shenfeld, Akash Srivastava, Yoon Kim, and Pulkit Agrawal. Value aug-
mented sampling for language model alignment and personalization, 2024. URL https:
//arxiv.org/abs/2405.06639.

Xiaotong Ji, Shyam Sundhar Ramesh, Matthieu Zimmer, Ilija Bogunovic, Jun Wang, and
Haitham Bou Ammar. Almost surely safe alignment of large language models at inference-time,
2025. URL https://arxiv.org/abs/2502.01208.

Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron Courville, and Nicolas Le Roux. VinePPO: Refining credit assignment in RL training
of LLMs. In The Forty-Second International Conference on Machine Learning, 2025. URL
https://openreview.net/forum?id=Myx2kJFzAn.

Maxim Khanov, Jirayu Burapacheep, and Yixuan Li. ARGS: Alignment as reward-guided search.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=shgx0eqdw6.

Lingkai Kong, Haorui Wang, Wenhao Mu, Yuanqi Du, Yuchen Zhuang, Yifei Zhou, Yue Song,
Rongzhi Zhang, Kai Wang, and Chao Zhang. Aligning large language models with representation
editing: A control perspective. In The Thirty-Eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=yTTomSJsSW.

10

http://jmlr.org/papers/v13/azar12a.html
http://jmlr.org/papers/v13/azar12a.html
https://arxiv.org/abs/2204.05862
https://cogcomp.seas.upenn.edu/papers/CZSR21.pdf
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://proceedings.mlr.press/v235/gao24f.html
https://proceedings.mlr.press/v235/gao24f.html
https://arxiv.org/abs/2405.06639
https://arxiv.org/abs/2405.06639
https://arxiv.org/abs/2502.01208
https://openreview.net/forum?id=Myx2kJFzAn
https://openreview.net/forum?id=shgx0eqdw6
https://openreview.net/forum?id=shgx0eqdw6
https://openreview.net/forum?id=yTTomSJsSW

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yi-Chen Li, Fuxiang Zhang, Wenjie Qiu, Lei Yuan, Chengxing Jia, Zongzhang Zhang, Yang Yu, and
Bo An. Q-adapter: Customizing pre-trained LLMs to new preferences with forgetting mitigation.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=WLSrq1254E.

Zongyu Lin, Yao Tang, Xingcheng Yao, Da Yin, Ziniu Hu, Yizhou Sun, and Kai-Wei Chang. Qlass:
Boosting language agent inference via q-guided stepwise search. In Proceedings of the Forty-
Second International Conference on Machine Learning, 2025.

Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru, Yejin Choi, Hannaneh Hajishirzi, and Asli
Celikyilmaz. Don’t throw away your value model! generating more preferable text with value-
guided monte-carlo tree search decoding. In The First Conference on Language Modeling, 2024a.
URL https://openreview.net/forum?id=kh9Zt2Ldmn.

Zhixuan Liu, Zhanhui Zhou, Yuanfu Wang, Chao Yang, and Yu Qiao. Inference-time language
model alignment via integrated value guidance. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2024, pp. 4181–4195, November 2024b. doi: 10.18653/v1/2024.
findings-emnlp.242. URL https://aclanthology.org/2024.findings-emnlp.
242/.

Sidharth Mudgal, Jong Lee, Harish Ganapathy, YaGuang Li, Tao Wang, Yanping Huang, Zhifeng
Chen, Heng-Tze Cheng, Michael Collins, Trevor Strohman, Jilin Chen, Alex Beutel, and Ahmad
Beirami. Controlled decoding from language models. In Proceedings of the Forty-First Interna-
tional Conference on Machine Learning, 2024.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback. In The
Thirty-Sixth Annual Conference on Neural Information Processing Systems, 2022.

Jianing Qi, Hao Tang, and Zhigang Zhu. Verifierq: Enhancing llm test time compute with q-learning-
based verifiers, 2024. URL https://arxiv.org/abs/2410.08048.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: your language model is secretly a reward model.
In The Thirty-Seventh Annual Conference on Neural Information Processing Systems, 2023.

Alexandre Rame, Guillaume Couairon, Corentin Dancette, Jean-Baptiste Gaya, Mustafa Shukor,
Laure Soulier, and Matthieu Cord. Rewarded soups: towards pareto-optimal alignment by in-
terpolating weights fine-tuned on diverse rewards. In The Thirty-seventh Conference on Neu-
ral Information Processing Systems, 2023. URL https://openreview.net/forum?id=
lSbbC2VyCu.

Ahmad Rashid, Ruotian Wu, Rongqi Fan, Hongliang Li, Agustinus Kristiadi, and Pascal Poupart.
Towards cost-effective reward guided text generation. In The Proceedings of the Forty-Second
International Conference on Machine Learning, 2025.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory
cost. In Proceedings of the Thirty-Fifth International Conference on Machine Learning, vol-
ume 80, pp. 4596–4604, 10–15 Jul 2018. URL https://proceedings.mlr.press/
v80/shazeer18a.html.

Ruizhe Shi, Yifang Chen, Yushi Hu, Alisa Liu, Hannaneh Hajishirzi, Noah A. Smith, and Simon S.
Du. Decoding-time language model alignment with multiple objectives. In The Thirty-Eighth
Annual Conference on Neural Information Processing Systems, 2024.

Charlie Victor Snell, Ilya Kostrikov, Yi Su, Sherry Yang, and Sergey Levine. Offline RL for natural
language generation with implicit language q learning. In The Eleventh International Conference
on Learning Representations, 2023. URL https://openreview.net/forum?id=aBH_
DydEvoH.

11

https://openreview.net/forum?id=WLSrq1254E
https://openreview.net/forum?id=WLSrq1254E
https://openreview.net/forum?id=kh9Zt2Ldmn
https://aclanthology.org/2024.findings-emnlp.242/
https://aclanthology.org/2024.findings-emnlp.242/
https://arxiv.org/abs/2410.08048
https://openreview.net/forum?id=lSbbC2VyCu
https://openreview.net/forum?id=lSbbC2VyCu
https://arxiv.org/abs/1707.06347
https://proceedings.mlr.press/v80/shazeer18a.html
https://proceedings.mlr.press/v80/shazeer18a.html
https://openreview.net/forum?id=aBH_DydEvoH
https://openreview.net/forum?id=aBH_DydEvoH

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Seongho Son, William Bankes, Sangwoong Yoon, Shyam Sundhar Ramesh, Xiaohang Tang, and
Ilija Bogunovic. Robust multi-objective controlled decoding of large language models. In The
Second Workshop on Models of Human Feedback for AI Alignment at ICML 2025, 2025. URL
https://openreview.net/forum?id=JmtGKrqH9E.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul Christiano. Learning to summarize from human feedback. In The Thirty-
Fourth Annual Conference on Neural Information Processing Systems, volume 33, pp. 3008–
3021, 2020.

The HDF Group. Hdf5 file format specification version 3.0.
https://support.hdfgroup.org/documentation, 2025. Accessed: 2025-05-25.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Hado van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph Mo-
dayil. Deep reinforcement learning and the deadly triad, 2018. URL https://arxiv.org/
abs/1812.02648.

Ziyu Wan, Xidong Feng, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and
Jun Wang. Alphazero-like tree-search can guide large language model decoding and training. In
The Forty-First International Conference on Machine Learning, 2024.

Kaiwen Wang, Rahul Kidambi, Ryan Sullivan, Alekh Agarwal, Christoph Dann, Andrea Michi,
Marco Gelmi, Yunxuan Li, Raghav Gupta, Kumar Avinava Dubey, Alexandre Rame, Johan Fer-
ret, Geoffrey Cideron, Le Hou, Hongkun Yu, Amr Ahmed, Aranyak Mehta, Leonard Hussenot,
Olivier Bachem, and Edouard Leurent. Conditional language policy: A general framework for
steerable multi-objective finetuning. In Findings of the Association for Computational Linguis-
tics: EMNLP 2024, pp. 2153–2186, November 2024. doi: 10.18653/v1/2024.findings-emnlp.118.
URL https://aclanthology.org/2024.findings-emnlp.118/.

Kaiwen Wang, Jin Peng Zhou, Jonathan Chang, Zhaolin Gao, Nathan Kallus, Kianté Brantley,
and Wen Sun. Value-guided search for efficient chain-of-thought reasoning. arXiv preprint
arXiv:2505.17373, 2025.

Kevin Yang and Dan Klein. FUDGE: Controlled text generation with future discriminators. In Pro-
ceedings of the 2021 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, pp. 3511–3535, June 2021. doi: 10.18653/v1/
2021.naacl-main.276. URL https://aclanthology.org/2021.naacl-main.276/.

Rui Yang, Xiaoman Pan, Feng Luo, Shuang Qiu, Han Zhong, Dong Yu, and Jianshu Chen. Rewards-
in-context: Multi-objective alignment of foundation models with dynamic preference adjustment.
In The Forty-First International Conference on Machine Learning, pp. 56276–56297, 2024.

Hanning Zhang, Pengcheng Wang, Shizhe Diao, Yong Lin, Rui Pan, Hanze Dong, Dylan Zhang,
Pavlo Molchanov, and Tong Zhang. Entropy-regularized process reward model. Trans. Mach.
Learn. Res., 2025, 2025a. URL https://openreview.net/forum?id=cSxDH7N3x9.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model, 2024. URL https://arxiv.org/abs/2401.02385.

12

https://openreview.net/forum?id=JmtGKrqH9E
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/1812.02648
https://arxiv.org/abs/1812.02648
https://aclanthology.org/2024.findings-emnlp.118/
https://aclanthology.org/2021.naacl-main.276/
https://openreview.net/forum?id=cSxDH7N3x9
https://arxiv.org/abs/2401.02385

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xinnan Zhang, Chenliang Li, Siliang Zeng, Jiaxiang Li, Zhongruo Wang, Songtao Lu, Alfredo Gar-
cia, and Mingyi Hong. Reinforcement learning in inference time: A perspective from successive
policy iterations. In The Workshop on Reasoning and Planning for Large Language Models at
ICLR 2025, 2025b. URL https://openreview.net/forum?id=7ETrvtvRlU.

Zhaowei Zhang, Fengshuo Bai, Qizhi Chen, Chengdong Ma, Mingzhi Wang, Haoran Sun, Zilong
Zheng, and Yaodong Yang. Amulet: Realignment during test time for personalized preference
adaptation of LLMs. In The Thirteenth International Conference on Learning Representations,
2025c. URL https://openreview.net/forum?id=f9w89OY2cp.

Jin Peng Zhou, Kaiwen Wang, Jonathan Chang, Zhaolin Gao, Nathan Kallus, Kilian Q. Weinberger,
Kianté Brantley, and Wen Sun. q♯: Provably optimal distributional rl for llm post-training, 2025.
URL https://arxiv.org/abs/2502.20548.

A RELATED WORKS

A.1 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

The work of Ouyang et al. (2022) introduced a reinforcement learning framework for fine-tuning
language models using human preference data, known as Reinforcement Learning from Human
Feedback (RLHF). This approach formulates language model adaptation as a policy optimization
problem, where the model learns to generate responses aligned with human preferences. To pre-
vent the fine-tuned model from diverging too far from the original pretrained language model, a
Kullback–Leibler (KL) divergence penalty is imposed during training, effectively regularizing the
updated policy towards the base distribution. This methodology marked a pivotal shift in alignment
research by demonstrating that, rather than scaling model size alone, aligning language models with
human expectations of helpfulness, truthfulness, and harmlessness can be more effectively achieved
through reinforcement learning techniques such as Proximal Policy Optimization (PPO) (Schulman
et al., 2017), guided by a reward model trained using human feedback. Extending this work, PPO-
MCTS Liu et al. (2024a) shows that one can achieve strong performance by using test-time search
techniques like MCTS and utilizing the value model trained as part of the PPO algorithm to evaluate
partial sequences.

A.2 MULTI-OBJECTIVE ALIGNMENT TO HUMAN PREFERENCES

Single-objective RLHF methods using PPO (Schulman et al., 2017) or DPO (Rafailov et al., 2023)
assume that a single reward function exists and that all outputs from the optimized model should
maximize that reward. However, in a multi objective setting, multiple reward functions exist, with
each corresponding to a particular objective that users may care about to differing degrees. One
possible approach is to train a PPO model on the weighted rewards for the weighting between ob-
jectives that caters to each individual user’s preferences. However, this process is extremely costly
and not scalable. Papers such as Rewarded Soups Rame et al. (2023) show that it is possible to
obtain models aligned to diverse priorities by training one language model per objective and then
performing parameter merging along the direction of weighted preference of the human. Wang et al.
(2024) extended the parameter-merging approach by applying domain randomization during training
to create models that Pareto-dominate the models obtained from rewarded soups while maintaining
steerability. MOD (Shi et al., 2024) introduced an alternative method for combining language mod-
els fine-tuned for single objectives. MOD builds on the insight that many alignment methods, such
as PPO and DPO, optimize reward functions regularized by an f -divergence from a reference pol-
icy. Exploiting this shared structure, the authors derive a closed-form decoding strategy using the
Legendre transform, leading to a simple rule for combining the probability distributions of different
models (particularly when the reverse KL-divergence is used) such that the new distribution will be
aligned to the weighted combination of rewards. Rewards-in-Context (Yang et al., 2024) is an algo-
rithm that, rather than fine-tuning a language model for each objective, uses a prompting approach
to condition the language model on the desired objectives. A recent work, MOPO (Agnihotri et al.,
2025), has considered re-framing the multi-objective RLHF problem as a constrained optimization
problem which maximizes the alignment with a single objective without allowing the performance
on any other objective to fall below an adaptive threshold. While these methods have made tremen-
dous progress in advancing the ability of language models to cater to diverse human preferences,

13

https://openreview.net/forum?id=7ETrvtvRlU
https://openreview.net/forum?id=f9w89OY2cp
https://arxiv.org/abs/2502.20548

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

they all require modifying the weights of the LLM, either through multiple runs of PPO or through
some other expensive training process.

A.3 FINETUNING-FREE ALIGNMENT

Several works have also explored the use of inference-time strategies to improve the rewards
achieved by LLM outputs. The simplest method, best-of-N (Ouyang et al., 2022), obtains mul-
tiple outputs from an LLM using a stochastic sampling method and evaluates the reward for each
one, with the final response being the output with the highest reward. This method only requires
access to the original LLM and a reward model which provides a reward given a complete output.
However, N must increase dramatically to achieve a large divergence from the generative policy
which may be required to achieve the desired rewards (Gao et al., 2023). Hence, this strategy is not
effective when one does not have access to the model weights in order to perform the fine-tuning.

Rather than sampling entire sequences directly from the generative policy, one can also use the
reward model to influence the choice of tokens such that sequences are sampled from a modified
policy. This was explored in Khanov et al. (2024), which considered guidance both on a token
level and on the level of blocks of tokens. Although their method provided consistent improvements
over greedy decoding and could outperform fine-tuning methods when applied to models on the
scale of 1-2 billion parameters, it has the limitation that the reward model used for judging between
incomplete outputs cannot properly account for the future actions that the generative policy is likely
to take.

In order to search more intelligently during inference time, one needs a way to evaluate the value
of a state to guide the choice of tokens. Several works (Mudgal et al., 2024; Snell et al., 2023; Wan
et al., 2024; Han et al., 2024; Zhou et al., 2025; Li et al., 2025; Rashid et al., 2025; Wang et al.,
2025) consider training a separate LLM to serve as a value model. Querying the value model for
each new token generated allows one to re-weight the token probabilities at each step and recover
the exact optimal policy (Zhou et al., 2025). However, many of the aforementioned works apply the
value model only in-between generating chunks of tokens to reduce the overhead.

To determine the optimal re-weighting of the probability distribution, it is necessary to know the
value of each possible next token under consideration. Hence, one would need to query the value
model with a number of sequences matching the size of the vocabulary. Since this is intractable
in practice, Han et al. (2024) instead takes the tokens with the top probabilities according to the
generative model and only obtains values for those tokens. An alternative to this employed by Rashid
et al. (2025) instead has the model output a vector of predictions for the values of every possible next
token; however, we suspect that this greatly increases the difficulty of training the value model with
limited training data. Zhou et al. (2025) considered both of these methods and found that the former
was more practical since in almost all scenarios the number of tokens given significant probability
by the generative model is much smaller than the vocabulary size. The use of a value function to
re-weight the sampling distribution has also been applied to the task of taking a previously-aligned
model and aligning it with new human preferences without degrading the existing alignment too
much (Li et al., 2025).

A somewhat different approach is taken by Kong et al. (2024), which also trains a value model
but uses it to optimize the hidden state of the LLM via backpropagation through the value model.
Reward maximization subject to constraints on a cost function is considered in Ji et al. (2025),
where a value model both estimates the value of a state and predicts the likelihood of violating the
constraints. Chehade et al. (2025) takes a different approach, using duality theory to maximize an
objective while ensuring that others remain within specified thresholds.

A learned value function can also be used to choose between entire reasoning steps, in which case
it functions as a process reward model. In such a scenario, however, the size of the action space is
exponentially larger, meaning that only a tiny sample of the set of possible actions can be considered
during inference time. Qi et al. (2024) considers using implicit Q-learning to train a verifier that
outputs the probability of being in a correct state after each step. The authors of that work note that
a failure to generalize leads to overestimation when a Q-value model is trained on a fixed dataset,
and they use conservative Q-learning to mitigate this problem. On the other hand, Zhang et al.
(2025a) uses entropy-regularized RL to solve a similar problem under KL divergence constraints.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Another recent work, Lin et al. (2025), applies Q-learning to enable LLM agents to solve long-
horizon problems featuring environment interactions.

We remark that there are also works (Gao et al., 2024; Zhang et al., 2025c) which use modified
prompts to obtain directions for perturbing the logits of a generative model to produce aligned out-
puts. Lastly, works outside of the RL context like Yang & Klein (2021) have considered training
models to predict the probability of a completion satisfying some condition before it has been fully
generated in order to control decoding such that the condition is more likely to be met.

B PROOFS

B.1 PROOF OF THEOREM 1

We begin by stating our assumptions on the infinite-horizon discounted MDP. Let X and A denote
the state and action spaces for our infinite-horizon MDP. We shall assume X and A are finite sets,
and πref assigns nonzero probability to all actions in any given state (a reasonable assumption for
probabilistic language models). We shall also assume that the absolute value of the reward for any
state-action pair is bounded above by some rmax < ∞. Finally, we assume there is a discount
factor γ ∈ (0, 1) associated with the MDP (the exact value is unimportant). For convenience,
let ρt := ρ(st, at) denote the distribution of next states when action at is taken while in state st
according to the MDP dynamics. We shall also let Qk denote Qπk

.

We first define the regularized value and state-action value of a policy π.
Definition 1. The regularized value of π at state st and time t is

V π(st) = E
at∼π

[
Qπ(st, at)− η log

π(at|st)
πref(at|st)

]
(8)

Likewise, the regularized state-action value of π for (st, at) at time t is

Qπ(st, at) = r(st, at) + γ E
st+1∼ρt

[V π(st+1)] (9)

Now we shall prove the following lemma which ensures that the policy evaluation step (Equation 3
in the main paper) is feasible.
Lemma 1. Define the operator T π by

T πQ(st, at) = r(st, at) + γ E
st+1∼ρt
at+1∼π

[
Q(st+1, at+1)− η log

π(at+1|st+1)

πref(at+1|st+1)

]
Consider the update rule Qk+1 = T πQk and an arbitrary mapping Q0 : X × A → R. Then
as k → ∞ the sequence Qk will converge to the regularized state-action value of π defined in
equation 9

Proof. First, note that T π has a unique fixed point at Qπ(s, a), as can be seen from the above
definitions. We shall show that T π is a contraction under the∞-norm, which by the Banach Fixed
Point Theorem will establish convergence.

|T πQk+1(st, at)− T πQk(st, at)| = γ

∣∣∣∣∣ E
st+1∼ρt
at+1∼π

[
Qk+1(st+1, at+1)−Qk(st+1, at+1)

]∣∣∣∣∣
≤ γ E

st+1∼ρt
at+1∼π

[
|Qk+1(st+1, at+1)−Qk(st+1, at+1)|

]
≤ γ E

st+1∼ρt
at+1∼π

[
||Qk+1 −Qk||∞

]
= γ||Qk+1 −Qk||∞

Since this holds for any state-action pair, we have ||T πQk+1 − T πQk||∞ ≤ γ||Qk+1 − Qk||∞.
Thus, convergence of the sequence Qk+1 = T πQk to Qπ(st, at) is guaranteed for γ ∈ (0, 1).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The next lemma establishes that our policy iteration algorithm exhibits monotonic improvement.
Our exact policy update is

πk = πref(·|s)
exp

(
1
ηQ

k−1(s, ·)
)

Zk−1(s)
(10)

where Zk−1(s) is a normalization factor which does not depend on the action considered.

Lemma 2. After applying our policy update step, we have Qπk+1 ≥ Qπk

, with equality if and only
if πk+1 = πk.

Proof. Our proof is similar to the proof of Lemma 2 in Haarnoja et al. (2018), but we provide the
full details for completeness. By our update rule, πk is the policy which minimizes equation 11 for
any state s

argmin
π

DKL

π(·|s)
∣∣∣∣∣∣πref(·|s)

exp
(

1
ηQ

k−1(s, ·)
)

Zk−1(s)

 (11)

It follows that

DKL

πk+1(·|s)
∣∣∣∣∣∣πref(·|s)

exp
(

1
ηQ

k(s, ·)
)

Zk(s)

 ≤ DKL

πk(·|s)
∣∣∣∣∣∣πref(·|s)

exp
(

1
ηQ

k(s, ·)
)

Zk(s)


where, by the definition of KL divergence, equality holds only when πk+1 = πk. Let us consider
log πref(a|s) + 1

ηQ
k(s, a) as W k(s, a), then

E
a∼πk+1

[
log πk+1(a|s)−W k(s, a)

]
≤ E

a∼πk

[
log πk(a|s)−W k(s, a)

]
Note that we have canceled out a logZk(s) term on each side since it doesn’t depend on a.

E
a∼πk+1

[
log

πk+1(a|s)
πref(a|s)

− 1

η
Qk(s, a)

]
≤ E

a∼πk

[
log

πk(a|s)
πref(a|s)

− 1

η
Qk(s, a)

]
E

a∼πk+1

[
Qk(s, a)− η log

πk+1(a|s)
πref(a|s)

]
≥ E

a∼πk

[
Qk(s, a)− η log

πk(a|s)
πref(a|s)

]
= V k

Where the final equality follows from equation 8. Now consider any time t; we shall define KLt =
η log πk+1(at|st)

πref(at|st) . By equation 9,

Qk(st, at) = r(st, at) + γ E
st+1∼ρt

[
V k(st+1)

]
≤ r(st, at) + γ E

st+1∼ρt

[
E

at+1∼πk+1

[
Qk(st+1, at+1)− KLt

]]
= r(st, at) + γ E

st+1∼ρt

at+1∼πk+1

[
r(st+1, at+1) + γ E

st+2∼ρt+1

[
V k(st+2)

]
− KLt

]
After N − 1 expansions, this gives us

Qk(st, at) ≤ r(st, at) + E

[
N∑

τ=1

γτ (r(st+τ , at+τ)− KLt+τ−1)

]
+ γN+1 E

st+N+1∼ρt+N

[
V k(st+N+1)

]
As N →∞, the last term vanishes, leaving us with Qk+1(st, at). Thus, Qk+1(st, at) ≥ Qk(st, at).

Our final lemma shall be used to show that the policy which our algorithm converges to is that which
maximizes the value at any state

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Lemma 3. Let Q∗ be the optimal state-action value function. Then for any s ∈ X the solution to
the optimization problem

π∗(·|s) = argmax
π

E
a∼π

[
Q∗(s, a)− η log

π(a|s)
πref(a|s)

]
s.t.
∑
a∈A

π(a|s) = 1
(12)

is given by

π∗(a|s) = 1

Z(s)
πref(a|s) exp

(
1

η
Q∗(s, a)

)

Proof. We shall follow the proof of Proposition 1 in Azar et al. (2012). First, we form the Lagrangian
for the optimization problem in equation 12 while also applying equation 9.

L(s, κs) =
∑
a∈A

π(a|s)
(
r(s, a) + γ E

s′∼ρ(s,a)
[V ∗(s′)]

)

− ηDKL

(
π(·|s)

∣∣∣∣∣∣πref(·|s)
)
− κs

(∑
a∈A

π(a|s)− 1

)

Taking the derivative gives us

∂L(s, κs)

∂π(a|s)
= r(s, a) + γ E

s′∼ρ(s,a)
[V ∗(s′)]− η − η log

π(a|s)
πref(a|s)

− κs

Setting this equal to zero and solving for π(a|s) gives the following solution to the optimization
problem:

π∗(a|s) = πref exp

(
1

η
(r(s, a) + γ E

s′∼ρ(s,a)
[V ∗(s′)])− κs

η
− 1

)
(13)

Since π∗(a|s) must be a valid probability distribution, we obtain the following expression for the
Lagrange multiplier:

κs = η log
∑
a∈A

πref(a|s) exp
(
1

η
(r(s, a) + γ E

s′∼ρ(s,a)
[V ∗(s′)])

)
− η

Plugging this into equation 13 gives the full expression for the optimal policy at state s:

π∗(a|s) = 1

Z(s)
πref exp

(
1

η
(r(s, a) + γ E

s′∼ρ(s,a)
[V ∗(s′)])

)
=

1

Z(s)
πref exp

(
1

η
Q∗(s, a)

)

where Z(s) =
∑

a∈A πref(a|s) exp
(

1
η (r(s, a) + γ E

s′∼ρ(s,a)
[V ∗(s′)])

)
.

We are now ready to prove Theorem 1.

Proof. Starting with π0 = πref, we apply policy evaluation to obtain Q0 = Qπref
. Afterwards, we

can form π1 using equation 10 and repeat the process. Lemma 2 tells us that the state-action value
for each new policy will be at least as high as for the previous policy for any given state-action
pair, and furthermore Lemma 3 shows that if Qk converges to Q∗, πk will converge to the optimal
policy.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 2 MAVIS Decoding
Require: πref, prompt x, {Vm}Mm=1, top-k size k, weighting vector λ, scaling factor β

s0 ← x
for t = 1 to T do
y ← top-k token ids under πref(·|st−1)
Initialize value vector v
for i = 1 to k do
vi =

∑M
m=1 λmVm(st−1 ⊕ ai)

v ← NORMALIZE(v)
w[ai]← πref(ai|st−1) · exp(βvi) for i = 1 to k

πMAVIS(ai|st−1)← w[ai]∑
j w[aj]

Sample at ∼ πMAVIS(·|st−1)
st ← st−1 ⊕ at
if at is EOS then

return st
return sT

C ADDITIONAL PSEUDOCODE

Algorithm 2 shows the complete procedure for generating responses using MAVIS, assuming that
the necessary value models have already been trained. The NORMALIZE function is explained in
Appendix F.

Algorithm 3 outlines the data collection procedure used in each iteration of value model training.
One modification to the algorithm which we employed during most of our data collection (except for
the iteration 0 training data for the Llama-2 7B experiments) is that when training the later iterations,
we take precautions to ensure that each tree generated is at least two layers deep. This is done by
checking if an EOS token is generated during the first layer, and if so, splitting the generated text
between two nodes, one being a child of the root and the other being a child of that child. When
this split occurs, we generate additional children for the child of the root in order to get a better
estimate of its value. The reason for this is that sometimes the responses for the first layer all reach
an EOS token, which would normally result in a tree that is too short to be useful. Also note that
when training Q0, there is no need to track the log-probability ratios for the generated tokens since
they will always be 0 if πgen = πref.

To ensure that the value model has experience with all possible partial completion lengths, we ran-
domize the number of tokens added at each node. To do this, we fix a maximum number of layers L
which dictates the depth of the tree, and for any layer 0 ≤ l < L− 1 we sample a number of tokens
to add from a Unif{1, 2 · Round(T−t

L−l) − 1} distribution (where T − t is the maximum number of
tokens which can be added to the existing sequence). When l = L− 1, we set the number of tokens
to add to T − t. This ensures that unless an EOS token is output, any leaf node will have exactly T
tokens. Furthermore, it is possible for a layer to end at any completion length between 1 and T , so
the value model will be exposed to samples at every possible length.

In Algorithm 3, we treat each node in a tree as if it contains all of the tokens from its ancestor nodes
along with the newly generated tokens. In practice, however, we associate each node with only the
newly generated tokens which previous nodes did not contain, such that by concatenating the tokens
along any path from the root node to a leaf node one can recover the full sequence. In practice, we
store the sequences separately from the tree representations using the HDF5 file format (The HDF
Group, 2025), and associate each node with an index into the corresponding array within the file.

D TABULATED RESULTS

As shown in Table 2, MAVIS achieves reward levels comparable to those of PPO across multiple
objectives (with the exception of faithfulness when the generative model is Llama-2 13B) while in
most cases incurring a similar KL divergence. This demonstrates the feasibility of using small value
models for alignment instead of fine-tuning a generative model.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 3 GET DATA: Value Model Training Data Collection
Require: Generative policy πgen, πref,D, R, T , # layers L, # root children Kroot, # non-root children
K
Initialize node dataset N
for Each prompt x ∈ D do

Initialize root node r
to expand← {(x, r, T)}
for l = 1, 2, · · · , L do

k ← Kroot if l == 1 else K
for each tuple (s, n,N) ∈ to expand do

if l == L then
τ ← N

else
τ ← sample from a Unif{1, 2 · Round(N

L−l)− 1} distribution
Sample k extensions {sj}kj=1 of up to τ tokens to continue s using πgen

for j = 1, 2, · · · , k do
Create a node nj with all tokens up to the end of the jth extension and add it to
n.children
if nj .tokens is not terminal then

Add (nj .tokens, nj , N − |sj |) to to expand
Starting from the last layer of nodes and working up the tree, assign

n.value←

{
R(n.tokens), n is a leaf

1
|n.children|

∑
c∈n.children

c.value, else

n.LPR←

log
(

πgen(y|x)
πref(y|x)

)
, n is a leaf

1
|n.children|

∑
c∈n.children

c.LPR, else

where y is the sequence coming after the prompt x in n.tokens
Add all nodes under r to N

return N

Objective MAVIS PPO

Reward KL Divergence Reward KL Divergence

Helpfulness (7B) 2.111 ± 0.018 33.17 ± 0.64 2.104 ± 0.098 17.81 ± 0.44

Harmlessness (7B) 2.426 ± 0.024 6.26 ± 0.42 2.459 ± 0.077 4.23 ± 0.05

Humor (7B) 2.363 ± 0.023 9.55 ± 0.56 2.362 ± 0.026 10.43 ± 0.24

Summarization (7B) 1.609 ± 0.013 7.79 ± 0.49 1.585 ± 0.035 7.91 ± 0.55

Faithfulness (7B) -0.522 ± 0.027 3.90 ± 0.35 -0.536 ± 0.015 3.93 ± 0.05

Summarization (13B) 1.582 ± 0.038 12.38 ± 0.52 1.563 ± 0.036 10.22 ± 0.08

Faithfulness (13B) -0.352 ± 0.005 8.72 ± 0.6 -0.268 ± 0.019 5.71 ± 0.18

Table 2: Single-objective comparison between the value-guided policies and the policies aligned
using PPO, with standard deviations reported.

E VALUE MODEL DISTILLATION

Core to the MAVIS framework is the principle that the value model should be much smaller than the
generative model which it is guiding, since otherwise the additional overhead from the value model
would limit its usability in time- or compute-constrained environments. To maintain this benefit
even several objectives are considered at once, we introduce the method of value model distillation
where a student model with a single transformer backbone and one regression head per objective is
trained by a different teacher model for each objective simultaneously.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

The objective of this distillation is to ensure that the value produced by each head of the student
model is as close as possible to the value which the teacher model corresponding to that objective
outputs. To that end, we take a dataset of previously generated completions and obtain values for
every completion token from the teacher models before letting the student model make predictions
on the same tokens and computing the MSE loss across all of the heads. While it would make the
most sense for the data used in this process to come from the MAVIS policy induced by the teacher
models, for this demonstration we simply use data generated by the reference model.

The results in Table 3 show that the degradation in average reward is not significant, with the dif-
ference being no greater than 0.121. At the same time, the KL divergence of the MAVIS policy
differs only slightly. With more sophisticated training methods, we believe that the performance of
the MAVIS policy guided by the distilled value model could be brought even closer to that of the
MAVIS policy guided by the original value models. As we show in Section 4, the distilled value
model is sufficient to provide superior performance to the RSoup baseline.

Objective Original Models Distilled Model

Reward KL Divergence Reward KL Divergence

Helpfulness 2.111 ± 0.018 33.17 ± 0.64 1.99 ± 0.004 36.9 ± 1.66

Harmlessness 2.426 ± 0.024 6.26 ± 0.42 2.346 ± 0.023 7.43 ± 0.76

Humor 2.363 ± 0.023 9.55 ± 0.56 2.356 ± 0.026 8.14 ± 0.51

Table 3: Single-objective comparison of MAVIS guided by the original value models and MAVIS
guided by the distilled value model, with standard deviations reported. For each objective, the same
value of β reported for the final iteration of each objective in Table 8 is used.

F IMPLEMENTATION DETAILS

F.1 DATA PRE-PROCESSING

To construct the prompts for the Anthropic HH-RLHF dataset, we extract the first-round prompt
given by the human by truncating after the first occurrence of the string “Assistant: ”. We then filter
out the prompts with more than 200 tokens and remove any duplicates. For the Summarize from
Feedback dataset, we first filter out the posts with less than 101 or greater than 1199 characters.
Then, we apply the prompt template “### Instruction: Generate a one-sentence summary of this
post. ### Input: <post text> ### Response: ” and filter out the resulting prompts with fewer than 8
or more than 512 tokens. Finally, we remove duplicates as with the Anthropic HH-RLHF dataset.

F.2 FINE-TUNING IMPLEMENTATION DETAILS FOR SFT

For the Anthropic HH-RLHF dataset we use 5,000 helpful and 5,000 harmful prompts to make up
the SFT dataset. Although the HH-RLHF dataset contains multi-turn conversations, we evaluate
on single-turn completions; thus, during SFT we only compute the loss on the final turn for the
assistant. We run SFT for one epoch and use the resulting model as the starting point for PPO
finetuning and as πref for MAVIS. For the OpenAI Summarize From Feedback dataset, we also form
a dataset of 10000 prompts. However, early stopping is used to ensure that the SFT model does not
overfit to the data, since that would lead to low entropy which hinders PPO training. The relevant
hyperparameters used for SFT are listed in Appendix F.2. The same values were used for fine-tuning
both the Llama-2 7B and the Llama-2 13B models. For Llama-2 7B we used the final checkpoint at
the end of training as the basis for πref, and for Llama-2 13B we used the checkpoint for step 3000
as the basis for πref.

F.3 FINE-TUNING IMPLEMENTATION DETAILS FOR PPO

The hyperparameters used for running PPO on Llama-2 7B and Llama-2 13B are shown in Ap-
pendix F.3 and Appendix F.3, respectively.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Hyperparameter Default Value Brief Description
Learning rate 1.4e-4 Learning rate for optimizer
Batch Size 1 Per-device batch size
Weight Decay 0.01 L2 regularization coefficient
LoRA rank (r) 64 Rank of the low-rank adaptation matrices
LoRA α 128 Scaling factor for LoRA updates
LoRA dropout 0.05 Dropout applied to LoRA layers

Table 4: Summary of hyperparameters used in Supervised Fine-Tuning (SFT).

Hyperparameter Default Value Brief Description
epochs 2 Number of training epochs
learning rate 7e-6 Learning rate
mini batch size 1 PPO minibatch size
batch size 64 Batch size
target KL 3.0 Target KL divergence
Initial β 0.1 Initial KL penalty coefficient
max grad norm 0.5 Max gradient norm (clipping)
LoRa rank 64 Rank of the low-rank adaptation matrices
LoRa α 128 Scaling factor for LoRA updates
LoRa dropout 0.05 Dropout applied to LoRA layers
top k 15 Top-k sampling parameter for generation

Table 5: Summary of hyperparameters used in PPO for the Llama-2 7B experiments.

Hyperparameter Default Value Brief Description
epochs 1 Number of training epochs
learning rate 1e-5 Learning rate
mini batch size 16 PPO minibatch size
batch size 64 Batch size
target KL (summarization) 8.0 Target KL divergence
target KL (faithfulness) 4.0 Target KL divergence
Initial β 0.05 Initial KL penalty coefficient
max grad norm 0.5 Max gradient norm (clipping)
LoRa rank 128 Rank of the low-rank adaptation matrices
LoRa α 256 Scaling factor for LoRA updates
LoRa dropout 0.05 Dropout applied to LoRA layers
top k 30 Top-k sampling parameter for generation

Table 6: Summary of hyperparameters used in PPO for the Llama-2 13B experiments.

F.4 ADDITIONAL VALUE MODEL TRAINING DETAILS

For MAVIS to deliver effective inference-time alignment, it is essential that the tilting function uses
accurate token-level value estimates. Our theoretical guarantees assume exact policy evaluation at
each iteration (i.e. tabular Q-learning), but this is infeasible in practice. Instead, we train a function
approximator that predicts the expected cumulative reward when continuing from a state st under
the current policy.

When training a value model using supervised regression, we must infer intermediate targets from
full-sequence rewards in a way that reflects the expected return of continuing a partial sequence un-
der a given policy. There are several established strategies for estimating these intermediate targets,
such as:

• Using the final reward from a single rollout (Liu et al., 2024b; Yang & Klein, 2021),

• Averaging rewards from multiple rollouts with different continuations,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

• Bootstrapping using the model’s own value predictions as in TD-λ (Han et al., 2024; Kong
et al., 2024).

Each of these has trade-offs. Single-rollout estimates are simple but noisy, especially early in the
sequence where many outcomes remain possible. Bootstrapping introduces bias and is known to
destabilize training in deep networks due to the “deadly triad” of function approximation, bootstrap-
ping, and off-policy updates (van Hasselt et al., 2018). To avoid these issues, we adopt a Monte Carlo
approach: we use the mean reward over multiple rollouts from a given node to estimate the value
target. This is inspired by recent successes in Monte Carlo-based value estimation in reinforcement
learning, such as Kazemnejad et al. (2025).

To systematically collect training data and generate rollouts for each prompt, we use a tree-based
sampling procedure. Each tree is rooted at a prompt x, and each node below the root corresponds to a
partially completed sequence s. We sample K continuations per node to create children, recursively
expanding the tree to depth L. Leaf nodes represent completed sequences, and are labeled using the
reward function R(y|x) applied to the full generated sequence.

To account for the KL penalty during training, we must also estimate the divergence term log π(y|x)
πref(y|x)

for each rollout. As we build the tree, we record the log-probabilities of tokens under both the
sampling policy π and the reference policy πref. For a given sequence y, the KL divergence is
approximated by summing these differences across tokens. This yields a Monte Carlo estimate of
the KL penalty for that trajectory. Once the KL penalty is added to the reward for the leaf nodes,
values are propagated up the tree using the average of each child’s penalized reward.

This tree-based data collection and value training scheme supports the iterative improvement of
value models used in MAVIS decoding and ensures that they are grounded in realistic rollouts gen-
erated by the evolving policy. The number of trees used in training each iteration of the value models
is listed in Table 7. The tree generation hyperparameters we used when training the iteration 0 value
model were L = 5, Kroot = 4, and K = 2. For later iterations, we changed this to L = 4, Kroot = 2,
and K = 3 to take better advantage of batched generation at the cost of having shallower trees. The
exception to this is value model for the faithfulness objective when the generative model is Llama-2
13B, where we kept L = 5 but generated fewer trees.

Objective Number of Trees (train/val)

Iter 0 Iter 1 Iter 2 Iter 3

Helpfulness (7B) 3377/300 1100/100 3800/200 1900/100

Harmlessness (7B) 3377/300 1087/111 1770/199 N/A

Humor (7B) 3377/300 1089/111 N/A N/A

Summarization (7B) 2800/200 N/A N/A N/A

Faithfulness (7B) 2800/200 N/A N/A N/A

Summarization (13B) 2800/200 1900/100 N/A N/A

Faithfulness (13B) 2800/200 950/50 N/A N/A

Table 7: Number of trees used for each round of value model training. Note that each tree is for a
different prompt.

When training value models, we used the adafactor (Shazeer & Stern, 2018) optimizer with a weight
decay of 0.002. The maximum learning rate was set to 2e−5 for the iteration 0 models for the HH-
RLHF dataset and 4e−5 for all other cases. When training iteration 0 models we added a warmup
period of 100 batches for the learning rate. After the warmup period (if any), the learning rate decays
linearly for the rest of training. We used a LoRa rank of 128 with α = 256 and a 20% dropout
probability. The batch size was set to 16 for the iteration 0 models for the HH-RLHF dataset and 32
for all other cases. We trained the value models for 1 epoch (with the exception of the iteration 1
value models for helpfulness and harmlessness, which were trained for 2 epochs).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

F.5 PRACTICAL MODIFICATIONS TO MAVIS

Balancing training data While Algorithm 1 calls for all nodes in the tree generated via Algorithm 3
to be used as training samples, in practice this will create a serious imbalance between the number
of samples coming from the bottom-level nodes and the number coming from the upper-level nodes.
While our experience indicates that it is useful for the value model to be trained on terminal se-
quences for which the value matches the reward, we want to avoid the model focusing on those
samples at the expense of learning the values of sequences which are far from completion. Thus,
in most cases we randomly select half of the bottom-level nodes to keep and drop the rest. For the
validation data used to determine if overfitting has occurred, we sometimes went even further and
ignored all leaf nodes to focus on the values of incomplete sequences.

Top-k sampling Following VAS (Han et al., 2024), we first get the next-token probabilities under
πref and then select a small number with the top probabilities to evaluate with each value model for
the M objectives. The choice of how many tokens to evaluate is important because in cases where
πref assigns low probability to all high-value tokens, we do not want to discard them all prematurely
(Note that unlike VAS, we do not assign probability mass to the tokens which are not evaluated by
the value models, making our method more like top-k sampling). On the other hand, evaluating
a large number of tokens increases the decoding time and increases the likelihood that the value
model makes a prediction error on a low-probability candidate that is well outside of its training
distribution. We had success with k = 15 when using the Llama-2 7B model, whereas when using
the Llama-2 13B model we found that k = 30 worked better.

Value normalization and scaling The gap in values between candidates is what determines how
much more likely one is to be sampled than the other. Even when candidates have relatively similar
values, we find that it still helps in practice to put more weight on the tokens with the higher values.
Thus, we normalize the candidate values after the raw value model outputs have been combined
according to the objective weights. Concretely, we perform the following operation on the vector of
values v, where Vmin and Vmax are the minimum and maximum elements of the vector:

NORMALIZE(v) =
v − Vmin

Vmax − Vmin
(14)

Given that values are normalized to a range of [0,1], the hyperparameter β fully determines how
much the values are spread out.

Batch decoding To enable efficient parallel decoding of sequences with MAVIS (which is important
both for data generation and for performing beam search), we adopt the technique from Zhou et al.
(2025) of appending all candidate tokens to a single sequence and modifying the attention mask
such that they do not attend to each other. Thus, the batch size for the value model during the beam
search matches the batch size for the generative model. We only apply this technique when the batch
size is greater than one, since we did not observe any speedup for generating individual sequences.

F.6 MAVIS HYPERPARAMETERS FOR REGULARIZATION

Here we provide values for the two hyperparameters which influence the KL divergence of policies
trained using Algorithm 1. The hyperparameter ζ is fixed when a value model for a given iteration is
trained since it influences the target values which the model is learning, whereas the hyperparameter
β is chosen at inference time. In Table 8 we list the values used when collecting training data for the
next iteration for iterations prior to the final iteration, and we list the values used in our evaluations
for Section 5 for the final iteration. No ζ values are given for iteration 0 since there is no KL-
divergence between the sampling policy and πref at that point. In Table 9 we list the β values used
when evaluating points across the Pareto front. The endpoints (i.e. λ1 = 1.0 or 0.0) use the same β
listed in Table 8, so those points are omitted. Note that the same β values were used in the beam
search experiments as well.

F.7 MODEL SOURCES

All third-party models used for our experiments are publicly available on the HuggingFace Hub.
The names which can be used to look up the models are given in Table 10. For the generative model
and value models, we only used versions of the models that we had fine-tuned ourselves.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Objective Hyperparameter Value (ζ|β)

Iter 0 Iter 1 Iter 2 Iter 3

Helpfulness (7B) N/A|5.0 0.03|5.0 0.03|5.0 0.04|7.0

Harmlessness (7B) N/A|5.0 0.05|5.0 0.05|5.5 N/A

Humor (7B) N/A|5.0 0.005|3.5 N/A N/A

Summarization (7B) N/A|2.7 N/A N/A N/A

Faithfulness (7B) N/A|1.5 N/A N/A N/A

Summarization (13B) N/A|5.0 0.02|5.0 N/A N/A

Faithfulness (13B) N/A|5.0 0.01|6.0 N/A N/A

Table 8: Hyperparameters used for regularization on each iteration.

Objective Pair λ1

0.2 0.4 0.6 0.8

Helpfulness/Harmlessness (7B) 5.5 7.0 7.0 7.0

Helpfulness/Humor (7B) 3.5 3.5 5.0 6.0

Harmlessness/Humor (7B) 3.5 4.0 4.5 5.0

Summarization/Faithfulness (7B) 2.7 2.7 2.7 2.7

Summarization/Faithfulness (13B) 6.0 6.0 5.0 5.0

Table 9: β values used for regularization on points in the middle of the Pareto front.

F.8 COMPUTE RESOURCES AND SOFTWARE

All of our training for the Llama-2 7B experiments were performed on compute nodes equipped
with an Intel Xeon Gold 6326 processor, 32GB of RAM, and one 80GB NVIDIA Ampere A100
GPU. For data collection, we also employed compute nodes equipped with 32GB NVIDIA Tesla
V100 GPUs and 40GB NVIDIA Ampere A100 GPUs. For the Llama-2 13B experiments, all work
was done on a compute node equipped with a AMD EPYC Genoa 9354 processor, 768 GB DDR5
RAM, and four 94GB NVIDIA H100 Hopper GPUs.

Our code for training and inference with value models is built upon version 4.49.0 of the Hugging-
Face Transformers library. Our code for fine-tuning the generative model is based off of the official
code for Rewards-in-Context (Yang et al., 2024) which also uses Transformers.

G SAMPLE GENERATIONS

See Table 11 and Table 12 for examples of responses generated by MAVIS and the baselines. For
all of these examples, the Llama-2 7B model was used as the generative model.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Model Source

Generative model (7B) meta-llama/Llama-2-7b-hf

Generative model (13B) meta-llama/Llama-2-13b-hf

Value model TinyLlama/TinyLlama v1.1

Helpfulness reward Ray2333/gpt2-large-helpful-reward model

Harmlessness reward Ray2333/gpt2-large-harmless-reward model

Humor reward mohameddhiab/humor-no-humor

Summarization reward Tristan/gpt2 reward summarization

Faithfulness reward CogComp/bart-faithful-summary-detector

Table 10: Sources for the models used in our experiments.

Prompt Human: How do I pick a lock?

PPO, λ1 = 1.0 Assistant: It depends on the type of lock, and the specific kind of lock you want
to pick. You can learn some basic techniques for picking a lock, or you can
learn to use more advanced tools and techniques. You might also be interested
in learning more about the science behind lockpicking, or about how locks work.
In general, it’s best to learn lockpicking in a safe and controlled environment.

MAVIS, λ1 = 1.0 Assistant: There are several techniques to pick a lock, you could try using a
pick tool to manipulate the lock pins or you could try using a lock pick gun. You
could also try to pick the lock using a lock rack tool. Another technique you
could try is to attempt to pick the lock with a lock bump tool.

MOD, λ1 = 0.8 I’d say you’re best off using a combination lock that is either a standard lock,
or a combination padlock. If you have a combination lock, then the keypad is
typically located on the outside of the door. To pick the lock, you need to use
the keypad to input the combination, and then turn the key to open the lock. If
you have a standard lock, then the key is located on the inside of the door. To
pick the lock, you need to use the key to turn the lock.

MAVIS, λ1 = 0.8 Assistant: You should look into lock picking tools and training, to learn what
tools and techniques you should be using to be able to successfully pick a lock,
as well as to learn the basics of lock picking. You may want to look into online
classes, local lock picking clubs, and lock picking training seminars to help get
you started.

RSoup, λ1 = 0.4 Assistant: It depends on the type of lock, and the specific lock that you want to
pick. For example, if you want to pick a standard house lock, then you can use
a key or a tool that’s designed to pick a specific type of lock. If you want to pick
a padlock, then you need to buy a tool that is designed to pick specific kinds of
padlocks.

MAVIS, λ1 = 0.4 Assistant: I’m not sure I understand the question. You might be interested in
learning more about the basics of lock-picking, or in watching a video of a lock-
picking demonstration. I’m sorry I can’t answer this question. I’m a computer-
based service.

PPO, λ1 = 0.0 Assistant: I’m sorry, I’m not sure I understand.

MAVIS, λ1 = 0.0 Assistant: I’m not sure I understand the question.

Table 11: Sample responses for a prompt from the Anthropic HH-RLHF dataset under various
weightings between helpfulness and harmlessness. Larger λ1 means more helpful responses are
desired, and smaller λ1 means more harmless responses are desired.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Prompt ### Instruction: Generate a one-sentence summary of this post. ### Input: My
bf only likes to talk to me through text. I’m all for texting with people about
small stuff, but having a conversation via text is difficult. It’s impossible to say
everything you want to say without writing an essay and there is tons of room
for miscommunication. I find that the conversation are very superficial when
texting. Mostly they go like ”Hey” ”How are you what are you doing” etc. I’m
getting bored with superficial talk. I crave more deeper and intellectually stim-
ulating conversations. He says he hates talk on the phone and when I call him,
he has nothing to say and sounds bored. I offered to video chat or something,
but he doesn’t want to try. We don’t see each other often, so we end up going
long periods of time without seeing or hearing each other, only texting. I feel
no connection when we text. He sees no problem with this. Am I wrong to be
annoyed?

PPO, λ1 = 1.0 ### Response: 27m only likes to talk to me through text. I crave more deep and
intellectually stimulating conversations. He sees no problem with this. Am I
wrong to be annoyed?

MAVIS, λ1 = 1.0 ### Response: Boyfriend only wants to communicate via text and phone calls
are boring and meaningless for us. Am I crazy for wanting more intellectu-
al/deeper conversations?

RSoup, λ1 = 0.6 ### Response: Boyfriend only likes to talk to me through text messaging. I feel
no connection when we text and he sees no problem with this. Am I wrong to
be annoyed?

MAVIS, λ1 = 0.6 ### Response: Boyfriend only likes to talk to me through text messaging. I feel
no connection when we text and he sees no problem with this. Am I wrong to
be annoyed?

MOD, λ1 = 0.6 ### Response: Boyfriend only likes to talk to me through text. I find it boring
and superficial. He sees no problem with this. Am I wrong to be annoyed?

PPO, λ1 = 0.0 ### Response: My bf and I only talk through text. I want a more in-depth
conversation. He doesn’t want to talk on the phone.

MAVIS, λ1 = 0.0 ### Response: Boyfriend and I only communicate via text and it’s superficial
and I don’t like it. Is this a problem?

Table 12: Sample responses for a prompt from the OpenAI Summarize from Feedback dataset under
various weightings between summarization and faithfulness objectives. Larger λ1 means responses
with a higher summarization reward are desired, and smaller λ1 means responses with a higher
faithfulness reward are desired.

26

	Introduction
	Related works
	Methodology and Algorithms
	Inference-Time Policy Optimization
	Achieving Optimal Guidance for a Single Objective
	MAVIS Decoding for Multi-Objective Alignment

	Experiments
	Experimental Setup
	Performance on HH-RLHF
	Results on Summarize from Feedback
	Leveraging Test-Time Search with MAVIS
	Efficiency Comparison with RSoup and MOD

	Conclusion
	Related works
	Reinforcement Learning From Human Feedback
	Multi-Objective Alignment to Human Preferences
	Finetuning-Free Alignment

	Proofs
	Proof of Theorem 1

	Additional Pseudocode
	Tabulated Results
	Value Model Distillation
	Implementation details
	Data pre-processing
	Fine-Tuning Implementation Details for SFT
	Fine-Tuning Implementation Details for PPO
	Additional Value Model Training Details
	Practical Modifications to MAVIS
	MAVIS Hyperparameters for Regularization
	Model Sources
	Compute Resources and Software

	Sample Generations

