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Abstract

Conformal prediction has become increasingly popular for quantifying the uncertainty
associated with machine learning models. Recent work in graph uncertainty quantification
has built upon this approach for conformal graph prediction. The nascent nature of these
explorations has led to conflicting choices for implementations, baselines, and method
evaluation. In this work, we analyze the design choices made in the literature and discuss
the tradeoffs associated with existing methods. Building on the existing implementations,
we introduce techniques to scale existing methods to large-scale graph datasets without
sacrificing performance. Our theoretical and empirical results justify our recommendations
for future scholarship in graph conformal prediction.

1 Introduction

Modern machine learning models trained on losses based on point predictions are prone to be overconfident in
their predictions (Guo et al., 2017). The Conformal Prediction (CP) framework (Vovk et al., 2005) provides
a mechanism for generating statistically sound post hoc prediction sets (or intervals, in case of continuous
outcomes) with coverage guarantees under mild assumptions. Usually, the assumption made in CP is that the
data is exchangeable, i.e., the joint distribution of the data is invariant to permutations of the data points.
CP’s guarantees are distribution-free and can be added post hoc to arbitrary black-box predictor scores,
making them ideal candidates for quantifying uncertainty in complex models, such as neural networks.

Network-structured data, such as social, transportation, and biological networks, is ubiquitous in modern data
science applications. Graph Neural Networks (GNNs) have been developed to model vector representations
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of network-structured data and be effective in a variety of tasks such as node classification, link prediction,
and graph classification (Hamilton, 2020; Wu et al., 2022). As the network structure introduces possible
dependencies between the data points, uncertainty quantification approaches built for independent and
identically distributed (iid) data cannot be directly applied to graph data. However, recent work (Clarkson,
2023; Zargarbashi et al., 2023; Huang et al., 2023) has demonstrated that, in specific settings, CP can be
applied to graph data to generate statistically sound prediction sets for the node classification task, similar to
other classification tasks. These methods were designed to leverage the graph structure and homophily to
improve upon baseline non-graph CP methods. Variations of CP, ranging from most to least computationally
expensive, include (1) Full-CP (Vovk et al., 2005), (2) Cross-CP/CV+/Jackknife+ (Vovk, 2015; Barber
et al., 2021), and (3) Split (or Inductive)-CP (Papadopoulos et al., 2002; Papadopoulos, 2008). Prior
work on graph CP has mainly focused on the Split-CP setting due to its computational efficiency and the
distribution-free guarantees with black-box models. Thus, we also focus on Split-CP for our work.

Key Contributions: This work makes the following contributions:

1. We perform a comprehensive analysis of the existing graph split-CP literature (e.g., CFGNN, DAPS)
for transductive node classification. This analysis aims to understand the choices made in method
implementation (i.e., scalability) and method evaluation (i.e., dataset preparation and baseline
selection). We also extend this analysis to include an analysis of when these graph-based approaches
improve over non-graph CP methods, such as TPS and APS.

2. We present a theorem for evaluating the efficiency (set size) of different conformal prediction methods
prior to deployment.

3. We develop a Python library that implements our analysis, enabling practitioners to efficiently apply
and evaluate conformal prediction for graph data, with scalability enhancements for large graphs,
particularly for compute-intensive methods like CFGNN.

2 Conformal Prediction

Conformal prediction is used to quantify model uncertainty by providing prediction sets/intervals with
rigorous coverage guarantees. We will focus on conformal prediction in the classification setting. Given a
calibration dataset Dcalib = {(xi, yi)}n

i=1, where xi ∈ X = Rd and yi ∈ Y = {1, . . . , K}, conformal prediction
can be used to construct a prediction set C for an unseen test point (xn+1, yn+1) such that

Pr [yn+1 ∈ C(xn+1)] ≥ 1− α

where 1 − α ∈ (0, 1) is a user-specified coverage level. The only assumption required for the coverage
guarantee is that Dcalib ∪ {(xn+1, yn+1)} is exchangeable. The following theorem provides a general recipe
for constructing a prediction set with a coverage guarantee.
Theorem 2.1 ((Vovk et al., 2005; Angelopoulos & Bates, 2023)). Suppose {(xi, yi)}n+1

i=1 are exchangeable,
s : X ×Y → R is a score function measuring the non-conformity of point (x, y), with higher scores indicating
lower conformity, and a target miscoverage level α ∈ [0, 1]. Let q̂(α) = Quantile

(
⌈(n+1)(1−α)⌉

n ; {s(xi, yi)}n
i=1

)
be the conformal quantile. Define C(x) = {y ∈ Y : s(x, y) ≤ q̂(α)}. Then,

1− α + 1
n + 1 ≥ Pr [yn+1 ∈ C(xn+1)] ≥ 1− α (1)

The upper bound assumes that the scores are unique or that a suitably random tie-breaking method exists.

The function s is the non-conformity score function, and it measures the degree of non-agreement between an
input x and the label y, given exchangeability with the calibration data Dcalib, i.e., larger scores indicate
worse agreement between x and y. While Theorem 2.1 does not restrict the choice of s, this choice can
significantly impact the size of the prediction set.

The setup of Theorem 2.1 is called Split-CP, as the score function remains fixed for the calibration split.
In other versions of CP, the score function is usually more expensive to compute as it requires some
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1 < k ≤ n calibration points in addition to the unseen test point. For Full-CP, we have k = n, whereas
for Cross-CP/CV+/Jackknife+, k < n. When applying Split-CP, the dataset is partitioned into D =
Dtrain ∪ Dvalid ∪ Dcalib ∪ Dtest.

2.1 Conformal Prediction in Graphs

The usual tasks of interest with graph data include node classification, link prediction, and graph classification.
This work focuses on node classification and its extensions to conformal prediction. Consider an attributed
homogeneous graph G = (V, E , X), where V is the set of nodes, E is the set of edges, and X is the set of node
attributes. Let A denote the adjacency matrix for the graph. Further, let Y = {1, . . . , K} denote the set of
class labels associated with the nodes. For v ∈ V, xv ∈ X = Rd denotes its features and yv ∈ Y denotes its
true class label. The task of node classification is to learn a model that predicts the label for each node given
node features and the adjacency matrix, i.e., (X, A, v) 7→ yv. Corresponding to the CP partitions, we denote
the nodes in the training set as Vtrain, the validation set as Vvalid, the calibration set as Vcalib, and the test
set as Vtest. We denote Vdev = Vtrain ∪ Vvalid as the development set for the base model. Note that labels
are available only for nodes in Vtrain, Vvalid, and Vcalib, and must be predicted for nodes in Vtest. The model
cycle will involve four phases, viz. training, validation, calibration, and testing. Next, we discuss the different
settings for node classification in graphs and the applicability of conformal prediction.

Transductive setting In this setting, the model has access to the fixed graph G during the model cycle.
The nodes used in the model cycle are split into Vtrain, Vvalid, and Vcalib ∪ Vtest. The specific Vcalib and Vtest
are subsets of Vcalib ∪ Vtest. This is the setting considered by Zargarbashi et al. (2023) and Huang et al.
(2023). Note that the labels for Vcalib are not available for training and validation of the base model; however,
all the neighborhood information of G and the features xv and labels yv, for v ∈ Vdev are available. During
the calibration phase, the (xv, yv) for v ∈ Vcalib and all the neighborhood information are used to compute
the non-conformity scores. This split ensures that the base model cannot distinguish between the calibration
and test nodes, and hence exchangeability holds for v ∈ Vcalib ∪ Vtest.

Inductive setting In this setting, the model is only trained and calibrated on a fixed graph G during the
model cycle. Once the calibration phase is complete, G changes to include new unseen test points, breaking
the exchangeability assumption as nodes arriving later in the sequence will have access to neighbors that
came earlier. This setting is infrequently studied as it requires making specific assumptions about graph
structure and the data generation process (Clarkson, 2023; Zargarbashi & Bojchevski, 2024).

In line with previous work, we focus on the transductive setting. The following theorem states that a scoring
model trained on the calibration set will generate scores exchangeable with the test set in the transductive
setting, thus allowing for conformal prediction.

Theorem 2.2 ((Zargarbashi et al., 2023; Huang et al., 2023)). Let G = (V, E , X) be an attributed graph, and
Vcalib ∪ Vtest be exchangeable. Let F : X |V | → ∆|V |×K be any permutation equivariant model on the graph
(e.g., GNNs). Define F (G) = Π ∈ ∆|V |×K as the output probability matrix for a model trained on only Vd.
Then any score function s(v, y) = s(Πv, y,G) is exchangeable for all v ∈ Vcalib ∪ Vtest.

The intuition for this theorem is that if the underlying model does not depend on the order of the nodes
in the graph, then the outputs will also be exchangeable. This holds for most standard GNNs. The formal
proof for this theorem is available in (Zargarbashi et al., 2023; Huang et al., 2023). This theorem paves the
way for using conformal prediction for transductive node classification.

For the following sections, we will assume that the base model π̂ : X → ∆Y , where ∆Y is the probability
simplex over Y, is learned using the training and validation sets Dtrain ∪ Dvalid. The calibration set Dcalib is
used to determine the q̂(α) from Theorem 2.1, and the test set Dtest is the set for which we want to construct
our prediction sets. Note that Dx = {(xv, yv) | v ∈ Vx} for graph datasets. Note that the scores need not
lie over a simplex, but instead be in RK . However, this greatly simplifies the exposition for the following
sections and is standard practice in prior work.
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2.2 Conformal Prediction Methods

Several conformal prediction methods are discussed in the CP for transductive node classification literature,
including the following general and graph-specific methods.

2.2.1 General Methods Applied to Transductive Node Classification

Threshold Prediction Sets (TPS) (Sadinle et al., 2019) In TPS the score function is s(x, y) =
1 − π̂(x)y, where π̂(x)y is the class probability for the correct class. This is the simplest method, which
is also shown to be optimal with respect to efficiency, thus making it essential to include as a baseline.
However, TPS is known to achieve this efficiency by under-covering hard examples and over-covering easy
examples (Angelopoulos et al., 2021; Zargarbashi et al., 2023). We note that this discrepancy is claimed to
occur as the TPS scores are not adaptive, and consider only one dimension of the score for each calibration
sample. However, Sadinle et al. (2019) also proposed a classwise controlled version of TPS. Instead of defining
a single threshold for all classes, they separately compute the threshold for each class for a corresponding α.
Thus, we define classwise quantile thresholds for each y ∈ Y

q̂(αy, y) = Quantile
(
⌈(n + 1)(1− αy)⌉

n
; {s(xi, yi) | i = 1, . . . , n, yi = y}

)
(2)

and the corresponding prediction sets as

C(x) = {y ∈ Y : s(x, y) ≤ q̂(αy, y)}.

Note that this version achieves coverage for each class label, making it more adaptive (i.e.,
Pr(yn+1 ∈ C(x) | yn+1 = y) ≥ 1 − α, ∀y ∈ Y). The version defined by Sadinle et al. (2019) allows con-
trolling αy for each class, though we set αy = α for class-adaptability. The trade-off with the adaptive version
is that we have fewer calibration samples for each quantile threshold dimension, which may lead to higher
variance in the distribution of coverage (Vovk, 2012). We refer to this variation TPS-Classwise.

Adaptive Prediction Sets (APS) (Romano et al., 2020) APS is the most popular CP baseline
for classification tasks. For APS, the softmax logits are sorted in descending order, and the score is the
cumulative sum of the class probabilities until the correct class. For tighter prediction sets, randomization
can be introduced through a uniform random variable. Formally, if π̂(x)(1) ≥ π̂(x)(2) ≥ · · · ≥ π̂(x)(K−1),
u ∼ U(0, 1), and ry is the rank of the correct label, then

s(x, y) =
[

ry∑
i=1

π̂(x)(i)

]
−uπ̂(x)y︸ ︷︷ ︸
rand. term

.

Regularized Adaptive Prediction Sets (RAPS) (Angelopoulos et al., 2021) One drawback of APS
is that it can produce large prediction sets. RAPS incorporates a regularization term for APS. Given the
same setup as APS, define o(x, y) = |{c ∈ Y : π̂(x)y ≥ π̂(x)c}|. Then,

s(x, y) =
[

ry∑
i=1

π̂(x)(i)

]
− uπ̂(x)y + ν ·max{(o(x, y)− kreg), 0},

where ν and kreg ≥ 0 are regularization hyperparameters.

2.2.2 Graph Methods

Graphs are rich in structure and network homophily, and recent works in graph CP leverage these properties
when developing graph-specific methods. Intuitively, network homophily suggests that non-conformity scores
and efficiencies of connected nodes are related.
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Diffusion Adaptive Prediction Sets (DAPS) (Zargarbashi et al., 2023) To leverage network
homophily, DAPS performs a one-step diffusion update on the non-conformity scores. Formally, if s(x, y) is a
point-wise score function, then the diffusion step gives a new score function

ŝ(x, y) = (1− δ)s(x, y) + δ

|Nx|
∑

u∈Nx

s(u, y),

where δ ∈ [0, 1] is a diffusion hyperparamter and Nx is the 1-hop neighborhood of x. More details and results
on DAPS can be found in Appendix C.1.

Diffused TPS-Classwise (DTPS) In the case of DAPS, s is chosen to be APS; however, any adaptive
score function can be used. In this work, we consider applying diffusion to the scores from TPS-Classwise
(the adaptive variation of TPS). More details and results on DTPS can be found in Appendix C.1.

Neighborhood Adaptive Prediction Sets (NAPS) (Clarkson, 2023) NAPS leverages the neighbor-
hood information of a test point to compute a weighted conformal quantile for constructing the prediction
set. It is the only method in the study that can work with non-exchangeable data, but it loosens the
standard bounds of conformal prediction. The weighting functions used with NAPS are uniform, hyperbolic,
and exponential. A detailed explanation of NAPS, the weighting functions, and how it is adapted to the
transductive setting is in Appendix C.2.

Conformalized GNN (CFGNN) (Huang et al., 2023) CFGNN is a model-based approach to graph
CP. Similar to ConfTr (Stutz et al., 2021), CFGNN uses a second model and an inefficiency-based loss
function to correct the scores from the base model. This is feasible as all the steps of the conformal prediction
framework (i.e., non-conformity score computation, quantile computation, thresholding) can be expressed as
differentiable operations (Stutz et al., 2021). The underlying observation for CFGNN is that the inefficiencies
are correlated between nodes with similar neighborhood topologies, hence, the secondary model used is a
GNN. The inefficiency loss includes a point-wise score function that differs for training and validation. In our
work, we set the score function to be APS with randomization between training and validation. More details
can be found in Appendix C.3.

2.3 A Theoretical Note on Randomization.

Recall that APS (Romano et al., 2020) can be implemented in both a randomized and a deterministic
manner (see Appendix A for derivations), by using a uniform random variable to determine if the correct
class is included or not in the prediction set, during the calibration phase. Both versions of APS provide
conditional coverage guarantees; however, the deterministic version has a simpler exposition, so this version is
implemented in the popular monographs on conformal prediction by Angelopoulos & Bates (2023). However,
the lack of randomization may result in larger prediction sets. This modification affects computing the
conformal quantile during the calibration phase and the prediction set construction during the test phase.

We will formally present the conditions that impact (prediction) efficiency, and later apply it to APS with
and without randomization. Let A(x, y) be any non-conformity score function, and let,

q̂A = Quantile
(
⌈(n + 1)(1− α)⌉

n
; {A(xi, yi)}n

i=1

)
.

Consider the exchangeable sequence,
{

A(xi, yR
i )
}n+1

i=1 , where yR
i is a randomly selected incorrect label1. We

now define αA
c ∈ [0, 1] such that:

q̂A = Quantile
(⌈

(n + 1)(1− αA
c )
⌉

n
; {A(xi, yR

i )}n
i=1

)
. (3)

1For an explanation on why this is exchangeable see Appendix B
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Table 1: Summary statistics for datasets. Predefined splits from the original sources are noted.

Dataset Nodes Edges Classes Features # Train # Valid # Test

Amazon_Computers 13,752 491,722 10 767 - - -
Cora 19,793 126,842 70 8,710 - - -

Coauthor_CS 18,333 163,788 15 6,805 - - -
Flickr 89,250 899,756 7 500 44,625 22,312 22,313

ogbn-arxiv 169,343 1,166,243 40 128 90,941 29,799 48,603

In other words, αA
c is the miscoverage level for the random incorrect label when using q̂A to construct the

prediction set. By leveraging a recent result in the literature (Vadlamani et al., 2025), we can compute αA
c

and see that the following result holds (see Appendix B).

1− αA
c ≤ Pr[yR

n+1 ∈ CA(xn+1)] ≤ 1− αA
c + 1

n + 1 . (4)

Let Ã(x, y) be another non-conformity score and define
{

Ã(xi, yR
i )
}n+1

i=1 and αÃ
c similarly. The following

theorem gives a sufficient condition for when A is more efficient than Ã.
Theorem 2.3. If αA

c − αÃ
c ≥ 2

(n+1) then score function A produces a more efficient prediction set than Ã.
Formally, E [|CÃ(xn+1)| − |CA(xn+1)|] ≥ 0

With Theorem 2.3, we can further determine the expected efficiency improvement as the calibration set size
gets arbitrarily large, as seen in the following corollary. Proofs for both results are available in Appendix B.

Corollary 2.3.1. As n→∞, E[|CÃ(xn+1)| − |CA(xn+1)|] = (K − 1)
(

αA
c − αÃ

c

)
Corollary 2.3.1 allows practitioners to gauge the expected efficiency (i.e., set size) benefits prior to the
inference phase.

3 Empirical Analysis and Insights

Key Research Questions: In the subsequent sections, this work will answer the following key questions
raised when evaluating the literature on CP for transductive node classification.

1. TPS-Classwise is largely overlooked in the recent literature, given the popularity of APS and TPS not
being adaptive. Is TPS-Classwise a viable baseline? (Discussed in Section 3.1).

2. Theorem 2.3 provides a framework for evaluating when a method is more efficient (that is, produces
smaller sets) than another. What are the empirically observed implications of Theorem 2.3 on APS?
(Discussed in Sections 3.2 and 3.3).

3. Can we scale the computationally intensive CFGNN to handle large-scale graphs, such as ogbn-arxiv,
and at what cost to efficiency and coverage, if any? (Discussed in Sections 3.3 and 3.4).

4. Given the theoretical, experimental, and methodological analysis, what are some key insights and
guidelines for future scholarship in this area? (Discussed in Sections 3.5).

Datasets. Table 1 contains a representative set of datasets of varying sizes (i.e., number of nodes/edges)
and the number of classes evaluated in this section. The Appendix contains the list of all the datasets used
in this study. We used the dataset versions available on the Deep Graph Library (Wang et al., 2019) and
Open Graph Benchmark (Hu et al., 2020).

Methods. Section 2.1 includes all of the baseline methods considered in the experiments.

Metrics. For evaluation, we used the following standard metrics (Shafer & Vovk, 2008):
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(i) Coverage is the proportion of test points where the true label is in the prediction set, i.e.,
1

|Dtest|
∑

i∈Dtest
1[yi ∈ C(xi)].

(ii) Efficiency is the average prediction set size, i.e., 1
|Dtest|

∑
i∈Dtest

|C(xi)|

(iii) Label (or Class) Stratified Coverage (Sadinle et al., 2019) is the mean of the coverage for each
class, i.e., 1

|Dtest|
∑

i∈Dtest

(
1
K

∑K
k=1 1[yi ∈ C(xi), yi = k]

)
.

Dataset Splits and Training. There are several methods of partitioning D into Dtrain, Dvalid, Dcalib, and
Dtest. Two methods used in existing works on graph conformal prediction for node classification are:

(i) Full-Split (FS) Partitioning (Huang et al., 2023). In this split style, D is partitioned based on a
size constraint. For example, in CFGNN (Huang et al., 2023) the authors split the datasets in their
experiments randomly, satisfying a 20%/10%/35%/35% constraint for Dtrain/Dvalid/Dcalib/Dtest. Note
that a large portion (65%) of the full dataset has labels provided (i.e., in the development or calibration
set). This style is ideal for methods with numerous trainable (or tunable) parameters, as more
calibration data is available for training. We consider the following splits: (Dtrain,Dvalid,Dcalib,Dtest)
= (0.2, 0.1, 0.35, 0.35), (0.2, 0.2, 0.3, 0.3), (0.3, 0.1, 0.3, 0.3), and (0.3, 0.2, 0.25, 0.25).

(ii) Label-Count (LC) Sample Partitioning (Zargarbashi et al., 2023). In this split style, the data is
partitioned to ensure an equal number of samples of each label is present in Dtrain, Dvalid, and Dcalib.
The remaining nodes are Dtest. This setting is common when only a small proportion of labeled nodes
are available (e.g., semi-supervised learning). Intuitively, this setting is ideal for methods that do not
have many parameters to train. We explore setting the number of samples per class to 10, 20, 40,
and 80. Note that we assign nodes of each class sequentially, so it is feasible in this setup to have
some classes with no representative samples in some data subset. Finally, we note that this is a biased
sampling scheme which may violate the exchangeability assumption; however, we include this scheme
as it is used in the literature (Zargarbashi et al., 2023; 2024) for completeness of our analysis.

If the dataset has predefined splits (e.g., Flickr, ogbn-arxiv), we ensure that Dtrain and Dvalid come solely
from the training and validation splits, while Dcalib ∪ Dtest come from the test split.

3.1. Proposed Baseline using TPS with Adaptability. From Figure 1, we see that using TPS-
Classwise successfully provides label-stratified coverage in both the FS and LC split settings. This additional
adaptability comes at a cost to efficiency as seen in Figure 7, a standard tradeoff in conformal prediction.
One factor that impacts adaptability is the dataset’s label distribution, particularly because of labels with
little representation, as seen in Figure 2 for ogbn-arxiv. Because TPS is not adaptive, it has been ignored as
a baseline; however, TPS-Classwise’s adaptability makes it a viable baseline for future scholarship.

3.2. Empirical Observations on Randomization for APS. Applying Theorem 2.3 to randomized APS
(A) and deterministic APS (Ã), intuitively, as each score in A gets shifted by a small uπ term to the left,
qA would be lower than qÃ. Thus, the miscoverage levels we would search for in the complementary scores
1− αA

c would be less than 1− αÃ
c . 1− αA

c < 1− αÃ
c =⇒ αA

c − αÃ
c > 0. If the shift is sufficiently large, the

randomized prediction set is more efficient than the non-randomized one.

In Figure 3, we show what this looks like for a practical example over the Cora dataset. In Figure 3 (right),
the normalized sorted index at which the lower threshold qA is reached when considering the incorrect classes
is lower, i.e., 1− αA

c is lower, and hence αA
c is higher. As a part of the proof, we show dependencies on 1

(n+1)
and (K − 1), which indicates the improvements are more pronounced for larger Dcalib and many classes.

Figure 4 provides box plots that compare the efficiency of randomized and non-randomized versions of APS
across different datasets. We observe that the randomized version consistently provides a more efficient
prediction set for each split type. This effect is most pronounced for datasets with many potential classes in
the FS split, which aligns with the intuition from Theorem 2.3 described above and Corollary 2.3.1. Overall,
the empirical results show that the effect of randomized APS is more pronounced for larger values of K. This
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Figure 1: We set the target coverage rate α = 0.1. The boxplots present the Label Stratified Coverage for (a)
Amazon_Computers and (b) ogbn-arxiv for both the FS split (left) and LC split (right). We want the means
(white triangle) to be around 1− α = 0.9. For Labeled Stratified Coverage, TPS-Classwise is comparable to
or better than TPS.
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Figure 2: Label Distribution for ogbn-arxiv
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Figure 3: Scores for the Cora dataset using the randomized and non-randomized versions of APS. In the left
plot, the vertical lines show the shift in the standard conformal quantiles for A (randomized APS) and Ã
(non-randomized APS) for 0.9 coverage. In the right plot, the vertical lines show the shift in the 1− αc value
for A and Ã using scores for the incorrect classes. We have (1−αÃ

c )− (1−αA
c )≫ 2

n+1 ⇐⇒ αA
c −αÃ

c ≫ 2
n+1

which satisfies the condition for Theorem 2.3. Thus, A is more efficient as seen in the left plot since qA < qÃ.

observation suggests that APS with randomization should be the default implementation of APS for future
scholarship when looking to optimize (prediction) efficiency.
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Figure 4: We set the target coverage rate α = 0.1. Box plots depicting the efficiencies of APS and Randomized
APS across different datasets and multiple runs in both the FS split (left) and LC split (right). Using
randomization (the lower box plot for each dataset) consistently improves over the non-randomized version
as the efficiencies are distributed around smaller values.

3.3 Impact of Baseline and Scoring Function in CFGNN Inefficiency Loss. The choice of non-
conformity score in the inefficiency loss during calibration and testing plays a vital role in determining the
overall performance of GNN-based conformal prediction. To illustrate, we replicate an experiment by Huang
et al. (2023) who use TPS for the inefficiency loss during the calibration stage and non-randomized APS
for the testing stage, which gives a significant improvement in efficiency over the baseline (Figure 5 right).
However, if randomized APS is used instead (Figure 5 left), we observe that the baseline is competitive across
various coverage thresholds. It is worth noting that CFGNN appears robust to this choice, although the
gains in efficiency are not as dramatic in the randomized setting. We also note that the confidence bars are
narrower in the randomized setting. Similar results were observed on other datasets (see Appendix E).

Based on these insights, we use an improved version of CFGNN, which uses APS with randomization for both
training and evaluation, labeled as ‘cfgnn_aps.’ The original implementation is labeled as ‘cfgnn_orig’. Our
library implementation of CFGNN allows for either TPS or APS to be used for calibration and testing and
is extensible to other conformal prediction methods. We extend our results to more datasets and compare
against ‘aps_randomized’ (i.e., the baseline without applying the topology-aware correction via CFGNN).
Figure 6 presents the results for both the FS and LC split styles. We observe that ’cfgnn_aps’ is as good as
‘cfgnn_orig’ and can even improve upon ‘aps_randomized’ in terms of efficiency. In the LC split setting,
CFGNN is seen to be quite brittle because there may not be enough data to train a second GNN.

3.4 Scaling CFGNN for Large Graphs. The original CFGNN implementation uses full batch training.
While this approach has merits, it also poses challenges, particularly when dealing with larger graphs. The
evident need for a more scalable solution led us to implement modifications. We implemented a batched
version of CFGNN to ensure it can be used for larger graphs (e.g., ogbn-arxiv). To further scale CFGNN, we
cache the outputs from the base model to be treated as features for CFGNN training rather than having to
sample neighbors for both the base model and CFGNN, significantly speeding up the computation in training
and evaluation.

We compare three CFGNN implementations to demonstrate the impact of batching and caching on the
runtime. Across all comparisons, we use the FS split, with a 20%/20%/35%/25% data split. We use the best
base GNN (w.r.t. accuracy) and best CFGNN (w.r.t. efficiency) architecture from hyperparameter tuning.
The baseline implementation follows the setup by Huang et al. (2023), where the CFGNN is trained with
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Figure 5: The plot on the right replicates an experiment (Huang et al., 2023) plotting efficiency over various
coverage rates for the Cora_ML dataset (a subset of the Cora dataset) for both CFGNN and a baseline
model. The plot on the left uses APS with randomization when constructing the final prediction sets. These
plots illustrate the benefits of using randomization on baseline performance.
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Figure 6: Bar charts denoting efficiency for ‘cfgnn_aps’, ‘cfgnn_orig’, and ‘aps_randomized’ for the FS split
(left) and LC split (right) at α = 0.1. We see that ‘cfgnn_aps’ improves or matches efficiency in most cases.

full batch gradient descent for 1000 epochs. Our mini-batch implementation achieves comparable efficiency
within 50 epochs without any batch size tuning (we set the batch size to 64 for consistent comparison) as
shown in Table 2. Finally, we cache the output probabilities from the base GNN on top of the batched
implementation, reducing the runtime further. Table 2 compares the batching and the combined batching +
caching improvements. Our implementation can achieve improvements ranging from 3.69× (ogbn-arxiv) to
20.16× (Coauthor_CS) in runtime over the baseline implementation2.

3.5. Summary of Key Insights For Graph Conformal Prediction. In Figure 7, we present an overall
comparison of the different methods on the Flickr dataset in terms of efficiency and label-stratified coverage
(i.e., adaptability) using the full-split data partitioning style. Similar figures for the other datasets can be

2We provide config files for the best base GNN and CFGNN architectures in the attached code for every dataset/split type.
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Table 2: Impact of different CFGNN implementations between the original, batching, and batching+caching.
Used the best CFGNN architecture (w.r.t. validation efficiency) for each dataset. We run 5 trials for each
setup and report a 95% confidence interval. Amzn_Comp = Amazon_Computers

method(→) original batching batching+caching

dataset(↓) Runtime Efficiency Runtime Efficiency Runtime Efficiency

Amzn_Comp 664.98 ± 10.90 1.29 ± 0.05 205.29 ± 3.96 1.15 ± 0.01 73.85 ± 1.56 1.14 ± 0.01
Cora 1378.01 ± 13.35 6.81 ± 1.07 203.61 ± 2.52 8.34 ± 1.12 73.60 ± 1.53 7.96 ± 0.59
Coauthor_CS 638.56 ± 6.14 1.10 ± 0.01 88.49 ± 1.14 1.15 ± 0.01 31.67 ± 0.53 1.14 ± 0.01
Flickr 868.87 ± 9.98 4.23 ± 0.07 567.39 ± 6.50 4.23 ± 0.04 56.71 ± 1.30 4.24 ± 0.03
ogbn-arxiv 410.91 ± 8.29 7.07 ± 0.05 373.19 ± 3.64 7.28 ± 0.06 111.38 ± 1.95 6.91 ± 0.01

found in Appendix E. The following sections will analyze some of these methods in more detail, while a
discussion on others can be found in Appendix C.

Figure 7: Efficiency (left) and Label Stratified Coverage (right) for all the conformal methods for the Flickr
dataset. This uses the FS split style with multiple values for α. The dashed black line indicates the desired
label-stratified coverage. Other NAPS variants (i.e., exponential, hyperbolic) are discussed in Appendix C.

We analyze several general and graph-specific CP methods proposed in the recent literature for transductive
node classification. Based on our theoretical, empirical, and methodological results, we encourage practitioners
to be precise and careful when developing and evaluating conformal prediction methods for graphs. We
analyze the efficiency of all the methods considered in different datasets. Some key insights we report include:

• TPS is Efficient. TPS is consistently the most efficient method for each dataset, regardless of the data
split. However, this often comes at a cost to adaptability, as shown in Figure 7 for the Flickr dataset.

• TPS-Classwise is a viable baseline. While TPS is provably optimal for efficiency, the classwise version
has largely been ignored in the literature as a baseline. Our results demonstrate that TPS-Classwise
achieves label-stratified coverage–stemming from its classwise quantile procedure– making it an ‘adaptive’
method that is a competitive baseline. This adaptability usually comes at a small cost to efficiency, though
this is not the case with all datasets (see PubMed in Figure E5).

• Diffused Classwise TPS. We also explored an alternative to classwise TPS where we apply the diffusion
operator from Zargarbashi et al. (2023) on top of the ‘adaptive’ TPS-Classwise, discussed earlier. As with
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other datasets, DTPS also provides label-stratified coverage for Flickr (see Figure 7). More discussions on
DTPS and Diffusion Adaptive Sets (DAPS) (Zargarbashi et al., 2023) can be found in Appendix C.1.

• APS with randomization is provably more efficient than APS without randomization and
should be the default setting for future evaluations involving APS. From Theorem 2.3, we observe
that the randomization term in APS Randomized decreases the incorrect label scores substantially less
than the conformal quantile, meaning these incorrect labels are less likely to be included when constructing
the prediction set, therefore improving efficiency. This result is further pronounced for datasets with many
classes because most incorrect labels shift less than the correct label, suggesting that APS Randomized
should be a default baseline in the future.

• NAPS provides a balanced tradeoff (and applies to the non-exchangeable setting). Using
the NAPS (Clarkson, 2023) scoring function achieves a balance between efficiency and label-stratified
coverage. Before computing a quantile, NAPS uses neighbor distances to assign weights to non-conformity
scores. In the original paper and our implementation, NAPS has a hyperparameter k, which is the
maximum distance considered when assigning a weight, and everything beyond that is given zero weight.
A unique characteristic of NAPS is that it is the only method discussed that provides guarantees for
the non-exchangeable setting. More details on NAPS and its variations can be found in Appendix C.
Appendix E has similar plots for the other datasets.

• Randomization in CFGNN. As noted in Figure 6, randomization within the inefficiency loss function
can improve the efficiency of the original CFGNN implementation, particularly for datasets with many
classes (e.g., Cora). It is also worth reiterating that the perceived efficiency gains of the original CFGNN
are not as significant compared to APS with randomization (see Figure 5).

• Scaling up CFGNN. We reimplement CFGNN using batching and caching to scale the method for
larger graphs (e.g., ogbn-arxiv). We observe runtime improvements (see Table 2) and, in some cases,
batching with caching is the only method that can run CFGNN (e.g., ogbn-products in Table C1a).
Moreover, Figure 6 shows that APS Randomized is slightly less efficient than CFGNN without the same
computational demands. Thus, scaling makes CFGNN more viable for settings with limited resources.

• Impact of Label Distribution. We observe that the dataset’s label distribution impacts the difference
in adaptability between TPS and TPS-Classwise. In Figure 1, we find an increase in the adaptability of
TPS when using LC split instead of FS split for ogbn-arxiv compared to Amazon_Computers. The shift
in performance is exacerbated when many classes have little representation (highly imbalanced), as seen in
Figure 2. The difference in adaptability is also observed in other non-conformity scores and is particularly
pronounced for the ogbn-products dataset (see Figure D1).

• Incorrect label miscoverages are important. Conformal prediction is concerned with the true label
miscoverage; however, since prediction sets also include incorrect labels, the miscoverage levels of incorrect
labels are important to account for when considering a method’s efficiency. With Theorem 2.3, we prove
that a sufficient condition for when a CP method is more efficient than another method depends on the
incorrect label miscoverage. Theorem 2.3 applies to other domains outside the graph space. We also see in
Corollary 2.3.1 that the incorrect label miscoverages determine how much the efficiency improves with
large calibration sets. This improvement is pronounced for datasets with many classes.

• The Benefit of RAPS is not as significant for Transductive Node Classification. In the general
CP literature, RAPS has demonstrated improvements to (prediction) efficiency over APS consistently,
however, these same improvements aren’t as evident for graph datasets as seen in Figure 7 where RAPS
does not beat out APS Randomized in terms of (prediction) efficiency. Similar results for other datasets
can be found in Appendix E and Zargarbashi et al. (2023).

Guidelines. To conclude this analysis, if computational resources are not a limiting factor, CFGNN with
the appropriate loss functions (e.g., APS randomized) has demonstrable success in improving efficiency, while
being comparable to other methods in terms of adaptability. When deciding which method is more efficient
in general, Theorem 2.3 can be applied to the calibration set to determine this prior to deployment. If
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adaptability is critical, then methods such as TPS-Classwise and DTPS are both viable and the only methods
that provide a guarantee while not being as computationally expensive. APS and APS Randomized are
good middle-ground methods, and NAPS is the only method that provides guarantees for non-exchangeable
settings. Lastly, we provide a Python library3 which can be used to implement these methods.

4 Concluding Remarks

We present a comprehensive benchmarking study of conformal prediction for node classification. We provide
novel insights related to design choices that impact efficiency, adaptability, and scalability. Along the way, we
offer a new theoretical rationale for the importance of randomization and discuss some novel methodological
improvements and directions for future work. One future direction pertains to the space of fairness auditing.
Several works have dealt with the auditing fairness of ML models through measuring uncertainty in fairness
definitions (Ghosh et al., 2021; Maneriker et al., 2023; Yan & Zhang, 2022), but they rely on the assumption
of IID. While conformal prediction works with the notion of miscoverage, more relevant notions of error can
be considered using the generalized framework of conformal risk control (Angelopoulos et al., 2024).
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A Optimal τ for APS

The most popular baseline in the graph conformal prediction literature is Adaptive Prediction Sets (APS).
(Romano et al., 2020) introduces APS by defining an optimal prediction set construction mechanism under
oracle probability. Suppose we estimate a prediction function f̂ that correctly models the oracle probability
Pr[Y = y|Xtest = x] = πy(x) for each y ∈ Y = {1, . . . , K} Let π(1)(x), . . . , π(K)(x) be the sorted probabilities
in descending order. For any τ ∈ [0, 1], define the generalized conditional quantile funciton at τ as

L(x; π, τ) = min

k ∈ {1, . . . , K},
k∑

j=1
π(j)(x) ≥ τ

 (5)

The corresponding prediction set, Cor
α (x), is constructed as

Cor+
α (x) = {y ∈ Y : πy(x) ≥ π(L(x;π,1−α))(x)}

where or indicates the usage of the oracle probability. Further, they define tighter prediction sets in a
randomized fashion using an additional uniform random variable u ∼ Uniform(0, 1) as a parameter to
construct a generalized inverse. This idea draws upon the idea of uniformly most powerful tests in the
Neyman-Pearson lemma for level-α sets (Neyman & Pearson, 1933). Define

S(x, u; π, τ) =
{
{y ∈ Y : πy(x) > π(L(x;π,τ))(x)} u < V (x; π, τ)
{y ∈ Y : πy(x) ≥ π(L(x;π,τ))(x)} otherwise

(6)

i.e., the class at the L(x; π, τ) rank is included in the prediction set with probability 1− V (x; π, τ), where

V (x; π, τ) = 1
π(L(x;π,τ))(x)


L(x;π,τ)∑

j=1
π(j)(x)

− τ


The corresponding randomized prediction sets are Cor

α (x) = S(x, U ; π, 1 − α), U ∼ U(0, 1) Note, the
coverage guarantees provided in conformal prediction hold only in expectation over the randomness in
(xi, yi), i = 1, . . . , n + 1. The randomized prediction sets continue to provide the guarantee with additional
randomness over ui. To make this work for a non-oracle probability π̂(x), they define a non-conformity score
A

A(x, y, u; π̂) = min{τ ∈ [0, 1] : y ∈ S(x, u; π̂, τ)} (7)

Assume that π̂ are all distinct, for ease of defining rank. Suppose the rank of the true class amongst the

sorted π̂ be ry, i.e.,
K∑

i=1
1[π̂i(x) ≥ π̂y] = ry Solving for τ as a function of π̂ (see Appendix A, for proof),

A(x, y, u; π̂) =
[

ry∑
i=1

π̂(i)(x)
]
− uπ̂y (8)

Instead, if a deterministic set is used to define the conformal score instead (i.e., the randomized set construction
is not carried out), then we could add the probabilities until the true class is included:

Ã(x, y; π̂) =
[

ry∑
i=1

π̂(i)(x)
]

(9)

This version of APS still provides the same conditional coverage guarantees and has a simpler exposition, as
the prediction sets are constructed by greedily including the classes until the true label is included. Thus, this
version is implemented in the popular monographs on conformal prediction (Angelopoulos & Bates, 2023).
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However, the lack of randomization may sacrifice efficiency. This modification of the score function affects
both the quantile threshold computation during the calibration phase and the prediction set during the test
phase. We will now show the conditions that impact the efficiency more formally.

For simplicity, assume that the probabilities are distinct.

From the definition of A equation 7

A(x, y, u; π̂) = min{τ ∈ [0, 1] : y ∈ S(x, u; π̂, τ)}

Define
Σπ̂(x, m) =

m∑
i=1

π̂(i)(x)

From the definition of S(x, u; π̂, τ) from equation 6, conisder the following cases:

Case 1: τ = Σπ̂(x, ry), then L(x; π̂, τ) = y and thus, V (x; π, τ) = 0. Thus Pr[u > V (x; π, τ)] = 1 and hence,
P [y ∈ S(x, u; π̂, τ)] = 1.

Case 2: τ = Σπ̂(x, ry − 1), then y ̸∈ S(x, u, π̂, τ) in either case, since only classes with π̂i(x) > π̂y(x) could
be included.

Case 3: τ = Σπ̂(x, ry)− επ̂y. Then we have L(x; π̂, τ) = y again, and

V (x; π, τ) = 1
π̂y(x)


 ry∑

j=1
π̂(j)(x)

− τ


= 1

π̂y(x)


 ry∑

j=1
π̂(j)(x)

− (Σπ̂(x, ry)− επ̂y)


= ε

For y to be included in S(x, u; π̂, τ), we would require that u ≥ V (x; π, τ), i.e., u ≥ ε. We want the minimal
τ (or the maximal ε). Thus, τ = Σπ̂(x, ry)− uπ̂y is the required solution.

A.1 Non-randomized set

The inclusion criterion for the score given the threshold τ is Ã(x, y; p̂i) ≤ τ

To include the correct label yi while minimizing the chosen threshold τ , we would require τ =
ryi∑
j=1

π̂(j)(x)
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B Proofs

B.1 Proof of Theorem 2.3

For self-containment, we will restate some of the notation used in proving Theorem 2.3. Let A(x, y) be any
non-conformity score function and

q̂A = Quantile
(
⌈(n + 1)(1− α)⌉

n
; {A(xi, yi)}n

i=1

)
Define Ai(y) := A(xi, y) where y ∈ Y and Ci

A = CA(xi) for brevity. Let Y ′
i = Y \ {yi} be the set of incorrect

labels and y′
i ∈ Y ′

i be any incorrect class label for each xi. We can consider the exchangeable sequence
{A(xi, yR

i )}n+1
i=1 , where yR

i denotes a randomly sampled from Y ′
i, and define αA

c ∈ [0, 1] such that:

q̂A = Quantile
(⌈

(n + 1)(1− αA
c )
⌉

n
; {A(xi, yR

i )}n
i=1

)
. (10)

Particularly, if we set λ = q̂A in the following lemma, then we can compute αA
c =

∑n

i=1
1[A(xi,yR

i )>q̂A]+1
n+1 to

satisfy the guarantee given in Equation 4.
Lemma B.1 (Vadlamani et al. (2025)). For λ ∈ [0, 1] and n = |Dcalib|, let Cλ(x) = {y ∈ Y : s(x, y) ≤ λ}.
Then, ∑n

i=1 1[s(xi, yi) > λ]
n + 1 ≤ Pr[yn+1 ̸∈ Cλ(xn+1)] ≤

∑n
i=1 1[s(xi, yi) > λ] + 1

n + 1 . (11)

On the exchangeability of {A(xi, yi)}n+1
i=1 To understand why {A(xi, yR

i )}n+1
i=1 is exchangeable we first

consider Lemma B.2:
Lemma B.2. The random variable yR

i ∼ U(Y ′
i).

Proof. To prove the lemma, we will show that the PMF that y′
i,(ui) follows is identical to U(Y ′

i). Let y′
i be an

arbitrary label in Y ′
i. First observe for yR

i ∼ U(Y ′
i) that Pr[yR

i = y′
i] = 1

K−1 because it is uniformly sampled.
Now consider via the law of total probability,

Pr[y′
i,(ui) = y′

i] =
K−1∑
l=1

Pr[y′
i,(ui) = y′

i|ui = l] · Pr[ui = l]

=
K−1∑
l=1

Pr[y′
i,(l) = y′

i] · Pr[ui = l]

=
K−1∑
l=1

Pr[y′
i,(l) = y′

i]
1

K − 1

= 1
K − 1

K−1∑
l=1

Pr[y′
i,(l) = y′

i]︸ ︷︷ ︸
Sum of a PMF

= 1
K − 1 · 1 = 1

K − 1
(12)

Thus, the PMFs are identical and yR
i ∼ U(Y ′

i).
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Recall (xi, yi)n+1
i=1 are assumed to be exchangeable, thus (xi,Y ′

i)
n+1
i=1 must also be exchangeable since Y ′

i

is the complement of {yi}. Lastly, consider an IID sequence ui ∼ U({1, . . . , K − 1}) for i = 1, . . . , n + 1.
Since {ui}n+1

i=1 is IID, we can adjoin it to the covariates and produce an exchangeable sequence of triples
(xi,Y ′

i, ui)n+1
i=1 .

From this exchangeable sequence, we can compute the non-conformity scores, and ({A(xi, y′
i) | y′

i ∈ Y ′
i}, ui)n+1

i=1 .
Lastly, to get a pointwise representative for each set, let yR

i = y′
i(ui) such that A(xi, y′

i(1)) ≤ A(xi, y′
i(2)) ≤

· · · ≤ A(xi, y′
i(K−1)) – assuming there is a suitably random tie-breaking method for identical scores. Then,

{A(xi, yR
i )}n+1

i=1 is an exchangeable sequence. In practice, the process of ordering the Y ′
i labels is not

necessary. However, it concretely demonstrates the procedure to form {A(xi, yR
i )}n+1

i=1 ensures the sequence
is exchangeable where yR

i ∼ U(Y ′
i) using Lemma B.2.

Now, we will prove Theorem 2.3.

Theorem 2.3. If αA
c − αÃ

c ≥ 2
(n+1) then score function A produces a more efficient prediction set than Ã.

Formally, E [|CÃ(xn+1)| − |CA(xn+1)|] ≥ 0

Proof. Let Ci
A = CA(xi) for brevity. First consider, E

[∣∣Cn+1
A

∣∣],
E
[∣∣Cn+1

A

∣∣] = E

∑
y∈Y

1[y ∈ Cn+1
A ]


= E

[
1[yn+1 ∈ Cn+1

A ]
]

+ E

 ∑
y′

n+1∈Y′
n+1

1[y′
n+1 ∈ Cn+1

A ]


= E

[
1[yn+1 ∈ Cn+1

A ]
]

+
∑

y′
n+1∈Y′

n+1

E
[
1[y′

n+1 ∈ Cn+1
A ]

]
= Pr[yn+1 ∈ Cn+1

A ] +
∑

y′
n+1∈Y′

n+1

Pr[y′
n+1 ∈ Cn+1

A ] (13)

Now using Lemma B.2 we have that yR
i ∼ U(Y ′

i). Then, using the law of total probability and the fact that a
label y is in Cn+1

A iff A(xn+1, y) ≤ q̂A,

Pr[A(xn+1, yR
n+1) ≤ q̂A] =

∑
y′

n+1∈Y′
n+1

Pr[A(xn+1, yR
n+1) ≤ q̂A|yR

n+1 = y′
n+1] · Pr[yR

n+1 = y′
n+1]

=
∑

y′
n+1∈Y′

n+1

Pr[A(xn+1, y′
n+1) ≤ q̂A] · Pr[yR

n+1 = y′
n+1]

=
∑

y′
n+1∈Y′

n+1

Pr[y′
n+1 ∈ Cn+1

A ] · Pr[yR
n+1 = y′

n+1]

=
∑

y′
n+1∈Y′

n+1

Pr[y′
n+1 ∈ Cn+1

A ] · 1
K − 1

⇐⇒ (K − 1) Pr[yR
n+1 ∈ Cn+1

A ] =
∑

y′
n+1∈Y′

n+1

Pr[y′
n+1 ∈ Cn+1

A ] (14)

Then substituting Equation 14 into Equation 13 we arrive at,

E
[∣∣Cn+1

A

∣∣] = Pr[yn+1 ∈ Cn+1
A ] + (K − 1) Pr[yR

n+1 ∈ Cn+1
A ] (15)
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Then we can compute an upper bound and lower bound for E
[∣∣Cn+1

A

∣∣],
E
[∣∣Cn+1

A

∣∣] ≤ 1− α + 1
n + 1 + (K − 1)

(
1− αA

c + 1
n + 1

)
= 1− α + (K − 1)

(
1− αA

c

)
+ K

n + 1

and
E
[∣∣Cn+1

A

∣∣] ≥ 1− α + (K − 1)
(
1− αA

c

)
(16)

similar bounds can be derived for E
[∣∣∣Cn+1

Ã

∣∣∣]. Thus,

E
[
|Cn+1

Ã
| − |Cn+1

A |
]
≥
(

1− α + (K − 1)
(

1− αÃ
c

))
︸ ︷︷ ︸

lower bound for E
[∣∣Cn+1

Ã

∣∣]
−
(

1− α + (K − 1)
(
1− αA

c

)
+ K

n + 1

)
︸ ︷︷ ︸

upper bound for E
[∣∣Cn+1

A

∣∣]
= (K − 1)

(
αA

c − αÃ
c

)
− K

n + 1

= (K − 1)
(

αA
c − αÃ

c −
K

(K − 1)n + 1

)
≥ (K − 1)

(
αA

c − αÃ
c −

2
n + 1

)
≥ 0 (17)

with the last inequality holding because αA
c − αÃ

c ≥ 2
n+1 . This completes the proof for the general case.
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B.2 Proof of Corollary 2.3.1

Corollary 2.3.1. As n→∞, E[|CÃ(xn+1)| − |CA(xn+1)|] = (K − 1)
(

αA
c − αÃ

c

)
Proof. Observe using Equation 17, E

[
|Cn+1

Ã
| − |Cn+1

A |
]
≥ (K − 1)

(
αA

c − αÃ
c − 2

n+1

)
. Similarly by swapping

A and Ã:

E
[
|Cn+1

A | − |Cn+1
Ã
|
]
≥ (K − 1)

(
αÃ

c − αA
c −

2
n + 1

)
⇐⇒ E

[
|Cn+1

Ã
| − |Cn+1

A |
]
≤ (K − 1)

(
αA

c − αÃ
c + 2

n + 1

)
Then observe as n→∞ both the lower and upper bound of E

[
|Cn+1

Ã
| − |Cn+1

A |
]

converge to (K−1)
(

αA
c − αÃ

c

)
.

Thus E
[
|Cn+1

Ã
| − |Cn+1

A |
]

= (K − 1)
(

αA
c − αÃ

c

)
.
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C Method Details and Innovations

C.1 Diffusion Adaptive Prediction Sets (DAPS)

The Diffusion Adaptive Prediction Sets (DAPS) approach for conformal node classification on graphs was
introduced by (Zargarbashi et al., 2023). The intuition behind DAPS follows the prevalence of homophily
graphs, which suggests that non-conformity scores for two connected nodes should be related. DAPS uses
a diffusion step to capture this relationship and uses the non-conformity scores modified by diffusion to
generate the prediction sets. Formally, suppose s(v, y) is a point wise non-conformity score for a node v and
label y (e.g., TPS or APS)

ŝ(v, y) = (1− λ)s(v, y) + λ

|Nv|
∑

u∈Nv

s(u, y)

where Nv is the 1-hop neighborhood of v and λ ∈ [0, 1] is a hyperparameter controlling the diffusion.

Zargarbashi et al. (2023) uses the APS score as the point-wise score in the diffusion process, as it is adaptive
and uniformly distributed in [0, 1] under oracle probability. However, as noted earlier, using classwise
thresholds provides a mechanism to produce adaptive scores from TPS. Thus, we create DTPS, a variation of
DAPS using TPS scores as the point-wise scores in the diffusion process.

We compare our proposed method of using diffusion on top of TPS-Classwise (DTPS) against DAPS, which
was proposed by Zargarbashi et al. (2023). From Figure C1 (left), we see that DTPS can be competitive with
DAPS in efficiency while providing better label-stratified coverage. However, for some of the larger datasets
(Cora, Flickr, ogbn-arxiv, ogbn-products), DTPS suffers from poorer efficiency compared to DAPS. This can
be partially explained by the worse performance of the pre-diffusion TPS-classwise (Figure E2), which is
forced to sacrifice efficiency on these datasets to achieve label-stratified coverage (Figure E1).

However, when we control the number of samples per class with LC splits (Figure C1 right), we see that
DTPS label stratified coverage deteriorates significantly compared to DAPS. Based on these results, we can
conclude that DTPS is not a universally better method than DAPS, and its performance is sensitive to the
calibration set size and the number of classes. It may be a viable candidate over DAPS in scenarios when
there is a sufficiently large calibration set, which is when TPS-classwise has competitive efficiency to TPS.
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Figure C1: Bar charts denoting different metrics associated with DAPS and DTPS across all datasets for FS
split (left) and LC split (right) at α = 0.1.
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C.2 Notes on Transductive NAPS

Neighborhood Adaptive Prediction Sets (NAPS) constructs prediction sets under relaxed exchangeability
(or non-exchangeability) assumptions (Barber et al., 2023) and was initially implemented for the inductive
setting (Clarkson, 2023). However, NAPS can also be used in the transductive setting (Zargarbashi et al.,
2023). To compute scores for Dcalib nodes, NAPS uses APS. Using these scores, Equation 18 is used to
compute a weighted quantile for the score threshold to be used when constructing the prediction sets. The
weighted quantile is defined by placing a point mass, δsi , for each calibration point’s score, si, as well as a
point mass at δ+∞ to represent the test point, vn+1’s, score. The point mass at δ+∞ is needed because the
score for vn+1 is unknown, and potentially unbounded, due to non-exchangeability.

q̂NAPS
n+1 = Quantile

(
1− α,

[ ∑
i∈Dcalib

w̃i · δsi

]
+ w̃n+1 · δ+∞

)
(18)

For NAPS to produce viable prediction sets, the weights, wi ∈ [0, 1], for the calibration nodes must be chosen
in a data-independent fashion, i.e., they cannot leverage the associated node features (Barber et al., 2023).
NAPS leverages the graph structure to assign these weights, assigning non-zero weights to nodes within a
k-hop neighborhood, N k

n+1, of a test node vn+1. For nodes that are in N k
n+1, let di be the distance from

the node to vn+1 to vi ∈ Vcalib. The three implemented weight functions are uniform: wu(di) = 1[di ≤ k],
hyperbolic: wh(di) = 1

di
1[di ≤ k], and exponential: we(di) = 2−di1[di ≤ k]. The weights are then normalized,

w̃i, such that
∑

i∈Dcalib
w̃i + w̃n+1 = 1 (Barber et al., 2023).

NAPS Implementation NAPS is computationally expensive in terms of time and memory since the
k-hop intersection is computed for each test node. To allow for scalability, our implementation of NAPS,
shown in Algorithms 1 and 2, uses batching to ensure sufficient memory is available and uses sparse-tensor
multiplication to reduce memory and time costs.

To ensure scalability for large graphs, all the computations until the quantile computation step were done via
sparse tensors. Algorithm 2 illustrates how the distance to each calibration node in the k-hop neighborhood
can be computed via sparse tensor primitives.

Algorithm 1 NAPS Quantile Implementation
1: procedure NAPS_Quantile(w, k,Dcalib,Dtest,D,Scalib, b, α)
2: {B1,B2, . . . ,Bb} ← split(Dtest, b) ▷ Split test nodes into b batches
3: q ← zeros(Dtest, 1) ▷ q ∈ R|Dtest|×1

4: for Bn ∈ {B1,B2, . . . ,Bb} do
5: k_hop← Sparse_k_hop(k,Bn,Dcalib,D) ▷ k_hop ∈ R|Bn|×|Dcalib|

6: weights← compute_weights(w, k_hop) ▷ weights ∈ R|Bn|×|Dcalib|

7: q[Bn]← compute_quantile(1− α, weights,Scalib)
8: end for
9: return q ▷ Return the quantiles for each test node

10: end procedure
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Algorithm 2 Sparse K Hop Neighborhood Implementation
1: procedure Sparse_k_hop(k,B,Dcalib,D)
2: A← Get_Adjacency(D) ▷ Adjacency of D, A ∈ R|D|×|D|

3: path_n← A[B, :] ▷ path_n ∈ R|B|×|D|

4: k_hop← path_n[:,Dcalib] ▷ k_hop ∈ R|B|×|Dcalib|

5: for n ∈ {2, 3, . . . , k} do
6: path_n← (path_n)A
7: neg_if_n← k_hop− sgn(path_n[:,Dcalib]) ▷ negative value =⇒ n hops away
8: in_n_hop← (neg_if_n < 0)× n ▷ Nodes that are a min distance of n
9: k_hop← k_hop + in_n_hop

10: end for
11: return k_hop ▷ ∀i,j If dist(i, j) ≤ k then k_hop[i, j] = dist(i, j), else k_hop[i, j] = 0
12: end procedure

Parameter Analysis: Apart from the particular weighting function, the main parameter in the NAPS
algorithm is the number of hops to consider, k. Figure C2 shows the trend between efficiency and coverage
as we increase k from 1 to D, where D is a lower bound on the diameter of the largest strongly connected
component of the dataset, computed using the NetworkX Hagberg et al. (2008). For each dataset, we observe
a value of k after which the efficiency does not improve, while still achieving the desired coverage. This
behavior can suggest a heuristic akin to the ‘elbow method’ used in clustering analysis to determine the
number of clusters for choosing the value of k in NAPS.
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Figure C2: Plotting the Efficiency and Coverage when using NAPS for k from 1 to D. The above results are
with FS split and α = 0.1.
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Figure C2: Plotting the Efficiency and Coverage when using NAPS for k from 1 to D. The above results are
with FS split and α = 0.1 (cont.). The ogbn-products dataset is omitted due to size and lack of data points.
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C.3 Conformalized GNN
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Figure C3: Procedure for training CFGNN. First (left), the base model is trained on the training set. Then,
(middle) CFGNN is trained to maximize efficiency over the calibration set. Finally, (right) the non-conformity
scores from the combined models are used to generate the prediction sets.

Huang et al. (2023) introduces CFGNN as a conformal prediction method specific for graphs. Figure C3
shows the end-to-end CFGNN procedure split into three steps. The first is to train a base GNN model,
GNNθ, on the development nodes, Vdev, normally using a label-based loss function such as Cross Entropy
Loss. Using the outputs of GNNθ as inputs, a second GNN, GNNφ is trained using an efficiency-based loss
function proposed by Huang et al. (2023). Equation 19 presents the efficiency-based loss function for node
classification, where σ is the sigmoid function and τ is a temperature hyperparameter. The calibration nodes,
Vcalib, are split into two sets, Vcor-cal and Vcor-test for training and validation, respectively. The fully trained
GNNφ is then used for the conformal prediction and prediction set construction.

η̂ = DiffQuantile({s(xi, yi)}, (1− α)(1 + 1/|Vcor-cal|))

Leff = 1
|Vcor-cal|

∑
i∈Vcor-cal

∑
k∈Y

σ

(
s(xi, k)− η̂

τ

)
(19)

Impact of Inefficiency Loss: Figure C4 compares the efficiency of ‘cfgnn_aps’, ‘cfgnn_orig,’ and
‘aps_randomized’ for all the other datasets. For the FS split, we see that ‘cfgnn_aps’ improves upon
‘cfgnn_orig’ for all datasets and can improve upon ‘aps_randomized’ for most datasets. We see that CFGNN
is still quite brittle for all datasets for the LC Split. CFGNN can still improve upon ‘aps_randomized’ for
datasets with a larger number of classes, as seen with Cora and ogbn-products.

Scaling CFGNN: Expanding on Table 2 from Section 3, Table C1 present the runtime improvements
(see Table C1a) as well as the efficiencies (see Table C1b) for each CFGNN implementation using the best
CFGNN architecture found through hyperparameter tuning (see Section D4). We observe that our improved
implementation achieves comparable efficiency to the original in only 50 epochs as opposed to 1000 used in
the original.
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Table C1: Impact of different CFGNN implementations between the original, batching, and batching+caching.
Used the best CFGNN architecture (w.r.t. validation efficiency) for each dataset. We run 5 trials for each
setup and report a 95% confidence interval. OOM = Out of Memory

(a) Impact on Runtime

dataset(↓) / method(→) original batching batching+caching
CiteSeer 379.28 ± 9.36 36.36 ± 0.97 27.45 ± 0.80
Amazon_Photos 496.36 ± 4.92 102.92 ± 0.95 54.44 ± 1.36
Amazon_Computers 664.98 ± 10.90 205.29 ± 3.96 73.85 ± 1.56
Cora 1378.01 ± 13.35 203.61 ± 2.52 73.60 ± 1.53
PubMed 571.60 ± 12.09 219.63 ± 5.23 109.68 ± 1.64
Coauthor_CS 638.56 ± 6.14 88.49 ± 1.14 31.67 ± 0.53
Coauthor_Physics 5942.30 ± 176.90 3918.38 ± 17.16 1585.26 ± 6.84
Flickr 868.87 ± 9.98 567.39 ± 6.50 56.71 ± 1.30
ogbn-arxiv 410.91 ± 8.29 373.19 ± 3.64 111.38 ± 1.95
ogbn-products OOM OOM 8709.16 ± 55.00

(b) Impact on Efficiency

dataset(↓) / method(→) original batching batching+caching

CiteSeer 2.52 ± 0.27 2.45 ± 0.19 2.42 ± 0.37
Amazon_Photos 1.06 ± 0.01 1.06 ± 0.02 1.12 ± 0.02
Amazon_Computers 1.29 ± 0.05 1.15 ± 0.01 1.14 ± 0.01
Cora 6.81 ± 1.07 8.34 ± 1.12 7.96 ± 0.59
PubMed 1.17 ± 0.00 1.16 ± 0.00 1.17 ± 0.00
Coauthor_CS 1.10 ± 0.01 1.15 ± 0.01 1.14 ± 0.01
Coauthor_Physics 0.97 ± 0.01 1.01 ± 0.03 0.99 ± 0.01
Flickr 4.23 ± 0.07 4.23 ± 0.04 4.24 ± 0.03
ogbn-arxiv 7.07 ± 0.05 7.28 ± 0.06 6.91 ± 0.01
ogbn-products OOM OOM 1.86 ± 0.06
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Figure C4: Bar charts denoting efficiency for ‘cfgnn_aps’, ‘cfgnn_orig’, and ‘aps_randomized’ for both split
styles at α = 0.1. We see that ‘cfgnn_aps’ improves or matches efficiency in most cases.
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D Datasets and Hyperparameter Tuning Details

D.1 Datasets

We selected datasets of varying sizes and origins to evaluate the performance of the graph conformal prediction
methods. The first category of datasets is citation datasets, where the nodes are publications and the edges
denote citation relationships. Nodes have features that are bag-of-words representations of the publication.
The task is to predict the category of each publication. The citation networks we use are CiteSeer (Yang
et al., 2016), CoraFull (Shchur et al., 2018), an extended version of the common Cora (Yang et al., 2016)
citation network dataset, and Pubmed (Yang et al., 2016). The second category comes from the Amazon
Co-Purchase graph (McAuley et al., 2015), where nodes represent goods, edges represent goods frequently
bought together, and node features are bag-of-words representations of product reviews. The task is to predict
the category of a good. We use the Amazon_Photos and Amazon_Computers datasets. The last
category is co-authorship networks extracted from the Microsoft Academic Graph (Wang et al., 2020) used
for KDD Cup’16. The nodes are authors, edges represent coauthorship, and node features represent paper
keywords of the author’s publications. The task is to predict the author’s most active field of study. We use
Coauthor_CS and Coauthor_Physics, which both come from the Microsoft Academic Graph (Wang et al.,
2020). Other datasets that were use include Flickr (Zeng et al., 2020), ogbn-arxiv, and ogbn-products Hu
et al. (2020). These last three datasets have predefined splits for train/validation/test, shown in Table D2,
which we used when constructing our train/validation/calibration/test splits for the different split styles. We
used the version given by the Deep Graph Library (Wang et al., 2019) for all the datasets. DGL uses an
Apache 2.0 license, and OGB uses an MIT license.

Table D1 presents summary statistics for each dataset. These include the average local clustering coefficient
(Avg CC), global clustering coefficient (Global CC) (Newman, 2018), an approximate lower bound on the
diameter (D) given by Magnien et al. (2009), node homophily ratio (Ĥ) (Pei et al., 2020), and expected node
homophily ratio (Hrand). Figure D1 shows the label distribution for each dataset.

Table D1: Summary statistics for all datasets evaluated.

Dataset Nodes Edges Classes Features Avg CC Global CC D Ĥ Hrand

CiteSeer 3,327 9,228 6 3,703 0.141 0.130 28 0.722 0.178
Amazon_Photos 7,650 238,163 8 745 0.404 0.177 10 0.836 0.165

Amazon_Computers 13,752 491,722 10 767 0.344 0.108 10 0.785 0.208
Cora 19,793 126,842 70 8,710 0.261 0.131 23 0.586 0.022

PubMed 19,717 88,651 3 500 0.060 0.054 17 0.792 0.357
Coauthor_CS 18,333 163,788 15 6,805 0.343 0.183 24 0.832 0.112

Coauthor_Physics 34,493 495,924 5 8,415 0.378 0.187 17 0.915 0.321
Flickr 89,250 899,756 7 500 0.033 0.004 8 0.322 0.267

ogbn-arxiv 169,343 1,166,243 40 128 0.118 0.115 62 0.567 0.077
ogbn-products 2,449,029 61,859,140 47 100 0.411 0.130 27 0.817 0.106

Table D2: Predefined splits from original source noted.

Dataset # Train # Valid # Test
Flickr 44,625 22,312 22,313

ogbn-arxiv 90,941 29,799 48,603
ogbn-products 196,615 39,323 2,213,091
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Figure D1: Plots of label distribution for each dataset. Each class for each dataset has at least one occurrence.
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Figure D1: Plots of label distribution for each dataset. Each class for each dataset has at least one occurrence
(cont.).
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D.2 Hyperparameter Tuning

Hyperparameter tuning was done using Ray Tune (Liaw et al., 2018). The hyperparameters for the base
model were tuned via random search using Table D3 for each model type (e.g., GCN, GAT, and GraphSAGE),
for each dataset, except for the OGB (Hu et al., 2020) datasets, and each splitting scheme (FS vs LC and
different value settings). For the OGB datasets, we took the hyperparameters and architectures from the
corresponding leaderboard for all splitting schemes.

Once we got the best base model for each dataset and splitting scheme, we tune the hyperparameters for the
CF-GNN model via random search using Table D4 for each model type (e.g., GCN, GAT, and GraphSAGE),
for each dataset4. For the FS splitting schemes, we enfore |Dcalib| = |Dtest| = (1− |Dtrain| − |Dvalid|)/2. For
the ogbn-products dataset, due to its size, we used a batch size of 512 for the CF-GNN training and also
used a NeighborSampler with fanouts [10, 10, 5] rather than a MultiLayerFullNeighborSampler.

All experiments with the ogbn-products datasets were run on a single A100 GPU, while the remaining
experiments for the other datasets were run on a single P100 GPU.

Table D3: Hyperparameter search space for the base GNN model for non-OGB datasets. The last two rows
are layer-type specific for GAT and GraphSAGE, respectively.

Hyperparameter Search Space
batch_size 64
lr loguniform(10−4, 10−1)
hidden_channels {16, 32, 64, 128}
layers {1, 2, 4}
dropout uniform(0.1, 0.8)
heads {2, 4, 8}
aggr_fn {mean, gcn, pool, lstm}

Table D4: Hyperparameter search space for the CF-GNN model. The last two rows are layer-type specific for
GAT and GraphSAGE, respectively.

Hyperparameter Search Space
batch_size 64
lr loguniform(10−4, 10−1)
hidden_channels {16, 32, 64, 128}
layers {1, 2, 3, 4}
dropout uniform(0.1, 0.8)
τ loguniform(10−3, 101)
heads {2, 4, 8}
aggr_fn {mean, gcn, pool, lstm}

4The configuration files for all the experiments and best architectures are available in our codebase: https://github.com/
pranavmaneriker/graphconformal-code.
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E Additional Empirical Results, Analysis, and Insights

This section expands the figures and tables in the main body for all datasets considered. Figure E1 compares
TPS and TPS-Classwise for all the datasets. We observe that TPS-Classwise achieves the desired label-
stratified coverage of 0.9 while TPS doesn’t necessarily for the FS split. For the LC split, we observe that
TPS-Classwise slightly improves on TPS in terms of label-stratified coverage; however, neither method
necessarily achieves the target label-stratified coverage. In Figure E2, we find TPS-Classwise generally is
less efficient than TPS for FS and LC splitting. Figure E3 compares the label-stratified coverage for APS
with and without randomization. We observe that randomization does sacrifice the label-stratified coverage
for both FS and LC splitting. Noticeably, the change in coverage is smaller for the LC split. Figure E4
compares the efficiency of APS with and without randomization at α = 0.1. For both split types (FS & LC),
we observe that the randomized version of APS produces more efficient prediction sets, in line with Theorem
2.3. The efficiency improvements come with a sacrifice in label-stratified coverage since smaller prediction set
sizes are preferred over covering every class, particularly if the classes are rare. To visualize this trade-off, we
observe that in both Figure E1 and E3 the difference in label stratified coverage for ogbn-products with FS
splitting is more extreme than with other datasets and with LC splitting. This is because ogbn-products
has a lot of classes that have almost no representation (see Figure D1). Datasets with near-uniform label
distribution (e.g., PubMed, CiteSeer) – or when using LC split, which controls for label counts – we observe
that label-stratified coverage isn’t sacrificed as much in the name of efficiency.
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Figure E1: Plots for TPS vs TPS-Classwise for all the data sets at 1− α = 0.9 coverage (green dotted line).
TPS-Classwise, on average, meets label-stratified coverage for FS split (left). For the LC split, the label
stratified coverage slightly improves with TPS-Classwise but does not necessarily meet the 1− α coverage.
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Figure E2: Plot for TPS vs TPS-classwise at α = 0.1. For the FS split type, TPS-classwise becomes
more inefficient compared to TPS for larger graph sizes, but is competitive in other settings. To maintain
label-stratified coverage, TPS-classwise may be forced to overcover certain classes at the cost of efficiency.
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Figure E3: Plots for APS vs APS Randomized for all the data sets at 1− α = 0.9 coverage (green dotted
line). For the FS split type, APS-Randomized has a lower label-stratified coverage. However, with the LC
split type, the decrease in label-stratified coverage is not as significant.
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Figure E4: Plots for APS vs APS-randomized at α = 0.1. For both split types (FS & LC), the randomized
version of APS produces more efficient sets for all the datasets.
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E.1 Overall Results

In Figure E5, we provide a plot of all the different methods discussed in this work for each dataset across
different values of α. If applicable, for each method, we show the best-performing version, e.g., APS
with randomization vs without and CFGNN with APS training (‘cfgnn_aps’) rather than TPS training
(‘cfgnn_orig’). We present the results for k = 5 for the different NAPS variations, since almost all datasets –
except for CiteSeer and ogbn-arxiv – achieved their best efficiencies at or before that point.
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Figure E5: Plots for efficiency vs α for all the major methods (with best parameters) across all the datasets
(cont.). Among the baseline methods, TPS consistently has the best efficiency. The results are for the FS
split style. The dashed black line indicates the desired label-stratified coverage.
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Figure E5: Plots for efficiency vs α for all the major methods (with best parameters) across all the datasets
(cont.). Among the baseline methods, TPS consistently has the best efficiency. Results are for the FS split
style. The dashed black line indicates the desired label-stratified coverage. NAPS results for the ogbn-products
dataset are omitted due to size and lack of data points with existing hardware.
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F Related Works

In this work, we focus on the prominent methods of graph conformal prediction for the node classification
task under a transductive setting. These included standard conformal prediction methods, like TPS and
APS, and graph-specific methods, like DAPS and CFGNN. Some works consider other graph-based scenarios
and tasks. Within node classification, we can also consider the inductive setting, where nodes/edges arrive
in a sequence, thus violating the exchangeability assumption. One such method is Neighborhood Adaptive
Prediction Sets (NAPS), which we consider a transductive variation in this work. Beyond node classification
on static graphs, very recently, there has been some work in link prediction (Zhao et al., 2024; Marandon,
2024). Our work can potentially be adapted to these recent ideas (especially Zhao et al. (2024)), although
they make additional assumptions beyond the scope of the current work. Additionally, how these ideas would
expand for dynamic graphs would be an interesting future direction to pursue (Davis et al., 2025).

Beyond conformal prediction, many works propose ways to construct model-agnostic uncertainty estimates
for classification tasks (Abdar et al., 2021; Guo et al., 2017; Kull et al., 2019). There are also methods
specific to GNNs (Hsu et al., 2022; Wang et al., 2021) that leverage network principles (e.g., homophily).
However, unlike conformal prediction, these methods can fail to provide the desired coverage guarantees. For
an empirical comparison of popular UQ methods for GNN, please reference Huang et al. (2023).

43


	Introduction
	Conformal Prediction
	Conformal Prediction in Graphs
	Conformal Prediction Methods
	General Methods Applied to Transductive Node Classification
	Graph Methods

	A Theoretical Note on Randomization.

	Empirical Analysis and Insights
	Concluding Remarks
	Optimal τ for APS
	Non-randomized set

	Proofs
	Proof of Theorem 2.3
	Proof of Corollary 2.3.1

	Method Details and Innovations
	Diffusion Adaptive Prediction Sets (DAPS)
	Notes on Transductive NAPS
	Conformalized GNN

	Datasets and Hyperparameter Tuning Details
	Datasets
	Hyperparameter Tuning

	Additional Empirical Results, Analysis, and Insights
	Overall Results

	Related Works

