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Abstract

In the Weight-Constrained Shortest-Path (WCSP) problem,
given a graph in which each edge is annotated with a cost and
a weight, a start state, and a goal state, the task is to compute
a minimum-cost path from the start state to the goal state with
weight no larger than a specified weight limit. While most ex-
isting works have focused on solving the WCSP problem op-
timally, many real-world situations admit a trade-off between
efficiency and a suboptimality bound for the path cost. In this
paper, we propose a novel bounded suboptimal WCSP algo-
rithm called WC-A*pex that is built on a state-of-the-art ap-
proximate bi-objective search algorithm called A*pex. WC-
A*pex uses an efficient, albeit approximate, representation of
paths with similar costs and weights to compute a (1 + ε)-
suboptimal path, for a user-specified ε. During search, WC-
A*pex avoids storing all paths explicitly and thereby reduces
the search effort while still retaining its (1+ε)-suboptimality
property. On benchmark road networks, our experimental re-
sults show that WC-A*pex with ε = 0.01 (i.e., with 1%
suboptimality) achieves up to an order-of-magnitude speed-
up over WC-A*, a state-of-the-art WCSP algorithm, and its
bounded suboptimal variant.

1 Introduction and Related Work
In the Weight-Constrained Shortest-Path (WCSP) problem,
given a graph in which each edge is annotated with a cost
and a weight, a start state, and a goal state, the task is to
compute a minimum-cost path from the start state to the goal
state with weight no larger than a specified weight limit. The
WCSP problem appears in many real-world applications. In
an electric vehicle domain, the graph represents a road net-
work and each edge is annotated with a cost corresponding
to driving time and a weight corresponding to battery con-
sumption (Baum et al. 2015). A desired route minimizes the
driving time without depleting the battery. In a bicycling do-
main, the graph represents a road network and each edge is
annotated with a cost corresponding to bicycling time and
a weight corresponding to climbing altitude gain (Storandt
2012). A desired route minimizes the bicycling time with a
user-specified limit on total climbing altitude gain.

Combinatorially, the WCSP problem also appears as a
subproblem in the context of column generation methods
used for solving other problems, such as the shift scheduling
problem (Cabrera et al. 2020) and the virtual network em-
bedding problem (Rost 2019). Although many path-finding

problems are tractable, the WCSP problem is NP-hard to
solve optimally, i.e., it is NP-hard to compute the minimum-
cost path within the weight limit (Handler and Zang 1980;
Lorenz and Raz 2001).

The WCSP problem is similar to the Bi-Objective
Shortest-Path (BOSP) problem, where each edge is anno-
tated with two costs. Although the task in the BOSP prob-
lem (Sec. 3) is different from the task in the WCSP prob-
lem, several techniques of BOSP algorithms can be car-
ried over to the WCSP domain by treating the weight as
the second cost while being cognizant of the weight limit.
In fact, WC-A* (Ahmadi et al. 2022a) is a state-of-the-art
WCSP algorithm that draws inspiration from BOSP algo-
rithms. WC-A* and its bi-directional variant, WC-BA* (Ah-
madi et al. 2022b), have been shown to outperform previous
state-of-the-art algorithms, Bi-pulse (Cabrera et al. 2020)
and RC-BDA* (Thomas, Calogiuri, and Hewitt 2019), by up
to two orders of magnitude on road networks (Ahmadi et al.
2022a,b).

While the algorithms mentioned above focus on solving
the WCSP problem optimally, many real-world situations
admit—or even encourage—a trade-off between efficiency
and a suboptimality bound for the path cost. A bounded sub-
optimal WCSP algorithm computes a (1 + ε)-suboptimal
path, for a user-specified ε. A (1 + ε)-suboptimal path has
a cost within (1 + ε) times the minimum path cost and a
weight that is no larger than the weight limit.

There are only a few existing works on solving the
WCSP problem bounded-suboptimally. In the paper of Bi-
pulse (Cabrera et al. 2020), the authors provided a straight-
forward method to convert an optimal WCSP algorithm to a
bounded suboptimal one, that is, to terminate the search im-
mediately after the cost of the incumbent solution (i.e., the
best solution that an algorithm has found thus far) is proven
to be within the given suboptimality bound. Other works
on bounded suboptimal WCSP algorithms (Lorenz and Raz
2001; Ergun, Sinha, and Zhang 2002) are typically based on
fully polynomial-time approximation schemes, whose run-
time is polynomial in the size of the graph and 1/ε. Unfortu-
nately, these algorithms are still impractical for large graphs,
such as road networks, that often have millions of states.

There are many existing works on bounded suboptimal
search algorithms for (unconstrained) shortest-path prob-
lems. These algorithms include WA* (Pohl 1970), fo-



cal search (Pearl and Kim 1982), and explicit estimation
search (Thayer and Ruml 2011). While speeding up the
search via allowing suboptimality is intuitive, it is unclear
how to efficiently do so for the WCSP problem.

In this paper, we propose a novel bounded suboptimal
WCSP algorithm called WC-A*pex. WC-A*pex takes a
WCSP instance and a user-specified ε ≥ 0 as input and
computes a (1 + ε)-suboptimal path. WC-A*pex imports
techniques from A*pex (Zhang et al. 2022b), a state-of-the-
art approximate BOSP algorithm. Unlike other WCSP al-
gorithms, it uses a clever data structure that merges paths
with similar costs and weights (instead of storing them ex-
plicitly) during the course of its search. Since paths corre-
spond to search nodes, the merged representation of similar
paths reduces the number of node expansions and thereby
the overall search effort of WC-A*pex. It is noteworthy that
WC-A*pex uses a different technique to speed up the search
from existing bounded suboptimal search algorithms, most
of which rely on node expansion orders to guide the search
to quickly find a bounded suboptimal solution.

We empirically evaluate WC-A*pex with different sub-
optimality bounds against competing algorithms on bench-
mark road networks with 1 to 14 million states and 2 to
34 million edges. The competing algorithms include WC-
A* and our adaptation of it to a bounded suboptimal variant
using the same method provided by Cabrera et al. (2020),
called WC-A*-ε. WC-A*-ε is similar to WC-A* but termi-
nates the search immediately after the incumbent solution
is proven to be (1 + ε)-suboptimal. Our experimental re-
sults show that WC-A*pex significantly outperforms WC-
A* and WC-A*-ε although WC-A* and WC-A*-ε are also
based on BOSP algorithms. This, in turn, demonstrates the
power of the merged representation of similar paths used in
WC-A*pex. Even with ε = 0.01 (i.e., with 1% suboptimal-
ity), WC-A*pex achieves an order-of-magnitude speed-up
over WC-A* and WC-A*-ε on the largest road network. In
comparison, WC-A*-ε for the same value of ε achieves less
than 20% runtime improvement over WC-A*.

2 Terminology and Problem Definition
In this section, we formally define the WCSP and the BOSP
problems. To set up a notation that serves the description of
both problems, we define the cost of an edge as a pair of
numbers. In the WCSP context, the first number indicates
the cost, and the second number indicates the weight. In the
BOSP context, both numbers represent the cost.

We use the boldface font to denote pairs and pi, i ∈
{1, 2}, to denote the i-th component of a pair p. The addition
of two pairs p and p′ is defined as p+p′ = (p1+p′1, p2+p′2).
We say that p (weakly) dominates p′, denoted as p ⪯ p′, if
p1 ≤ p′1 and p2 ≤ p′2. For an approximation factor (or, more
precisely, a pair of approximation factors) ε = (ε1, ε2),
we say that p ε-dominates p′, denoted as p ⪯ε p′, if
p1 ≤ (1 + ε1) · p′1 and p2 ≤ (1 + ε2) · p′2.

A (bi-objective) graph is a tuple G = ⟨S,E, c⟩, where S
is a finite set of states and E ⊆ S × S is a finite set of (di-
rected) edges. succ(s) = {s′ ∈ S : ⟨s, s′⟩ ∈ E} denotes the
successors of state s. The cost function c : E → R≥0×R≥0

maps an edge to its cost, which is a pair of non-negative
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Figure 1: Example of the Pareto front (whose costs are
shown by the orange dots) and an (ε, 0)-approximate Pareto
front (whose costs are shown by the blue dots) from the start
state to the goal state of a WCSP instance, respectively. The
shaded region shows the costs that are (ε, 0)-dominated by
at least one blue dot. Note that all orange dots are within the
shaded region. Solutions π∗ and π̃ are an optimal solution
and a (1+ ε)-suboptimal solution of the WCSP instance, re-
spectively, with c(π̃) ⪯(ε,0) c(π

∗).

numbers. A path from state s1 to state sℓ is a sequence
of states π = [s1, s2 . . . sℓ] with ⟨sj , sj+1⟩ ∈ E for all
j = 1, 2 . . . ℓ − 1. s1 = sstart unless mentioned otherwise.
Slightly abusing the notation, we define the cost of π as
c(π) =

∑ℓ−1
j=1 c(⟨sj , sj+1⟩).

A WCSP (problem) instance is a tuple P =
⟨G, sstart, sgoal,W ⟩, where G is a graph, sstart ∈ S is the start
state, sgoal ∈ S is the goal state, and W ∈ R>0 is the weight
limit.1 The two components of the cost function c, c1 and
c2, correspond to the cost and weight in the context of the
WCSP problem, respectively. A path π is a solution of P if
it is from sstart to sgoal and satisfies c2(π) ≤ W . We say that
P is solvable if it has a solution. An optimal solution of P
is a solution with the minimum c1-value, denoted as c∗1, of
all solutions. Given a non-negative ε, a solution π is (1+ε)-
suboptimal if c1(π) ≤ (1 + ε) · c∗1. A bounded-suboptimal
WCSP algorithm takes a WCSP instance P and a parameter
ε ≥ 0 as input and computes a (1 + ε)-suboptimal solution.

A path π from sstart to sgoal is Pareto-optimal if there does
not exist another path π′ from sstart to sgoal with c(π′) ⪯
c(π) and c(π′) ̸= c(π). The Pareto front Π∗ (from sstart
to sgoal) is the set of all Pareto-optimal paths. For a non-
negative pair ε, a set of paths Πε from sstart to sgoal is an
ε-approximate Pareto front from sstart to sgoal if, any path
from sstart to sgoal is ε-dominated by at least one path in Πε.
Note that different ε-approximate Pareto fronts can exist for
the same sstart, sgoal, and ε.

A BOSP (problem) instance is a tuple ⟨G, sstart, sgoal⟩,
where G is a graph, sstart ∈ S is the start state, and sgoal ∈ S
is the goal state. An approximate BOSP algorithm takes a
BOSP instance and an approximation factor ε as input and
computes an ε-approximate Pareto front from sstart to sgoal.

The following observation shows the connection between

1This W is not to be confused with the W used for the subop-
timality bound in certain bounded suboptimal search algorithms.



a bounded-suboptimal WCSP algorithm and an approximate
BOSP algorithm.

Observation 1. For a solvable WCSP instance P =
⟨G, sstart, sgoal,W ⟩ and ε ≥ 0, any (ε, 0)-approximate
Pareto front (from sstart to sgoal) Πε contains a (1 + ε)-
suboptimal solution of P .

Proof. Let π∗ denote an optimal solution of P . By defini-
tion, there exists a path π ∈ Πε with c(π) ⪯(ε,0) c(π

∗) (i.e.,
c1(π) ≤ (1 + ε) · c1(π∗) and c2(π) ≤ c2(π

∗) ≤ W ). We
can see that π is a (1 + ε)-suboptimal solution of P .

See Figure 1 for a visualization of an ε-approximate Pareto
front and a (1+ε)-suboptimal solution of a WCSP instance.

In this paper, we focus on heuristic-search-based WCSP
algorithms. We assume that a heuristic function h : S →
R≥0 ×R≥0, which provides a lower bound on the cost from
any given state s to the goal state, is always available. Ad-
ditionally, we assume that the heuristic function h is consis-
tent, that is, h(sgoal) = 0 and h(s) ⪯ c(e) + h(s′) for all
e = ⟨s, s′⟩ ∈ E. It is a common practice in existing WCSP
and BOSP literature (Ahmadi et al. 2021, 2022b; Hernández
et al. 2023; Zhang et al. 2022b) to use Dijkstra’s algorithm
(starting from sgoal) to compute the minimum cost c∗i (s)
from any state s to sgoal for the i-th objective (while ignor-
ing the other objective), i = 1, 2, and h(s) := (c∗1(s), c

∗
2(s))

as the heuristic function. We call these heuristic functions
perfect-distance heuristics.

3 Algorithmic Background
In this section, we review existing WCSP and BOSP algo-
rithms, with a focus on BOA* (Hernández et al. 2023), WC-
A* (Ahmadi et al. 2022b), and A*pex (Zhang et al. 2022b).

Many WCSP and BOSP algorithms such as BOA*, WC-
A*, and A*pex follow the same best-first bi-objective search
framework. In a best-first bi-objective search algorithm, a
(search) node n contains a state s(n) and a g-value g(n).
The f -value of n is defined as f(n) = g(n) + h(s(n)).
The search algorithm maintains a priority queue Open, con-
taining generated but not expanded nodes, and a set of solu-
tions. Open is initialized with a node that contains the start
state sstart and the g-value 0. In each iteration, the algorithm
extracts a node n from Open with an undominated f -value
of all nodes in Open. It performs a dominance check to de-
termine whether n or any of its descendants have the poten-
tial to be in the solution set. If not, it discards n. Otherwise,
when s(n) = sgoal, the algorithm adds n to the solution
set or, when s(n) ̸= sgoal, expands n by generating a new
node for each of the successor in succ(s(n)). The algorithm
also performs a dominance check for each generated node
and adds the generated node to Open if it passes the dom-
inance check. When Open becomes empty, the algorithm
terminates and returns the solution set.

Different best-first bi-objective search algorithms mainly
differ in which information is contained in the nodes, which
node is extracted from Open, and how the dominance
checks work. Specifically, BOA*, WC-A*, and A*pex ex-
tract the node with the lexicographically smallest f -value
(i.e., extract the node with the smallest f1-value and break

ties in favor of a smaller f2-value) in each iteration. The
dominance checks in both BOA* and A*pex check if the f -
value of a node is weakly dominated by the f -value of any
expanded node with the same state or sgoal.

3.1 BOA* and WC-A*
BOA* (Hernández et al. 2023) computes a Pareto front
for the given start and goal states. In BOA*, each node n
corresponds to a path from sstart to s(n) with cost g(n).
Hernández et al. (2023) show that, due to the consistent
heuristic function BOA* uses, the f1-values of extracted
nodes are monotonically non-decreasing. Thus, BOA* only
stores the minimum g2-value of all expanded nodes for each
state s using a variable named gmin

2 (s). Consequently, dom-
inance checks can be done by checking if g2(n) < gmin

2 (s)
and f2(n) < gmin

2 (sgoal). This dominance check can be
performed in constant time (in contrast to previous meth-
ods which required time linear in the number of nodes that
reached s).

WC-A* is built on BOA* and computes an optimal solu-
tion for an input WCSP instance. It only maintains at most
one incumbent solution in the solution set. In addition to
the dominance checks of BOA*, WC-A* also discards nodes
whose (1) f2-values are larger than the weight limit W or (2)
f1-values are not smaller than the c1-value of the incumbent
solution. Since WC-A* extracts nodes with monotonically
non-decreasing f1-values, it terminates (and returns the in-
cumbent solution) once the minimum f1-value in Open is
not smaller than the one of the incumbent solution. Dur-
ing the heuristic computation with Dijkstra’s algorithm, the
minimum-c1 and minimum-c2 paths from any state s to sgoal
can also be obtained. We call these paths the complementary
paths of s. When generating a node n, WC-A* tries to up-
date the incumbent solution with better ones by connecting
the corresponding path of n with the complementary paths
of s(n).

WC-A* can be converted to a bounded suboptimal WCSP
algorithm by terminating the algorithm when the minimum
f1-value in Open is not smaller than the f1-value of the in-
cumbent solution divided by (1 + ε). We denote this variant
of WC-A* as WC-A*-ε and include it in our empirical study.

It is noteworthy that Ahmadi et al. (2022b) propose WC-
BA*, a bi-directional variant of WC-A* that runs two WC-
A* searches (one starting from sstart and the other starting
from sgoal) concurrently. We omit WC-BA* in this paper be-
cause Ahmadi et al. (2022a) later show that WC-BA* does
not dominate WC-A* in experimental results and, in fact,
has larger average runtime in several scenarios.

3.2 A*pex
A*pex computes an ε-approximate Pareto front for the given
start and goal states and a user-provided ε-value. In A*pex,
a node is a so-called apex-path pair AP = ⟨A, π⟩ that con-
sists of a cost pair A, called the apex, and a path π, called
the representative path. We define the g-value of AP as
g(AP) := A and s(AP) as the last state of the representa-
tive path π. We have f(AP) := g(AP) + h(s(AP)) as the
f -value of AP . Conceptually, an apex-path pair corresponds
to a set of paths that end at the same state, and its apex is the



component-wise minimum value of the cost of these paths.
AP is said to be ε-bounded if c(π)+h(s(AP)) ⪯ε f(AP).

Whenever A*pex inserts an apex-path pair to Open or the
solution set, A*pex tries to merge apex-path pairs in Open
with the same state on condition that the resulting apex-path
pair is ε-bounded. The implementation of A*pex by Zhang
et al. (2022b) uses a list to maintain the apex-path pairs in
Open for each state and hence can iterate these apex-path
pairs efficiently. When merging two apex-path pairs, the new
apex is the component-wise minimum of the apexes of the
two apex-path pairs, and the new representative path is ei-
ther one of the two representative paths of the two apex-path
pairs. See Figure 2(a) for a visualization of the two possible
outcomes.

4 WC-A*pex
In this section, we describe WC-A*pex, our bounded sub-
optimal WCSP algorithm that finds a (1+ε)-suboptimal so-
lution for a user-provided ε. We first describe the base algo-
rithm of WC-A*pex and then provide its theoretical results
and speed-up techniques.

Observation 1 shows that a (1 + ε)-suboptimal solution
of a WCSP instance can be found in a corresponding (ε, 0)-
approximate Pareto front. This motivates us to propose WC-
A*pex, which can be viewed as a modified A*pex with
ε = (ε, 0) and additional prunings. Note that we use bold-
face ε and regular ε to distinguish between the approxima-
tion factor that A*pex would use and the user-provided pa-
rameter for the WCSP problem. Similarly to A*pex, a node
in WC-A*pex is an apex-path pair AP = ⟨A, π⟩. Since the
second component of ε is set to 0, when merging two apex-
path pairs ⟨A, π⟩ and ⟨A′, π′⟩ with c2(π) < c2(π

′), WC-
A*pex cannot choose the π′ as the new representative path.
Otherwise, the resulting apex path pair is not ε-bounded.
See Figure 2(b) for a visualization of merging two apex-path
pairs in WC-A*pex. In addition to dominance checks, WC-
A*pex also prunes nodes whose f2-values are larger than W .

Algorithm 1 shows the pseudocode of WC-A*pex. It
starts with a single apex-path pair ⟨0, [sstart]⟩ in Open
(Line 1). At each iteration, WC-A*pex extracts an apex-path
pair from Open with the lexicographically smallest f -value
(Line 5). Same as BOA*, WC-A*pex maintains a gmin

2 (s)
for each state s that contains the smallest g2-value of all ex-
panded nodes with state s by updating it on Line 10. Both
after extracting (that is, after Line 5) and before generating
(that is, before Line 16) an apex-path pair AP with state
s, WC-A*pex discards the apex-path pair if (1) g2(AP) ≥
gmin
2 (s(AP)) or (2) f2(AP) > W . Case (1) holds iff there

exists an expanded node with state s whose g-value weakly
dominated g(AP), which implies that any solution found
via AP is also (ε, 0)-dominated by a solution found via ex-
panded node and hence AP can be safely discarded. In Case
(2), AP is pruned since the representative path of AP can-
not be extended to a solution (whose c2-value needs to be
not larger than W ).

When WC-A*pex expands an apex-path pair AP with
state s, it generates a child apex-path pair for each succes-
sor s′ of state s. The apex of the child apex-path pair is the
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(a) A*pex (adapted from Figure 2 by Zhang et al. (2022b))
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Figure 2: Examples of merging apex-path pairs ⟨A, π⟩ (or-
ange) and ⟨A′, π′⟩ (blue) into apex-path pair ⟨Anew, πnew⟩
(green) in A*pex and WC-A*pex, respectively.

sum of the apex of AP and c(⟨s, s′⟩) (Line 12), and the rep-
resentative path of the child apex-path pair is the represen-
tative path of AP appended with state s′ (Line 13). Before
adding the child apex-path pair AP ′ to Open, WC-A*pex
attempts to merge the apex-path pair with an apex-path pair
in Open[s(AP ′)] on condition that the resulting apex-path
pair is (ε, 0)-bounded (Lines 19-25), where ε is the input
suboptimality factor and Open[s(AP ′)] denotes the set of
apex-path pairs in Open with state s(AP ′).

WC-A*pex terminates when it finds a solution (Line 9) or
Open becomes empty (Line 17), in which case, there is no
solution for the given WCSP instance.

We use an example WCSP instance to demonstrate how
WC-A*pex works. Figure 3(a) shows the example graph.
The weight limit W and ε are set to 7 and 0.2, respectively.
Figure 3(b) shows the costs of all paths from sstart to sgoal
in this graph. We can see that path [sstart, s1, s3, s4, sgoal],
whose cost is (7, 7), is the optimal solution for this example.
Moreover, since the second best path [sstart, s1, s3, s4, sgoal]
has a large c1-value of 13, [sstart, s1, s3, s4, sgoal] is also the
only 1.2-suboptimal solution for this example. We use the
perfect-distance heuristic. In the text below, slightly abusing
the notation, we use subscript i to index an apex-path pair
and tuple ⟨s(APi), f(APi), c(πi)⟩ to denote an apex-path



Algorithm 1: WC-A*pex
Input : P = ⟨G, sstart, sgoal,W ⟩

ε
h

1 Open← {⟨0, [sstart]⟩}
2 for each s ∈ S do
3 gmin

2 (s)←∞
4 while Open ̸= ∅ do
5 AP = ⟨A, π⟩ ← Open.extract min()
6 if g2(AP) ≥ gmin

2 (s(AP)) ∨ f2(AP) > W then
7 continue
8 if s(AP) = sgoal then
9 return π

10 gmin
2 (s(AP))← g2(AP)

11 for s′ ∈ succ(s(AP)) do
12 A′ ← A+ c(⟨s(AP), s′⟩)
13 π′ ← π.append(s′)
14 if A′

2 ≥ gmin
2 (s′) ∨A′

2 + h2(s
′) > W then

15 continue
16 insert to Open(⟨A′, π′⟩)
17 return None

18 Function insert to Open(AP ′ = ⟨A′, π′⟩):
19 for AP = ⟨A, π⟩ ∈ Open[s(AP ′)] do
20 Anew ← (min(A1, A

′
1),min(A2, A

′
2))

21 πnew ← the one of π and π′ with the smaller
c2-value, breaking ties in favor of a smaller
c1-value

22 if ⟨Anew, πnew⟩ is (ε, 0)-bounded then
23 remove AP from Open
24 add ⟨Anew, πnew⟩ to Open
25 return
26 add AP ′ to Open
27 return

pair APi = ⟨Ai, πi⟩.
• In Iteration 1, WC-A*pex expands apex-path pair
AP1 = ⟨sstart, (5, 5), (0, 0)⟩ and generates two child
apex-path pairs AP2 = ⟨s1, (5, 5), (1, 2)⟩ and AP3 =
⟨s2, (6, 6), (3, 2)⟩.

• In Iteration 2, WC-A*pex expands apex-path pair AP2

and generates two child apex-path pairs AP4 =
⟨s2, (5, 7), (2, 3)⟩ and AP5 = ⟨s3, (7, 5), (5, 3)⟩. AP4

is merged with AP3 in Open, resulting in apex-path pair
AP6 = ⟨s2, (5, 6), (3, 2)⟩. AP6 is (ε, 0)-bounded be-
cause (3, 2) + h(s2) = (6, 6) ⪯(ε,0) (5, 6).

• In Iteration 3, WC-A*pex expands apex-path pair
AP6 and generates child apex-path pair AP7 =
⟨s3, (5, 6), (4, 4)⟩. AP7 is not merged with AP5 be-
cause, given that the new representative path would have
a cost of (5, 3) and the new f -value would be (5, 5),
(5, 3) + h(s3) = (7, 5) does not (ε, 0)-dominate (5, 5).

• In Iteration 4, WC-A*pex expands apex-path pair AP7

and generates two child apex-path pairs AP8 =
⟨s4, (5, 8), (5, 6)⟩ and AP9 = ⟨s5, (13, 6), (9, 5)⟩. AP8

is pruned because f2(AP8) > W .
• In Iteration 5, WC-A*pex expands apex-path pair AP5

and generates two child apex-path pairs AP10 =
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Figure 3: An example WCSP instance. (a) shows the graph
for this WCSP instance, where the pair of numbers inside
each state is its h-value and the blue arrows show the optimal
solution for weight limit W = 7. (b) shows the costs of all
paths from sstart to sgoal in the graph.

⟨s4, (7, 7), (6, 5)⟩ and AP11 = ⟨s5, (15, 5), (10, 4)⟩.
AP11 is merged with AP9 in Open, resulting in apex-
path pair AP12 = ⟨s5, (13, 5), (10, 4)⟩. AP12 is (ε, 0)-
bounded because (10, 4) + h(s5) = (15, 5) ⪯(ε,0)

(13, 5).

• In Iteration 6, WC-A*pex expands apex-path pair
AP10 and generates child apex-path pair AP13 =
⟨sgoal, (7, 7), (7, 7)⟩.

• In Iteration 7, WC-A*pex expands apex-path pair AP13

and returns a solution with cost (7, 7).

In this example, WC-A*pex finds the optimal solution. Two
merges happen during the entire process, which are in It-
eration 2 between AP3 = ⟨s2, (6, 6), (3, 2)⟩ and AP4 =
⟨s2, (5, 7), (2, 3)⟩ and in Iteration 5 between AP9 =
⟨s5, (13, 6), (9, 5)⟩ and AP11 = ⟨s5, (15, 5), (10, 4)⟩, re-
spectively. The representative paths of AP3 and AP4 are
π3 = [sstart, s2] and π4 = [sstart, s1, s2], respectively. Com-
pared to AP5, which is expanded in Iteration 5 and even-
tually extended to the solution, AP3 and AP4 have lexico-
graphically smaller f -values and appear to be more promis-
ing. However, the two possible extensions of AP3 and AP4

to sgoal either violate the weight limit (via [s2, s3, s4, sgoal])
or have large c1-values (via [s2, s3, s5, sgoal]), as the algo-
rithm finds out in Iterations 3-4. Without merging, other ex-
isting WCSP algorithms, like WC-A*, would represent π3

and π4 as two different nodes and spend more search effort.



4.1 Theoretical Results
In this section, we show that WC-A*pex always returns a
(1 + ε)-suboptimal solution, given a solvable WCSP in-
stance. Note that we say a WCSP instance is solvable if there
exists a solution for this WCSP instance (Sec. 2).

Lemma 1. If we have g2(AP) ≥ gmin
2 (s(AP)) on Line 6

or 14, there exists an expanded apex-path pair AP ′ with
state s(AP ′) = s(AP) and f(AP ′) ⪯(ε,0) f(AP).

Proof. This lemma is rephrased from Lemma 2 by Zhang
et al. (2022b), and the same proof applies.

For the rest of this section, we use π∗ = [s∗1, s
∗
2 . . . s

∗
ℓ ]

to denote an optimal solution for the given WCSP instance,
assuming that a solution exists. Note that we have s∗ℓ = sgoal.
We use π∗

j = [s∗1, s
∗
2 . . . s

∗
j ], j = 1, 2 . . . ℓ, to denote the

subpath of π∗ that contains the first j states.

Lemma 2. We assume that the given WCSP instance is solv-
able. At the beginning of each iteration, for any expanded
apex-path pair AP , if there exists j ∈ {1, 2 . . . ℓ − 1} that
satisfies s(AP) = s∗j and g(AP) ⪯ c(π∗

j ), there exists an
apex-path AP ′ ∈ Open and k > j that satisfy s(AP ′) = s∗k
and g(AP ′) ⪯ c(π∗

k).

Proof. We prove this lemma by induction on j, starting from
j = ℓ− 1 and going backward. Consider an expanded apex-
pair AP with s(AP) = s∗ℓ−1 and g(AP) ⪯ c(π∗

ℓ−1). When
it is expanded, WC-A*pex generates a child apex-path pair
AP ′ with state s∗ℓ = sgoal. We have gmin

2 (sgoal) = ∞ be-
cause, if s(AP) = sgoal, the algorithm terminates on Line 9
and cannot reach Line 10 to update gmin

2 (sgoal). We have
g(AP ′) = g(AP) + c(⟨s∗ℓ−1, s

∗
ℓ ⟩) ⪯ c(π∗). Since the

heuristic h is consistent, we have h(s∗ℓ ) = 0 and hence
f2(AP ′) ≤ c2(π

∗) ≤ W . Therefore, AP ′ is not pruned
on Line 15 and then inserted into Open. If AP ′ has been
extracted from Open, the algorithm should have terminated.
We show that AP ′ is still in Open for the current iteration.

Now we assume the lemma holds for j = i + 1. Con-
sider an expanded apex-path pair AP with s(AP) = s∗i
and g(AP) ⪯ c(π∗

i ). When expanding AP , one of the
child apex-path pairs, denoted as AP ′, is generated with
state s∗i+1. We have g(AP ′) = g(AP) + c(⟨s∗i , s∗i+1⟩) ⪯
c(π∗

i )+c(⟨s∗i , s∗i+1⟩) = c(π∗
i+1). We distinguish two cases:

1. AP ′ is pruned on Line 15. Since f2(AP ′) = g2(AP ′)+
h2(s

∗
i+1) ≤ c2(π

∗) ≤ W , we must have gmin
2 (s∗i+1) ≤

g2(AP ′). From Lemma 1, there exists an expanded apex-
path pair with state s∗i+1 and whose g-value weakly dom-
inates g(AP ′) and hence c(π∗

i+1). Because the lemma
holds for j = i+1, there exists an apex-path pair AP ′′ ∈
Open with s(AP ′′) = s∗k and g(AP ′′) ⪯ c(π∗

k) for
some k > i+ 1. The lemma holds for j = i.

2. AP ′ is not pruned on Line 15 and is then inserted to
Open with or without merging with another apex-path
pair. In either case, an apex-path pair with state s∗i+1 and
whose g-value weakly dominates c(π∗

i+1) is inserted to
Open. The lemma holds if this new apex-path pair is

still in Open. If this new apex-path pair has been ex-
tracted, either it is pruned or expanded, there is an ex-
panded apex-path pair with state s∗i+1 and whose g-value
weakly dominates c(π∗

i+1). Because the lemma holds for
j = i+ 1, the lemma also holds for j = i.

Therefore, the lemma holds for all j ∈ {1, 2 . . . ℓ− 1}.

Theorem 1. WC-A*pex returns a (1+ ε)-suboptimal solu-
tion, given a solvable WCSP problem instance.

Proof. In the first iteration, there is one apex-path pair, de-
noted as AP init, in Open. Note that we have s(AP init) =
s∗0 and g(AP init) ⪯ c(π∗

0). AP init is then expanded in the
first iteration, and, from Lemma 2, Open always contains
at least one apex-path pair at the beginning of all future it-
erations. Therefore, WC-A*pex will not reach Line 17 and
returns None . Let πsol and APsol denote the path returned
by WC-A*pex and the apex-path pair that contains πsol, re-
spectively. πsol is a solution because it ends at state sgoal
and its c2-value is not larger than W (otherwise APsol is
pruned on Line 7). Because APsol is (ε, 0)-bounded, we
have (1 + ε) · f1(APsol) ≥ c1(πsol). If πsol is not (1 + ε)-
suboptimal, i.e., c1(πsol) > (1 + ε) · c1(π∗), we have
f1(APsol) > c1(π

∗). From Lemma 2, there always exists
an apex-path pair AP ∈ Open and j with s(AP) = s∗j and
g(AP) ⪯ c(π∗

j ). We have f(AP) = g(AP)+h(s(AP)) ⪯
c(π∗

j )+h(s∗j ) ⪯ c(π∗). The algorithm must extract AP be-
fore extracting APsol, and hence we find a contradiction.
Therefore, πsol must be a (1 + ε)-suboptimal solution.

4.2 Speed-up Techniques

In this section, we describe some speed-up techniques for
an efficient implementation of WC-A*pex. Some of these
techniques are also used by existing algorithms like WC-A*,
and hence we omit the theoretical results for them.

Efficient data structures: Same as WC-A*, we use a
bucket queue to implement Open for WC-A*pex. Addition-
ally, for each state s, we use a doubly linked list to keep
track of all apex-path pairs in Open with state s. There-
fore, WC-A*pex can efficiently iterate over Open[s] for any
given state s when checking for merging on Lines 19-25 and
efficiently update the doubly linked list when an apex-path
pair is extracted from or inserted into Open. Our preliminary
results showed that these improved data structures speed up
the original implementation of A*pex by an order of magni-
tude.

Early solution update: Similar to WC-A*, we can main-
tain and update an incumbent solution in WC-A*pex using
complementary paths. An apex-path pair AP is pruned if
(1 + ε) · f1(AP) is not smaller than the c1-value of the in-
cumbent solution. With early solution update, WC-A*pex
terminates when Open becomes empty and returns the in-
cumbent solution.



Road ε WC-A* (-ε) WC-A*pex Speed-up
network Runtime #exp Runtime #exp

Avg. Max Avg. Max Avg. Max Avg. Max
FLA 0 0.17 4.48 2,397K 49,400K

0.01 0.16 5.12 2,135K 47,994K 0.05 0.79 274K 3,543K 2.95
0.05 0.10 3.75 1,446K 41,380K 0.03 0.53 158K 2,290K 2.96
0.10 0.07 4.48 905K 41,380K 0.02 0.50 95K 2,128K 3.12
0.20 0.03 2.32 350K 18,578K 0.01 0.31 37K 1,291K 2.36

NE 0 0.36 8.38 3,631K 59,122K
0.01 0.30 5.28 3,051K 44,032K 0.09 2.56 473K 8,302K 3.20
0.05 0.14 3.01 1,621K 26,694K 0.04 0.48 203K 2,461K 3.85
0.10 0.05 0.86 694K 9,610K 0.02 0.18 96K 1,160K 2.48
0.20 0.01 0.40 146K 6,914K 0.01 0.13 24K 810K 0.99

LKS 0 9.04 129.53 62,583K 721,867K
0.01 7.47 97.93 52,473K 551,673K 1.12 15.76 3,969K 40,169K 6.65
0.05 4.14 60.09 29,640K 327,693K 0.34 3.44 1,504K 11,486K 12.30
0.10 1.85 38.34 14,569K 200,622K 0.19 2.87 889K 9,306K 9.63
0.20 0.15 4.09 1,938K 31,143K 0.04 0.44 171K 2,062K 3.62

E 0 10.88 138.31 71,758K 763,176K
0.01 9.16 132.30 61,861K 715,655K 1.58 16.76 5,246K 51,904K 5.81
0.05 5.22 76.86 37,228K 473,144K 0.38 3.73 1,667K 14,754K 13.73
0.10 1.94 40.36 16,331K 279,604K 0.21 3.17 955K 12,604K 9.09
0.20 0.42 21.54 3,518K 138,240K 0.05 1.59 216K 6,464K 8.12

W 0 9.03 227.76 64,918K 1,096,261K
0.01 7.75 180.26 59,166K 920,302K 1.02 32.27 4,181K 86,746K 7.56
0.05 4.57 70.20 38,849K 553,971K 0.51 7.10 2,286K 21,667K 8.89
0.10 1.91 57.56 19,629K 467,409K 0.26 3.60 1,251K 16,178K 7.27
0.20 0.57 41.62 6,242K 304,128K 0.11 2.81 448K 12,997K 5.32

CAL 0 0.76 21.48 7,717K 138,645K
0.01 0.66 20.42 6,890K 131,590K 0.21 4.50 998K 16,659K 3.13
0.05 0.33 6.52 4,027K 54,052K 0.10 1.41 504K 5,771K 3.24
0.10 0.19 3.99 2,427K 46,152K 0.06 1.17 314K 5,771K 2.86
0.20 0.06 3.38 999K 38,419K 0.04 1.09 143K 5,325K 1.84

CTR 0 34.12 243.42 180,893K 1,106,707K
0.01 28.58 222.59 158,448K 1,013,655K 2.99 30.04 8,431K 67,054K 9.55
0.05 17.15 185.34 96,893K 804,131K 1.10 11.75 3,597K 32,594K 15.62
0.10 8.16 99.93 47,943K 468,607K 0.65 7.38 2,066K 18,877K 12.50
0.20 1.16 39.79 8,979K 233,685K 0.18 3.24 476K 10,624K 6.52

Table 1: Average and maximum runtimes (in seconds), average and maximum node expansions, and speed-ups of WC-A*pex
over WC-A*-ε in average runtimes for instances on different road networks.

5 Experimental Results
In this section, we evaluate WC-A*pex with WCSP in-
stances on road networks from the 9th DIMACS Implemen-
tation Challenge: Shortest Path.2 We investigate WC-A*pex
with different ε-values and compare the runtime and node
expansions of WC-A*, WC-A*-ε, and WC-A*pex. We im-
plemented WC-A*pex in C++3. We used the C++ imple-
mentation of WC-A* provided by the original authors4 and
implemented WC-A*-ε based on it.

We choose nine road networks FLA (1.1M states and
2.7M edges), NE (1.5M states and 3.9M edges), CAL (1.9M
states and 4.7M edges), LKS (2.8M states and 6.9M edges),
E (3.6M states and 8.8M edges), W (6.3M states and 15.2M
edges), and CTR (14.1M states and 34.3M edges) from the

2http://www.diag.uniroma1.it/challenge9/download.shtml.
3Upon acceptance, the code will be made publicly available.
4https://bitbucket.org/s-ahmadi/biobj/src/master/.

DIMACS data set. The c1- and c2-values for each edge
are the travel time and distance, respectively, both available
from the DIMACS data set. In other words, each WCSP
instance corresponds to computing a path that is bounded-
suboptimal in terms of travel time and with travel distance
no larger than a specified limit. For each road network, we
use the same 100 sstart and sgoal pairs used by Sedeño-Noda
and Colebrook (2019) and Ahmadi et al. (2021). Following
the literature (Cabrera et al. 2020; Ahmadi et al. 2022b), for
each sstart and sgoal pair, we generate a WCSP instance with
the weight limit W = clb2 + δ · (cub2 − clb2 ) based on a tight-
ness factor δ, where clb2 and cub2 are the minimum and maxi-
mum c2-values of Pareto-optimal paths from sstart to sgoal, re-
spectively. Conceptually, a smaller δ-value corresponds to a
tighter weight limit. For each sstart and sgoal pair, we use three
tightness factors 0.25, 0.5, and 0.75. Therefore, we have 300
WCSP instances for each road network.

For each WCSP instance, we evaluate WC-A*-ε and WC-
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Figure 4: Runtimes of WC-A*-ε and WC-A*pex on all WCSP instances with different suboptimality factors.

A*pex with three ε-values 0.01, 0.05, and 0.1. Table 1 shows
the average and maximum runtimes (in seconds) and node
expansions (#exp) of WC-A*, WC-A*-ε, and WC-A*pex
over all WCSP instances. The results for WC-A* are shown
in the rows with ε = 0. With ε = 0.01, i.e., a 1% subopti-
mality allowed, WC-A*pex solved the WCSP instances on
the largest road network (CTR) faster than WC-A* by more
than 11× on average. However, the speed-up of WC-A*-ε
with ε = 0.01 compared to WC-A* is only less than 20%
on average. This is because WC-A*-ε still needs to expand
a large number of nodes to prove an incumbent solution is
bounded-suboptimal. The runtimes and node expansions of
WC-A*pex are always smaller than the ones of WC-A* and
WC-A*-ε with the same ε-value on all road networks, which
shows that merging apex-path pairs greatly reduce the run-
times and node expansions.

Figure 4 shows the individual runtimes (in seconds) of
WC-A*pex and WC-A*-ε for all WCSP instances and ε-
values. We use different markers for different δ-values that
are used to generate the WCSP instances. The diagonal
dashed lines and the numbers along them denote different
speed-ups (1×, 10×, and the maximum speed-up) of WC-
A*pex over WC-A*-ε . For different δ-values, WC-A*pex
shows a similar trend regarding the speed-ups over WC-

A*-ε. Although WC-A*pex were slower than WC-A*-ε on
easy instances (which both algorithm solved mostly within
around 0.1 second), in more time-consuming instances (rep-
resented by the points on the top-right corners), WC-A*pex
achieved significant speed-ups over WC-A*-ε.

6 Conclusions
In this paper, we proposed a bounded suboptimal WCSP al-
gorithm called WC-A*pex. WC-A*pex is built on A*pex,
a state-of-the-art approximate BOSP algorithm. It computes
a (1 + ε)-suboptimal path, for a user-specified ε. Its em-
pirical performance on benchmark road networks highlights
two important computational aspects of it. First, huge gains
in runtime efficiency—up to an order of magnitude—are
possible with only a small compromise—within 1% sub-
optimality—on the cost of the solution. Second, the use of
the merged representations of paths with similar costs and
weights reduces the number of node expansions and is criti-
cal to the success of WC-A*pex over WC-A* and WC-A*-ε.

In future work, we intend to generalize WC-A*pex to the
case of multiple costs, multiple weights (Skyler et al. 2022),
or both. Another direction is to enhance WC-A*pex with
recent algorithmic advancements (Zhang et al. 2022a) and
develop it towards an anytime algorithm.
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