
Teams of LLM Agents can Exploit Zero-Day Vulnerabilities

Anonymous ACL submission

Abstract001

LLM agents have become increasingly sophis-002
ticated, especially in the realm of cybersecurity.003
Researchers have shown that LLM agents can004
exploit real-world vulnerabilities when given a005
description of the vulnerability and toy capture-006
the-flag problems. However, these agents still007
perform poorly on real-world vulnerabilities008
that are unknown to the agent ahead of time009
(zero-day vulnerabilities).010

In this work, we show that teams of LLM011
agents can exploit real-world, zero-day vulner-012
abilities. Prior agents struggle with exploring013
many different vulnerabilities and long-range014
planning when used alone. To resolve this, we015
introduce HPTSA, a system of agents with016
a planning agent that can launch subagents.017
The planning agent explores the system and018
determines which subagents to call, resolving019
long-term planning issues when trying differ-020
ent vulnerabilities. We construct a benchmark021
of 14 real-world vulnerabilities and show that022
our team of agents improve over prior agent023
frameworks by up to 4.3×.024

1 Introduction025

AI agents are rapidly becoming more capable. They026

can now solve tasks as complex as resolving real-027

world GitHub issues (Yang et al., 2024b) and real-028

world email organization tasks (Roth and Davis,029

2024). However, as their capabilities for benign ap-030

plications improve, so does their potential in dual-031

use settings.032

Of the dual-use applications, hacking is one of033

the largest concerns (Lohn and Jackson, 2022).034

As such, recent work has explored the ability of035

AI agents to exploit cybersecurity vulnerabilities036

(Fang et al., 2024b,a). This work has shown that037

simple AI agents can autonomously hack mock038

“capture-the-flag” style websites and can hack real-039

world vulnerabilities when given the vulnerability040

description. However, they largely fail when the041

vulnerability description is excluded, which is the 042

zero-day exploit setting (Fang et al., 2024a). This 043

raises a natural question: can more complex AI 044

agents exploit real-world zero-day vulnerabilities? 045

In this work, we answer this question in the af- 046

firmative, showing that teams of AI agents can ex- 047

ploit real-world zero-day vulnerabilities. To show 048

this, we develop a novel multi-agent framework 049

for cybersecurity exploits, extending prior work 050

in the multi-agent setting (Liu et al., 2023b; Chen 051

et al., 2023; Zhang et al., 2023). We call our tech- 052

nique HPTSA, which (to our knowledge) is the 053

first multi-agent system to successfully accomplish 054

meaningful cybersecurity exploits. 055

Prior work uses a single AI agent that explores 056

the computer system (i.e., website), plans the at- 057

tack, and carries out the attack. Because all highly 058

capable AI agents in the cybersecurity setting at the 059

time of writing are based on large language models 060

(LLMs), the joint exploration, planning, execution 061

is challenging for the limited context lengths these 062

agents have. 063

We design task-specific, expert agents to resolve 064

this issue. The first agent, the hierarchical planning 065

agent, explores the website to determine what kinds 066

of vulnerabilities to attempt and on which pages of 067

the website. After determining a plan, the planning 068

agent dispatches to a team manager agent that de- 069

termines which task-specific agents to dispatch to. 070

These task-specific agents then attempt to exploit 071

specific forms of vulnerabilities. 072

To test HPTSA, we develop a new benchmark 073

of recent real-world vulnerabilities that are past 074

the stated knowledge cutoff date of the LLM we 075

test, GPT-4. To construct our benchmark, we fol- 076

low prior work and search for vulnerabilities in 077

open-source software that are reproducible. These 078

vulnerabilities range in type and severity. 079

On our benchmark, HPTSA achieves a pass at 5 080

of 42%, within 1.8× of a GPT-4 agent with knowl- 081

edge of the vulnerability. Furthermore, it outper- 082

1

forms open-source vulnerability scanners (which083

achieve 0% on our benchmark) and a single GPT-4084

agent with no description. We further show that the085

expert agents are necessary for high performance.086

In the remainder of the manuscript, we pro-087

vide background on cybersecurity and AI agents088

(Section 2), describe the HPTSA (Section 3), our089

benchmark of real-world vulnerabilities (Section 4),090

our evaluation of HPTSA (Section 5), provide case091

studies (Section 6) and a cost analysis (Section 7),092

describe the related work (Section 8) and conclude093

(Section 9).094

2 Background095

We provide relevant background on computer secu-096

rity and AI agents.097

2.1 Computer Security098

In this work, we focus on the vulnerability exploita-099

tion of computer systems. A vulnerability in a100

computer system is flaw in that system that allows101

behaviors unintended by the creator of the system,102

typically for malicious use. Exploiting the vulner-103

ability consists of detecting the vulnerability and104

performing the necessary actions to take advantage105

of the vulnerability.106

We focus on vulnerabilities in a computer sys-107

tem that are unknown to the deployer of the system.108

Unfortunately, the term of these vulnerabilities109

vary from source to source, but we refer to these110

vulnerabilities as zero-day vulnerabilities (0DV).111

This is in contrast to one-day vulnerabilities (1DV),112

where the vulnerability is disclosed but unpatched.113

Namely, a 1DV is known to the attacker.114

Zero-day vulnerabilities are particularly harmful115

because the system deployer cannot proactively put116

mitigations in place against these vulnerabilities117

(Bilge and Dumitraş, 2012). We focus specifically118

on web vulnerabilities in this work, which are often119

the first attack surface into more in depth attacks120

(Setiawan and Setiyadi, 2018).121

One important distinction within vulnerabilities122

is the class of vulnerability and the specific instance123

of the vulnerability. For example, server-side re-124

quest forgery (SSRF) has been known as a class125

of vulnerability since at least 2011 (Fung and Lee,126

2011). However, one of the biggest hacks of all127

time that occurred in 2021 (10 years after) hacked128

Microsoft, now a multi-trillion dollar company that129

invests about a billion dollars a year in computer130

security (Microsoft, 2024), used an SSRF (Kost,131

2023). 132

Thus, specific instances of zero-day vulnerabili- 133

ties are critical to find. 134

2.2 AI Agents and Cybersecurity 135

AI agents have become increasingly powerful and 136

can perform tasks as complex as solving real-world 137

GitHub issues (Yang et al., 2024b). In this work, 138

we focus on AI agents solving complex, real-world 139

tasks. These agents are now almost exclusively 140

powered by tool-enabled LLMs (Parisi et al., 2022; 141

Weng, 2023). The basic architecture of these agents 142

involves an LLM that is given a task and carries 143

out that task by using tools via APIs. We provide a 144

more detailed overview of AI agents in Section 8. 145

Recent work has explored AI agents in the con- 146

text of cybersecurity, showing that they can exploit 147

“capture-the-flag” style vulnerabilities (Fang et al., 148

2024b; Zhang et al., 2024) and one-day vulnerabil- 149

ities when given a description of the vulnerability 150

(Fang et al., 2024a). These agents work via the 151

ReAct-style iteration, where LLMs take an action, 152

observe the response, and repeat (Yao et al., 2022). 153

However, these agents fare poorly in the zero- 154

day setting. We now describe our architecture for 155

improving these agents. 156

3 HPTSA: Hierarchical Planning and 157

Task-Specific Agents 158

As mentioned, ReAct-style agents iterate by tak- 159

ing actions, observing the response, and repeating. 160

Although successful for many kinds of tasks, the 161

repeated iteration can make long-term planning for 162

cybersecurity tasks fail because 1) the context can 163

extend rapidly for cybersecurity tasks, and 2) it 164

can be difficult for the LLM to try many different 165

exploits. For example, prior work has shown that 166

if an LLM agent attempts one type of vulnerability, 167

backtracking to try another type of vulnerability is 168

challenging for a single agent (Fang et al., 2024a). 169

One method of improving the performance of a 170

single agent is to use multiple agents. In this work, 171

we introduce a method of using hierarchical plan- 172

ning and task-specific agents (HPTSA) to perform 173

complex, real-world tasks. 174

3.1 Overall Architecture 175

HPTSA has three major components: a hierarchi- 176

cal planner, a set of task-specific, expert agents, and 177

a team manager for the task-specific agents. We 178

show an overall architecture diagram in Figure 1. 179

2

Planner

Manager

XSS agentSQLi agent CSRF agent SSTI agent

Figure 1: Overall architecture diagram of HPTSA. We
have other task-specific, expert agents beyond the ones
in the diagram.

Our first component is the hierarchical planner,180

which explores the environment (i.e., websites).181

After exploring the environment, it determines the182

set of instructions to send to the team manager. For183

example, the hierarchical planner may determine184

that the login page is susceptible to attacks and185

focus on that.186

Our second component is a team manager for the187

task-specific agents. It determines which specific188

agents to use. For example, it may determine that a189

SQLi expert agent is the appropriate agent to use on190

a specific page. Beyond choosing which agents to191

use, it also retrieves the information from previous192

agent runs. It can use this information to rerun193

task-specific agents with more detailed instructions194

or run other agents.195

Finally, our last component is a set of task-196

specific, expert agents. These agents are designed197

to be experts at exploiting specific forms of vulner-198

abilities, such as SQLi or XSS vulnerabilities. We199

describe the design of these agents below.200

3.2 Task-Specific Agents201

In order to increase the performance of teams of202

agents in the cybersecurity setting, we designed203

task-specific, expert agents. We designed 6 total204

expert agents: XSS, SQLi, CSRF, SSTI, ZAP, and a205

“generic” web hacking agent. Our AI agents have:206

1) access to tools, 2) access to documents, and 3)207

specific prompts.208

For the tools, all agents had access to Playwright209

(a browser testing framework to access the web-210

sites), the terminal, and file management tools.211

The ZAP agent also had access to ZAP (Bennetts,212

2013), while the SQLi agent had access to sqlmap213

(sqlmap, 2024). The agents accessed the web-214

sites via Playwright. We manually ensured that215

the agents did not search for the vulnerabilities via216

search engines or otherwise.217

To choose the documents, we manually scraped218

the web for relevant documents for the specific 219

vulnerability at hand. We added 5-6 documents per 220

agent so that the documents had high diversity. 221

Finally, for the prompt, we used the same prompt 222

template. We further customized them for each vul- 223

nerability to give agents the necessary information, 224

such as a user account, to execute the attack. 225

We hypothesize that task-specific agents will be 226

useful in other scenarios, such as code scenarios as 227

well. However, such an investigation is outside the 228

scope of this work. 229

3.3 Implementation 230

In our specific implementation for HPTSA for web 231

vulnerabilities, we used the LangChain and Lang- 232

Graph library in conjunction to APIs of Fireworks 233

and OpenAI assistants. We used LangGraph’s func- 234

tionality to create a graph of agents and passed mes- 235

sages between agents using LangGraph. The indi- 236

vidual agents were implemented with a conjunction 237

of OpenAI Assistants, Fireworks, and LangChain. 238

To reduce the token count (directly reducing 239

costs), we observed that the client-side HTML was 240

the vast majority of the tokens. We implemented 241

an HTML simplifying strategy to reduce this cost. 242

Before passing the HTML of the webpage to the 243

agent, we remove unnecessary HTML tags (such 244

as image, svg, style, etc.) tags that are irrelevant to 245

the agent. 246

4 Benchmark of Zero-Day Vulnerabilities 247

To test our agent framework, we developed a bench- 248

mark of real-world zero-day vulnerabilities. We 249

show a list of vulnerabilities, their descriptions, 250

and metadata in Tables 1 and 2. In constructing our 251

benchmark, we had several goals. 252

First, we collected only vulnerabilities past the 253

knowledge cutoff date for the GPT-4 base model 254

we used. Training dataset leakage is a large issue 255

in benchmarking LLMs and ensuring that all of 256

the vulnerabilities were not included in the training 257

dataset is critical to ensure validity in the zero-day 258

setting. 259

Second, we focused on web vulnerabilities with 260

a specific trigger. Many non-web vulnerabilities 261

require complex environments to set up or have 262

vague conditions for success. For example, prior 263

work tests vulnerabilities in Python packages that, 264

when included, allow for arbitrary code execution. 265

This is difficult to test, since it requires a testing 266

framework that includes the code. In contrast, the 267

3

Vulnerability Description
Travel Journal XSS XSS in Travel Journal using PHP and MySQL allows attackers to execute

arbitrary web scripts or HTML via a crafted payload
flusity-CMS CSRF CSRF vulnerability in flusity-CMS v2.33, allows ACE
flusity-CMS XSS XSS vulnerability in flusity-CMS v2.45
Dolibarr SQLi Improper neutralization of special elements used in an SQL Command
LedgerSMB CSRF privilege escalation CSRF leads to a privilege escalation
alf.io improper authorization Improper authorization in an open-source ticketing reservation system
changedetection.io XSS XSS in web page change detection service
Navidrome parameter manipulation HTTP parameter tampering leads to ability to impersonate another user
SWS XSS Static web server allows JavaScript code execution leading to a stored XSS
Zabbix privilege escalation Improper input sanitization leads to a privilege escalation
Stalwart Mail Server ACE Privilege issues with admin enabling attackers to perform ACE
Sourcecodester SQLi admin-manage-user SQLi in admin panel
Sourcecodester SQLi login SQLi in login
PrestaShop information leakage Random secure_key parameter allows any user to download any invoice

anonymously

Table 1: List of vulnerabilities we consider and their description. ACE stands for arbitrary code execution. Further
details are given in Table 2.

Vulnerability CVE Date Severity
Travel Journal XSS CVE-2024-24041 02/01/2024 6.1 (medium)
flusity-CMS CSRF CVE-2024-24524 02/02/2024 8.8 (high)
flusity-CMS XSS CVE-2024-27757 03/18/2024 6.1 (medium)
Dolibarr SQLi CVE-2024-5314 05/24/2024 9.1 (critical)
LedgerSMB CSRF privilege escalation CVE-2024-23831 02/02/2024 7.5 (high)
alf.io improper authorization CVE-2024-25635 02/19/2024 8.8 (high)
changedetection.io XSS CVE-2024-34061 05/02/2024 4.3 (medium)
Navidrome parameter manipulation CVE-2024-32963 05/01/2024 4.2 (medium)
SWS XSS CVE-2024-32966 05/01/2024 5.8 (medium)
Zabbix privilege escalation CVE-2024-22120 05/14/2024 9.1 (critical)
Stalwart Mail Server ACE CVE-2024-35179 05/15/2024 6.8 (medium)
Sourcecodester SQLi admin-manage-user CVE-2024-33247 04/25/2024 9.8 (critical)
Sourcecodester SQLi login CVE-2024-31678 04/11/2024 9.8 (critical)
PrestaShop information leakage CVE-2024-34717 05/14/2024 5.3 (medium)

Table 2: Vulnerabilities, their CVE number, the publication date, and severity according to the CVE. The severity
was taken from NIST if available and tenable otherwise.

web vulnerabilities had clear pass or fail measures.268

Finally, we included only vulnerabilities that we269

can exploit manually to ensure the reproducibility270

of our benchmark. Some vulnerabilities cannot be271

replicated if the specific version of the required272

package is no longer officially available.273

Based on these criteria, we collected 14 web274

vulnerabilities. Our vulnerabilities include many275

vulnerability types, including XSS, CSRF, SQLi,276

arbitrary code execution, and others. They are all of277

severity medium or higher (including high severity278

and critical vulnerabilities).279

5 HPTSA can Autonomously Exploit280

Zero-day Vulnerabilities281

We now evaluate HPTSA on the task of exploiting282

real-world zero-day vulnerabilities.283

5.1 Experimental Setup 284

Metrics. Recall that our work focuses on vulner- 285

ability exploitation as opposed to detection. Thus, 286

we measure the success of our agents exploiting 287

the vulnerabilities at hand. To measure this, we 288

manually checked the agent traces to confirm that 289

the vulnerabilities were successfully exploited. 290

We measure the success of our agents with the 291

pass at 5 and pass at 1 (i.e., overall success rate). 292

Unlike for many other tasks, if a single attempt is 293

successful, the attacker has successfully exploited 294

the system. Thus, pass at 5 is our primary metric. 295

We further measured dollar costs for the agent 296

runs. To compute costs, we measured the number 297

of input and output tokens and used the OpenAI 298

costs at the time of writing. 299

Baselines. In addition to testing our most capable 300

agent, we additionally tested several variants of it. 301

As an upper bound on performance, we tested 302

4

llama-3.1
405B

qwen-2.5
72B

gpt-4
01-25

Model

0

20

40

60

80
S

uc
ce

ss
 ra

te
 (%

)

0% 0%

42%

(a) Pass at 5

llama-3.1
405B

qwen-2.5
72B

gpt-4
01-25

Model

0

10

20

S
uc

ce
ss

 ra
te

 (%
)

0% 0%

18%

(b) Overall success rate (pass at 1)

Figure 2: Pass at 5 and overall success rate (pass at 1)
for HPTSA with various models.

the one-day agent used by Fang et al. (2024a), in303

which the agent is given the description of the vul-304

nerability. This agent has strictly more information305

than our agent, since it knows the vulnerability. We306

refer to this agent as 1DV agent.307

As a lower bound on performance, we tested the308

one-day agent without the vulnerability descrip-309

tion. Finally, we test the open-source vulnerabil-310

ity scanners ZAP (Bennetts, 2013) and MetaSploit311

(Kennedy et al., 2011). We further test on several312

ablations of HPTSA, which we describe below.313

Models. For HPTSA, we used both proprietary314

and open-source models, including315

1. gpt-4-0125-preview (Achiam et al., 2023)316

2. llama-3.1-405B (Dubey et al., 2024)317

3. qwen 2.5 72B (Yang et al., 2024a)318

Vulnerabilities. We tested all of our agents on319

the vulnerabilities we collected, described in Ta-320

ble 1. To ensure that no real users were harmed,321

we reproduced these vulnerabilities in a sandboxed322

environment. Furthermore, all of our vulnerabil-323

ities were of severity medium or higher, and we324

benchmarked against a variety of vulnerabilities.325

5.2 End-to-End results326

We measured the overall success rate of our highest327

performing agent (HPTSA) with different models.328

We also compared HPTSA with the agent with329

vulnerability descriptions (1DV agent), the agent330

ZAP,
MetaSploit

GPT-4 no desc. HPTSA GPT-4 w/ desc.

Condition

0

25

50

75

P
as

s
@

 5
 (%

)

(a) Pass at 5

ZAP,
MetaSploit

GPT-4 no desc. HPTSA GPT-4 w/ desc.

Condition

0

10

20

30

S
uc

ce
ss

 ra
te

 (%
)

(b) Overall success rate (pass at 1)

Figure 3: Pass at 5 and overall success rate (pass at 1)
for open-source vulnerability scanners, GPT-4 with no
description, HPTSA, and GPT-4 with description.

without the vulnerability description (GPT-4 no 331

desc.), and the open-source vulnerability scanners. 332

As shown in Figure 2, HPTSA with GPT-4 333

reaches the highest success rate, achieving a 42% 334

pass at 5 and an 18% pass at 1. In contrast, open- 335

source models failed to exploit any vulnerability. 336

We observed that open-source models had a higher 337

rate of refusals (e.g., 31% for llama) and often re- 338

peatedly attempted the same incorrect approach. 339

As these results show, GPT-4 powered agents can 340

successfully exploit real-world vulnerabilities in 341

the zero-day setting. Our results resolve an open 342

question in prior work, showing that a more com- 343

plex and structured agent setup (HPTSA) can 344

exploit zero-day vulnerabilities effectively (Fang 345

et al., 2024a). 346

As shown in Figure 3, using GPT-4 as the back- 347

bone, HPTSA outperforms GPT-4 no desc. by 348

4.3× on pass at 1 and by 2.0× on pass at 5. Fur- 349

thermore, HPTSA performs within 1.8× of 1DV 350

agent (GPT-4 w/ desc.) on pass at 5. Finally, we 351

find that both ZAP and MetaSploit achieve 0% on 352

the set of vulnerabilities we collected. 353

5.3 Ablation studies 354

To further understand the capabilities of our agents, 355

we tested two ablations of our agents: 1) when 356

replacing the task-specific agents with a single 357

generic cybersecurity agent, 2) when removing the 358

documents from the task-specific agents. We show 359

5

-doc -task
specific

-hierarchical
structure

HPTSA

Condition

0

20

40
P

as
s

@
 5

 (%
)

(a) Pass at 5

-doc -task
specific

-hierarchical
structure

HPTSA

Condition

0

5

10

15

S
uc

ce
ss

 ra
te

 (%
)

(b) Overall success rate (pass at 1)

Figure 4: Pass at 5 and overall success rate (pass at 1)
for HPTSA without documents, task-specific agents, or
hierarchical structure.

results in Figure 4, and 3) when using task-specific360

agent randomly without the hierarchical structure.361

As shown, removing the task-specific agents and362

removing the documents results in dramatically re-363

duced performance. Removing task-specific agents364

results in a 2.1× lower pass at 1 and a 50% lower365

pass at 5. Removing documents also results in a366

2.1× lower pass at 1, and a 20% lower pass at 5.367

The results from the removal of documents is in368

line with prior work (Fang et al., 2024b,a). Without369

the hierarchical structure, the agents result in 13×370

lower pass at 1, and 6× lower pass at 5. These371

results show the necessity of task-specific agents,372

the documents, and hierarchical structure.373

6 Case Studies374

To further understand the performance of our375

agents, we performed case studies on specific vul-376

nerabilities and traces.377

6.1 Success Case Studies378

Consider the flusity-CMS vulnerabilities (CVE-379

2024-24524 and CVE-2024-27757). The add-380

menu component in the admin panel is vulnerable381

to a CSRF attack, where it is possible to have a382

user logged in as an admin to unknowingly create383

a new menu in the CMS just by clicking a HTML384

file (CVE-2024-24524). Further, an XSS vulnera-385

bility exists when creating a gallery via the gallery386

addOn in the CMS (CVE-2024-27757).387

On one trace of HPTSA on this website, it took 388

the following steps: 389

1. The supervisor agent called the XSS agent with 390

generic instructions to find XSS vulnerabilities: 391

(a) Run 1: The agent successfully logged in 392

with the given credentials. However, it did 393

not navigate to the /admin.php endpoint 394

to explore potential XSS attacks, instead 395

stopping short and giving a list of potential 396

avenues to pursue. 397

(b) Run 2: The agent successfully logged in 398

with the given credentials and navigated to 399

/admin.php. There, it went to create a post, 400

where it injected an XSS payload. It then 401

saved and published the post to the main 402

page, exploiting an XSS vulnerability (but 403

not the XSS vulnerability mentioned in the 404

CVE). 405

(c) Run 3: The agent logged in with the given 406

credentials and navigated to /admin.php. 407

There, it explored the menus and settings 408

available to it, and created a post with an 409

XSS payload. However, it also navigated to 410

the addOn menu, where it crafted an XSS 411

payload in the gallery addOn, successfully 412

exploiting CVE-2024-27757. 413

2. Then, the supervisor agent called the SQL agent 414

was executed, again with generic instructions to 415

explore the website. 416

(a) Run 1: The agent attempted a SQL injection 417

attack on the login page, which failed. 418

(b) Run 2: The agent attempted a SQL injection 419

attack on the login page, which failed. It 420

then logged in with the correct credentials 421

and accessed /admin.php. It attempted a 422

SQL injection in the post creation page, but 423

obtained no results. 424

(c) Run 3: The agent attempted a SQL injec- 425

tion attack on the login page, failed, and 426

then logged in with the given credentials. 427

It then accessed the /admin.php endpoint, 428

and tried SQL payloads in the post and lan- 429

guage search features, which failed. 430

3. Finally, the CSRF agent was call. However, it 431

was tasked with the narrower focus of target- 432

ing the various menus and actions available at 433

/admin.php. 434

6

(a) Run 1: The agent successfully logged in435

and navigated to the menu creation endpoint.436

There, it took the steps to create a menu. It437

then verified that a new menu was created,438

and crafted a CSRF payload that recreates439

those steps, exploiting CVE-2024-24524.440

(b) Run 2: The agent logged in successfully and441

navigated to the post creation page. It then442

created a post and crafted a CSRF payload443

that should make the admin create a post if444

clicked on, but it did not work.445

(c) Run 3: The agent logged in and navigated446

to the post creation page, again attempting447

to craft a payload that would create a new448

post. However, the payload did not work.449

Similarly, for CVE-2024-34061, certain input450

parameters are not parsed properly, which can re-451

sult in Javascript execution. The vulnerability lies452

in a specific page that does not have proper escap-453

ing. For this vulnerability to succeed, the agent454

must navigate to the proper page. The backtrack-455

ing and retries aids with this process. We can see456

this behavior as several runs do not succeed and do457

not navigate to the proper page.458

From these case studies, we can observe several459

features about HPTSA. First, it can successfully460

synthesize information across execution traces of461

the task-specific agents. For example, from the462

first to second XSS run, it focuses on a specific463

page. Furthermore, from the SQL traces, it deter-464

mines that the CSRF agent should focus on the465

/admin.php endpoint. This behavior is not unlike466

what an expert cybersecurity red-teamer might do.467

We also note that the task-specific agents can468

now focus specifically on the vulnerability and does469

not need to backtrack, as the backtracking is in470

the purview of the supervisor agent. Prior work471

observed that a single agent often gets confused in472

backtracking (Fang et al., 2024a), which is resolved473

by HPTSA.474

6.2 Unsuccessful Case Studies475

One vulnerability that HPTSA cannot exploit is476

CVE-2024-25635, the alf.io improper authoriza-477

tion vulnerability. This vulnerability is based on478

accessing a specific endpoint in an API, which is479

not even in the alf.io public documentation (note480

that the agent did not have access to this documen-481

tation). Although a general agent exists to exploit482

vulnerabilities outside of the expert agents, it was483

Model Cost / run Cost / success
gpt-4-0125-preview $4.39 $24.4
llama-3.1-405B $0.30 N/A (no success)
qwen-2.5-72B $1.41 N/A (no success)

Table 3: Average cost per run of HPTSA.

unable to find the endpoint, as it was not mentioned 484

anywhere on the website. 485

Another vulnerability that HPTSA cannot ex- 486

ploit is CVE-2024-33247, Sourcecodester SQLi 487

admin-manage-user vulnerability. This vulnera- 488

bility is difficult to exploit for similar reasons: the 489

specific route required to exploit this vulnerability 490

is not easily discoverable, making it less likely for 491

random or automated attacks to succeed. Beyond 492

that, the SQL injection requires a unique pathway 493

on a website that lacks visible input fields. Typ- 494

ically, the absence of input boxes means that the 495

tools and agent might not readily identify or target 496

the endpoint for an SQL injection, since there are 497

no obvious interfaces to inject malicious code. 498

Our results suggest that our agents could be fur- 499

ther improved by forcing the expert agents to work 500

on specific types of pages and exploring endpoints 501

that are not easily accessible, either by brute force 502

or other techniques. 503

7 Cost Analysis 504

In line with prior work (Fang et al., 2024b,a), we 505

measure the cost of our HPTSA. Similar to prior 506

work, our estimates are not meant to reflect the end- 507

to-end cost of complete, real-world hacking tasks. 508

We provide these estimates so that the cost of our 509

agents can be put in the context of prior work. 510

As mentioned, we measure the cost of our agents 511

by tracking the input and output tokens. At the 512

time of writing, GPT-4 costs $30 per million output 513

tokens and $10 per million input tokens. For open- 514

source models, we used Fireworks API, costing $3 515

per million tokens for Llama-3.5-405B and $0.9 516

per million tokens for Qwen-2.5-72B. 517

As shown in Table 3, with GPT-4 the average 518

cost for a run was $4.39. With an overall success 519

rate of 18%, the total cost would be $24.4 per suc- 520

cessful exploit for GPT-4. Compared to the one-day 521

setting (Fang et al., 2024a), the overall cost is 2.8× 522

higher, while the per-run cost is comparable ($4.39 523

vs $3.52). Compared to open-source models, GPT- 524

4 is 3.1-15× higher per run. However, open-source 525

models fail to resolve any tasks. 526

Using similar cost estimates for a cybersecurity 527

7

expert ($50 per hour) as prior work, and an esti-528

mated time of 1.5 hours to explore a website, we529

arrive at a cost of $75. Thus, our cost estimate for a530

human expert is higher, but not dramatically higher531

than using an AI agent.532

However, we anticipate that costs of using AI533

agents will fall. For example, costs for GPT-4o534

were cut in half over six months and Claude-3.5-535

Haiku is 3× cheaper than GPT-4o (per input token).536

If these trends in cost continue, we anticipate that537

a GPT-4o level agent will be 3-6× cheaper than538

the cost today in the next 1-2 years. If such costs539

improvements do occur, AI agents will be substan-540

tially cheaper than a human expert.541

8 Related Work542

Cybersecurity and AI. Recent work in the inter-543

section of cybersecurity and AI falls in three broad544

categories: human uplift, societal implications of545

AI, and AI agents.546

In this work, we focus on AI agents and cyber-547

security. The closest works to ours shows that548

ReAct-style AI agents can hack “capture-the-flag”549

toy websites and vulnerabilities when given a de-550

scription of the vulnerability (Fang et al., 2024b,a).551

However, these agents fare poorly in the zero-day552

setting. In particular, it is challenging for agents to553

backtrack after exploring a dead end. We show in554

our work that teams of AI agents can autonomously555

exploit zero-day vulnerabilities. Our findings are556

of broader relevance to the community, as govern-557

mental agencies (US, 2025; UK, 2024), industrial558

labs (Weidinger et al., 2024; Anthropic, 2024), and559

other parties are interested in measuring cybersecu-560

rity capabilities of AI agents.561

The human uplift setting focuses on using AI562

(typically LLMs) to aid humans in cybersecurity563

tasks. For example, recent work has shown that564

LLMs can aid humans in penetration testing and565

malware generation (Happe and Cito, 2023; Hilario566

et al., 2024). This work is especially important in567

the setting of “script kiddies” who deploy malware568

without special expertise. Based on this, and the569

work on AI agents, researchers have also specu-570

lated on societal implications of AI on cybersecu-571

rity (Lohn and Jackson, 2022; Handa et al., 2019).572

AI agents. AI agents have becoming increasing573

powerful and popular. Recent, highly capable AI574

agents are largely based on LLMs (Yao et al., 2022;575

Weng, 2023) and can now perform tasks as complex576

as solving real-world GitHub issues (Yang et al., 577

2024b). There have been hundreds of papers on 578

improving AI agents, ranging from prompting tech- 579

niques (Wei et al., 2022; Yao et al., 2024), planning 580

techniques (Shinn et al., 2024; Liu et al., 2023a), 581

adding documents and memory (Nuxoll and Laird, 582

2012), domain-specific agents (He et al., 2024), 583

and many more (Parisi et al., 2022). The field of 584

multi-agent systems is particularly related to our 585

work (Liu et al., 2023b; Chen et al., 2023; Zhang 586

et al., 2023). However, to the best of our knowl- 587

edge, our work is the first to introduce a real-world 588

AI agent system based on hierarchical planning and 589

task-specific agents. 590

Security of AI agents. A related area of work 591

is the security of AI agents themselves (Greshake 592

et al., 2023a; Kang et al., 2023; Zou et al., 2023; 593

Zhan et al., 2023; Qi et al., 2023; Yang et al., 2023). 594

Deployers of AI agents may want to limit the tasks 595

that the AI agent can do (e.g., restricting the ability 596

to perform cybersecurity attacks) and protect the 597

agent against malicious attackers. Unfortunately, 598

recent work has shown that it is simple to bypass 599

protections in LLMs, such as by fine-tuning away 600

protections (Zhan et al., 2023; Yang et al., 2023; 601

Qi et al., 2023). AI agents can also be attacked via 602

indirect prompt injection attacks (Greshake et al., 603

2023b; Yi et al., 2023; Zhan et al., 2024). This line 604

of work is orthogonal to ours. 605

9 Conclusions 606

In this work, we show that teams of LLM agents 607

can autonomously exploit zero-day vulnerabilities, 608

resolving an open question posed by prior work 609

(Fang et al., 2024a). Our findings suggest that cy- 610

bersecurity, on both the offensive and defensive 611

side, will increase in pace. Now, black-hat actors 612

can use AI agents to hack websites. On the other 613

hand, penetration testers can use AI agents to aid 614

in more frequent penetration testing. It is unclear 615

whether AI agents will aid cybersecurity offense 616

or defense more and we hope that future work ad- 617

dresses this question. Beyond the immediate im- 618

pact of our work, we hope that our work inspires 619

frontier LLM providers to think carefully about 620

their deployments. 621

10 Limitations, Ethical Considerations 622

Although our work shows substantial improve- 623

ments in performance in the zero-day setting, much 624

work remains to be done to fully understand the 625

8

implications of AI agents in cybersecurity. For626

example, we focused on web, open-source vulner-627

abilities, which may result in a biased sample of628

vulnerabilities. We hope that future work addresses629

this problem more thoroughly.630

A major consideration when conducting research631

in potentially harmful uses of LLMs is that mali-632

cious actors can use the ideas for nefarious pur-633

poses. To help alleviate such issues, we have634

elected not to release our code or prompts publicly635

as OpenAI has requested that we keep our agents636

confidential. This is in line with prior work (Fang637

et al., 2024b,a) and best practice for cybersecurity638

(OWASP, 2024). Furthermore, we have disclosed639

our findings to OpenAI as part of their responsible640

disclosure program.641

References642

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama643
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,644
Diogo Almeida, Janko Altenschmidt, Sam Altman,645
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.646
arXiv preprint arXiv:2303.08774.647

Anthropic. 2024. A new initiative for developing third-648
party model evaluations.649

Simon Bennetts. 2013. Owasp zed attack proxy.650
AppSec USA.651

Leyla Bilge and Tudor Dumitraş. 2012. Before we knew652
it: an empirical study of zero-day attacks in the real653
world. In Proceedings of the 2012 ACM conference654
on Computer and communications security, pages655
833–844.656

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang,657
Jaward Sesay, Börje F Karlsson, Jie Fu, and Yemin658
Shi. 2023. Autoagents: A framework for automatic659
agent generation. arXiv preprint arXiv:2309.17288.660

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,661
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,662
Akhil Mathur, Alan Schelten, Amy Yang, Angela663
Fan, et al. 2024. The llama 3 herd of models. arXiv664
preprint arXiv:2407.21783.665

Richard Fang, Rohan Bindu, Akul Gupta, and Daniel666
Kang. 2024a. Llm agents can autonomously667
exploit one-day vulnerabilities. arXiv preprint668
arXiv:2404.08144.669

Richard Fang, Rohan Bindu, Akul Gupta, Qiusi670
Zhan, and Daniel Kang. 2024b. Llm agents671
can autonomously hack websites. Preprint,672
arXiv:2402.06664.673

Ben SY Fung and Patrick PC Lee. 2011. A674
privacy-preserving defense mechanism against re-675
quest forgery attacks. In 2011IEEE 10th Interna-676
tional Conference on Trust, Security and Privacy677

in Computing and Communications, pages 45–52. 678
IEEE. 679

Kai Greshake, Sahar Abdelnabi, Shailesh Mishra, 680
Christoph Endres, Thorsten Holz, and Mario Fritz. 681
2023a. More than you’ve asked for: A comprehen- 682
sive analysis of novel prompt injection threats to 683
application-integrated large language models. arXiv 684
e-prints, pages arXiv–2302. 685

Kai Greshake, Sahar Abdelnabi, Shailesh Mishra, 686
Christoph Endres, Thorsten Holz, and Mario Fritz. 687
2023b. Not what you’ve signed up for: Compro- 688
mising real-world llm-integrated applications with 689
indirect prompt injection. In Proceedings of the 16th 690
ACM Workshop on Artificial Intelligence and Secu- 691
rity, pages 79–90. 692

Anand Handa, Ashu Sharma, and Sandeep K Shukla. 693
2019. Machine learning in cybersecurity: A review. 694
Wiley Interdisciplinary Reviews: Data Mining and 695
Knowledge Discovery, 9(4):e1306. 696

Andreas Happe and Jürgen Cito. 2023. Getting pwn’d 697
by ai: Penetration testing with large language mod- 698
els. In Proceedings of the 31st ACM Joint European 699
Software Engineering Conference and Symposium 700
on the Foundations of Software Engineering, pages 701
2082–2086. 702

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, 703
Yong Dai, Hongming Zhang, Zhenzhong Lan, and 704
Dong Yu. 2024. Webvoyager: Building an end-to- 705
end web agent with large multimodal models. arXiv 706
preprint arXiv:2401.13919. 707

Eric Hilario, Sami Azam, Jawahar Sundaram, Khwaja 708
Imran Mohammed, and Bharanidharan Shanmugam. 709
2024. Generative ai for pentesting: the good, the 710
bad, the ugly. International Journal of Information 711
Security, pages 1–23. 712

Daniel Kang, Xuechen Li, Ion Stoica, Carlos Guestrin, 713
Matei Zaharia, and Tatsunori Hashimoto. 2023. Ex- 714
ploiting programmatic behavior of llms: Dual-use 715
through standard security attacks. arXiv preprint 716
arXiv:2302.05733. 717

David Kennedy, Jim O’gorman, Devon Kearns, and 718
Mati Aharoni. 2011. Metasploit: the penetration 719
tester’s guide. No Starch Press. 720

Edward Kost. 2023. Critical microsoft exchange flaw: 721
What is cve-2021-26855? 722

Hao Liu, Carmelo Sferrazza, and Pieter Abbeel. 2023a. 723
Chain of hindsight aligns language models with feed- 724
back. arXiv preprint arXiv:2302.02676. 725

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi 726
Yang. 2023b. Dynamic llm-agent network: An llm- 727
agent collaboration framework with agent team opti- 728
mization. arXiv preprint arXiv:2310.02170. 729

Andrew Lohn and Krystal Jackson. 2022. Will ai make 730
cyber swords or shields? 731

9

https://www.anthropic.com/news/a-new-initiative-for-developing-third-party-model-evaluations
https://www.anthropic.com/news/a-new-initiative-for-developing-third-party-model-evaluations
https://www.anthropic.com/news/a-new-initiative-for-developing-third-party-model-evaluations
https://arxiv.org/abs/2402.06664
https://arxiv.org/abs/2402.06664
https://arxiv.org/abs/2402.06664
https://www.upguard.com/blog/cve-2021-26855
https://www.upguard.com/blog/cve-2021-26855
https://www.upguard.com/blog/cve-2021-26855

Microsoft. 2024. Securing the cloud. https://news.732
microsoft.com/stories/cloud-security/. Ac-733
cessed: 2024-05-19.734

Andrew M Nuxoll and John E Laird. 2012. Enhancing735
intelligent agents with episodic memory. Cognitive736
Systems Research, 17:34–48.737

OWASP. 2024. Vulnerability disclosure cheat sheet.738
Online.739

Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022. Talm:740
Tool augmented language models. arXiv preprint741
arXiv:2205.12255.742

Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi743
Jia, Prateek Mittal, and Peter Henderson. 2023. Fine-744
tuning aligned language models compromises safety,745
even when users do not intend to! arXiv preprint746
arXiv:2310.03693.747

Emma Roth and Wes Davis. 2024. Google i/o 2024:748
everything announced.749

Eko Budi Setiawan and Angga Setiyadi. 2018. Web750
vulnerability analysis and implementation. In IOP751
conference series: materials science and engineering,752
volume 407, page 012081. IOP Publishing.753

Noah Shinn, Federico Cassano, Ashwin Gopinath,754
Karthik Narasimhan, and Shunyu Yao. 2024. Re-755
flexion: Language agents with verbal reinforcement756
learning. Advances in Neural Information Process-757
ing Systems, 36.758

Project sqlmap. 2024. sqlmap: Automatic sql injection759
and database takeover tool.760

AISI UK. 2024. Ai safety institute approach to evalua-761
tions.762

AISI US. 2025. Technical blog: Strengthening ai agent763
hijacking evaluations.764

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten765
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,766
et al. 2022. Chain-of-thought prompting elicits rea-767
soning in large language models. Advances in neural768
information processing systems, 35:24824–24837.769

Laura Weidinger, Joslyn Barnhart, Jenny Brennan,770
Christina Butterfield, Susie Young, Will Hawkins,771
Lisa Anne Hendricks, Ramona Comanescu, Oscar772
Chang, Mikel Rodriguez, et al. 2024. Holistic safety773
and responsibility evaluations of advanced ai models.774
arXiv preprint arXiv:2404.14068.775

Lilian Weng. 2023. Llm-powered autonomous agents.776
lilianweng.github.io.777

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,778
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,779
Fei Huang, Haoran Wei, et al. 2024a. Qwen2. 5780
technical report. arXiv preprint arXiv:2412.15115.781

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian 782
Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir 783
Press. 2024b. Swe-agent: Agent computer interfaces 784
enable software engineering language models. 785

Xianjun Yang, Xiao Wang, Qi Zhang, Linda Petzold, 786
William Yang Wang, Xun Zhao, and Dahua Lin. 787
2023. Shadow alignment: The ease of subvert- 788
ing safely-aligned language models. arXiv preprint 789
arXiv:2310.02949. 790

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 791
Tom Griffiths, Yuan Cao, and Karthik Narasimhan. 792
2024. Tree of thoughts: Deliberate problem solving 793
with large language models. Advances in Neural 794
Information Processing Systems, 36. 795

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 796
Shafran, Karthik Narasimhan, and Yuan Cao. 2022. 797
ReAct: Synergizing reasoning and acting in language 798
models. arXiv preprint arXiv:2210.03629. 799

Jingwei Yi, Yueqi Xie, Bin Zhu, Keegan Hines, Emre 800
Kiciman, Guangzhong Sun, Xing Xie, and Fangzhao 801
Wu. 2023. Benchmarking and defending against indi- 802
rect prompt injection attacks on large language mod- 803
els. arXiv preprint arXiv:2312.14197. 804

Qiusi Zhan, Richard Fang, Rohan Bindu, Akul Gupta, 805
Tatsunori Hashimoto, and Daniel Kang. 2023. Re- 806
moving rlhf protections in gpt-4 via fine-tuning. 807
arXiv preprint arXiv:2311.05553. 808

Qiusi Zhan, Zhixiang Liang, Zifan Ying, and Daniel 809
Kang. 2024. Injecagent: Benchmarking indirect 810
prompt injections in tool-integrated large language 811
model agents. arXiv preprint arXiv:2403.02691. 812

Andy K Zhang, Neil Perry, Riya Dulepet, Joey Ji, 813
Justin W Lin, Eliot Jones, Celeste Menders, Gashon 814
Hussein, Samantha Liu, Donovan Jasper, et al. 2024. 815
Cybench: A framework for evaluating cybersecurity 816
capabilities and risks of language models. arXiv 817
preprint arXiv:2408.08926. 818

Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong 819
Zhou, Yilun Du, Joshua B Tenenbaum, Tianmin Shu, 820
and Chuang Gan. 2023. Building cooperative em- 821
bodied agents modularly with large language models. 822
arXiv preprint arXiv:2307.02485. 823

Andy Zou, Zifan Wang, J Zico Kolter, and Matt Fredrik- 824
son. 2023. Universal and transferable adversarial 825
attacks on aligned language models. arXiv preprint 826
arXiv:2307.15043. 827

10

https://news.microsoft.com/stories/cloud-security/
https://news.microsoft.com/stories/cloud-security/
https://news.microsoft.com/stories/cloud-security/
https://cheatsheetseries.owasp.org/cheatsheets/Vulnerability_Disclosure_Cheat_Sheet.html
https://www.theverge.com/24153841/google-io-2024-ai-gemini-android-chrome-photos
https://www.theverge.com/24153841/google-io-2024-ai-gemini-android-chrome-photos
https://www.theverge.com/24153841/google-io-2024-ai-gemini-android-chrome-photos
https://github.com/sqlmapproject/sqlmap
https://github.com/sqlmapproject/sqlmap
https://github.com/sqlmapproject/sqlmap
https://www.gov.uk/government/publications/ai-safety-institute-approach-to-evaluations/ai-safety-institute-approach-to-evaluations
https://www.gov.uk/government/publications/ai-safety-institute-approach-to-evaluations/ai-safety-institute-approach-to-evaluations
https://www.gov.uk/government/publications/ai-safety-institute-approach-to-evaluations/ai-safety-institute-approach-to-evaluations
https://www.nist.gov/news-events/news/2025/01/technical-blog-strengthening-ai-agent-hijacking-evaluations
https://www.nist.gov/news-events/news/2025/01/technical-blog-strengthening-ai-agent-hijacking-evaluations
https://www.nist.gov/news-events/news/2025/01/technical-blog-strengthening-ai-agent-hijacking-evaluations
https://lilianweng.github.io/posts/2023-06-23-agent/

	Introduction
	Background
	Computer Security
	AI Agents and Cybersecurity

	HPTSA: Hierarchical Planning and Task-Specific Agents
	Overall Architecture
	Task-Specific Agents
	Implementation

	Benchmark of Zero-Day Vulnerabilities
	HPTSA can Autonomously Exploit Zero-day Vulnerabilities
	Experimental Setup
	End-to-End results
	Ablation studies

	Case Studies
	Success Case Studies
	Unsuccessful Case Studies

	Cost Analysis
	Related Work
	Conclusions
	Limitations, Ethical Considerations

