
Utilising the Parameter-Performance Relationship
for Efficient Multi-Objective Reinforcement Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Multi-objective reinforcement learning (MORL) aims to identify diverse optimal1

policies forming a Pareto front to balance different, often conflicting objectives.2

The complex mapping between the policy parameter space and the multi-objective3

performance space poses significant challenges for efficient exploration. This work4

formally introduces and exploits the Parameter-Performance Relationship (PPR),5

proposing that an understanding of its local structure enables more efficient MORL.6

We present an algorithm that realises the PPR through locally linear extensions,7

called LLE-MORL. By using a few initial policies and their briefly retrained8

variants to define extension directions, our method efficiently generates candidate9

policies along the Pareto front with minimal additional training. Experiments10

on continuous control benchmarks show our approach discovers high-quality,11

comprehensive Pareto fronts efficiently than existing methods. This demonstrates12

that systematically leveraging the PPR provides a powerful strategy for advancing13

MORL.14

1 Introduction15

Reinforcement Learning (RL) has shown great promise in complex decision-making problems,16

enabling significant advancements in a wide range [Silver et al., 2016, Levine et al., 2016]. In real-17

world scenarios, however, problems often feature multiple, often conflicting, objectives. Under this18

circumstance, multi-objective approaches provide flexibility in practical applications of reinforcement19

learning by providing a modifiable policy that can be adjusted according to changes of preference20

among a set of objectives [Roijers et al., 2013, Hayes et al., 2022]. This has fostered the development21

of the field known as multi-objective reinforcement learning (MORL). Ideally, the modifiable policies22

developed within MORL allow for efficient adaptation, ensuring that a policy optimal for one set of23

preferences can be readily transformed to be optimal for a new set when those preferences change. To24

prepare such a modifiable policy for application, three problems have to be solved: (i) The learning25

problem involves the solution of an RL problem for each combination of preference parameters26

or at least for a representative subset of preferences. (ii) The representation problem requires a27

parametrization of the policies, which typically results in either a discrete set of individual policies28

(common in population-based methods) or a single, continuously adaptable policy (prevalent in deep29

reinforcement learning approaches). (iii) The selection problem is to identify a suitable policy in30

the application which includes dynamic adjustments to preference drifts and possibly the decision31

whether a different policy should be invoked or whether further training is required to respond to a32

temporary detection of suboptimality.33

We propose to consider these problems as a coherent task, in order to reduce the computational burden34

of the learning problem and improve the interpretability of the policy representation. We hypothesise35

that if a continuous representation of policies can be found where similar preferences correspond36

Submitted to the 18th European Workshop on Reinforcement Learning (EWRL 2025). Do not distribute.

to similar policy parameters, then small performance differences might be compensable with brief,37

targeted retraining. It is also anticipated that such a structured and interpretable policy representation38

would benefit the selection problem, though this aspect is not the primary focus of our current study.39

While a globally continuous mapping is an ideal, we notice that in non-trivial problems, the relation-40

ship between the performance space and parameter space of policies is not a simple, single continuous41

mapping but can be described by a family of locally continuous components [Xu et al., 2020, Li et al.,42

2024]. Our findings suggest that effectively exploring just a few of these components can be sufficient43

to achieve competitive performance in typical benchmark problems. This understanding forms the44

basis of our core concept: the Parameter-Performance Relationship (PPR). The process is seeded by45

an RL task that finds a good but not necessarily optimal parameter vector for an initial policy. Then a46

second policy is obtained by retraining with different preferences, and from there, additional policies47

are efficiently generated by a locally linear extrapolation, which led to the name LLE-MORL for the48

approach that we present in the following. If the policies obtained by the extension process are briefly49

retrained, they can improve with further extension, although eventually they may become dominated50

by earlier solutions which would indicate the need for a restart with a different initial policy. Within51

each solution component, the policy representation is easily interpretable in terms of the continuous52

PPR, but also the boundaries where the policies depart from optimality are interesting. They indicate53

that a discontinuous reparametrisation takes place and that thus policies of a potentially qualitatively54

different type are optimal on either side of the boundary.55

Building upon the notions of PPR and locally linear extension, in this paper, we introduce56

LLE-MORL, a MORL algorithm that is designed to efficiently trace the Pareto front (see Sect. 2.2)57

by systematically exploring these identified local structures. Our experiments demonstrate that58

the proposed algorithm can achieve high-quality Pareto front approximations with notable sample59

efficiency. This strong performance is primarily attributed to its simple yet effective locally linear60

extension method, which significantly reduces the need for extensive retraining along the Pareto front.61

Such efficiency is made by exploiting the locally continuous nature of the parameter-performance62

relationship, a characteristic that also enhances the overall interpretability of our approach.63

2 Background64

2.1 Multi-Objective Reinforcement Learning65

Multi-Objective Reinforcement Learning (MORL) extends the traditional RL framework to scenarios66

where agents must consider multiple, often conflicting objectives. This extension allows for more67

sophisticated decision-making models that mirror real-world complexities where trade-offs between68

competing goals, such as cost versus quality or speed versus safety, are common. To ground this notion69

formally, we represent a MORL problem as a Multi-Objective Markov Decision Process (MOMDP)70

which generalises the standard MDP framework to accommodate multiple reward functions, each71

corresponding to a different objective.72

Definition 1 Multi-Objective Markov Decision Process (MOMDP). A MOMDP is defined by the73

tuple (S,A,P, {Rd}, γ,Ω, fΩ), where S is the state space, A is the action space, P(s′|s, a) is the74

state transition probability,Rd is a vector-valued reward function with d as the number of objectives,75

specifying the immediate reward for each of the considered objectives, γ is the discount factor, Ω is76

the preferences space, fΩ : Rd → R is the scalarisation function.77

The crucial difference between MOMDPs and traditional single-objective MDPs is the reward78

structure. While single-objective MDPs use a scalar reward functionR, MOMDPs feature a vector-79

valued reward function Rd that delivers distinct numeric feedback for each objective, directly80

correlating the length of the reward vector with the number of objectives. At each timestep t, the81

agent in state st ∈ S selects an action at ∼ π(· | st), transitions to a new state st+1 with probability82

P (st+1 | st, at), and receives a reward vector rt =
[
(R1(st, at), R2(st, at), . . . , Rd(st, at)

]
). We83

define the discounted return vector by Gt =
∑∞

k=0 γ
k rt+k, and the multi-objective action-value84

function of a policy π for a given state-action pair (s, a) by Qπ(s, a) = Eπ

[
Gt | st = s, at = a

]
.85

The goal of MORL is to find a policy π such that the expected return of each objective can be86

optimised. In practice, we trade off objectives via a scalarisation function fω(r), which produces a87

scalar utility using preference vector ω ∈ Ω. The scalarisation function fω(r) is used for mapping88

2

the multi-objective reward vector r(s, a) to a single scalar. In this paper, we consider the linear89

scalarisation function fω(r(s, a)) = ωTr(s, a), which is commonly used in MORL literature [Yang90

et al., 2019, Felten et al., 2024]. When the preference dimension d = 1 (so that the return vector is91

one-dimensional), the MOMDP collapses to a standard single-objective MDP, since the reward vector92

reduces to a scalar and fΩ becomes the identity mapping.93

2.2 Pareto Optimality94

In multi-objective optimisation, the concept of optimality differs from the single-objective case.95

Typically, no single policy simultaneously maximises all objectives, due to inherent trade-offs.96

Without any additional information about the user’s preference, there can now be multiple possibly97

optimal solutions. In the following, we introduce several useful definitions for possibly optimal98

policies.99

Definition 2 Pareto optimality A policy π is said to dominate another policy π′ if and only100

if: ∀i ∈ {1, . . . , d}, V π
i (s) ≥ V π′

i (s), and ∃j, V π
j (s) > V π′

j (s), where V π
i (s) =101

Eπ[
∑∞

t=0 γ
tRi(st, at) | s0 = s] denotes the expected discounted return for objective i under policy π.102

A policy π∗ is Pareto optimal if and only if it is not dominated by another policy. The set of all Pareto103

optimal policies forms the Pareto set: P = {π | π is Pareto optimal}. The corresponding set of104

expected returns incured by policies in the Pareto set is termed Pareto front: F = {V π(s) | π ∈ P}.105

Since obtaining the true Pareto set is intractable in complex problems, the practical aim of multi-106

objective optimisation is to construct a finite set of policies that closely approximate the true Pareto107

front. So that practitioners can select the policy based on their preferred trade-off among objectives.108

2.3 Related Work109

Prior work in Multi-Objective Reinforcement Learning (MORL) offers various strategies for handling110

conflicting objectives. These can be broadly grouped into single-policy methods and multi-policy111

methods for approximating the Pareto front. Single-policy approaches, a foundational strategy in112

MORL, typically convert the multi-objective problem into a single-objective task using a predefined113

preference or weighting scheme to find a policy optimal for that specific trade-off. A common114

instance of such a weighting scheme is linear scalarization [Van Moffaert et al., 2013]. Limitations115

of linear scalarization, particularly in capturing non-convex Pareto fronts, have been addressed by116

more advanced scalarization functions such as Chebyshev methods [Van Moffaert et al., 2013] and117

hypervolume-based approaches [Zhang and Golovin, 2020]. Further theoretical work has aimed118

at enhancing scalarization robustness and performance, for instance, by proposing the addition119

of concave terms to rewards [Lu et al., 2023]. Concurrently, significant efforts have developed120

generalised single-policy models conditioned on preference inputs to achieve adaptability across121

diverse objectives [Teh et al., 2017, Yang et al., 2019, Basaklar et al., 2022, Parisi et al., 2016], with122

subsequent extensions into offline learning contexts [Zhu et al., 2023, Lin et al., 2024] and methods123

to improve sample efficiency in these settings [Huang, 2022].124

Multi-policy MORL strategies directly target the approximation of the entire Pareto front by learning125

a diverse collection of policies. One direction for generating diverse behaviours involves developing126

single, highly adaptable models conditioned on preferences, which generalise across various objec-127

tives using techniques like specialised experience replay or policy gradient methods that enforce128

Pareto stationarity [Abels et al., 2019, Friedman and Fontaine, 2018, Kyriakis and Deshmukh, 2022].129

Other approaches explicitly learn a diverse set of policies or their value functions; this includes130

direct value-based methods like Pareto Q-learning [Van Moffaert and Nowé, 2014], and evolutionary131

algorithms often guided by prediction models to discover a dense Pareto set [Xu et al., 2020]. Further132

techniques for generating policy sets involve Generalised Policy Improvement (GPI) for sample-133

efficient learning [Alegre et al., 2023] or the development of transferable policy components using134

representations like successor features [Alegre et al., 2022]. The use of constrained optimisation135

to efficiently complete and refine the Pareto front is also explored in [Liu et al., 2024, He et al.,136

2024]. Furthermore, the principles of decomposition-based strategies, which find a set of solutions by137

solving multiple interrelated scalarised sub-problems, have been a significant focus, with recent work138

providing clarifying taxonomies and conceptual frameworks [Felten et al., 2024, Röpke et al., 2024].139

3

Parameter Space Performance Space

𝑟1

𝑟2

𝜔1

𝜔2

𝑟1

𝑟2

𝑟1

𝑟2

Locally Linear Extension Candidate Selection Preference-Aligned Fine-Tuning

Performance Space Performance Space

Figure 1: Algorithm Overview (see Sect. 3.5). (From left) Locally Linear Extension: After
initialisation of a policy in the parameter space, brief retraining produces a second policy parameter
vector. The corresponding two policies are linearly extended to produce a set of candidate policies
which map to a trajectory of performance vectors (black). The green and the blue point represent,
resp., the performance of the initial and the retrained policy. Candidate Selection: From this set of
policies, the non-dominated candidate solutions are selected. Preference-Aligned Fine-Tuning: The
selected non-dominated candidates undergo a brief fine-tuning phase. Policies are refined based on
respective preference vectors (fanned arrows from origin) which tends to move them closer to the
true Pareto front providing the final approximation of the front.

While these established single-policy and multi-policy paradigms have significantly advanced MORL,140

the explicit characterisation and systematic exploitation of the structural relationship between the141

learned policies’ underlying parameter space and their resultant performance on the Pareto front142

remain largely underexplored. Although multi-objective optimization offers techniques for navigating143

Pareto sets [Ye and Liu, 2022], and some MORL studies have touched upon parameter space144

regularities [Xu et al., 2020], policy manifolds [Parisi et al., 2016], or front geometries [Li et al.,145

2024], these explorations typically do not formalise or exploit the parameter-to-performance mapping146

for systematic, guided Pareto front generation.147

3 Methods148

3.1 Overview149

As shown in Fig. 1, the LLE-MORLalgorithm relies on the relationship between the parameter150

space and the performance space. We empirically find that a short retraining of a converged policy151

under a new preference induces a small, structured update in parameter space that corresponds to152

a predictable shift of the expected returns of the policy. This “model similarity”—the fact that the153

retrained policy stays close to the original parameters while already moving toward a different region154

of the Pareto front-—underpins our method for steering policies along the front. Building on this155

insight, we explore the possibility that using the parameter-space difference between two structurally156

similar policies—trained under different preferences—to guide directional updates that extend our157

approximation of the Pareto front.158

Leveraging this property, we develop an efficient algorithm to approximate the Pareto set of policies.159

We start by initializing a small collection of base policies, each trained to converge under a distinct160

scalarization weight chosen to span the preference evenly. Next, for each base policy, we perform a161

short retraining under a different preference weight, capturing the small parameter update that shifts162

the policy toward a new trade-off. These updates serve as directional moving vectors: we move from163

each base policy along its vector by a tunable step size to generate intermediate policies. Finally,164

we apply a brief fine-tuning to each intermediate policy under its corresponding preference, i.e. the165

scalarization weight shifted by the same fraction as the parameter updated, nudging it onto the true166

Pareto front.167

3.2 Parameter-Performance Relationship168

Recent work in multi-objective reinforcement learning has implicitly suggested a relationship between169

the parameter space of the policy network and the Pareto front in the performance space. [Xu et al.,170

2020] empirically show for PGMORL that each disjoint policy family occupies a continuous region171

4

P
o

li
cy

 N
e
tw

o
rk

V
a
lu

e
 N

e
tw

o
rk

(a) Policy-net and value-net parameter heatmap to
illustrate the retraining effect that is measured in (b).

P
o

li
cy

 N
e
tw

o
rk

V
a
lu

e
 N

e
tw

o
rk

(b) Combined Hungarian
model distance.

P
o

li
cy

 N
e
tw

o
rk

V
a
lu

e
 N

e
tw

o
rk

(c) Respective positions in
performance space.

Figure 2: Comparing independently trained policy θw2
versus retrained policy θw′ based on θw1

, for
details see Sect. 3.3. The environment used here is the multi-objective SWIMMER problem.

in parameter space and maps to a contiguous segment of the Pareto front, while MORL/D [Felten172

et al., 2024] assume that policies with similar parameters should lead to close evaluations. Motivated173

by these implicit observations, we introduce the a parameter–performance relationship and proceed174

to explain and empirically validate this property.175

Definition 3 Parameter-Performance Relationship (PPR). Let Θ ⊆ Rn be the policy parameter176

space and V : Θ→ Rd the mapping from parameter vectors θ to the expected return vectors V (θ).177

We say V exhibits a continuous parameter–performance relationship on a region U ⊆ Θ if there178

exists a function h : Rn → Rd and a radius δ > 0 such that, for any θ ∈ U and any parameter179

perturbation ∆θ with ∥∆θ∥ < δ and θ +∆θ ∈ U , V (θ +∆θ) − V (θ) = h
(
∆θ

)
.180

To study this relationship, we first need a metric for policy closeness in parameter space. We adopt181

the Hungarian matching distance [Kuhn, 1955, Munkres, 1957] to measure model distance and182

thereby quantify structural similarity between policies. Our policies are represented by feedforward183

neural networks with multiple layers. For each layer, we view the neurons of the two networks184

as two point-sets and compute a minimum-cost perfect matching between them, where the cost of185

matching neuron i to neuron j is the ℓ2 norm of the difference between their incoming weight vectors.186

Summing these layerwise minimal costs yields the total distance. This metric naturally handles the187

permutation invariance of hidden units [Goodfellow et al., 2016] and measures the smallest structural188

change needed to align one model to another—lower Hungarian distance indicates greater model189

similarity.190

3.3 Sanity Check191

To get a first idea about the PPR, we compare policies trained independently with those obtained by192

short retraining. We first train two policies to convergence using a multi-objective PPO-based [Schul-193

man et al., 2017] algorithm with scalarization vectors w1 and w2, yielding model parameters θw1
and194

θw2
. Starting from θw1

, we then perform one short additional training step with w2 to obtain θw′ . To195

quantify how “close” these policy variants are, we show neuron heatmaps for each model both at the196

policy-network and value-network level in Figure 2a, and visualise the Hungarian matching distances197

between those models in Figure 2b. We also plot the rewards for three policies in the two-objective198

performance space (Figure 2c) for the multi-objective SWIMMER problem.199

We compare three pairs of models: (1) θw1
and θw2

, capturing differences between independently200

trained policies in both parameter space and performance space; (2) θw1
and θw′ , showing that brief201

retraining yields a structurally similar model and a low Hungarian matching distance, yet already202

shifted toward w2 in reward space; and (3) θw′ and θw2
, illustrating that although their parameters203

remain distinct, their rewards lie much closer on the performance space.204

These empirical observations show that a short retraining step under a new preference produces a205

small, structured parameter update that directly maps to a predictable shift in performance, validating206

the local PPR.207

5

(a) (b) (c)

Figure 3: Visualisation of the process of applying the parameter difference ∆θ = θw′ − θw between
two related policies. The policies are obtained by first training a policy θw to convergence using
scalarization vector w and then find policy θw′ by a brief additional training period with a different
scalarization vector w′. Iterating the shift ∆θ in the policy space induces a sequence of shifts also in
the multi-objective reward space. The subfigures show results for different initial preferences: (a) A
convex front is found from the two policies. (b) Although the original policy turns out to be Pareto
suboptimal, the solution manifold extends into a Pareto optimal component. (c) Retraining can cause
the (Pareto-suboptimal) original solution to jump to a different branch so that the corresponding
solution consists of two components one of which can be ignored because of Pareto suboptimality.

3.4 Locally Linear Extension208

Based on the PPR definition, a natural question is whether the parameter-space difference between209

two structurally similar policies—trained under different preferences—can serve as a directional210

update to extend our approximate Pareto front. To explore this, we consider two policies, a base211

policy θw and a retrained policy θw′ , which exhibits a parameter-performance relationship. Crucially,212

for this directional information to be meaningful for Pareto front exploration, both θw and θw′ should213

ideally be non-dominated solutions, at least with respect to each other. Given such a pair, we compute214

the parameter update vector ∆θ = θw′ − θw and generate a set of intermediate policies by moving215

from the base policy θw along the parameter displacement ∆θ in scaled steps. Concretely, for each216

scale α, we form θα = θw + α∆θ and evaluate its reward vectors in preference space.217

Figure 3 visualises the resulting trajectory of reward vectors in the two-dimensional objective space:218

as α grows, the trajectory passes through the region around θw′ and can extend beyond both the219

base and retrained endpoints, demonstrating how simple parameter-space moves can traverse broad220

trade-off regions, which offers a cost-effective strategy for efficiently expanding an approximate221

Pareto front without training each point from scratch.222

3.5 The LLE-MORL Algorithm223

The locally linear extension process is critical for the LLE-MORL algorithm in tracing an approximate224

Pareto front efficiently. The full algorithm (see also App. A) consists of five stages (compare Fig. 1):225

(1) Initialization: We train a set of K base policies {θwi
}Ki=1 to convergence using PPO [Schulman226

et al., 2017]. Each policy is trained under a distinct scalarization weight wi ∈ Ω, where these weights227

are chosen to be evenly distributed across the preference space. (2) Directional Retraining: For each228

i = 1, . . . ,K − 1, continue train based on θwi under a new preference wi′ for Tdir steps to obtain229

θw′
i
, where θwi and θwi′ should be both non-dominated points. Record the parameter update vector230

∆θi = θw′
i
− θwi

and weight shift ∆wi = wi+1 −wi. (3) Locally Linear Extension: For each base231

policy θwi
, we generate a set of intermediate policies by applying each step-scale factor αj to the232

parameter update vector ∆θi. Concretely, each candidate is θi,j = θwi
+ αj ∆θi, allowing negative233

and positive moves along the local direction in parameter space. Simultaneously, we adjust the234

preference weight by ∆wi scaled by αj to obtain wi,j . These step-scale factors control how far along235

the local direction each intermediate policy moves. (4) Candidate Selection: All candidate policies236

θi,j generated in the locally linear extension stage are evaluated to obtain their respective performance237

vectors. From this set of extended policies, we identify and select the subset of non-dominated238

solutions. These selected non-dominated candidates are then advanced to the fine-tuning stage. (5)239

6

Preference-Aligned Fine-Tuning: from each candidate θ and its matched weight w, perform a short240

PPO fine-tuning of Tref steps under w to push the generated policy closer to the true Pareto front.241

4 Experiments242

4.1 Benchmark Problems and Evaluation Metrics243

In this section, we evaluate the LLE-MORL algorithm using popular continuous MORL benchmark244

problems from the MO-Gymnasium [Felten et al., 2023]. Our benchmark problems include three245

two-objective continuous environments: MO-Swimmer-v5, MO-Hopper-2d-v5, and MO-Ant-2d-v5.246

We evaluate the quality of the approximate Pareto front using three standard metrics, hypervolume247

(HV), expected utility (EU), and sparsity (SP), following the formalism in [Zitzler and Thiele, 2002,248

Zintgraf et al., 2015, Hayes et al., 2022]. A higher hypervolume implies a front closer to and more249

extensive with respect to the true Pareto front. A higher EU denotes better average performance over250

preferences. Lower sparsity indicates a more uniform distribution of solutions along each objective.251

Details of benchmarks and evaluation metrics can be found in App. B.1.252

4.2 Baselines253

We compare our LLE-MORL against the following state-of-the-art MORL algorithms: (i) GPI-LS254

[Alegre et al., 2023] applies Generalised Policy Improvement over a discretised set of preference255

weights and uses linear scalarization to construct a diverse Pareto set. (ii) A Conservative Approximate256

Pareto Q-Learning method (CAPQL) [Lu et al., 2023]: learns an ensemble of Q-functions under257

different preferences and selects actions via conservative aggregation to improve front coverage.258

(iii) MORL/D [Felten et al., 2024] is a deep-RL analogue of decomposition-based multi-objective259

optimisation that trains subpolicies under scalarised objectives and recombines them via weight260

decompositions to approximate the Pareto front.261

4.3 Results and Analysis262

To assess the performance of MORL, we now present quantitative results evaluating the quality of263

the approximated Pareto fronts. We conduct experiments under two distinct settings to provide a264

comprehensive understanding of algorithms’ capabilities: (1) Sample-Efficient Setting: All methods,265

including our LLE-MORL approach, were trained for 1.5× 105 timesteps. Given the complexity of266

continuous control benchmarks, this relatively limited interaction budget serves as a critical testbed for267

evaluating how rapidly different MORL strategies can discover effective Pareto front approximations.268

(2) Standard-Training Setting: To assess performance under more common training conditions269

for these continuous control benchmarks, most methods, including our LLE-MORL approach, were270

trained for 1 × 106 timesteps. An exception was made for the CAPQL baseline, which, due to271

its significant computational demands, was trained for 5× 105 timesteps. This setting aligns with272

common practices for benchmarking in continuous control and allows us to assess the final quality273

of the Pareto fronts achieved by each algorithm after a more thorough learning process. Detailed274

training setups can be found in App. B.3.275

First, we analyse performance in the sample-efficient setting, with results using Hypervolume (HV),276

Expected Utility (EU), and Sparsity (SP) metrics presented in Table 1 and the corresponding Pareto277

front visualisations in Figure 4. In this limited-interaction scenario, LLE-MORL achieves the highest278

HV and EU in all benchmarks, demonstrating strong capabilities in rapidly achieving high-quality279

Pareto fronts. Regarding SP, while LLE-MORL does not consistently achieve the leading scores on280

this metric, its performance generally reflects a good and effective distribution of solutions along the281

high-quality Pareto fronts it identifies. It should be noted that SP results can be confounded by a282

fragmentary recovery of the Pareto front. For instance, if CAPQL discovers only two close points283

of the Pareto front for the MO-Ant problem, the sparsity rating is nearly perfect. Conversely, a low284

SP might also arise from solutions being overly clustered in a small region, as potentially seen with285

GPI-LS in MO-Swimmer shown in Figure 4a.286

Transitioning to the standard-training setting, where methods were trained for a more extensive dura-287

tion, the evaluation results are presented in Table 2, and the corresponding Pareto front visualisation288

can be found in Figure 5. Across all benchmarks, LLE-MORL typically achieves the highest HV and289

7

(a) MO-Swimmer (b) MO-Hopper-2d (c) MO-Ant-2d

Figure 4: Pareto fronts from the sample-efficient training setting, comparing our LLE-MORL method
with baselines on three continuous-control benchmarks. LLE-MORL demonstrates more comprehen-
sive Pareto fronts across all benchmarks.

(a) MO-Swimmer (b) MO-Hopper-2d (c) MO-Ant-2d

Figure 5: Pareto fronts from the standard-training setting, comparing our LLE-MORL method with
baselines on three continuous-control benchmarks. LLE-MORL consistently achieves wider coverage
and closer proximity to the true Pareto front.

highly competitive EU. This superior performance indicates that LLE-MORL finds a more extensive290

and higher-quality set of solutions, which strongly suggests a better approximation of the Pareto291

front compared to the baselines. The evidence from Pareto front visualisation further corroborates292

LLE-MORL’s advantages. In the MO-Swimmer environment, shown in Figure 5a, LLE-MORL293

more comprehensively explores the objective space, successfully identifying Pareto optimal solutions294

in the lower-right region consistently missed by baselines such as GPI-LS and CAPQL. Notably,295

when comparing the GPI-LS and CAPQL performance to those in the sample-efficient setting for the296

MO-Swimmer environment, these particular baselines appear to remain constrained by suboptimal297

solutions in this challenging region, indicating that simply extending training duration did not resolve298

their exploration deficiencies here. While LLE-MORL’s thorough exploration to achieve this broader299

coverage means its SP may not be the numerically lowest, the result could be well-justified by the300

extensive nature of the front.301

In summary, LLE-MORL consistently demonstrates superior Pareto front approximations across both302

sample-efficient and standard-training evaluations. This robust performance is significantly supported303

by its innovative extension process, which is largely training-free once core parameter-performance304

relationships are established, allowing for the efficient generation of diverse and high-quality solutions.305

Consequently, LLE-MORL excels at both rapid learning in data-limited scenarios and achieving306

comprehensive, high-fidelity fronts with extended training, highlighting its distinct advantages for307

multi-objective reinforcement learning. Additionally, we present the running time of each algorithm308

in App. B, which shows the high efficiency level achievable by LLE-MORL.309

8

Environment Metric Method

GPI-LS CAPQL MORL/D LLE-MORL-0 LLE-MORL

MO-Swimmer
HV(104) 4.92 5.16 5.95 6.68 6.93
EU(101) 0.99 1.09 1.01 0.84 1.09
SP(102) 0.05 0.97 21.99 0.88 0.66

MO-Hopper
HV(105) 1.22 0.95 1.96 2.68 2.77
EU(102) 2.31 2.02 3.33 4.05 4.13
SP(102) 0.57 4.48 43.10 16.56 33.85

MO-Ant
HV(104) 2.22 8.52 9.65 10.44 10.67
EU(102) 0.46 1.91 1.99 2.25 2.32
SP(103) 2.46 0.27 1.11 1.45 1.14

Table 1: Sample-efficient evaluation of the qual-
ity of the Pareto front by hypervolume (HV), ex-
pected utility (EU) and sparsity (SP).

Environment Metric Method

GPI-LS CAPQL MORL/D LLE-MORL-0 LLE-MORL

MO-Swimmer
HV(104) 5.56 4.86 6.68 7.37 7.44
EU(101) 1.09 1.10 1.10 1.03 1.03
SP(102) 0.07 0.02 6.38 2.10 2.28

MO-Hopper
HV(105) 1.13 1.70 3.62 4.88 5.05
EU(102) 2.26 3.14 5.02 5.65 5.77
SP(102) 1.91 35.94 4.93 7.20 6.56

MO-Ant
HV(105) 2.44 1.62 1.28 2.43 2.51
EU(102) 3.55 2.93 2.56 3.44 3.61
SP(103) 0.44 0.06 9.19 1.76 1.33

Table 2: Standard-training evaluation of the qual-
ity of Pareto front by hypervolume (HV), ex-
pected utility (EU) and sparsity (SP).

310

4.4 Ablation Study311

The LLE-MORL integrates a locally linear extension process with a subsequent fine-tuning stage.312

To understand the distinct contributions of these components to the overall performance, our ab-313

lation study separates them. We first evaluate LLE-MORL-0, which solely employs the extension314

process without fine-tuning. As detailed in Table 1 and Table 2, LLE-MORL-0 itself demonstrates315

competitiveness, achieving strong Hypervolume (HV) and Expected Utility (EU) scores that are often316

competitive with or superior to baselines. This emphasises the efficacy of our extension mechanism317

in rapidly discovering a high-quality approximation of the Pareto front.318

Subsequently, we assess the improvement of the fine-tuning stage by comparing LLE-MORL (which319

includes fine-tuning) to LLE-MORL-0. This comparison reveals that the inclusion of fine-tuning320

consistently yields further improvements in Hypervolume (HV) and Expected Utility (EU) across321

both sample-efficient and standard-training settings. The impact on Sparsity (SP) is less uniform,322

which is an expected outcome, as refining solutions towards a more optimal Pareto front can alter323

their relative spacing. Nevertheless, the consistent enhancements in HV and EU prove the value of324

fine-tuning for improving the overall quality of the approximate Pareto front and its coverage by325

diverse solutions. This demonstrates that the extension process provides a strong foundation for the326

fine-tuning stage that enables LLE-MORL to outperform other algorithms.327

5 Conclusion328

In this paper, we have introduced LLE-MORL, an algorithm that identifies solution components329

in multi-objective reinforcement learning. The main benefit of LLE-MORL is increased efficiency330

which is enabled by maintaining a direct relation between the multi-objective performance and the331

representation of the policy in the parameter space. Preference values of the objectives are used to332

generate a relatively small but diverse initial set of starting points in the weight space, but Pareto-333

optimality is not required for this initialisation, so that learning times can remain comparatively334

small. Likewise, brief retraining after linear shifts in the weight space compensates for non-linearities335

that are assumed to be small locally, so the current component of the Pareto front can be traced out336

efficiently. We have shown that this simple set-up is sufficient to obtain highly efficient coverage337

of a Pareto front which is superior to recent MORL algorithms. Although not shown here, it can338

be expected that the approach can be easily extended to more than d = 2 objectives as the number339

of initial policy pairs (see Fig. 3) increases only linearly with d, although the representation of the340

policies set and of the Pareto front requires exponentially many points. An implicit representation341

of the Pareto front may seem to become preferable for d > 2, although this would reduce the342

interpretability in terms of an accessible PPR as featured here.343

References344

Axel Abels, Diederik Roijers, Tom Lenaerts, Ann Nowé, and Denis Steckelmacher. Dynamic weights345

in multi-objective deep reinforcement learning. In International Conference on Machine Learning,346

pages 11–20. PMLR, 2019.347

Lucas N Alegre, Ana LC Bazzan, Diederik M Roijers, Ann Nowé, and Bruno C da Silva. Sample-348

efficient multi-objective learning via generalized policy improvement prioritization. In Proceedings349

of the 2023 International Conference on Autonomous Agents and Multiagent Systems, pages 2003–350

2012, 2023.351

9

Lucas Nunes Alegre, Ana Bazzan, and Bruno C Da Silva. Optimistic linear support and successor352

features as a basis for optimal policy transfer. In International Conference on Machine Learning,353

pages 394–413. PMLR, 2022.354

Toygun Basaklar, Suat Gumussoy, and Umit Ogras. PD-MORL: Preference-driven multi-objective355

reinforcement learning algorithm. arXiv preprint arXiv:2208.07914, 2022.356

Florian Felten, Lucas N. Alegre, Ann Nowé, Ana L. C. Bazzan, El Ghazali Talbi, Grégoire Danoy,357

and Bruno C. da Silva. A toolkit for reliable benchmarking and research in multi-objective358

reinforcement learning. In Advances in Neural Information Processing Systems, volume 36, pages359

23671–23700, 2023.360

Florian Felten, El-Ghazali Talbi, and Grégoire Danoy. Multi-objective reinforcement learning based361

on decomposition: A taxonomy and framework. Journal of Artificial Intelligence Research, 79:362

679–723, 2024.363

Eli Friedman and Fred Fontaine. Generalizing across multi-objective reward functions in deep364

reinforcement learning. arXiv preprint arXiv:1809.06364, 2018.365

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT Press, Cambridge, 2016.366

Conor F Hayes, Roxana Rădulescu, Eugenio Bargiacchi, Johan Källström, Matthew Macfarlane,367

Mathieu Reymond, Timothy Verstraeten, Luisa M Zintgraf, Richard Dazeley, Fredrik Heintz, et al.368

A practical guide to multi-objective reinforcement learning and planning. Autonomous Agents and369

Multi-Agent Systems, 36(1):26, 2022.370

Xiangkun He, Zhongxu Hu, Haohan Yang, and Chen Lv. Personalized robotic control via constrained371

multi-objective reinforcement learning. Neurocomputing, 565:126986, 2024.372

Bo-Kai Huang. Q-pensieve: Boosting sample efficiency of multi-objective rl through memory sharing373

of Q-snapshots. Master’s thesis, National Yang Ming Chiao Tung University, 2022.374

Harold W Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics375

Quarterly, 2(1-2):83–97, 1955.376

Panagiotis Kyriakis and Jyotirmoy Deshmukh. Pareto policy adaptation. In International Conference377

on Learning Representations, volume 2022, 2022.378

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep379

visuomotor policies. Journal of Machine Learning Research, 17(39):1–40, 2016.380

Yining Li, Peizhong Ju, and Ness B Shroff. How to find the exact pareto front for multi-objective381

mdps? arXiv preprint arXiv:2410.15557, 2024.382

Qian Lin, Chao Yu, Zongkai Liu, and Zifan Wu. Policy-regularized offline multi-objective rein-383

forcement learning. In AAMAS, pages 1201–1209, 2024. URL https://dl.acm.org/doi/10.384

5555/3635637.3662977.385

Ruohong Liu, Yuxin Pan, Linjie Xu, Lei Song, Pengcheng You, Yize Chen, and Jiang Bian. C-morl:386

Multi-objective reinforcement learning through efficient discovery of Pareto front. arXiv preprint387

arXiv:2410.02236, 2024.388

Haoye Lu, Daniel Herman, and Yaoliang Yu. Multi-objective reinforcement learning: Convex-389

ity, stationarity and pareto optimality. In The Eleventh International Conference on Learning390

Representations, 2023.391

James Munkres. Algorithms for the assignment and transportation problems. Journal of the Society392

for Industrial and Applied Mathematics, 5(1):32–38, 1957.393

Simone Parisi, Matteo Pirotta, and Marcello Restelli. Multi-objective reinforcement learning through394

continuous pareto manifold approximation. Journal of Artificial Intelligence Research, 57:187–227,395

2016.396

Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, and Noah397

Dormann. Stable baselines3. https://github.com/DLR-RM/stable-baselines3, 2019.398

10

https://dl.acm.org/doi/10.5555/3635637.3662977
https://dl.acm.org/doi/10.5555/3635637.3662977
https://dl.acm.org/doi/10.5555/3635637.3662977
https://github.com/DLR-RM/stable-baselines3

Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi-399

objective sequential decision-making. Journal of Artificial Intelligence Research, 48:67–113,400

2013.401

Willem Röpke, Mathieu Reymond, Patrick Mannion, Diederik M Roijers, Ann Nowé, and Rox-402

ana Rădulescu. Divide and conquer: Provably unveiling the pareto front with multi-objective403

reinforcement learning. arXiv preprint arXiv:2402.07182, 2024.404

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy405

optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.406

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,407

Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering408

the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.409

Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell, Nicolas410

Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning. Advances in neural411

information processing systems, 30, 2017.412

Peter Vamplew, John Yearwood, Richard Dazeley, and Adam Berry. On the limitations of scalarisation413

for multi-objective reinforcement learning of Pareto fronts. In AI 2008: Advances in Artificial414

Intelligence: 21st Australasian Joint Conference on Artificial Intelligence Auckland, New Zealand,415

December 1-5, 2008. Proceedings 21, pages 372–378. Springer, 2008.416

Kristof Van Moffaert and Ann Nowé. Multi-objective reinforcement learning using sets of pareto417

dominating policies. The Journal of Machine Learning Research, 15(1):3483–3512, 2014.418

Kristof Van Moffaert, Madalina M Drugan, and Ann Nowé. Scalarized multi-objective reinforcement419

learning: Novel design techniques. In 2013 IEEE symposium on adaptive dynamic programming420

and reinforcement learning (ADPRL), pages 191–199. IEEE, 2013.421

Jie Xu, Yunsheng Tian, Pingchuan Ma, Daniela Rus, Shinjiro Sueda, and Wojciech Matusik.422

Prediction-guided multi-objective reinforcement learning for continuous robot control. In In-423

ternational Conference on Machine Learning, pages 10607–10616. PMLR, 2020.424

Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A generalized algorithm for multi-objective425

reinforcement learning and policy adaptation. Advances in Neural Information Processing Systems,426

32, 2019.427

Mao Ye and Qiang Liu. Pareto navigation gradient descent: a first-order algorithm for optimization428

in pareto set. In Uncertainty in Artificial Intelligence, pages 2246–2255. PMLR, 2022.429

Richard Zhang and Daniel Golovin. Random hypervolume scalarizations for provable multi-objective430

black box optimization. In International conference on machine learning, pages 11096–11105.431

PMLR, 2020.432

Baiting Zhu, Meihua Dang, and Aditya Grover. Scaling pareto-efficient decision making via offline433

multi-objective RL. In The Eleventh International Conference on Learning Representations, 2023.434

URL https://openreview.net/forum?id=Ki4ocDm364.435

Luisa M Zintgraf, Timon V Kanters, Diederik M Roijers, Frans Oliehoek, and Philipp Beau. Quality436

assessment of morl algorithms: A utility-based approach. In Benelearn 2015: Proceedings of the437

24th Annual Machine Learning Conference of Belgium and the Netherlands, 2015.438

Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms: A comparative case study439

and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4):257–271,440

2002.441

11

https://openreview.net/forum?id=Ki4ocDm364

A Algorithm442

In this section, we present a complete description of LLE-MORL, an efficient procedure for tracing443

an approximate Pareto front. Algorithm 1 details this process.444

Algorithm 1 LLE-MORL

Require: Initial scalarization weights {wi}Ki=1 evenly spanning preference space, Target scalariza-
tion weights for directional retraining {w′

i}Ki=1, Initialization training length Tinit, Directional
retraining length Tdir, Fine-tuning length Tref , Step-scale factors {αj}Mj=1

Ensure: Approximate Pareto-optimal policy set Π
1: Initialization:
2: for i = 1 to K do
3: Train base policy θwi

with PPO under weight wi for Tinit steps
4: end for
5:
6: Directional Retraining:
7: for i = 1 to K − 1 do
8: θw′

i
← continue training θwi for Tdir steps under w′

i

9: ∆θi ← θw′
i
− θwi

10: ∆wi ← w′
i − wi

11: end for
12:
13: Locally Linear Extension:
14: C ← ∅
15: for i = 1 to K − 1 do
16: for j = 1 to M do
17: θi,j ← θwi

+ αj ∆θi
18: wi,j ← wi + αj ∆wi

19: Evaluate performance V (θi,j) under weight wi,j

20: C ← C ∪ {(θi,j , wi,j)}
21: end for
22: end for
23:
24: Candidate Selection:
25: N ← non-dominated subset of C
26:
27: Preference-Aligned Fine-Tuning:
28: F ← ∅
29: for all (θ, w) ∈ N do
30: fine-tune θ for Tref steps under w, yielding θ′

31: add (θ′, w) to F
32: end for
33: Call ← N ∪ F
34: Nfinal ← non-dominated subset of Call
35: Π← Π ∪ {θ | (θ, ·) ∈ Nfinal}
36: return Π

The core pipeline involves several stages. First, K base policies {θwi
} are trained, each under its445

respective initial weight wi for Tinit steps. Next, for the first K − 1 base policies, a short directional446

retraining is performed: each θwi
(for i = 1 . . .K − 1) is further trained for Tdir steps under its447

corresponding target weight w′
i to yield θw′

i
. This allows the calculation of a parameter-space update448

vector ∆θi = θw′
i
− θwi

and the associated preference shift ∆wi = w′
i − wi.449

Using these K − 1 pairs of delta vectors, the Locally Linear Extension stage generates a set of450

candidate policies C. For each original base policy θwi (that had a corresponding ∆θi), intermediate451

candidates are formed by applying the scale factors αj to ∆θi, also determining matched weights452

wi,j . From this pool of generated candidates C, a non-dominated subset N is selected. Policies in N453

then undergo Preference-Aligned Fine-Tuning for Tref steps under their matched weights, resulting454

12

in a set of fine-tuned policies F . Finally, the algorithm returns Π, which is the set of non-dominated455

policies selected from the combined pool of the initially selected non-dominated candidates N and456

their fine-tuned versions F . The set Π constitutes the approximated Pareto front.457

B Experiment Setup Details458

B.1 Benchmarks459

To evaluate the performance of our proposed LLE-MORL method and compare it against existing460

baselines, we utilise a suite of continuous control benchmarks from the MO-Gymnasium library [Fel-461

ten et al., 2023]. These environments are designed to test the ability of an agent to learn policies462

that effectively balance multiple, often conflicting objectives. The specific environments and their463

multi-objective reward formulations are detailed below:464

MO-Swimmer-v5. A planar, three-link swimmer operating in a viscous fluid, utilising a 2D465

continuous action space to control its joint torques. The objectives are to maximise forward velocity466

along the x-axis and minimise the control cost.467

The observation space S ⊂ R8 includes joint angles and velocities, and the action space A ⊂ R2468

represents joint torques in [−1, 1]. Let xbefore and xafter be the x-coordinates of the centre of mass of469

swimmer before and after an action, ∆t be the time step, and aj be the j-th component of the action470

vector.471

The first objective is the forward speed472

R1 =
xafter − xbefore

∆t
,

and the second objective is the energy efficiency (negative control cost):473

R2 = −
∑
j

a2j

MO-Hopper-2obj-v5. This environment features a 2D one-legged hopper with a 3-dimensional474

continuous action space controlling torques for its thigh, leg, and foot joints. Originally a 3-objective475

task (forward speed, jump height, control cost), we use the 2-objective variant, in which the separate476

control-cost objective is added to other objectives.477

The observation space S ⊂ R11 includes joint states and torso position, and the action space A ⊂ R3478

represents joint torques in [−1, 1]. Let vx = (xafter − xbefore)/∆t be the forward velocity of the agent479

along the x-axis, where xafter and xbefore are x-positions of the torso. Let hjump = 10× (zafter − zinit)480

be a measure of jumping height, where zafter is the current z-position of the torso and zinit is its initial481

z-position. Let cctrl be the positive control cost, computed as wenv_ctrl
∑

j(aj)
2, where wenv_ctrl is the482

environment control cost weight (typically 0.001). Let rhealthy be the health reward (typically +1 if483

the agent has not fallen). The reward vector R = [R1, R2] is defined as:484

• R1 (Adjusted Forward Performance):485

R1 = vx + rhealthy − cctrl

• R2 (Adjusted Height Performance):486

R2 = hjump + rhealthy − cctrl

MO-Ant-2obj-v5. A quadrupedal “ant” robot in 2D with an eight-dimensional action space for487

joint torques. By default, the environment emits a three-dimensional reward vector: (1) x-velocity,488

(2) y-velocity, and (3) control cost. Here, we use the two-objective variant in which the separate489

control-cost objective is added to other objectives.490

The observation space S ⊂ R27 includes joint states, torso position, and contact forces, and the491

action space A ⊂ R8 represents joint torques in [−1, 1]. Let vx = (xafter − xbefore)/∆t be the492

forward velocity of the agent along the x-axis, where xafter and xbefore are x-positions of the torso.493

Let vy = (yafter − ybefore)/∆t be the forward velocity of the agent along the y-axis, where yafter and494

13

ybefore are y-positions of the torso. Let cctrl be the positive control cost, computed as wenv_ctrl
∑

j(aj)
2,495

where wenv_ctrl is the environment control cost weight (typically 0.05). Let rhealthy be the health reward496

(typically +1 if the Ant is healthy). Let pcontact be the positive contact penalty, which is used for497

penalising the Ant if the external contact forces are too large, computed as wenv_contact
∑

k(forcek)2,498

where wenv_contact is the environment contact cost weight (typically 5 × 10−4). The reward vector499

R = [R1, R2] is defined as:500

• R1 (Adjusted x-Velocity Performance):501

R1 = vx + rhealthy − cctrl − pcontact

• R2 (Adjusted y-Velocity Performance):502

R2 = vy + rhealthy − cctrl − pcontact

B.2 Evaluation Metrics503

We evaluate the quality of the approximate Pareto front using three standard metrics, following the504

formalism in [Zitzler and Thiele, 2002, Zintgraf et al., 2015, Hayes et al., 2022].505

Hypervolume (HV). Let P be an approximate Pareto front and r a reference point dominated by506

all p ∈ P . The hypervolume is H(P) =
∫
Rd 1H(P)(z) dz, where H(P) = { z ∈ Rn | ∃ j, 1 ≤507

j ≤ |P | : G0 ⪯ z ⪯ P (j)}. Here, P (j) is the jth solution in P , the symbol ⪯ denotes objective508

dominance, and 1H(P) is an indicator function that equals 1 if z ∈ H(P) and 0 otherwise. A higher509

hypervolume implies a front closer to and more extensive with respect to the true Pareto front.510

Expected Utility (EU). Let P be an approximate Pareto front and Π be the corresponding policy set.511

The expected utility metric is U(P) = Eω∼Ω

[
maxπ∈Π ω⊤Gπ

ω

]
. A higher EU denotes better average512

performance over preferences.513

Sparsity (SP). Let P be an approximate Pareto front in a d-dimensional objective space. The sparsity514

metric is S(P) = 1
|P |−1

∑d
i=1

∑|P |−1
k=1

(
G̃i(k)− G̃i(k + 1)

)2
, where G̃i is the sorted list of the ith515

objective values in P , and G̃i(k) is the kth entry in this sorted list. Lower sparsity indicates a more516

uniform distribution of solutions along each objective.517

B.3 Training Details518

All learning phases within our LLE-MORL algorithm, including the initial training of base policies,519

the directional retraining, and the final preference-aligned fine-tuning, utilize the Proximal Policy520

Optimization (PPO) algorithm [Schulman et al., 2017]. We employed a standard PPO implementation521

from the Stable Baselines3 library [Raffin et al., 2019]. The PPO parameters used across all training522

stages and benchmarks are detailed in Table 3.523

The specific parameters for the LLE-MORL pipeline include:524

• Number of Initial Base Policies (K): The total count of base policies θwi
, trained in the525

initialization stage. The corresponding K initial scalarization weights {wi}Ki=1 are generated526

by evenly distributing them across the preference space (e.g., for 2D objectives, from [1, 0]527

to [0, 1] in K steps).528

• Initialization Training Timesteps (Tinit): The number of environment interaction steps for529

which the initial base policy θwi is trained under its weight wi.530

• Retraining Preference Shift Strategy (controlled by shift magnitude δs): Target scalar-531

ization weights {w′
i} for directional retraining are generated by shifting each initial weight532

wi to a nearby, distinct point on the preference space. The extent of this shift is controlled by533

a hyperparameter δs. Conceptually, for d-dimensional preference spaces (d > 2), this shift534

could be defined as an angular displacement in the space. In our current two-dimensional535

objective experiments (d = 2), where wi = [wi,0, wi,1], this shift is implemented by moving536

the first component wi,0 by the magnitude δs to obtain w′
i,0. The shift direction (decrease or537

increase) is chosen to keep the component within valid bounds (e.g., [0, 1]), and the default538

direction is decrease; then the second component wi,1is adjusted accordingly (assuming all539

objective weights sum to 1).540

14

• Directional Retraining Timesteps (Tdir): The number of environment interaction steps for541

which the base policy θwi is retrained under its target weight w′
i to produce θw′

i
.542

• Step-Scale Factor Generation (αstart, αend,∆α): The set of step-scale factors {αj} used543

in Locally Linear Extension is generated based on a starting value (αstart), an ending value544

(αend), and either a step increment (∆α).545

• Fine-tuning Timesteps (Tref): The number of environment interaction steps for which546

the selected candidate policy from the extension phase is fine-tuned under its matched547

preference weight wi,j .548

The specific values for these LLE-MORL parameters, are provided in Table 4 and Table 5.549

Parameter Name MO-Swimmer MO-Hopper-2d MO-Ant-2d

steps per actor batch 512 512 512
learning rate (×10−4) 3 3 3
learning rate decay ratio 1 1 1
γ 0.995 0.995 0.995
GAE lambda 0.95 0.95 0.95
number of mini batches 32 32 32
PPO epochs 10 10 10
entropy coefficient 0.0 0.0 0.0
value loss coefficient 0.5 0.5 0.5
maximum gradient norm 0.5 0.5 0.5
clip parameter 0.2 0.2 0.2

Table 3: PPO hyperparameters for benchmarks.

B.4 Experiments compute resources550

All experiments were run on a workstation equipped with an AMD Ryzen Threadripper PRO 5975WX551

(32 cores), an NVIDIA GeForce RTX 3090 GPU (24 GB GDDR6X), and 256 GiB of RAM, running552

Ubuntu 24.04 LTS. The software stack included CUDA Toolkit 12.0 and the corresponding NVIDIA553

drivers. Approximate execution times for all methods and benchmarks are reported separately in554

Table 6.555

C Limitations556

Limitations of our approach are implied by inherent challenges in multi-objective optimisation, but557

we also note some limitations that are specific to our algorithm and require further study.558

• We have restricted ourselves to problems with two objectives where the Pareto front is559

one-dimensional. A larger number of objectives is a problem for most of the existing MORL560

algorithms. Although usually some of the objectives are of different importance and can be561

lexicographically ranked, so that the complexity does not necessarily increase exponentially562

with the number of objectives. The high-dimensional case is nevertheless challenging, but563

our approach can be seen as promising: In higher dimensions, the number of solutions that564

are in the same local quasi-linear patch increases dramatically, so that the efficiency of the565

proposed local search will be even more beneficial. This benefit could be reduced by the566

potentially increasing complexity of the topological relation between the performance space567

and the parameter space which could be a fascinating subject for future work.568

• We are assuming that the Pareto front consists of a relatively small number of connectivity569

components which have a manifold structure. While there is no theoretical bound to the570

complexity of the Pareto from, the idea of MORL implies that the objectives are at least571

in some sense comparable. For Pareto fronts that are fractal or of high genus, the result of572

multi-objective optimisation lacks robustness, although it will neither be possible to fix any573

limits for the complexity of the Pareto front. However, as long as there are only a limited574

number of manifold-like connectivity components, our algorithm will be applicable.575

• Widely different scales and elasticities of the objectives can lead to problems as in optimi-576

sation in anisotropic error landscapes. Step size control that helps in gradient methods in577

15

Parameter Name Symbol MO-Swimmer MO-Hopper-2d MO-Ant-2d
Number of base policies K 6 6 6
Initialization timesteps Tinit 1× 105 1× 105 1× 105

Preference shift magnitude δs 0.1 0.1 0.1
Directional retraining timesteps Tdir 1× 104 1× 104 1× 104

Step-scale start αstart -1.5 -1.5 -1.5
Step-scale end αend 1.5 1.5 1.5
Step-scale increment ∆α 0.05 0.05 0.05
Fine-tuning timesteps Tref 1× 103 1× 103 1× 103

Table 4: Hyperparameters for the LLE-MORL across benchmarks under sample-efficient setting.

Parameter Name Symbol MO-Swimmer MO-Hopper-2d MO-Ant-2d
Number of base policies K 6 6 6
Initialization timesteps Tinit 1× 106 1× 106 1× 106

Preference shift magnitude δs 0.1 0.1 0.1
Directional retraining timesteps Tdir 1× 104 1× 104 1× 104

Step-scale start αstart -1.5 -1.5 -1.5
Step-scale end αend 1.5 1.5 1.5
Step-scale increment ∆α 0.05 0.05 0.05
Fine-tuning timesteps Tref 1× 103 1× 103 1× 103

Table 5: Hyperparameters for the LLE-MORL across benchmarks under standard-training setting.

Sample-efficient setting Standard-training setting

Method MO-Swimmer MO-Hopper-2d MO-Ant-2d MO-Swimmer MO-Hopper-2d MO-Ant-2d

GPI-LS 3 3 3 22 23 19
CAPQL 13 8 12 95 77 68
MORL/D 1 1 1 3 3 3
LLE-MORL 1 1 1 3 3 3

Table 6: Approximate execution times (hours) for each method and benchmark under sample-efficient
and standard training setting.

optimisation, will also be useful here, but has not been studied yet, as the typical (benchmark)578

problems are sufficiently isotropic.579

• The density of the identified solutions on the Pareto front is clearly a challenge which580

may be solved by step size control as mentioned in the previous point. This concerns581

higher-dimensional cases as well as extended one-dimensional trails as visible in the top582

trail in Figure 3c also a simple reduction of the parameter ∆α at the observation of large583

steps in the performance space could have solved this issue already so that a more uniform584

covering of the Pareto from is not difficult to achieve in the present approach. See also585

App. E.2. In contrast to other approaches, linear regions of the Pareto can trivially be tracked586

by LLE-MORL. Concave regions connected to the Pareto front will be followed through587

without problem, but will need to be removed in a single postprocessing step as they are588

dominated by other solutions. Even full patches of solutions may turn out to be Pareto589

sub-optimal and require a similar treatment.590

• We have made use of scalarisation to seed the solution domains, whereas the reconstruction591

of the Pareto front is done by a lateral process that does not depend on preference weights.592

It is in principle possible that a solution patch is not reachable by any scalarisation-based593

seeding attempt, see also the early discussion in [Vamplew et al., 2008]. In this case our594

approach might not find this patch, although it is still possible that it is found by retraining595

from a different solution domain as shown in Figure 3c.596

16

	Introduction
	Background
	Multi-Objective Reinforcement Learning
	Pareto Optimality
	Related Work

	Methods
	Overview
	Parameter-Performance Relationship
	Sanity Check
	Locally Linear Extension
	The LLE-MORL Algorithm

	Experiments
	Benchmark Problems and Evaluation Metrics
	Baselines
	Results and Analysis
	Ablation Study

	Conclusion
	Algorithm
	Experiment Setup Details
	Benchmarks
	Evaluation Metrics
	Training Details
	Experiments compute resources

	Limitations

