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Figure 1. Our zero-shot synthesis approach for point cloud segmentation tackles multiple semantic-visual transfer issues, by enhancing

correspondence (Sec. 3.2), alignment (Sec. 3.3) and consistency (Sec. 3.4) between the auxiliary-semantic and 3D-visual spaces.

Abstract

This paper proposes a feature synthesis approach
for zero-shot semantic segmentation of 3D point clouds,
enabling generalization to previously unseen categories.
Given only the class-level semantic information for unseen
objects, we strive to enhance the correspondence, alignment
and consistency between the visual and semantic spaces,
to synthesise diverse, generic and transferable visual fea-
tures. We develop a masked learning strategy to promote
diversity within the same class visual features and enhance
the separation between different classes. We further cast
the visual features into a prototypical space to model their
distribution for alignment with the corresponding seman-
tic space. Finally, we develop a consistency regularizer to
preserve the semantic-visual relationships between the real-
seen features and synthetic-unseen features. Our approach
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shows considerable semantic segmentation gains on Scan-
Net, S3DIS and SemanticKITTI benchmarks. Our code is
available at: https://github.com/leolyj/3DPC-GZSL

1. Introduction

Semantic segmentation of 3D point clouds is mostly

dominated by fully-supervised methods [37, 39, 49, 45, 21,

57] that require point-wise labelled data for training. While

these methods perform well on previously seen objects, they

lack scalability to novel and unseen classes for which no

samples are available during training. Zero-Shot Learning

(ZSL) provides a promising paradigm in such cases since it

enables rapid generalization to unseen classes.

While ZSL from RGB images is well explored [15, 1, 17,

56, 19, 48, 24, 53, 7, 16, 41, 47, 6, 52, 18, 9, 20, 27, 58], ZSL

for segmentation of point clouds is less investigated, due to

unique challenges posed by 3D data (e.g. the lack of large-
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scale annotated datasets and pre-trained models [23] which

are otherwise ubiquitous in 2D [34]). Most of the existing

3D ZSL methods tackle the relatively simpler classification

problem [13, 10, 11, 12], with very few methods developed

for segmentation [8, 30]. Chen et al. [8] learn shared geo-

metric primitives to enable seen-to-unseen migration. How-

ever, their approach needs non-annotated unseen samples at

training [8], which is restrictive and not suitable for prac-

tical scenarios where acquiring unseen data is not always

feasible. [30] propose a feature synthesis-based approach

for 3D segmentation that can simultaneously generalize to

both seen and unseen, without requiring any data for un-

seen categories. Nevertheless, the features synthesized from

the generator lack contextual diversity due to mode collapse

[50], resulting in limited transfer to unseen classes.

To enable generalization to wider scenarios, we de-

velop a feature synthesis framework, which doesn’t require

any samples (annotated or non-annotated) during training.

Since semantics are the only common information available

for seen and unseen, we need to ensure strong transfer ca-

pabilities from the semantic to the visual space. For this

purpose, we consider the following semantic-visual transfer

issues for ZSL: 1) Semantic-Visual Correspondence Mis-
match. The core of ZSL is to exploit and establish a map-

ping between semantics and vision, such that for a spe-

cific object, visual features can be uniquely identified from

their corresponding semantics. 2) Heterogeneous Semantic-
Visual Embedding. The semantic vectors (embeddings of

class-name words) and visual representations (from point

cloud data) come from different modalities, and introduce

inherent modality-specific heterogeneity that needs to be

tackled in order to align the two data modalities. 3) In-
consistent Semantic-Visual Relationship. The relationships

between different classes, both seen and unseen, should be

consistent in the semantic embedding space and visual fea-

ture space, so that the semantics for unseen can faithfully

synthesize the unseen visual features.

To address these semantic-visual transfer challenges, as

shown in Fig. 1, we design three modules. First, we

propose a Mask Correspondence Learning (MCL) module

(Sec. 3.2), to learn rich intra-class representations while en-

hancing inter-class boundary distribution. We believe pro-

moting diversity between the same class features and en-

suring separation between classes is critical to synthesize

generalized features for unseen classes. Further, for bet-

ter seen-to-unseen transfer, we align the seen visual pro-

totypes with their corresponding semantics, using our pro-

posed Heterogeneous Prototype Alignment (HPA) module

(Sec. 3.3). Finally, while learning to synthesize the un-

seen visual features, we ensure that the inter-class struc-

tural relations of seen+unseen semantics are consistent with

their corresponding visual features. For this purpose, we

develop a Relational Transfer Consistency (RTC) module

(Sec. 3.4) that transfers the seen+unseen semantic relation-

ships with the corresponding real-seen+synthesized-unseen

visual ones. Our proposed modules complement each other

and constrain the generator to synthesize diverse, discrimi-

native, and semantically relevant unseen visual features that

generalize well for zero-shot segmentation.

We evaluate our model under the challenging General-

ized Zero-Shot Learning (GZSL) in inductive setting, where

training data contains no labelled or unlabelled unseen class

samples, while the model is required to predict both seen

and unseen classes at inference. We show significant gains

over the current state-of-the-art on three public datasets

ScanNet [14], S3DIS [2] and SemanticKITTI [3], by 7.7%,

3.8% and 3.0% respectively, according to the HmIoU met-

ric. Our contributions can be summarized as follows:

• We propose an effective masked learning strategy,

where visual features of the masked semantics are re-

covered via contrastive learning to enhance intra-class

diversity and inter-class separation of the learned vi-

sual features, enhancing transfer to unseen classes.

• We propose cross-modality prototypical learning that

aligns semantics with the visual space, thus promoting

generalization to novel concepts.

• We develop consistency regularization that maintains

relationships between the real+synthesized visual fea-

tures with their corresponding semantics.

2. Related Works

By only using auxiliary class attributes or semantics,

Zero-Shot Learning (ZSL) enables transfer of prior knowl-

edge from seen to novel unseen classes. Here, we first re-

view ZSL methods developed for RGB images. We then

discuss existing 3D semantic segmentation techniques, fol-

lowed by ZSL methods on 3D point clouds.

ZSL on RGB Images. The existing methods for zero-shot

learning can be categorized as attribute-based, projection-

based, knowledge-based and generative-based methods.

The attribute-based methods [15, 26, 22, 1] recognize new

objects using the semantic attributes of different classes.

The projection-based approaches [17, 43, 51, 56] learn a

mapping between visual representations and the auxiliary

semantic prototypes (such as Word2Vec embeddings [31] or

GloVe [36]). Knowledge-based models [19, 48, 24] employ

graph networks to migrate structured knowledge from seen

classes to unseen. Recently popular generative approaches

[53, 7, 16, 41, 47] train generative models (e.g. conditional

generative adversarial models [32] or variational autoen-

coder [46]), and then synthesize unseen latent features con-

ditioned upon the corresponding class prototypes. The syn-

thesized features are appiled to update the classifier to in-

clude unseen classes, which helps reduce the bias towards
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seen classes. The above mentioned ZSL methods are pri-

marily developed for image classification. Some recent

techniques [6, 52, 18, 9, 20, 27] extend them to ZSL for

semantic segmentation in RGB images. Amongst these,

generative approaches have shown most promise for RGB

semantic segmentation in zero-shot setting [28, 18, 9].

3D Point Cloud Semantic Segmentation. Most of

the existing methods on 3D segmentation are fully-

supervised [44, 29, 38, 37, 39, 49, 45, 4, 21, 57], and project

point cloud into multi-view 2D images [44, 38] or pro-

cess them using voxel grids [29]. Since the seminal work

PointNet [37], point clouds are encoded by using deep net-

works with MLPs [39], point-wise convolution [49, 45, 4],

graph networks [21] or transformer [57]. While these deep

models show impressive results in fully-supervised setting

[35, 54], they require expensive point-wise annotations, and

lack generalization to unseen classes in zero-shot setting.

ZSL on 3D Point Clouds. Compared with ZSL from RGB

images, 3D ZSL is relatively less investigated. [13] adapts

2D ZSL to 3D, by learning a projection between the Point-

Net [37] features and the auxiliary semantics. Their work

is further extended in [10, 12] to tackle the hubness prob-

lem [40], and in [11] assuming non-annotated unseen sam-

ples are available. For zero-shot segmentation, [8] learns

shared geometric primitives between the seen and unseen

classes by assuming that the samples of the unseen classes

are available at training. Since their approach requires ac-

cess to unlabelled unseen class data, i.e., transductive set-

ting, it limits their applicability to real-life scenarios where

acquiring training samples for rare categories is not feasible.

The closest to our approach is [30], where no training sam-

ples for unseen classes are used. While [30] synthesizes the

features for unseen, they do not fully exploit the semantic-

visual relationships, resulting in coarse visual features that

lack effective transfer.

We can therefore conclude that while some progress has

been made towards 3D zero-shot classification, 3D zero-

shot semantic segmentation with no unseen training sam-

ples remains an open research problem. This work makes a

progress towards this direction by learning diverse and dis-

criminative visual features, that are well-aligned with the

corresponding semantic space, thus enabling the synthe-

sized features to generalize well to unseen classes.

3. Methodology
3.1. Problem Definition

Lets define a set of object categories as C, with the

seen CS and the unseen CU classes. Let D denote the

dataset with the point cloud set P , the corresponding la-

bel set Y and class prototypes set T , where T contains

the auxiliary D-dimensional semantic embedding vectors

(e.g. given by Word2Vec [31] or GloVe [36]). Since we

follow the challenging inductive Generalized ZSL setting

instead of vanilla ZSL, we train the model using sam-

ples containing only CS categories, and test on the scenes

containing point cloud with classes both in CS and CU .

Thus, the training set Dtrain and test set Dtest can be de-

noted as Dtrain =
{
(p, y, t) | ∀i, yi ∈ CS

}
and Dtest ={

(p, y, t) | ∀i, yi ∈ CS ∪ CU
}

, where p ∈ P has N points,

y ∈ Y , t ∈ T and yi is the ground-truth label for point i.

For our approach, we define the generator as G(·), the

feature embedding network as θ(·), and the segmentor as

f(·). As illustrated in Fig. 2, the overall training pipeline

can be summarized as follow: a) Train a feature embbed-

ing network θ and a seen-class segmentor fseen using only

the seen class data; b) Train a generator G(·) on seen data

using the auxiliary semantic vectors, so that the synthetic

visual features generated by G are as similar as possible to

the real point features extracted by frozen θ; c) Combine

the synthetic unseen features of classes CU generated by

G together with the real extracted features on seen classes

CS to train the final segmentor ffinal. The ultimate goal

is that the resulting composite network θ with ffinal can

effectively segment point clouds for both seen and unseen

classes. The challenge however is weak transfer from se-

mantic to visual space. To promote generalization to un-

seen categories, we improve semantic-visual transfer by en-

hancing correspondence (Sec. 3.2), alignment (Sec. 3.3) and

consistency (Sec. 3.4) between semantic and visual spaces,

aiming to assist generator training and improve the synthe-

sized features quality.

3.2. Mask Correspondence Learning

Given the auxiliary semantic embeddings tcs and random

noise zcs of seen class c as input into G(·), we synthesize

features F̂
c

s, such that they closely follow the distribution

of the real features Fc
s = θ(pcs) extracted from model θ.

Unlike 2D counterparts, we lack large-scale 3D pre-trained

backbones to train a generator that can synthesize diverse

point-wise features. To promote transfer to unseen classes,

we propose to establish a strong correspondence between

the input semantic and output visual spaces. Such a cor-

respondence should enhance intra-class richness and en-

sure features belonging to different classes are well sepa-

rated. Therefore, while training generator G(·) on the seen

classes, we ensure that the generated features have within-

class diversity, and clear decision boundaries exist between

different classes. Further, the class-wise features should

be unique and follow the corresponding semantics. With

these objectives in mind, we develop a masking strategy that

learns by recovering the masked context.

As shown in Fig. 2, for the point cloud pcs containing

seen class c ∈ CS , we randomly mask out part of the corre-

sponding input auxiliary semantic embeddings tcs, then the
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c) Training segmentor on seen+synthetic unseen

cts

cc
Fs,t

c^ Fs
^= + (ts)c(ts)c

Visual Multi
-Prototypes

align

c

Prototypical Space Aligned Prototypical Space

Semantic 
Prototype

FsFs (ts)c(ts)c

Semantic VisualSemantic

Heterogeneous Prototype Alignment (HPA)

Mapping 
Function 

Visual Point  
Feature

ctst

cc
Fs,t

c^ Fs
^= + ((ttsst ))cc)))

Visual Multi
-Prototypes

align

c

Prototypical Space Aligned Prototypical Space

Semantic
Prototype

FFss ((ttsst ))cc)))

Semantic Visual

Heterogeneous Prototype Alignment (HPA)

Mapping 
Function 

Visual Point 
Feature

Semantic
cts

c
Fs,t

c^ Fs
^= + (ts)c

Visual Multi
-Prototypes

align

c

Prototypical Space Aligned Prototypical Space

Semantic 
Prototype

Fs (ts)c

Semantic VisualSemantic

Heterogeneous Prototype Alignment (HPA)

Mapping 
Function 

Visual Point  
Feature

Figure 2. Schematics of our proposed framework for 3D generalized zero-shot semantic segmentation. The modules in blue are frozen

while yellow are learnable. We develop 3 modules to tackle several semantic-visual transfer issues. In MCL module (Sec. 3.2), we recover

the visual features corresponding to the masked semantics and develop contrastive learning to achieve the intra-class diversity and inter-

class separation in visual features. In HPA module (Sec. 3.3), we align semantic and visual features in their prototypical space. In RTC

module (Sec. 3.4), we ensure that the distance relations between seen and unseen classes are consistent in both visual and semantic spaces.

generated features by G(·) can be represented as:

F̂c
s = G(H(q)tcs ⊕ zcs), c ∈ CS (1)

where ⊕ indicates the concatenation operation, H(q) is ini-

tialized to 1 and masked with 0 with probability q. The size

of tcs and zcs is set to match the number of points in class c
of the current scene. During training, the generator G(·)
recovers the visual features conditioned on the randomly

masked semantics, which helps it learn the intra-class di-

versity. Semantic-conditioned visual synthesis is essentially

one-to-many mapping, and masking the semantics intro-

duces diversity in the semantic space, and thus promotes di-

versity and richness in the corresponding visual space. Be-

sides, to promote discrimination between visual features of

different classes, we consider the real feature Fs extracted

by frozen θ of seen class c as the positive samples Fc
s, and

the features of other seen classes k in current ps as the neg-

ative samples Fk
s , and apply InfoNCE [33] loss:

Lcon = −log
exp(F̂c

s · Fc
s/τ)

∑
k∈CS , k �=c

exp(F̂c
s · Fk

s /τ) + exp(F̂c
s · Fc

s/τ)
,

(2)

where Fc
s = θ(pcs), F

k
s = θ(pks), ps = pcs ∪ pks , ps repre-

sents the seen class point clouds and τ is the temperature

parameter. Contrastive learning enhances the discrimina-

tion between different categories. Our proposed semantics

masking and visual contrast learning strategies therefore en-

sure that the learned visual space is rich and discriminative.

3.3. Heterogeneous Prototype Alignment

The semantic embeddings and visual features are from

different modalities, and directly using the semantics for

visual synthesis, without any alignment, is sub-optimal.

We therefore propose to align the cross-modality hetero-

geneous features before synthesis. Inspired by the proto-

typical learning [42], we cast the original features into the

prototypical space to model their distribution for alignment.

Since the semantic embedding vectors tcs corresponding to

a seen class c can naturally be regarded as a prototype, we

only need visual prototypes on the seen features Fc
s.

To generate visual prototypes, instead of the simple aver-

age for point cloud visual features, we develop a neighbor-

aware approach that reflects the intra-class fine-grained lo-

cal structure. Specifically, we adopt the Farthest Point Sam-

pling (FPS) algorithm to sample r-proportion (0 < r < 1)

point features {Fc,a
s }�n∗r�a=1 as anchors on the real seen fea-

tures {Fc,i
s }ni=1 embedded by θ, n ≤ N is the number of

points for class c, �·� denotes the rounding operation. We

calculate the �2 distance between n point features and �n∗r�
anchors and assign the nearest anchor index to each point.

We average the point features of the same anchor index to

form �n ∗ r� (≥ 1) visual prototypes {Hc,b
s }�n∗r�b=1 as:

Hc,b
s =

1

|ξc,bs |
∑

Fc,i
s ∈ξc,bs

Fc,i
s , (3)

where ξc,bs is the partition region composed of the point fea-

tures assigned to anchor b. After getting the semantic and
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visual prototypes, we align them to enhance visual synthe-

sis quality. We apply the linear σ(·) function to map the

semantic embedding tcs to the same dimension as the visual

prototypes Hc,b
s , and minimize cosine distance d(·, ·):

Lalign =
1

�n ∗ r�

�n∗r�∑

b=1

d
(
Hc,b

s , σ(tcs)
)
, (4)

where σ : RD1 → R
D2 , D1 and D2 are the feature dimen-

sions of semantic embeddings and visual prototypes respec-

tively. We further add the aligned semantic vector σ(tcs)

with the synthesized feature F̂c
s to enhance representations

F̂c
s + σ(tcs) for generator G(·) training. Besides, alignment

on seen data helps to obtain a well-learned semantic-visual

mapping which helps better synthesizes of unseen features

F̂c′
u + σ(tc

′
u ), c

′ ∈ CU for ffinal segmentor.

3.4. Relational Transfer Consistency

Since the model is only optimized on the seen class data,

and never encounters unseen data (as it is not available),

the model becomes biased and confuses unseen classes

as seen. To counter this, inspired by [27], we propose

semantic-visual consistency regularization. We argue that

even though the seen and unseen might have different se-

mantic and visual structures, the inter-class relationships in

their respective spaces should be preserved. Specifically, we

employ the generator G to synthesize visual features for a

specific unseen class c′, denoted as F̂c′
u , and its correspond-

ing semantic prototype is tc
′

u . Similarly, for a seen class c,
its synthetic visual features and semantic prototype can be

represented as F̂c
s and tcs respectively. We construct unseen

c′ visual synthetic prototype Ĥc′
u and seen c visual synthetic

prototype Ĥc
s as:

Ĥc′
u , Ĥ

c
s =

1

|n′|

n′∑

i=1

F̂c′,i
u ,

1

|n|

n∑

i=1

F̂c,i
s , (5)

where n′ and n denote the number of points belonging to

unseen c′ and seen classes c, respectively. we apply simple

averaging to obtain the visual prototype, since the gener-

ated features lack fine-grained structure relative to the real

features. We build sets {tc′u }c′∈CU and {Ĥc′
u }c′∈CU for se-

mantic and visual prototypes in unseen classes. We further

get the distance distribution relation matrices for semantic

W ∈ R
m×m and visual V ∈ R

m×m between the prototypes

of seen and unseen sets respectively,

Wej = ||te − tj ||2, Vej = ||Ĥe − Ĥj ||2, (6)

where m is the total number of elements in set tm = tcs ∪
{tc′u }c′∈CU or Ĥm = Ĥc

s ∪ {Ĥc′
u }c′∈CU . e ≤ m and j ≤

m denote the index of an element in the set tm and Ĥm.

We strive to keep the distance distribution in the two spaces

consistent by minimizing the cosine distance d(·, ·) as:

Lcst =

m∑

e=1

d(Wej ,Vej). (7)

Thus, we establish a consistency bridge between the visual

and semantic space of seen and unseen classes, so the model

can effectively tackle the bias towards the seen.

3.5. Network Training and Inference

For the backbone θ(·) and fseen(·) training, we apply the

cross-entropy loss between network output and labels yc on

only seen point clouds pcs, c ∈ CS ,

Lfs = −
∑

c

yclog(fseen(θ(p
c
s))). (8)

To train the generator G, we apply the Maximum Mean Dis-
crepancy (MMD) loss [28] to narrow the distribution mis-

match between the synthesised F̂c
s + σ(tcs) as F̂c

s,t and the

real features Fc
s on seen c, and combine Lcon, Lalign, Lcst

losses to form the joint loss:

LMMD =
∑

x,x′∈Fc
s

μ(x, x′) +
∑

x̂,x̂′∈F̂c
s,t

μ(x̂, x̂′)

−2
∑

x∈Fc
s

∑

x̂∈F̂c
s,t

μ(x, x̂),
(9)

LG =
∑

c

(LMMD + Lcon + Lalign + αLcst) , (10)

where μ(·, ·) is the Gaussian kernel function, μ(x, x′) =
exp(− 1

2 ||x − x′||2), α is a hyper-parameter for loss bal-

ance. It should be noted that we do not use discriminator to

make the features more realistic, which is demonstrated in

[30] that it may be harmful for 3D point clouds. The well-

trained generator G synthesizes unseen features F̂c′
u +σ(tc

′
u )

as F̂c′
u,t, c

′ ∈ CU which will combine with the real seen fea-

tures Fc
s on c to train the final segmentor ffinal using,

Lfn = −
∑

c

yclog(ffinal(F
c
s))−

∑

c′
ŷc′ log(ffinal(F̂

c′
u,t)),

(11)

where ŷc′ denotes the synthetic unseen labels. At inference

time, we combine the θ and ffinal to jointly predict both

seen CS and unseen CU categories.

4. Experiments
4.1. Datasets and Settings

Datasets. We follow [30] to conduct experiments based

on three public 3D semantic segmentation datasets ScanNet

11590



Table 1. Generalized 3D zero-shot semantic segmentation results on three benchmarks. All methods use GloVe+Word2Vec embbeddings.

The evaluation metric are mIoU and HmIoU (%). ĈU stands for pseudo generated unseen data. The results of all comparison methods are

derived from [30]. Our approach shows impressive gains of 7.7%, 3.8%, 3.0% based on HmIoU in ScanNet, S3DIS and SemanticKITII

datasets respectively.

Training set ScanNet S3DIS SemanticKITTI

Backbone segmentor
mIoU HmIoU mIoU HmIoU mIoU HmIoU

CS CU All CS CU All CS CU All

Supervised methods with different levels of supervision
Full supervision CS ∪ CU CS ∪CU 43.3 51.9 45.1 47.2 74.0 50.0 66.6 59.6 59.4 50.3 57.5 54.5

ZSL backbone CS CS ∪CU 41.5 39.2 40.3 40.3 60.9 21.5 48.7 31.8 52.9 13.2 42.3 21.2

ZSL-trivial CS CS 39.2 0.0 31.3 0.0 70.2 0.0 48.6 0.0 55.8 0.0 44.0 0.0

Generalized zero-shot-learning methods
ZSLPC-Seg* [13] CS CU 28.2 0.0 22.6 0.0 65.5 0.0 45.3 0.0 49.1 0.0 34.8 0.0

DeViSe-3DSeg* [17] CS CU 20.0 0.0 16.0 0.0 70.2 0.0 48.6 0.0 49.7 0.0 36.6 0.0

ZSLPC-Seg [13] CS CU 16.4 4.2 13.9 6.7 5.2 1.3 4.0 2.1 26.4 10.2 21.8 14.7

DeviSe-3DSeg [17] CS CU 12.8 3.0 10.9 4.8 3.6 1.4 3.0 2.0 42.9 4.2 27.6 7.5

3DGenZ [30] CS CS ∪ ĈU 32.8 7.7 27.8 12.5 53.1 7.3 39.0 12.9 41.4 10.8 35.0 17.1

Ours CS CS ∪ ĈU 34.5 14.3 30.4 20.2 58.9 9.7 43.8 16.7 46.4 12.8 39.4 20.1

[14], S3DIS [2] and SemanticKITTI [3]. (a) ScanNet is an

RGB-D video dataset having 1201 training scans, 312 vali-

dation scans and 100 test scans belonging with points anno-

tated with 20 classes. (b) S3DIS is an indoor scene dataset

containing 272 rooms in 6 areas, with each point labeled

as one of 13 classes. (c) SemanticKITTI contains 21 se-

quences of 43,552 annotated streetscape LiDAR scans, the

points of each object are annotated in 19 semantic classes.

According to the original division, sequences 00∼07 and

09∼10 are used for training, sequence 08 for validation,

and sequence 11∼21 for online testing. Since the test set

of ScanNet and SemanticKITTI are not available, we chose

their validation for ZSL testing. For S3DIS, we select area 1

as the test set and the other areas are used for training [30].

Settings. Following [30], we divide each dataset into two

non-overlapping parts, i.e., seen and unseen classes. For

each dataset, we consider 4 unseen classes, desk, book-

shelf, sofa, toilet for ScanNet; beam, column, window,

sofa for S3DIS; motorcycle, truck, bicyclist, traffic-sign for

SemanticKITTI. There exist semantic similarities between

seen and unseen classes e.g. unseen sofa and seen chair in

ScanNet and S3DIS. Note that we discard any point clouds

in the training set that contain unseen points and their la-

bels. We use the mean Intersection-over-Union (mIoU) as

the evaluation metric. In addition, we use Harmonic Mean

(HM) to report the combined seen+unseen results.

Implementation details: For a direct comparison with

existing research [30], we use the same backbones, i.e.,
FKAConv [5] for ScanNet, ConvPoint [4] for S3DIS, and

KPConv [45] for SemanticKITTI. All backbones are pre-

trained on the seen data and labels with recommended pa-

rameters in respective papers. After pre-training, we freeze

the backbone, and extract features on seen classes to train

the generator. We chose a generative Moment Matching

Network (GMMN) [28] as the generator. Similar to [30],

we use 600-dimensional GloVe+Word2Vec as auxiliary se-

mantic vectors. We use the Adam [25] optimizer with initial

learning rate of 2e-4, and empirically set the mask probabil-

ity q to 0.2 and the ratio r of visual prototypes to 0.04 for

all three datasets. α is set to 0.4. The backbone features are

fed to the final segmentor for fine-tuning, using the initial

learning rate of 7e-3 and 7e-2, respectively. A poly learn-

ing rate scheduler is applied for final training [52]. We train

our zero-shot model for 20 epochs. We follow [30] to apply

class-dependent weighting and calibrated stacking to reduce

the bias towards seen classes, and construct cross-validation

sets with randomly selected 20% or at least 2 seen classes

of training data. We also report results on 3 fully supervised

models as upper-bound.

4.2. Experimental Results

Quantitative comparison with the state-of-art methods.
Tab. 1 compares different approaches in terms of mIoU. We

observe that our method achieves consistently superior per-

formance on the three datasets. We outperform the cur-

rent state-of-the-art method 3DGenZ [30] by a large mar-

gin of 7.7%, 3.8% and 3.0% of HmIoU metric on Scan-

Net, S3DIS and SemanticKITTI, respectively. The results

suggest that our proposed modules can effectively migrate

seen-to-unseen knowledge and generalize to novel cate-

gories. Moreover, it should be noted that our approach also

retains performance on seen classes. We believe that our

generator synthesizes realistic features that are distinguish-

able between different classes, while the seen and unseen
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Figure 3. Qualitative comparison with 3DGenZ [30] under inductive generalized zero-shot setting. The results in black on the ScanNet and

SemanticKITTI datasets represent unlabeled data. The regions in red boxes highlight the effectiveness of our method.

visual features are well aligned with the corresponding se-

mantic space, thus benefiting the training of the final seg-

mentor. Compared with the performance on SematicKITTI,

our method shows a higher improvement than other meth-

ods on the ScanNet and S3DIS datasets. The reason for

this might be that the categories in the large outdoor scenes

involved in SemanticKITTI are more complex, making it

challenging to generalize to novel unseen classes. We fur-

ther report the IoU of the individual seen and unseen cate-

gories for various datasets in the supplementary material.

More comparisons with adapted 2D methods: In Tab. 2,

we adapt five 2D generalized zero-shot semantic segmenta-

tion methods [52, 6, 27, 18, 55] to 3D point cloud. We eval-

uate these methods in our inductive setting using the same

3D backbone (FKAConv [5]) on ScanNet dataset. Results

suggest that existing classical 2D methods are not directly

suitable for 3D point cloud data.

Qualitative results. We visualize the results of our method

compared with 3DGenZ [30] on three different datasets in

Fig. 3. Our method performs better than 3DGenZ on all

classes, especially on unseen classes e.g. On the ScanNet

Table 2. Comparisons with adapted 2D Generalized ZSL methods

on ScanNet. Asterisk (*) denotes the methods in our reproduction.

Methods Publication
mIoU

HmIoUCS CU All

SPNet [52]* CVPR 2019 16.2 1.6 13.3 2.9

ZS3Net [6]* NeurIPS 2019 33.6 4.1 27.7 7.3

CSRL [27]* NeurIPS 2020 34.2 4.6 28.3 8.2

GaGNet [18]* ACM MM 2020 33.8 5.2 28.1 8.9

PMOSR [55]* ICCV 2021 32.5 5.4 27.1 9.3

Ours ICCV 2023 34.5 14.3 30.4 20.2

dataset our method is more successful in segmenting unseen

bookshelf, whereas 3DGenZ is confused on unseen sofa.

The same phenomenon occurs in window on the S3DIS

dataset and bicyclist on the SemanticKITTI dataset. Our

method can more effectively help the network to transfer

knowledge from the seen to the unseen situation by synthe-

sizing the unseen features being semantic-visual aware.

4.3. Ablation study

Ablation study of different modules. We progressively

integrate different modules to study their contribution
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Table 3. Ablation study of MCL (Sec. 3.2), HPA (Sec. 3.3) and

RTC (Sec. 3.4) modules on ScanNet dataset. We observe that all

the three proposed modules contribute to the performance.

MCL HPA RTC
mIoU

HmIoUCS CU All

× × × 34.2 7.7 29.1 12.5

× � × 33.5 9.7 28.8 15.0

× × � 33.5 10.0 28.8 15.4

× � � 34.5 10.6 29.8 16.3

� × × 34.0 13.0 29.8 18.8

� � × 33.9 13.9 29.9 19.7

� × � 33.7 14.0 29.7 19.8

� � � 34.5 14.3 30.4 20.2

in Tab. 3. We can notice that MCL, HPA and RTC mod-

ules show complementary gains. The most pronounced gain

comes from the MCL module, suggesting that the separa-

ble and diverse representations generated by G are more

conducive for the final segmentor training. We notice that

while all three modules show individual gains, their com-

bination achieves the best results, improving the baseline

by 7.7% in terms of HmIoU, suggesting that these modules

complement each other for enhanced generalization to un-

seen categories. From these empirical evaluations, we can

conclude that the modules proposed in our method can ef-

fectively generalize to the recognition of unseen classes on

the basis of seen knowledge.

Dissecting MCL module. The MCL module has two com-

ponents: masking and contrastive learning. We study the

impact of these two components in Tab. 4. We observe

that only using contrastive learning improves the baseline’s

HmIoU by 4.3, but its mIoU decreases on seen classes. The

combination of both masking and contrastive learning re-

tains performance on seen categories, while simultaneously

promoting generalization to unseen classes.

Table 4. Contributions of Contrastive Learning (CL) and Masking
Strategy (MS) in MCL module (Sec. 3.2).

Methods
mIoU

HmIoUCS CU All

Baseline 34.2 7.7 29.1 12.5
+ CL 31.7 11.4 27.7 16.8

+ CL + MS 34.0 13.0 29.8 18.8

Prototypes in HPA and RTC module. Tab. 5 compares

three different prototype construction strategies in Sec. 3.3

and Sec. 3.4. The HPA module equipped with our proposed

neighbor-aware approach achieves the best result, since it

models the rich local point cloud structure that is well-

aligned with the corresponding semantics. Unlike HPA,

RTC module using simple averaging is better than other

strategies, since averaging helps remove any noise in the

synthesized visual features by smoothing.

Table 5. Effects of different prototype generation strategies. For

HPA, the neighbor-aware prototype generation works best, while

for simple averaging performs better for RTC.

Section Prototype Construction Methods
mIoU

HmIoUCS CU All

Sec. 3.3 HPA

Simple Averaging 34.1 13.8 30.0 19.6

K-Means Clustering 32.7 13.8 28.9 19.4

Neighbor-Aware 34.5 14.3 30.4 20.2

Sec. 3.4 RTC

Simple Averaging 34.5 14.3 30.4 20.2
K-Means Clustering 32.3 13.3 28.5 18.9

Neighbor-Aware 33.4 12.1 29.2 17.7

Hyper-parameters. Fig. 4 shows the impact of two critical

hyper-parameters (i.e., mask probability q and visual pro-

totypes ratio r). We observe that with a gradual increase

in q, the models performance improves, indicating that the

model is able to complete the visual features of the missing

semantic embeddings according to the contextual informa-

tion, so as to obtain better representations. However, the

higher mask probability will result in a lack of sufficient

semantics to assist generator training, resulting in perfor-

mance degradation. The highest performance is achieved

when the mask probability is 0.2 for all three datasets. In

addition, we observe a low performance when the ratio is

small for the visual prototypes. It is due to the insufficient

prototypical representations in the visual space, which leads

to the deviation in alignment with semantic vectors. Beyond

r > 0.04, the performance starts to to decline, probably

caused by over-fitting that leads to adverse impact.

mask probability q visual prototypes ratio r

Figure 4. Effect of hyper-parameters: mask probability q and vi-

sual prototypes ratio r on three datasets, q = 0.2 and r = 0.04
show the best results across all the datasets.

Effects of different auxiliary semantic embeddings.
Tab. 6 compares different choices of auxiliary semantic

embeddings (Word2Vec, GloVe and GloVe+Word2Vec for

300, 300, 600-dimensional semantic embeddings respec-

tively). In general, a higher dimensional semantic embed-

dings produce richer feature representations, but we observe

that more dimensional embeddings on different datasets

may not always lead to the best results. Using the GloVe

embeddings produces better performance in unseen mIoU

and HM for ScanNet datasets, but not the other two, and

similar phenomenon appears in the Word2Vec embeddings

for SemanticKITTI. Only for S3DIS dataset, we achieve

the best gain using a combination of Word2Vec and GloVe.

We argue that the higher dimensional embedding space may

bring more complexity and information redundancy for our
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model, especially for ScanNet and SemanticKITTI, which

contains relatively more classes than S3DIS.

Table 6. Effects of different auxiliary semantic embeddings on var-

ious datasets. “SN”, “S3”, “SK” represent ScanNet, S3DIS and

SemanticKITTI dataset, respectively. HM denotes harmonic mean

(%).

Word2Vec GloVe GloVe + Word2Vec

mIoU
HM

mIoU
HM

mIoU
HMCS CU All CS CU All CS CU All

SN 33.3 11.7 29.0 17.3 33.1 14.9 29.5 20.6 34.5 14.3 30.4 20.2

S3 58.9 9.1 43.6 15.8 58.7 6.2 42.5 11.2 58.9 9.7 43.8 16.7
SK 45.8 14.4 39.2 21.9 46.0 6.1 37.6 10.8 46.4 12.8 39.4 20.1

5. Conclusion
In this paper, we propose a feature synthesis-based ap-

proach for Generalized Zero-Shot Semantic Segmentation

of 3D point clouds. Our goal is to enhance semantic-

visual correspondence, alignment and consistency, to learn

generic representations that can transfer across novel un-

seen classes. Through our developed strategies, we promote

the intra-class diversity in the visual features, while enhanc-

ing separation between classes. We further align the visual

features and their semantics in the prototypical space, and

preserve semantic-visual relationships through consistency

regularization. Our empirical evaluations suggest that the

proposed method can effectively segment point clouds for

both seen and unseen classes at inference time, and achieve

significant gains over the current state-of-the-art. For fu-

ture work, we plan to extend our current approach for open-

vocabulary zero-shot point cloud semantic segmentation.
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