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Abstract

Rarely are Artificial Intelligence (AI) projects packaged in a way where scien-
tists and non-AI specialists can easily pick up advanced Machine Learning (ML)
workflows. Similarly, AI engineers are not always able to contribute meaningfully
to a science domain without being provided with useful application context or
analysis-ready data. Because of this–and other factors–applied AI research often
stalls at the research paper stage, where the often complex logistics of replicating
and building on the work of others impedes substantive progress. A state of affairs
has been identified by the community as ‘Reproducibility.’ (1,500 scientists lift
the lid on reproducibility [4]). Potential gains in AI are therefore hampered by
the “expertise gap” between ML specialists and domain scientists. Moreover, the
reputation of AI as a transformative tool for science is somewhat belated due to the
lack of deployed, trusted solutions in the wild–as projects struggle to migrate from
mid-TRL (Technology Readiness Level) to high TRL. Another key concept is that
AI projects are never really finished. Improvements can be made in both the model
choice (the selection of which improves annually) and training data–the latter often
being the key actor in improving outcomes. In this paper we present the learnings
for a study conducted for the NASA Heliophysics Division and UCAR to tackle
findings informed by the 2021 NASA Science Mission Directorate AI Workshop
[16], showcasing best practice in the adoption of trusted and maintained open
science in AI for Heliophysics and scaling lower TRL applications to higher TRLs.
We also present an example of rapid derivative Heliophysics research conducted
by a non-subject matter expert, showing the value of these kinds of open science
approaches.

1 Introduction

The recorded data from our closest star keeps growing, collected through missions such as the Solar
Dynamics Observatory (SDO; [18]). At the same time, new Artificial Intelligence (AI) technologies
are becoming mainstream, advancing challenging problems such as object detection, automated
decision making, and deducing relations from high-dimensional data. AI is already unlocking the
potential of these large datasets in Heliophysics, and accelerating scientific discoveries [6]. However,
with the increasing availability of tools and data, there is an increase in the misuse of these tools
and failures that can lead to invalid scientific results. For example in the SDO dataset, the images
(obtained by different instruments) need to be spatially and temporally adjusted, and in the case of
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the Atmospheric Imaging Assembly (SDO/AIA), these also need to be corrected for time-dependent
degradation. Using level-1 data, i.e. minimally-processed instrument data (see § 5 of [15] for a
discussion of Level 0, 1, and 1.5 data), openly available without accounting for this nuance can lead
to incorrect results. This need for domain understanding of data limits the broad application of AI
to scientific research, while the prevalence of avoidable errors reduces the trust in the results and
the use of AI. In light of these scenarios, the community needs to establish best practices for data
curation and annotation to increase the trustworthiness and openness of AI in science applications [7].
Reproducibility and best practices for simplifying derivative AI experiments have been a consistent
challenge for the community. Platforms for increasing the reproducibility and creating an engaged
community are still nascent. Some tools are currently available to share code and datasets and improve
reproducibility, such as Github, PaperswithCode [1], and Pangeo [2]. However, these platforms are
not specific for scientific applications and do not actively loop in domain experts in data curation.
Often they do not hold requirements for the content that is uploaded, for example regarding detailed
documentation or code annotation. They do not provide access to compute for rapid experimentation
or actively promote a community around the component tools that may simplify the production of
derivative research.

The platform used for this study, SpaceML (spaceml.org), aims to create an open science resource
to host space science datasets and data products, pipelines and tools for ML with Heliophysics
applications, and additionally cultivate an active community of data product curators. It differs from
other available tools in that it facilitates the maintenance of scientific AI-ready data, models and tools,
establishes requirements for shared tools (documentation, notebooks, versioning and verification
by domain experts) and in that it actively engages the Heliophysics community to properly verify,
improve and transfer the knowledge that is created. In the following sections, we discuss techniques
to increase reproducibility and create a community-driven continuous optimization that leads to larger
scientific impact, and show the results of such techniques in two case studies.

2 SpaceML

In this section, we discuss the techniques developed for preparing and sharing datasets, pipelines,
and tools for Heliophysics on the SpaceML platform. We also discuss how these techniques improve
reproducibility and access to the resources in the Heliophysics community.

Datasets The SpaceML platform hosts expert-informed AI-ready datasets.

Preprocessing – The processing stages for these datasets are: (1) obtain raw data from available
sources e.g NASA public repositories such as Stanford’s Joint Science Operations Center (JSOC), (2)
pre-process the scientific data with subject matter expertise to ensure consistency and remove the
need for instrument-specific knowledge, and (3), format the data to be ML ready. The second step is
of key value for accelerating AI in scientific applications as it requires domain expertise which can be
sometimes neglected in ML applications. For example, this step can include instrument calibration to
compensate for degradations that are time-dependent. Skipping this step can lead to costly mistakes
and can introduce biases. This workflow results in AI-ready datasets that have been verified by
experts and are ready for use by the community to develop AI Heliophysics pipelines.

Dataset – Each dataset includes a dataset card, with the format described in [14], that documents
the project information (total size, format, owner, versioning, context, intended scientific use) and
implicit knowledge such as modeling assumptions, biases, etc. Each dataset also includes the code of
the preprocessing steps and a Google Colab notebook with a guide for download, use of the dataset
and examples of querying. This step is key to ensure that the datasets are of value to the community.

Access – The datasets are openly accessible and are hosted on Google Cloud. For large datasets, a
subset of the larger dataset is prepared for users to download and test. This removes the large memory
requirement to host the full dataset locally.

MLOps The SpaceML platform provides a set of data management tools that are reusable across
projects. For example tools such as data-downloaders for popular public datasets, such as NASA
GIBS Worldview [3], or data loaders for some of the hosted datasets that allow the datasets to be
batched and read by an ML model. These tools are pieces of larger pipelines that are general and can
be reused for multiple applications. By extracting these pieces and making the functions available
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we accelerate the process of developing ML for scientific purposes, abstracting the implementation
and unlocking time for scientific value. These tools also enable non-ML specialists to develop
applications and are examples of good practices for the community. By creating these tools we move
away from the tendency of rushed processes, duplicated effort, and misuse of the datasets.

Pipelines The SpaceML platform currently provides six ML pipelines for Heliophysics applications
and another five for other scientific purposes such as Earth Science. For example, it includes a
pipeline to create super-resolved maps of the solar magnetic field [11], and a pipeline to track
the geo-effectiveness of solar storms [20]. These pipelines are curated and well documented, and
bring the following benefits to the Heliophysics community: (1) they provide benchmarks for
different Heliophysics problems (such as super-resolution) that are versioned, easily accessible by
the community, and verified by domain experts, (2) they provide examples of how to use ML for
Heliophysics together with best practices, which can be of high value for non-expert ML users
and to introduce Heliophysics applications, and (3) they provide trustworthy results that showcase
the feasibility of AI for scientific purposes, for example by showcasing uncertainty estimations
calculations for different purposes. As in the datasets section, the ML pipelines also include a “model
card” that documents the information and the implicit knowledge of the pipeline. Additionally, each
pipeline includes a repository where all the code can be downloaded and a Google Colab notebook.
This notebook demonstrates how to download and read the necessary data, the model setup, the
hyperparameters, and a discussion on the results of the model. These notebooks increase the ease of
reproducibility, as it is an environment where the dependencies are already installed, and the results
from the study can be easily obtained without having to download the repository, the data and setting
up the dependencies. This mechanism allows other researchers to directly access the results of the
pipeline and continue iterating without tedious delays due to implementation.

The purpose of SpaceML hosting the projects is twofold. First, we would like to centralize the storage
of all project information, and second, we want to encourage derivative research by allowing the use
of the data and techniques currently housed within the project. SpaceML can do this by creating
an open-source community to encourage knowledge sharing. We expect that when further research
results in the development of a new tool, the enhancement of the model or the creation of a variation
of the dataset, these will be registered with SpaceML. Additionally, all new derivative datasets will
be uploaded using versioning guidelines to correlate tools, datasets, and research applications.

Communities SpaceML aims to foster an inclusive and collaborative community that can develop
cutting-edge research to achieve a large scientific impact. This community can benefit from the curated
tools and deployment to build on their research but also contribute to the platform. The activities
being developed are the following. Visitors are invited to join the official Slack channel for SpaceML.
Registered members will also receive quarterly newsletters updating them on developments in current
SpaceML projects, news, new projects and SpaceML events. SpaceML has recently launched two
initiatives for knowledge transfer. 1) Blogs: SpaceML blogs focus on multiple facets including
highlighting user journeys, mentor experiences, project case studies and introduction to new tools and
techniques. These blogs are being published under the SpaceML medium account, and links to each
blog are also being housed on the SpaceML webpage. 2) Speaker series: monthly seminars, composed
of a technical presentation about one of the tools-pipelines-datasets followed by a discussion section.
These are recorded and shared online. After the release of an episode, SpaceML follows up with
SpaceML surgeries/office hours sessions. These sessions serve as a means to directly interact with
the subject matter expert. These surgeries will be hosted live as a QA on Slack to allow community
engagement and enable researchers to come together.

3 Simplifying Derivative Research: Case Study

In this section we showcase two case studies in which SpaceML has accelerated research in He-
liophysics. The first case study showcases the addition of a new tool to the SpaceML platform, an
AI-ready dataset for the SDO. The second case study shows how the SpaceML platform helps a PhD
level researcher accelerate their research.
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3.1 SDOML Dataset

The SDO is designed to help us understand the Sun’s influence on Earth and Near-Earth space by
studying the solar atmosphere on small scales of space and time in many wavelengths simultaneously.
The mission launched in 2010 has been monitoring the Sun’s activity and delivering scientific
data from three instruments: The Atmospheric Imaging Assembly (AIA; [15]), the Helioseismic
and Magnetic Imager (HMI; [19]) and the Extreme UltraViolet (EUV) Variability Experiment
(EVE; [22]). The tens-of-petabytes of freely available Level-1 scientific data have been widely
used by the community (refereed in over 5000 publications). However, with an increasing number
of independent groups applying ML to SDO data, this naturally results in varying levels of data
preparation and preprocessing which can often be inappropriate for this scientific data, and complicate
model comparisons. While the SDO spacecraft is reliable and the observations consistent, there are
known artifacts. For example, the apparent size of the Sun varies around 3% due to the eccentric
orbits of the Earth around the Sun, the exposure time varies, and other anomalies occur when the
cameras are offline or due to spacecraft off points from the Sun’s center for calibration sequences.
The goal of this case study was to release a standardized ML-ready dataset that was appropriately
prepared for a diverse set of problems. One of the main hurdles that researchers face with SDO data
is the sheer volume of data. To reduce the size of this data, the SDOML dataset uses down-sampled
images (from 4096× 4096 to 512× 512 pixels), before being reduced temporally from 12 second to
6 minute cadence (the Sun rotates once every ∼27 days).

The initial version of the SDOML dataset was released in 2019 (v1.0; [10]). Here, images were
grouped by wavelength and time and saved as Numpy [12] .npz files, amounting to a total of 7TB
and stored on the Stanford Digital Repository. Currently, the dataset is at v2.0 (see [23] for a video
overview). The data is now hosted on the Google Cloud Platform in the .zarr format [17], and has
been updated to include the full FITS1 header information as metadata. These changes increase not
only the amount of data available, but the ease of data access, enabling more scientific applications
and data exploration. Furthermore, the degradation correction factor is now saved within the metadata
so that it is possible to revert to raw data if needed. Importantly, this new data format permits
on-cloud computing and model training without downloading the dataset locally, which will greatly
facilitate the ML studies using the dataset. This version further incorporates a suite of protocols,
metrics, and baseline models, lowering the barrier of using Heliophysics data for non-Heliophysics
ML researchers who may be unfamiliar with domain-specific nuances.

3.1.1 SDO/AIA Auto-calibration

Figure 1: Top (left to right) shows the bi-yearly observation of SDO/AIA 304 Å data as observed
from 2010 through to 2020, plotted on the same colorscale. The observed dimming is a result of the
degradation over time. Bottom: as top, after correction by the SDO/AIA auto-calibration model [9].

The SDO/AIA auto-calibration model [9] builds upon the SDOML dataset to provide a real-time
correction for the known time-dependent degradation that is seen in EUV filters2. In this work, the
authors used a convolutional neural network (CNN) that takes as input either a single SDO/AIA
channel, or multiple channels, outputting the degradation factor (or factors for a multi-channel

1FITS is a file format used for the transport, analysis, and archival storage of scientific data sets (data and
header information) [21]. See https://fits.gsfc.nasa.gov/.

2Until 2014, SDO/EVE was able to provide spectral information relevant for calibration. Since 2014,
calibration of SDO/AIA has been performed with sounding rocket flights, however, these flights are sparse
(roughly once every two years), and degradation correction factors are interpolated between successive flights.
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version). In the accompanying notebook, hosted on SpaceML, the user is guided through this project
by reading and loading the SDO/AIA data (with no degradation correction present) before performing
inference with the multi-channel model, and applying the degradation factors back to the original
AIA data. Figure 1 shows bi-yearly observations of SDO/AIA 304 Å data as observed by SDO/AIA
from 2010 through to 2020, plotted on the same colorscale pre- (top), and post-correction (bottom).

While this correction was outside the scope of the SDOML dataset, the SDO/AIA auto-calibration
project (also hosted on SpaceML) has built upon the dataset to provide per-image correction for the
degradation observed in EUV filters, crucial for studies such as the one discussed in the § 3.2.

3.2 Instrument-to-instrument (ITI) Pilot

In this pilot we want to showcase how SpaceML can accelerate Heliophysics research for scientists
that become users of this tool. For the pilot, the scientist is a PhD-level researcher that develops ML
applications for Heliophysics.

The researcher was working on the following problem: In solar physics, the long-term evolution of
the magnetic field typically exceeds the lifetime of a single instrument and this limits the application
of data-driven approaches to historical data samples. They developed a ML approach for domain
translation between different instruments (Instrument-To-Instrument translation; ITI) [13] with the
aim of providing a uniform data series of EUV observations from SDO/AIA, STEREO/EUVI [24]
and SOHO/EIT [8]. However, their method of unpaired image translation, when applied to standard
reduced SDO/AIA data, showed a sensitivity for insufficiently corrected device degradation, leading
to differences between the calibrated series.

Figure 2: Intercalibration of STEREO and SDO observations using ITI and the SDO auto-calibration.
a) Comparison of the original STEREO observation (top) and the ITI enhanced version (bottom) for
the individual filtergrams (171, 195, 284, 304 Å). The calibration results from a feature dependent
image translation based on the SDO image distribution. b) Average intensities of the reference SDO
observations, the ITI enhanced observations with standard calibration (baseline), and ITI enhanced
observations with improved calibration prior to the translation. The data is smoothed by monthly
averaging, where the blue shaded area indicates one standard deviation of the SDO series. The prior
calibration increases the agreement between the inter-calibrated data. (reproduced from [13])

The researcher took advantage of SpaceML by using the provided auto-calibration from [9] (see
3.1.1) to obtain a consistent calibration for the SDO/AIA data series and used the ITI framework
to translate observations from STEREO/EUVI to the same domain. They showed that with the
adjustment available in the SpaceML platform they could achieve an accurate calibration between the
three instruments and that the comparisons of aligned observations demonstrated high perceptual
quality and strong similarity to reference observations.

This result was achieved in three weeks, since the dataset preprocessing and auto-calibrations
were available in the platform and well documented. The publicly available codes accelerated the
implementation of the code adjustments (i.e., preprocessing). The researcher also benefited from
the SpaceML community and engaged with the authors of the SDOML dataset [10] to discuss the
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details of the auto-calibration. On one hand, this is an example of how SpaceML’s openly available
tools can accelerate the science turnaround time for a PhD level researcher. But also it shows how the
community of SpaceML is of key importance for this goal.

The result of this pilot study is a data series covering uniform observations dating back to 1996,
including simultaneous observations from multiple vantage points. This dataset paves the way towards
a new generation of solar cycle studies of the solar EUV corona, contributes additional samples
for data-driven methods and enables the application of automated methods that were developed
specifically for SDO/AIA data to the full EUV data series without further adjustments.

Figure 3: Example application of ITI for data synthesis. Image translation from three coronal EUV
channels (171 Å, 193 Å, 211 Å), to the chromospheric 304 Å channel. The model is trained with the
use of the SDOML dataset and online resources.

As presented in the § 3.1, SpaceML provides the SDO dataset [10]. Additionally, after obtaining a
consistent calibration for the SDO/AIA series, the researcher used the SDOML dataset to provide
example applications of ITI. Specifically, they showed: 1) a reconstruction of the chromospheric
304 Å channel based on coronal EUV observations as shown in Figure 3, i.e. similar to the STEREO
to SDO image generation, now the network learns to generate a new channel. 2) An estimation of the
line-of sight magnetogram (SDO/HMI) based on the EUV filtergrams. Given that the SDO dataset
can be easily distributed, the models can be trained online using the Google Colab platform. These
applications, together with the ITI pipeline and corrected calibration of the SDO/AIA band, are now
available at SpaceML.

This pilot study showed that there are also possibilities for improvement. A unified data loader for
the SDOML dataset could enable a faster integration with common deep learning frameworks. At
the present stage this requires a custom implementation for the individual applications. Frequently
researchers are not interested in the method itself, but only require the derived data products. Hosting
the primary data products (e.g., calibration curve, enhanced images) allows researchers that have
no experience with ML methods to also benefit from these methods. Countrarily, researchers that
are primarily interested in the method would benefit from further interactive descriptions of model
training, which could foster the application to similar problem settings.

4 Conclusions

More than just sharing data: SpaceML includes analysis-ready datasets, space science ML projects,
and MLOps tools designed to fast-track existing AI workflows to new use-cases. The datasets and
projects build on the six years of cutting-edge AI application completed by Frontier Development Lab
(FDL) teams of early-career PhDs in AI/ML and multidisciplinary science domains in partnership
with NASA, USGS, ESA, and FDL’s commercial partners. SpaceML assures that hosted applications
follow the same standard and are verified by domain experts. The direct access to the corresponding
data sets and provided Google Colab notebooks, allow to easily utilize the applications. The
SpaceML platform provides an important resource for discovering recent state-of-the-art deep
learning applications in Heliophysics.

Benchmarking Tools to TRL-7: Sharing of analysis-ready data products accelerates the benchmark-
ing of open applied AI pipelines and data products for rapid and easy assessment by the science and
data science community. This can be thought of MLOps for AI efficacy and trust; with a narrower set
of requirements than would be needed for a full generalizable MLOps suite with other researchers as
the primary users. Another way of framing this is that despite earnest calls for progress in AI unless
there are mechanisms for trust, deployed AI solutions and community-maintained Analysis Ready
Data (ARD) will remain outliers, rather than the norm.

Full Deployment to TRL-9+: The ideal outcome of AI research is the full deployment of an
operational system for a NASA, UCAR, or NOAA-style use-case. As discussed already, to be fully
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trusted and compliant with pending plans for AI deployment, pipelines need to be developed with the
principles explored here at their core: understandable, reliable, and explainable.

Making these projects available to the community in a way that simplifies onboarding, reproducibil-
ity, and derivative research for both constituencies is thus a key concept in promoting the use of
trustworthy AI in the Federal Government.
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A Related work

A.1 Platforms to share code

• GitHub (github.com) is one of the major platforms for developing, sharing, and versioning
codes. GitHub repositories associated with scientific publications are primarily maintained
by the researchers, and can strongly vary in their documentation, reproducibility and usage.
Furthermore, the corresponding data for training and evaluation is typically not included
due to storage limitations.

• Paperswithcode (paperswithcode.com) is a platform that provides ML papers, code,
dataset, methods and evaluation tables. As in Github, these are associated with publications
and are maintained by researchers. Therefore the same variations in documentation and
reproducibility are present. Additionally, not all uploaded papers have their code or datasets
available.

A.2 Heliophysics for ML reproducibility educational resources

• The Machine Learning, Statistics, and Data Mining for Heliophysics e-book helioml.org
[5] provides examples of how to use ML, statistics and data mining for Heliophysics datasets
to help researchers increase their reproducibility.

A.3 Raw data

• The Virtual Solar Observatory (VSO3) provides a large data repository from various sources
of solar observations (e.g., SDO; the Global Oscillation Network Group, GONG; Parker
Solar Probe, PSP), but domain knowledge is required for processing and working with
specific datasets.

• Instrument archives are one of the primary sources for accessing data and provide informa-
tion for processing the specific data (e.g., JSOC, Hinode4, SWPC5). The individual archives
are not centralized and have different interfaces, which makes it difficult to automatically
discover and acquire large data sets.

B Terminology

Technology Readiness Level The Technology Readinness Level concept, which defines the ma-
turity of a technology, was extended for the specific case of Machine Learning in [14]. In [14] the
authors define the framework and terminology spanning through prototyping, productization, and
deployment of an ML system.

3https://virtualsolar.org/
4http://sdc.uio.no/sdc/
5https://www.swpc.noaa.gov/
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