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Abstract

We address a critical challenge in multi-agent reinforcement learning (MARL): maximizing
team rewards in scenarios where agents only have access to their individual, private rewards.
This setting presents unique challenges, as agents need to cooperate to optimize collective
performance whilst having only local, potentially conflicting objectives. Existing MARL
methods often tackle this by sharing rewards, values, or full policies, but these approaches
raise concerns about privacy and computational overhead. We introduce Anticipation Sharing
(AS), a novel MARL method that achieves team-level coordination through the exchange of
anticipated peer action distributions. Our key theoretical contribution is a proof that the
deviation between the collective return and individual objectives can be identified through
these anticipations. This allows AS to align agent behaviours towards team objectives without
compromising individual privacy or incurring the prohibitive costs of full policy sharing.
Experimental results demonstrate that AS is competitive with baseline algorithms that share
values or policy parameters, whilst offering significant advantages in privacy preservation
and computational efficiency. Our work presents a promising direction for reward-private
cooperative MARL in scenarios where agents must maximize team performance using only
their private, individual rewards.

1 Introduction

Multi-agent reinforcement learning (MARL) enables collaborative decision-making in diverse real-world
applications, such as autonomous vehicles (Xia et al., 2022; Qiu et al., 2023), robotics (Wang et al., 2022;
Peng et al., 2021; Sun et al., 2020), and communications systems (Siedler & Alpha; Huang & Zhou, 2022).
A key open challenge in this field is enabling agents to maximize team rewards while having access to only
their private and potentially conflicting individual rewards. This need commonly arises in many practical
scenarios, particularly in social dilemmas, where optimizing rewards based solely on individual interests often
leads to suboptimal collective outcomes and, consequently, suboptimal individual outcomes. For instance, in
distributed energy systems like a smart grid, various energy producers and consumers need to coordinate
to balance supply and demand. Each entity has its own cost/utility function (individual reward) that it
may not want to disclose. Yet, the stability and efficiency of the entire grid (collective return) depend on
their coordinated actions. If each entity maximizes its own utility, the entire stability might be degraded and
thus the individual entity will only achieve a suboptimal outcome. In supply chain optimization, multiple
companies need to coordinate their production and logistics to maximize overall efficiency. Each company has
its own profit function (individual reward) that it wants to keep private due to competitive concerns. However,
the overall supply chain performance (collective return) depends on their coordinated actions. Additionally,
in smart healthcare, multiple hospitals aim to collaboratively train a medical diagnosis model without sharing
patient data. Each hospital has its own performance metric (individual reward) based on its specific patient
population and priorities. A problem is to create a model that performs well across all hospitals (collective
return) without compromising individual hospital data or metrics. These scenarios underline the critical
need for MARL strategies that enable agents to effectively learn cooperative behaviors, despite operating
with only their private, individual rewards.

The issue of privacy concerning rewards, values, and policies presents a significant hurdle in these scenarios
(Xu et al., 2021; Yuan et al., 2023; Ma et al., 2023). Agents often prioritise the confidentiality of their policies,
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rewards, and values to mitigate risks such as malicious attacks, unwanted disclosure of strategic interests,
and potential loss of intellectual property. These privacy concerns introduce unique challenges, as agents are
required to collaboratively optimize collective performance while only having access to local and potentially
conflicting objectives, and without the capability to directly share sensitive information.

Numerous MARL methods have been proposed to enable cooperation under an evenly split shared reward to
each agent (Sun et al., 2022; Lauer & Riedmiller, 2000; Boutilier, 1996; Jiang & Lu, 2022; Kuba et al., 2022;
Wu et al., 2021). However, these methods are infeasible when an agent is privy only to its individual reward,
as in our setup. Under individual rewards, agents may face social dilemmas when they have conflicting
interests - prioritising individual rewards can produce suboptimal collective outcomes. The Prisoner’s Dilemma
exemplifies this tension. When agents act purely out of self-interest, they will choose to defect, which leads
to lower total returns compared to cooperating for the common good (Debreu, 1954). However, determining
optimal collaborative strategies is challenging when each agent only sees a local viewpoint.

To enhance cooperation towards maximizing the collective interest under individual rewards, several methods
have been proposed. These approaches acknowledge the challenge of using only individual rewards, but
typically assume that potentially private information can be shared across agents. Some strategies involve
sharing rewards to guide agents towards a collective optimum (Chu et al., 2020b; Yi et al., 2022; Chu et al.,
2020a). Others suggest sharing the model parameters of the value functions or the output value of the value
functions, and through aggregation from neighbouring agents, they guide agents to achieve collective optimum
(Zhang et al., 2018a;b; 2020; Suttle et al., 2020; Du et al., 2022). In these approaches, agents calculate a global
value based on shared rewards or values, and subsequently, they adjust their policies to maximize this global
value. Other studies have explored consensus strategies focusing on policy model parameter sharing rather
than values (Zhang & Zavlanos, 2019; Stankovic et al., 2022a;b). While these methods have shown promise
in maximizing team rewards, they all rely on the assumption that agents can freely exchange potentially
sensitive information. Additionally, sharing model parameters incurs substantial communication overhead,
which may transfer excessive and non-essential information, thereby slowing the learning process.

To overcome these challenges, we introduce a novel approach called Anticipation Sharing (AS) for cooperative
policy learning towards maximizing the total return when agents have individual rewards. A key advantage of
our method is achieving emergent collaboration without sharing sensitive information like rewards or model
parameters between agents, addressing the limitations of existing methods that rely on such sharing. The core
concept we leverage in AS is the exchange of anticipated action distributions, which reflect agents’ preferences
regarding others. These anticipations are determined by each agent to maximize an individual objective
and then sent to corresponding agents for inclusion as constraints when maximizing their objectives. Such
anticipations implicitly carry information about individual returns while preserving privacy. By exchanging
anticipations, agents can estimate their impacts on collective return without directly sharing sensitive
information.

We make a significant theoretical contribution by establishing a lower bound that quantifies the discrepancy
between the collective return and the total of individual objectives concerning the anticipated policies. This
insight enables the formulation of a surrogate objective for each agent, which is aligned with the global
goal and only dependent on local information. Our algorithm optimizes this surrogate objective through a
dual-clipped policy update approach, which imposes constraints that penalize deviations between an agent’s
actual policy and the anticipated ones from its peers. This drives agents to iteratively and distributively
move toward collectively optimal policies, addressing the challenge of aligning individual agent policies with
the collective optimum. Our empirical results reinforce the validity and practical effectiveness of the AS
framework, demonstrating its competitive performance compared to traditional methods based on sharing
values or policies across a range of cooperative MARL tasks. This establishes AS as both a theoretically
sound and practically effective approach for achieving cooperation in multi-agent systems under individual
rewards.

The rest of this paper is structured as follows: Section 2 discusses related work on cooperative MARL
under individual rewards. Section 3 presents the technical background and problem formulation. Section
4 introduces our Anticipation Sharing methodology, including the theoretical foundations and practical
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algorithm. Section 5 details our experimental setup and results. Finally, Section 6 concludes with a discussion
of the implications of our work and future research directions.

2 Related work

In this work, we focus on cooperative MARL under individual reward, which is distinguished from numerous
contemporary studies that focus on optimizing multi-agent policies under the assumption of an evenly split
shared team reward (Kuba et al., 2022; Wu et al., 2021; Sun et al., 2022; Jiang & Lu, 2022). Cooperation
under individual rewards reflects a more realistic scenario in many real-world applications, where agents need
to learn to cooperate based on limited and individual information due to privacy or scalability concerns.

With individual reward setup, many works Lowe et al. (2017); Iqbal & Sha (2019); Foerster et al. (2017);
Omidshafiei et al. (2017); Kim et al. (2021); Jaques et al. (2019) focus on solving Nash equilibrium of a
Markov game, i.e., agent seeks the policy that maximizes its own expected return. However, that may not
result in collective optimum when agents have conflicting individual interests that can hinder collective
cooperation such as in social dilemma. Our research focuses on maximizing the total return across all agents
where each agent needs to cooperate to achieve collective optimum. In the rest of this section, we introduce
related works aiming to solve this problem.

Social dilemmas. Social dilemmas highlight the tension between individual pursuits and collective outcomes.
In these scenarios, agents aiming for personal gains can lead to compromised group results. For instance,
one study has explored self-driven learners in sequential social dilemmas using independent deep Q-learning
(Leibo et al., 2017). A prevalent research direction introduces intrinsic rewards to encourage collective-focused
policies. For example, moral learners have been introduced with varying intrinsic rewards (Tennant et al.,
2023) whilst other approaches have adopted an inequity aversion-based intrinsic reward (Hughes et al., 2018) or
rewards accounting for social influences and predicting other agents’ actions (Jaques et al., 2019). Borrowing
from economics, a method integrated formal contracting to motivate global collaboration (Christoffersen
et al., 2023). While these methods modify foundational rewards, we maintain original rewards, emphasizing a
collaborative, information-sharing strategy to nurture cooperative agents.

Value sharing. Value sharing methods use shared Q-values or state-values among agents to better align
individual and collective goals. Many of these methods utilize consensus techniques to estimate the value of a
joint policy and guide individual policy updates accordingly. For instance, a number of networked actor-critic
algorithms exist based on value function consensus, wherein agents merge individual value functions towards
a global consensus by sharing parameters (Zhang et al., 2018a;b; 2020; Suttle et al., 2020). Instead of sharing
value function parameters, (Du et al., 2022) shares function values for global value estimation. However, these
methods have an inherent limitation: agents modify policies individually, using fixed Q-values or state-values,
making them less adaptive to immediate policy shifts from peers, which may introduce policy discoordination.
In contrast, our approach enables more adaptive coordination by having agents directly share and respond to
peer anticipations.

Reward sharing. Reward sharing is about receiving feedback from a broader system-wise outcome
perspective, ensuring that agents act in the group’s collective best interest. Some works have introduced a
spatially discounted reward function (Chu et al., 2020b;a). In these approaches, each agent collaboratively
shares rewards within its vicinity. Subsequently, an adjusted reward is derived by amalgamating the rewards
of proximate agents, with distance-based discounted weights. Other methods advocate for the dynamic
learning of weights integral to reward sharing, which concurrently evolve as agents refine their policies (Yi
et al., 2022). In our research, we focus on scenarios where agents know only their individual rewards and are
unaware of their peers’ rewards. This mirrors real-world situations where rewards are kept confidential or
sharing rewards suffers challenges such as communication delays and errors. Consequently, traditional value
or reward sharing methods fall short in these contexts. In contrast, our method induces coordination without
requiring reward sharing.

Policy sharing. Policy sharing strives to unify agents’ behaviors through an approximate joint policy.
However, crafting a global policy for each agent based on its individual reward can lead to suboptimal
outcomes. Consensus update methods offer a solution by merging individually learned joint policies towards

3



Under review as submission to TMLR

an optimal joint policy. Several studies have employed such a strategy, focusing on a weighted sum of
neighboring agents’ policy model parameters (Zhang & Zavlanos, 2019; Stankovic et al., 2022a;b). These
methods are particularly useful when sharing individual rewards or value estimates is impractical. Yet,
sharing policy model parameters risks added communication overheads and data privacy breaches. PS is
based on the idea of federated learning and shares the parameters of joint policies among agents. In contrast,
our method focuses on learning individual policies and sharing only the relevant action distributions of the
anticipated policies with the corresponding agents, which typically involves less communication overhead
compared to sharing entire policy parameters with all the neighbouring agents.

Teammate modeling Teammate/opponent modeling in MARL often relies on agents having access to,
or inferring, information about teammates’ goals, actions, or rewards. This information is then used to
improve collective outcomes (Albrecht & Stone, 2018; He et al., 2016; Wen et al., 2019; Zheng et al., 2018).
Our approach differs from traditional team modeling. Rather than focusing on predicting teammates’ exact
actions or strategies, our method has each agent calculate and share anticipated action distributions that
would benefit its own strategy. These anticipations are used by other agents (not the agent itself) to balance
their objectives with that of the agent sending the anticipation. This approach emphasizes anticipations that
serve the agent’s own objective optimization. Coordination occurs through policy adaptation based on others’
anticipations that implicitly include information about their returns, rather than modeling their behaviors. It
contrasts with conventional team modeling in MARL that focuses on modeling teammates’ behaviors directly.

3 Background and problem statement

We approach the collaborative MARL problem with individual rewards using a Multi-agent Markov Decision
Process (MMDP), which was also employed in previous works. Zhao et al. (2020); Krouka et al. (2022)
formalized the same problem as we did. Chen et al. (2022) considered a similar problem, but with a central
controller that can collect information from all agents. Zhang et al. (2018b); Du et al. (2022); Sha et al.
(2021) used the same basic problem formalism, but added a network structure on agent systems, referring to
it as Networked MMDP or MARL over networks. Additionally, Lei et al. (2022) presented the Networked
MARL problem from the perspective of Alternating Direction Method of Multipliers (ADMM).

Specifically, we consider an MMDP with N agents represented as a tuple < S, {Ai}N
i=1, P, {Ri}N

i=1, γ >,
where S denotes a global state space, Ai is the individual action space, A = ΠN

i=1Ai is the joint action space,
P : S × A × S → [0, 1] is the state transition function, Ri : S × A → R is the individual reward function, and
γ is a discount factor. Each agent i selects action ai ∈ Ai based on its individual policy πi : S × Ai → [0, 1].
The joint action of all agents is represented by a ∈ A, and the joint policy across these agents is denoted
as π(·|s) =

∏N
i=1 πi(·|s). The objective is to maximize the expectation of collective cumulative return of all

agents,

η(π) =
N∑

i=1

Eτ∼π

[
∞∑

t=0

γtri
t

]
, (1)

where the expectation, Eτ∼π[·], is computed over trajectories with an initial state distribution s0 ∼ d(s0),
action selection at ∼ π(·|st), state transitions st+1 ∼ P(·|st, at), and ri

t = Ri(s, a) is the reward for individual
agent i. Here we use ri

t = Ri(s, a) for simplicity of notation, but this can be easily extended to a stochastic
reward function without affecting the core of our method. An individual advantage function is defined as:

Aπ
i (s, a) = Qπ

i (s, a)− V π
i (s) (2)

which depends on the individual state-value and action-value functions, respectively,

V π
i (s) = Eτ∼π

[
∞∑

t=0

γtri
t|s0 = s

]
, Qπ

i (s, a) = Eτ∼π

[
∞∑

t=0

γtri
t|s0 = s, a0 = a

]
. (3)

Our problem setup is similar to Stochastic Games (Markov Games) (Shapley, 1953) in terms of structure,
and to Dec-POMDP (Bernstein et al., 2002) in terms of the optimization objective. However, there are key
distinctions. Unlike standard Stochastic Games, our agents are cooperative and aim to maximize a collective
return. Unlike Dec-POMDP, our agents have access to the full state (not partial observations) and individual
reward functions (not a shared reward signal). In our setup, agents do not have direct access to others’

4



Under review as submission to TMLR

policies, rewards, or values. This setting is particularly relevant for applications where privacy concerns
or decentralized control are important. It enables us to explore the balance between cooperative behavior
and individual privacy in multi-agent systems, which is crucial in many real-world applications. With the
private individual rewards, an agent naïvely optimizing its individual reward might take actions that are
suboptimal for the group. Our work aims to bridge this gap between individual reward optimization and
collective return maximization. It enables agents to approximate the optimization of the collective objective
while operating solely with their individual reward signals. In the next section, we present a method where
agents iteratively share anticipations to maximize a lower bound of Eq.1. This method is general and not
dependent on any specific protocol for communicating anticipations between agents. In Sec.4.3, we propose
a practical algorithm that involves sharing information within agents’ neighbourhoods. Our experiments
demonstrate the effects of different sharing protocols on the performance of MARL cooperation.

4 Methodology

In cooperative MARL settings with individual rewards, agents must balance personal objectives with collective
goals, despite lacking global perspectives. Our approach, anticipation sharing (AS), facilitates this dual
awareness without direct reward or objective sharing. In AS, agents exchange anticipations about peer actions,
which are derived by maximizing their own objectives. These anticipations are then considered by other
agents when maximizing their individual objectives, enabling each agent to infer the collective objective.

Unlike traditional methods that share explicit rewards or objectives, AS involves agents exchanging anticipa-
tions that implicitly contain information about others’ objectives. By observing how its actions align with
aggregated anticipations, each agent can perceive the divergence between its individual interests and the
inferred collective goals. This drives policy updates to reduce the identified discrepancy, bringing local and
global objectives into closer alignment.

Our approach leverages these identified divergences to align agents’ policies. Through iterative sharing of
anticipated actions and policy adaptation, AS fosters continuous, adaptive refinement of strategies that
balance both individual objectives and the collective goal.

4.1 Theoretical developments

We commence our technical developments by analyzing joint policy shifts based on global information. This
extends foundational trust region policy optimization work (Schulman et al., 2015) to multi-agent settings
with individual advantage values, which is distinguished from previous works (Wu et al., 2021; Su & Lu,
2022) that are based on common rewards and advantages. We prove the following bound on the expected
return difference between new and old joint policies:

Lemma 1 We establish a bound for the difference in expected returns between an old joint policy πold and a
newer policy πnew:

η(πnew) ≥ η(πold) + ζπold (πnew)− C ·Dmax
KL (πold||πnew), (4)

where

ζπold (πnew) = Es∼dπold (s),a∼πnew(|s)

[∑
i

A
πold
i (s, a)

]
, C =

4 maxs,a |
∑

i
A

πold
i (s, a)|γ

(1− γ)2

Dmax
KL (πold||πnew) = max

s
DKL(πold(·|s)||πnew(·|s)).

(5)

The proof is given in Appendix A.1.1.

The key insight is that the improvement in returns under the new policy depends on both the total advantages
of all the agents, as well as the divergence between joint policy distributions. This quantifies the impact of
joint policy changes on overall system performance given global knowledge, extending trust region concepts
to multi-agent domains.
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However, as the improvement in returns is measured by joint policy distributions and total advantages of all
agents, it is hard to be used by single agent in MARL settings where each agent has no access to others’
policies and rewards. To address this limitation, we first introduce the concept of anticipated joint policy from
each agent’s local perspective to replace the true joint policy. As we will show in Sec. 4.2, the anticipated
joint policy of each agent is solved by optimizing an individual objective. Analyzing anticipated policies
is crucial for assessing the discrepancy between individual objectives and the collective one in cooperative
MARL.

Definition 1 For each agent in a multi-agent system, we define the anticipated joint policy, denoted as π̃i,
formulated as π̃i(a|s) =

∏N
j=1 πij(aj |s). Here, for each agent i, πij represents the anticipation of agent i about

agent j’s policy when j ≠ i. When j = i, we have πii = πi, which is agent i’s own policy. To represent the
collection of all such anticipated joint policies across agents, we use the notation Π̃ := (π̃1, · · · , π̃i, · · · , π̃N ).

The anticipated joint policy represents an agent’s perspective of the collective strategy constructed from its
own policy and anticipations to peers. We will present how to solve such anticipated joint policy in Sec. 4.2.

Definition 2 The total expectation of individual advantages over the anticipated joint policies and a common
state distribution, is defined as follows:

ζπ′ (Π̃) =
∑

i

E
s∼dπ′ (s),a∼π̃i(a|s)

[
Aπ′

i (s, a)
]

, (6)

which represents the sum of expected advantages for each agent i, calculated over their anticipated joint policy
π̃i and a shared state distribution, dπ′(s). The advantage Aπ′

i (s, a) for each agent is evaluated under a
potential joint policy π′, which may differ from the true joint policy π in play. This definition captures the
expected benefit each agent anticipates based on the anticipated joint actions, relative to the potential joint
policy π′.

This concept quantifies the expected cumulative advantage an agent could hypothetically gain by switching
from a reference joint policy to the anticipated joint policies of all agents. It encapsulates the perceived benefit
of the anticipated policies versus a collective benchmark. Intuitively, if an agent’s anticipations are close to
the actual policies of other agents, this expected advantage will closely match the actual gains. However,
discrepancies in anticipations will lead to divergences, providing insights into the impacts of imperfect local
knowledge.

Equipped with these notions of anticipated joint policies and total advantage expectations, we can analyze
the discrepancy of the expectation of the total advantage caused by policy shift from the true joint policy, π,
to the individually anticipated ones, Π̃. Specifically, we prove the following bound relating this discrepancy:

Lemma 2 The discrepancy between ζπ′(Π̃) and ζπ′(π) is upper bounded as follows:

ζπ′ (Π̃)− ζπ′ (π) ≤ fπ′
+
∑

i

1
2

max
s,a

∣∣Aπ′
i (s, a)

∣∣ ·∑
s,a

(
π̃i(a|s)− π(a|s)

)2
, (7)

where
fπ′

=
∑

i

1
2

max
s,a

∣∣Aπ′
i (s, a)

∣∣ · |A| · ∥dπ′
∥2

2, (8)

and ∥dπ′∥2
2 =

∑
s(dπ′(s))2.

The proof is given in Appendix A.1.2.

This result quantifies the potential drawbacks of relying on imperfect knowledge in cooperative MARL settings,
where agents’ anticipations may diverge from actual peer policies. It motivates reducing the difference between
anticipated and true joint policies.

Previous results bounded the deviation between total advantage expectations under the true joint policy versus
under anticipated joint policies. We now build on this to examine how relying too much on past experiences
and anticipated joint policies can lead to misjudging the impact of new joint policy shifts over time. To this
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end, we consider the relationship between ζπold(Π̃new), the perceived benefit of the new anticipated joint
policies Π̃new, assessed from the perspective of the previous joint policy πold, and η(πnew), which measures
the performance of the new joint policy. Specifically, ζπold(Π̃new) is defined like Definition 2 as:

ζπold (Π̃new) =
∑

i

Es∼dπold (s),a∼π̃i
new(a|s)

[
A

πold
i (s, a)

]
, (9)

which represents a potentially myopic and individual perspective informed by the advantage values, Aπold
i , of

past policies, as well as individually anticipated joint policies, π̃i
new, and thus, it may inaccurately judge the

actual impact of switching to πnew as quantified by η(πnew). The following theorem provides a lower bound
of the deviation between the collective return, η(πnew), of the newer joint policy, and ζπold(Π̃new).

Theorem 1 The discrepancy between the return of the newer joint policy and the value of ζπold
(Π̃new) is

lower bounded as follows:

η(πnew)− ζπold (Π̃new) ≥

η(πold)− C ·
∑

i

Dmax
KL (πii

old||π
ii
new)− fπold −

∑
i

1
2

max
s,a

∣∣Aπold
i (s, a)

∣∣ ·∑
s,a

(
π̃i

new(a|s)− πnew(a|s)
)2

. (10)

The full proof is given in Appendix A.1.3.

This theorem explains the nuanced dynamics of policy changes in MARL where agents learn separately. It
sheds light on how uncoordinated local updates between individual agents affect the collective performance.
At the same time, this result suggests a potential way to improve overall performance by leveraging the
anticipated joint policies held by each agent.

4.2 A surrogate optimization objective

Our preceding results established analytical foundations for assessing joint policy improvement in multi-agent
settings with individual rewards. We now build upon these results to address the practical challenge of
optimizing system-wide returns when agents lack knowledge of others’ policies, rewards, and values.

Directly maximizing the expected collective returns, η(π), is intractable without global knowledge of the
joint policy and collective return. However, Theorem 1 provides insight into a more tractable approach:
agents can optimize a localized surrogate objective, ζπold(Π̃), which is the sum of individual objectives
concerning anticipated joint policies and individual advantage values. This simplifies the global objective into
an individual form dependent on the anticipated joint policy that is composed of an agent’s individual policy,
πii, and its anticipations of others, πij .

To leverage this insight, we use the lower bound given by Theorem 1. By maximizing this lower bound plus
ζπold(Π̃), we can maximize the collective return. We can ignore the terms η(πold) and fπold from Theorem 1
in our optimization problem, as they are not relevant to optimizing Π̃ and their values are usually bounded.
To be specific, the value of η(πold) is bounded as the reward value is bounded. For fπold , as defined in Eq. 8,
its value is also bounded since (1) We focus on scenarios with finite and relatively small action spaces, which
are common in many real-world applications, so |A| (the size of the action space) is not excessively large.
(2) The term ∥dπold∥2

2 is the squared L2-norm of the state visitation distribution, which is bounded.(3) The
advantage function Aπold

i (s, a) is also bounded as the reward value is bounded.

Consequently, we propose the following global constrained optimization problem as a surrogate for the original
collective objective:

max
Π̃

∑
i

Es∼dπold (s),a∼π̃i(a|s)
[
A

πold
i (s, a)

]
s.t.

∑
i

Dmax
KL (πii

old||π
ii) ≤ δ,

∑
i

max
s,a

∣∣Aπold
i (s, a)

∣∣ ·∑
s,a

(
π̃i(a|s)− π(a|s)

)2
≤ δ′.

(11)

Note that, taking into account of the results given by (Schulman et al., 2015), we do not directly include the
lower bound of the discrepancy given by Eq. 10 in Eq. 11, but instead use constraints to facilitate learning.
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Eq. 11 captures the essence of coordinating joint policies to maximize localized advantages with anticipated
joint policies. However, it still assumes full knowledge of Π̃. To make this feasible in individual policy
learning, we reformulate it from each agent’s perspective. Remarkably, we can distill the relevant components
into a local objective and constraints for each individual agent i, as follows:

max
π̃i

Es∼dπold (s),a∼π̃i(a|s)
[
A

πold
i (s, a)

]
s.t. : (a) Dmax

KL (πii
old||π

ii) ≤ δ1, (b) κi ·
∑
s,aj

(πij(aj |s)− πjj(aj |s))2 ≤ δ2, ∀j ̸= i,

(c) κi ·
∑
s,ai

(πii(ai|s)− πji(ai|s))2 ≤ δ2, ∀j ̸= i,

(12)

where κi = maxs,a |Aπold
i (s, a)|.

The constraints in Eq. 12 are imposed on πii and πij (j ̸= i), which together compose π̃i. Therefore, these
constraints effectively limit the space of possible π̃i by constraining its components. Constraint (a) limits
how much the agent’s own policy can change, while constraints (b) and (c) ensure that the anticipations are
close to the actual policies of other agents. The constraints also depend on other agents’ policies πjj and
their anticipations of agent i’s policy, πji. To evaluate these terms, each agent j shares its action distribution
πjj(·|s) and the anticipated action distribution πji(·|s) with agent i. This sharing enables each agent i to
assess the constraint terms, which couple individual advantage optimizations under local constraints. These
constraints reflect both the differences between the true policies of others and an agent’s anticipations of
them, as well as the discrepancy between an agent’s own true policy and others’ anticipations of it. By
distributing the optimization while exchanging critical policy information, this approach balances individual
policy updates while maintaining global coordination among agents.

It’s important to distinguish our anticipated policy learning objective from traditional teammate modeling.
In teammate modeling, agent i typically approximates peer policies π̂ij and uses these approximations when
solving for its own policy πii. In contrast, our approach in Eq. 12 aims to optimize the anticipations πij

alongside πii. These optimized anticipations πij are then used by agent j to solve for its policy πjj . This
method allows the anticipations to implicitly incorporate information about individual objectives. Through
the exchange of these anticipations, individual agents can balance others’ objectives and, consequently, the
collective performance while optimizing their own objectives.

4.3 A practical algorithm for learning with AS

We propose a structured approach to optimize the objective in Eq. 12. The derivation of the algorithm
involves specific steps, each targeting different aspects of the optimization challenge. Note that in this
practical algorithm, we present a setup where agent i exchanges information with neighbours {j|j ∈ Ni} that
may not include all other (N − 1) agents, and is not subject to a particular protocol used for determining Ni.
In experiments, we use different neighbourhood definitions/protocols to investigate corresponding effects.

Step 1: Clipping Policy Ratio for KL Constraint. Addressing the KL divergence constraint (a) in
Eq. 12 is crucial in ensuring each agent’s policy learning process remains effective. This constraint ensures
that updates to an agent’s individual policy do not deviate excessively from its previous policy. To manage
this, we incorporate a clipping mechanism, inspired by PPO-style clipping (Schulman et al., 2017), adapted
for individual agents in our method.

We start by defining probability ratios for the individual policy and anticipated peer policies:

ξi =
πii(ai|s′; θii)

πii
old

(ai|s′; θii
old

)
, ξNi

=
∏

j∈Ni

πij(aj |s; θij)
πjj

old
(aj |s; θjj

old
)

. (13)

These ratios measure the extent of change in an agent’s policy relative to its previous one and its anticipations
to others. We then apply a clipping operation to ξi, the individual policy ratio:

Es∼dπold (s),a∼πold(a|s)
[
min
(

ξiξNi
Âi, clip(ξi, 1− ϵ, 1 + ϵ)ξNi

Âi

)]
.

8
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This method selectively restricts major changes to the individual policy πii, while allowing more flexibility in
updating anticipations of peer policies. It balances the adherence to the KL constraint with the flexibility
needed for effective learning and adaptation in a multi-agent environment.

Step 2: Penalizing Anticipation Discrepancies. The objective of this step is to enforce constraints (b)
and (c) in Eq. 12, which aim to penalize discrepancies between the anticipated and true policies. Simply
optimizing the advantage function may not sufficiently increase these discrepancies. To be specific, if Âi > 0,
according to the main objective function, Eq. 12, the gradient used to update πij will be positive and will lead
to the increase of πij . If πij(a|s,θij)

πjj(a|s) < 1, i.e. πij(a|s, θij) < πjj(a|s), then the gradient caused by the main
objective will decrease the discrepancy between πij and πjj . Therefore, we introduce penalty terms that are
activated when policy updates inadvertently increase these discrepancies. Specifically, we define state-action
sets Xij to identify where the policy update driven by the advantage exacerbates the discrepancies between
the resulting anticipated policies and other agents’ current policies, and Xii to identify the discrepancies
between the resulting agent’s own policy and the ones anticipated from other agents. These are defined as:

Xij =
{

(s, a) |
πij(aj |s; θij)

πjj(aj |s)
Âi ≥ Âi

}
Xii =

{
(s, a) |

πii(ai|s; θii)
πji(ai|s)

Âi ≥ Âi

}
, (14)

where the pairs (s, a) represent scenarios in which the gradient influenced by Âi increases the divergence
between the two policies. The following indicator function captures this effect:

IX(s, a) =
{

1 if (s, a) ∈ X,

0 otherwise.
(15)

Step 3: Dual Clipped Objective. In the final step, we combine the clipped surrogate objective with
coordination penalties to form our dual clipped objective:

max
θii,θ−ii

Es∼dπold (s),a∼πold(a|s)
[
min
(

ξiξNi
Âi, clip(ξi, 1− ϵ, 1 + ϵ)ξNi

Âi

)
− κi ·

∑
j∈Ni

ρjIXij (s, a)∥πij(·|s; θij)− πjj(·|s)∥2
2 +ρ′

jIXii (s, a)∥πii(·|s; θii)− πji(·|s)∥2
2
]

,
(16)

where θii denotes the parameters of πii and θ−ii denotes the parameters of all the πij (j ∈ N i). With this
objective, each agent optimizes its own policy πii under the constraint of staying close to the anticipated
policies. In the meanwhile, the anticipations πij which are involved in ξNi , are optimized to maximize
the agent’s individual advantage function Ai under the constraint of avoiding deviating too far from the
actual policies of other agents. This objective function balances individual policy updates with the need
for coordination among agents, thereby aligning individual objectives with collective goals. Fig. 1 shows an
illustration of our method.

Implementation details. In our implementation, we use κ̂i = means,a|Âπ
i | to approximate κi in order

to mitigate the impact of value overestimation. Additionally, we adopt the same value for the coefficients
ρj and ρ′

j across different j, and denote it as ρ. We also utilize the generalized advantage estimator (GAE)
(Schulman et al., 2016) due to its well-known properties to obtain estimates,

Ât
i =

∞∑
l=0

(γλ)lδ
Vi
t+l

, δ
Vi
t+l

= rt+l
i + γVi(st+l+1)− Vi(st+l), (17)

where Vi is approximated by minimizing the following loss,

LVi
= E[(Vi(st)−

∞∑
l=0

γlrt+l
i )2]. (18)

Algorithm 1 presents the detailed procedure used in our experimental section.

9
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Figure 1: Illustration of AS algorithm, where d represents the function regarding the discrepancy term used in Eq. 16.

Algorithm 1: Cooperative MARL based on Anticipation Sharing (AS)
Initialize: Policy networks π̃i = (πi1, · · · , πiN ), value networks Vi, ∀i ∈ {1, · · · , N}
for episode = 1 to E do
Di ← ϕ,∀i
Observe initial state s1
for t=1 to T do

Execute action ai
t ∈ πii(·|st)

Observe reward ri
t and next state st+1

Store (st, ai
t, ri

t, st+1) ∈ Di

end for
for iteration = 1 to K do

for each agent i do
Share action distributions [πii

old(·|s1), · · · , πii
old(·|sT )] to neighbors {j ∈ Ni}

Share anticipated action distributions [πij
old

(·|s1), · · · , πij
old

(·|sT )] to neighbors {j ∈ Ni}
end for
for i=1 to N do

Compute advantage estimates Â1
i , · · · , ÂT

i using Eq 17
Update π̃i using Eq 16
Update Vi using Eq 18
π̃i

old ← π̃i

Share action distributions [πii
old(·|s1), · · · , πii

old(·|sT )] to neighbors {j ∈ Ni}
Share anticipated action distributions [πij

old
(·|s1), · · · , πij

old
(·|sT )] to neighbors {j ∈ Ni}

end for
end for

end for

5 Experiments

5.1 Environments

We evaluate our method with five diverse environments where agents have conflicting individual rewards.
Three environments are based on related works, while we propose two of our own environments to facilitate
the analysis of the problem and the performance of our method.

Cleanup. Based on (Christoffersen et al., 2023), this task involves agents cleaning a river and eating
apples. Apples spawn only if the waste density of the river is below a threshold. The spawn rate is inversely
proportional to the waste density. Eating an apple earns +1 reward for an agent, while cleaning the river
yields no reward or cost. This setup creates a free-rider problem - agents may prefer eating apples over
cleaning the river, potentially harming collective performance. We set the time horizon of an episode as 100
time steps and environment size as 11 × 18.

Harvest. Also based on (Christoffersen et al., 2023), this task involves agents harvesting apples. Apples
spawn at a rate proportional to the number of apples around the spawn positions. Only eating an apple
yields a non-zero reward of +1. The challenge for agents is to harvest apples at a sustainable rate while

10
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collaborating to avoid over-harvesting in the same region. We set the time horizon of an episode as 100 time
steps and environment size as 7 × 38.

Cooperative navigation (C. Navigation). Building on (Zhang et al., 2018b), this task requires each
agent to approach a landmark. We adopt the same observation and action configurations as in (Zhang et al.,
2018b). Agents earn rewards based on their proximity to targets but incur a -1 penalty upon collisions.
Agents can only exchange information with adjacent counterparts. We set the time horizon of an episode as
100 time steps and use three agents. The environment size is 5 × 5. Fig.8(a) in Appendix A.2 illustrates this
environment setup.

Exchange. We introduce a new discrete environment to explore the dynamics of agent interactions with
conflicting interests. Three agents interact with three boxes, each containing food for a specific agent. However,
a box can only be opened by another agent at a cost of 5 reward points. The food’s intended recipient
gains 10 reward points. Every agent loses 0.01 reward points per time step, with a maximum of 300 steps
per episode. In a purely self-interested scenario, agents would avoid opening boxes for others, leading to a
free-rider problem. The time horizon of an episode is set as 300. The environment size is 5 × 5. Appendix A.2,
Fig.8(b) illustrates this environment. The state comprises the positions of agents and food items, randomly
initialized each episode. Agents can move in four directions, open a box, or stay still. Neighboring agents are
defined by the dashed outline rectangles.

Cooperative predation (C. Predation). We introduce a novel continuous domain task involving multiple
predator agents aiming to capture a single prey. This environment presents a cooperate-versus-defect dilemma.
All predators cooperating (approaching the prey) results in each gaining a reward of −1. Universal defection
(not approaching) leads to a −3 reward for each predator. In mixed scenarios, predators actively pursuing
the prey receive a −4 reward, while non-participating predators gain 0. The challenge is to encourage agents
to cooperate to capture the prey rather than act selfishly. For each episode, the prey’s position, xtar ∈ X ,
and the agents’ starting positions, xagi

∈ X , are randomized within X = [0, 30]. The state is represented as
st = [xt

ag1
− xtar, . . . , xt

agN
− xtar], a continuous variable. The action set A = {−1, +1} represents left and

right movements. Neighboring agents are those within a normalized distance of 0.1. Fig.8(c) in AppendixA.2
illustrates this environment. The time horizon of an episode is set as 30. Our main experiments use 8 predator
agents, while we test with 20 and 30 agents to evaluate the scalability of our algorithm.

5.2 Baselines

We consider three baseline algorithms designed to optimize the total return of all agents under individual
rewards, providing a fair comparison with our AS framework to demonstrate its competitiveness, despite not
relying on value or policy sharing. While many other MARL algorithms are commonly used as baselines in
literature, we exclude them from our experiments due to fundamental differences in problem settings.

Value function parameter sharing (VPS) (Zhang et al., 2018b) employs a consensus approach to update
individual value functions. Each value function update utilizes the agent’s unique reward and incorporates a
weighted aggregation of value function parameters from neighboring agents.

Value sharing (VS) (Du et al., 2022). Each agent independently learns a value function and shares the
output values with neighbors. The individual policy network is updated based on the average value.

Policy parameter sharing (PS) (Zhang & Zavlanos, 2019) uses consensus updates to learn global policies.
Each agent learns a global policy for all agents and then aggregates policy parameters among neighbours.
Value functions are learned independently without consensus updates.

All baseline algorithms and our AS algorithm are implemented on the foundation of the same PPO-based MARL
algorithm. This ensures that any performance differences stem from the information sharing mechanisms
rather than underlying algorithm variations. The hyperparamters used in the algorithms are provided in
Appendix A.3. We chose the hyperparameter values based on common practices in the field. For instance, we
set the discount factor to 0.99 and used the same clipping threshold as in the original PPO paper (Schulman
et al., 2015). Network sizes were determined based on the state and action dimensions of each environment.
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Cleanup Harvest Exchange C. Navigation C. Predation

Figure 2: Training curves and normalized final total returns.

5.3 Results

We conducted 5 runs with different seeds for each algorithm and environment. Figure 2 shows the training
curves and final total returns for different algorithms. Our AS algorithm demonstrates consistent strong
performance across all tasks, with total returns matching or exceeding those of baseline algorithms that rely
on sharing values or policy parameters. This demonstrates the effectiveness of AS.

Effect on solving social dilemmas. AS is specifically designed to handle situations where agents have
conflicting individual interests that can hinder collective cooperation, such as in Social Dilemmas. The
Exchange task, an extension of the sequential Prisoner’s Dilemma, clearly demonstrates the effectiveness of
AS in managing these conflicting interests. In the Exchange task, the selfish policy is for each agent to defect
(be a free rider) and not open boxes for other agents. However, the collectively optimal solution requires
each agent to cooperate and open boxes. Given the reward structure (300 maximum time steps, 0.01 reward
loss per time step, 5 reward cost for opening a box, and 10 reward gain for the intended recipient), we can
calculate the theoretical optimal returns. The optimal cooperative policy yields approximately 6, while the
non-cooperative policy results in -9.

As shown in Figure 2, AS converges to the optimal cooperative policies, achieving a total return close to the
theoretical optimum. In contrast, VS and VPS fail to promote cooperation and converge to non-cooperative
policies, resulting in lower total returns. This demonstrates AS’s ability to encourage cooperation and
overcome the challenges posed by the Prisoner’s Dilemma in a sequential setting, aligning agents’ actions
towards the collective goal despite individual incentives for defection.

Scalability study. We examine the scalability of our method as the number of agents increases. To reduce
communication and computational costs, we implement a sparse network topology and low communication
frequency. Our study employs two protocols: (1) each agent randomly selects only one agent for information
exchange, and (2) agents communicate every two learning updates (episodes), effectively reducing commu-
nication by 50%. During communication gaps, agents do not update anticipated policies of others or use
constraints on discrepancies between anticipated and true action distributions. Specifically, we remove the last
two terms in Eq. 16 and the policy ratio ξNi

involving others’ true policies. Consequently, each agent updates
its policy independently during these periods. We apply the same approach to baseline algorithms. Figure 3
presents results for C. Predation with 20 and 30 agents, demonstrating our AS algorithm’s effectiveness at
scale. VS and VPS yield suboptimal results, while PS fails to learn within the given training episodes

Sensitivity to penalty weight. We investigate our algorithm’s sensitivity to the weight (ρ) of the penalty
terms. We conduct this analysis across three environments. In Cleanup, we test weights ρ = 900, 1000 (used
in main experiments), and 1100. For Harvest, we use weights ρ = 0.01, 0.1 (used in main experiments),
and 1. In C. Predation, we employ weights ρ = 0.03, 0.1 (used in main experiments), and 0.3. The range
of the weight is related to the value of an appropriate value of the weight, which might be related to the
specific action space, such as the dimension of the action space or the meaning of different action dimensions.
Figure 4 presents the results of these experiments. The training curves demonstrate that our algorithm
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C. Predation N=20 C. Predation N=30 C. Predation N=20 C. Predation N=30

Figure 3: Training curves and normalized final total returns.

(a) Cleanup (b) Harvest (c) C. Predation

Figure 4: Training curves with different penalty weights.

maintains robust performance across a wide range of penalty weights. This robustness suggests that the
algorithm’s performance is not overly sensitive to precise tuning of this hyperparameter, which is a desirable
characteristic for practical applications.

Ablation study. We conducted the ablation study with removing the constraints of the objective function,
i.e., ρ = 0. The experimental results are shown in Figure 5. The results demonstrate that when the constraints
are removed, the algorithm performance drops or the agents cannot even learn anything.

Comparison with Independent learning with individual rewards and Centralized learning with
team rewards. We compared AS with these two additional baselines, which is used in different settings.
Specifically, we implemented Independent PPO with individual rewards and Centralized PPO with shared
rewards. For the Independent PPO with individual rewards, each agent learns its own policy using single-agent
PPO. For the Centralized PPO, we used a single policy network to output probabilities of the joint action
distribution and a critic network to evaluate the total return using the total reward. Due to the exponential
growth of the joint action space, we limited this experiment to N=2 agents. The results are shown in Figure 6,
which indicate that Independent PPO achieves the lowest total return, while Centralized PPO performs the
best. Our AS algorithm’s performance is closest to that of Centralized PPO, demonstrating its effectiveness
in balancing individual privacy and collective performance.

Anticipated policy and policy discrepancy. We conduct experiments to investigate the learned anticipated
policies and the discrepancy between an agent’s policy and the anticipated policies given by another agent.
For ease of understanding, we use the task of Cooperative Predation with two agents. For this task, the
action set includes two actions: "moving towards the target" and "moving away from the target". The optimal
policy that can maximize the collective total returns is both agent moving towards the target. In order to
know the anticipated actions learned by each agent, we calculate the proportion of the anticipated actions
being "moving towards the target". The results are shown in the top row of Figure 7. The results indicate
that both agents anticipate that the other agent can move towards the target rather than move away from the
target with a proportion approaching 1. The mean square error between the probability of the action chosen
by an agent and the anticipated action given by the other agent is shown in the second row of Figure 7. As
the training proceeds, the MSE becomes smaller.

13



Under review as submission to TMLR

(a) C. Predation (b) Cleanup

Figure 5: Ablation study of removing constraints.

Figure 6: Comparison with Independent learning with individual rewards and Centralized learning with team
rewards.

6 Discussion and conclusions

In this work, we addressed the challenges of multi-agent cooperation under individual reward conditions,
where individual interests may conflict with collective objectives. We introduced Anticipation Sharing (AS)
as a solution for scenarios where agents are unaware of others’ rewards and policies, and traditional methods
of sharing rewards, values, and policy models are infeasible. AS allows agents to incorporate their individual
interests into anticipations about other agents’ action distributions. Through exchanging these anticipations,
agents implicitly build inferences about collective interests, despite the privacy of individual rewards, values,
and policies.

Theoretically, we established that the difference between agents’ true action distributions and the anticipations
from others bounds the discrepancy between individual and collective objectives. This insight led to a novel
optimization problem decomposable into individual agents’ goals, serving as a lower bound for the original
collective objective. Iteratively solving these individual problems drives agents toward cooperative behaviors.
Our empirical experiments demonstrate that our algorithm is competitive with the baseline algorithms
requiring value or policy parameter sharing.

Our study was primarily motivated by the need to develop a method for cooperative multi-agent learning
in settings where agents have individual, private rewards. However, in the course of our experiments, we
unexpectedly observed certain limitations of the baseline methods. VS and VPS show inconsistent performance
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(a) (b)

(c) (d)

Figure 7: Anticipated action and discrepancy results.

across tasks, performing better in C. Predation compared to Exchange and C. Navigation. This discrepancy
likely stems from the varying coordination requirements of these tasks, with Exchange and C. Navigation
demanding higher levels of coordination, particularly given the heterogeneous nature of agents with unique
individual objectives. VS and VPS, which rely solely on sharing values or value functions to achieve consensus
on a system-wide value, may falter in these more complex environments, suggesting that value consensus
alone may be insufficient for fostering truly cooperative policies in scenarios requiring intricate coordination.
PS, while focusing on direct policy coordination, exhibits slow convergence on some tasks, possibly due to
the overhead of sharing entire policy parameters, which may introduce redundant information not essential
for effective coordination. These observations highlight the challenges faced by existing methods in achieving
effective coordination and computational efficiency. Notably, unlike our AS method, these baseline approaches
do not address privacy concerns, as they rely on sharing various forms of information among agents. Our
proposed AS method, designed primarily for facilitating cooperation without explicitly sharing rewards, values,
or policies, appears to address these challenges effectively while also maintaining the privacy of individual
rewards, values and policies. It exchanges action distributions instead of full policy parameters and selectively
shares anticipations only with corresponding agents, not all neighbors.

Our work represents an initial step in addressing multi-agent cooperation under private rewards. However, in
this work, AS avoids explicit exposure of rewards rather than providing formal privacy guarantees, which
qualitatively reduces information sharing compared to methods that directly share rewards or full policies but
does not quantitatively minimize the information leakage. In the future work, we will explore techniques to
provide stronger privacy guarantees and investigate the trade-off between privacy preservation and cooperative
performance. Besides, further reducing algorithm complexity is another promising future direction. Currently,
AS algorithm trains N2 policy networks with each agent learning its own policy and anticipated policies
about other agents. However, we believe there are solutions to reduce the complexity. For example, we can
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use a more computationally efficient network structure, such as using a multi-head policy network that has
N output units to output the agent’s own policy and N − 1 anticipated policies.

Other future research directions include analyzing the convergence properties of our algorithm, applying
AS to more complex tasks, refining individual objectives through tighter bounds on discrepancies between
individual and collective interests, and exploring alternative optimization strategies based on the AS framework.
Additionally, investigating the integration of communication mechanisms from physical and network layers
into AS presents another promising avenue for research.

16



Under review as submission to TMLR

References
Stefano V. Albrecht and Peter Stone. Autonomous agents modelling other agents: A comprehensive

survey and open problems. Artificial Intelligence, 258(September):66–95, 2018. ISSN 00043702. doi:
10.1016/j.artint.2018.01.002.

Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of decentralized
control of Markov decision processes. Mathematics of Operations Research, 27(4):819–840, 2002. ISSN
0364765X. doi: 10.1287/moor.27.4.819.297.

Craig Boutilier. Planning, learning and coordination in multiagent decision processes. Proceedings of the
Theoretical Aspects of Reasoning about Knowledge, TARK-96, 1996.

Tianyi Chen, Kaiqing Zhang, Georgios B. Giannakis, and Tamer Basar. Communication-Efficient Policy
Gradient Methods for Distributed Reinforcement Learning. IEEE Transactions on Control of Network
Systems, 9(2):917–929, 2022. ISSN 23255870. doi: 10.1109/TCNS.2021.3078100.

Phillip J. K. Christoffersen, Andreas A. Haupt, and Dylan Hadfield-Menell. Get It in Writing: Formal
Contracts Mitigate Social Dilemmas in Multi-Agent RL. Proceedings of the 2023 International Conference
on Autonomous Agents and Multiagent Systems, pp. 448–456, 2023. URL http://arxiv.org/abs/2208.
10469.

Tianshu Chu, Sandeep Chinchali, and Sachin Katti. Multi-agent Reinforcement Learning for Networked
System Control. International Conference on Learning Representations, (1), 2020a. URL http://arxiv.
org/abs/2004.01339.

Tianshu Chu, Jie Wang, Lara Codecà, and Zhaojian Li. Multi-Agent Deep Reinforcement Learning for
Large-Scale Traffic Signal Control. IEEE Transactions on Intelligent Transportation Systems, 21(3):
1086–1095, 2020b. ISSN 15582914.

Gerard Debreu. Valuation Equilibrium and Pareto Optimum. Proceedings of the National Academy of
Sciences, 40(7):588–592, 1954. ISSN 0027-8424. doi: 10.1073/pnas.40.7.588.

Yali Du, Chengdong Ma, Yuchen Liu, Runji Lin, Hao Dong, Jun Wang, and Yaodong Yang. Scalable
Model-based Policy Optimization for Decentralized Networked Systems. International Conference on
Intelligent Robots and Systems (IROS), pp. 9019–9026, 2022. URL http://arxiv.org/abs/2207.06559.

Jakob Foerster, Nantas Nardell, Gregory Farquhar, Trtantafyllos Afouras, Philip H.S. Torr, Pushmeet Kohli,
and Shimon Whiteson. Stabilising experience replay for deep multi-agent reinforcement learning. 34th
International Conference on Machine Learning, ICML 2017, 3:1879–1888, 2017.

He He, Jordan Boyd-Graber, Kevin Kwok, and Hal Daume. Opponent modeling in deep reinforcement
learning. 33rd International Conference on Machine Learning, ICML 2016, 4:2675–2684, 2016.

Xiufeng Huang and Sheng Zhou. Importance-Aware Message Exchange and Prediction for Multi-Agent
Reinforcement Learning. 2022 IEEE Global Communications Conference, GLOBECOM 2022 - Proceedings,
pp. 6493–6498, 2022. doi: 10.1109/GLOBECOM48099.2022.10001408.

Edward Hughes, Joel Z. Leibo, Matthew Phillips, and Karl Tuyls. Inequity aversion improves cooperation in
intertemporal social dilemmas. Advances in Neural Information Processing Systems, pp. 3326–3336, 2018.
ISSN 10495258.

Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learning. 36th International
Conference on Machine Learning, ICML 2019, 2019-June:5261–5270, 2019.

Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro A. Ortega, D. J. Strouse, Joel Z.
Leibo, and Nando de Freitas. Social influence as intrinsic motivation for multi-agent deep reinforcement
learning. 36th International Conference on Machine Learning, ICML 2019, 2019-June:5372–5381, 2019.

17

http://arxiv.org/abs/2208.10469
http://arxiv.org/abs/2208.10469
http://arxiv.org/abs/2004.01339
http://arxiv.org/abs/2004.01339
http://arxiv.org/abs/2207.06559


Under review as submission to TMLR

Jiechuan Jiang and Zongqing Lu. I2Q : A Fully Decentralized Q-Learning Algorithm. Advances in Neural
Information Processing Systems, 35:20469–20481, 2022.

Woojun Kim, Jongeui Park, and Youngchul Sung. Communication in Multi-Agent Reinforcement Learning:
Intention Sharing. ICLR, pp. 1–15, 2021.

Mounssif Krouka, Anis Elgabli, Chaouki Ben Issaid, and Mehdi Bennis. Communication-Efficient and
Federated Multi-Agent Reinforcement Learning. IEEE Transactions on Cognitive Communications and
Networking, 8(1):311–320, 2022. ISSN 23327731. doi: 10.1109/TCCN.2021.3130993.

Jakub Grudzien Kuba, Ruiqing Chen, Muning Wen, Ying Wen, Fanglei Sun, Jun Wang, and Yaodong Yang.
Trust Region Policy Optimisation in Multi-Agent Reinforcement Learning. International Conference on
Learning Representations, pp. 1046, 2022.

Martin Lauer and Martin Riedmiller. An Algorithm for Distributed Reinforcement Learning in Cooperative
Multi-Agent Systems. Proceedings of the seventeenth international conference on machine learning, pp.
535–542, 2000.

Wanlu Lei, Yu Ye, Ming Xiao, Mikael Skoglund, and Zhu Han. Adaptive Stochastic ADMM for Decentralized
Reinforcement Learning in Edge IoT. IEEE Internet of Things Journal, 9(22):22958–22971, 2022. ISSN
23274662. doi: 10.1109/JIOT.2022.3187067.

Joel Z. Leibo, Vinicius Zambaldi, Marc Lanctot, Janusz Marecki, and Thore Graepel. Multi-agent Reinforce-
ment Learning in Sequential Social Dilemmas. Proceedings of the 16th International Conference on Au-
tonomous Agents and Multiagent Systems, pp. 464–473, 2017. URL http://arxiv.org/abs/1702.03037.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-critic
for mixed cooperative-competitive environments. Advances in Neural Information Processing Systems,
2017-Decem:6380–6391, 2017. ISSN 10495258.

Chuan Ma, Jun Li, Senior Member, and Kang Wei. Trusted AI in Multi-agent Systems : An Overview of
Privacy and Security for Distributed Learning. pp. 1–36, 2023.

Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P How, and John Vian. Deep Decentralized
Multi-task Multi-Agent Reinforcement Learning under Partial Observability. 2017. doi: 10.5555/3305890.
3305958.

Bei Peng, Tabish Rashid, Christian A. Schroeder de Witt, Pierre Alexandre Kamienny, Philip H.S. Torr,
Wendelin Böhmer, and Shimon Whiteson. FACMAC: Factored Multi-Agent Centralised Policy Gradients.
Advances in Neural Information Processing Systems, 15(NeurIPS):12208–12221, 2021. ISSN 10495258.

Yunbo Qiu, Student Member, Yue Jin, and Lebin Yu. Improving Sample Efficiency of Multi-Agent Rein-
forcement Learning with Non-expert Policy for Flocking Control. pp. 1–15, 2023. doi: 10.1109/JIOT.2023.
3240671.

John Schulman, Sergey Levine, Philipp Moritz, Michael Jordan, and Pieter Abbeel. Trust region policy
optimization. 32nd International Conference on Machine Learning, ICML 2015, 3:1889–1897, 2015.

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. 4th International Conference on Learning
Representations, ICLR 2016 - Conference Track Proceedings, pp. 1–14, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy Optimization
Algorithms. arXiv preprint arXiv:1707.06347, 2017.

Xingyu Sha, Jiaqi Zhang, and Keyou You. Policy evaluation for reinforcement learning over asynchronous
multi-agent networks. Chinese Control Conference, CCC, 2021-July:5373–5378, 2021. ISSN 21612927. doi:
10.23919/CCC52363.2021.9550466.

18

http://arxiv.org/abs/1702.03037


Under review as submission to TMLR

L. S. Shapley. Stochastic Games. Proceedings of the National Academy of Sciences, 39(10):1095–1100, 1953.
ISSN 0027-8424. doi: 10.1073/pnas.39.10.1095.

Philipp D Siedler and Aleph Alpha. Dynamic Collaborative Multi-Agent Reinforcement Learning Communi-
cation for Autonomous Drone Reforestation. (NeurIPS 2022).

Milos S. Stankovic, Marko Beko, and Srdjan S. Stankovic. Distributed Actor-Critic Learning Using Emphatic
Weightings. 2022 8th International Conference on Control, Decision and Information Technologies, CoDIT
2022, pp. 1167–1172, 2022a. doi: 10.1109/CoDIT55151.2022.9804022.

Miloš S. Stankovic, Marko Beko, and Srdjan S. Stankovic. Convergent Distributed Actor-Critic Algorithm
Based on Gradient Temporal Difference. European Signal Processing Conference, 2022-Augus:2066–2070,
2022b. ISSN 22195491. doi: 10.23919/eusipco55093.2022.9909762.

Kefan Su and Zongqing Lu. Decentralized Policy Optimization. arXiv preprint arXiv:2211.03032, 2022.

Chuangchuang Sun, Macheng Shen, and Jonathan P. How. Scaling up multiagent reinforcement learning
for robotic systems: Learn an adaptive sparse communication graph. IEEE International Conference on
Intelligent Robots and Systems, pp. 11755–11762, 2020. ISSN 21530866. doi: 10.1109/IROS45743.2020.
9341303.

Mingfei Sun, Sam Devlin, Jacob Beck, Katja Hofmann, and Shimon Whiteson. Trust Region Bounds
for Decentralized PPO Under Non-stationarity. Proceedings of the 2023 International Conference on
Autonomous Agents and Multiagent Systems, pp. 5–13, 2022. URL http://arxiv.org/abs/2202.00082.

Wesley Suttle, Zhuoran Yang, Kaiqing Zhang, Zhaoran Wang, Tamer Basar, and Ji Liu. A multi-agent
off-policy actor-critic algorithm for distributed reinforcement learning. IFAC-PapersOnLine, 53:1549–1554,
2020. ISSN 24058963. doi: 10.1016/j.ifacol.2020.12.2021.

Elizaveta Tennant, Stephen Hailes, and Mirco Musolesi. Modeling Moral Choices in Social Dilemmas with
Multi-Agent Reinforcement Learning. arXiv preprint arXiv:2301.08491, 2023. URL https://arxiv.org/
abs/2301.08491v1.

Yutong Wang, Mehul Damani, Pamela Wang, Yuhong Cao, and Guillaume Sartoretti. Distributed Reinforce-
ment Learning for Robot Teams: A Review. 2022. URL http://arxiv.org/abs/2204.03516.

Ying Wen, Yaodong Yang, Rui Luo, Jun Wang, and Wei Pan. Probabilistic recursive reasoning for multi-agent
reinforcement learning. 7th International Conference on Learning Representations, ICLR 2019, pp. 1–20,
2019.

Zifan Wu, Chao Yu, Deheng Ye, Junge Zhang, Haiyin Piao, and Hankz Hankui Zhuo. Coordinated Proximal
Policy Optimization. Advances in Neural Information Processing Systems, 32:26437–26448, 2021. ISSN
10495258.

Zhaoyue Xia, Jun Du, Jingjing Wang, Chunxiao Jiang, Yong Ren, Gang Li, and Zhu Han. Multi-Agent
Reinforcement Learning Aided Intelligent UAV Swarm for Target Tracking. IEEE Transactions on Vehicular
Technology, 71(1):931–945, 2022. ISSN 19399359. doi: 10.1109/TVT.2021.3129504.

Huiying Xu, Xiaoyu Qiu, Weikun Zhang, Kang Liu, Shuo Liu, and Wuhui Chen. Privacy-preserving
incentive mechanism for multi-leader multi-follower IoT-edge computing market: A reinforcement learning
approach. Journal of Systems Architecture, 114(October 2020):101932, 2021. ISSN 13837621. doi:
10.1016/j.sysarc.2020.101932. URL https://doi.org/10.1016/j.sysarc.2020.101932.

Yuxuan Yi, Ge Li, Yaowei Wang, and Zongqing Lu. Learning to Share in Multi-Agent Reinforcement Learning.
ICLR 2022 Workshop on Gamification and Multiagent Solutions, 2022. URL http://arxiv.org/abs/
2112.08702.

Tingting Yuan, Hwei-ming Chung, and Xiaoming Fu. PP-MARL : Efficient Privacy-Preserving Multi-agent
Reinforcement Learning for Cooperative Intelligence in Communications. IEEE Network, PP:1, 2023. doi:
10.1109/MNET.2023.3330877.

19

http://arxiv.org/abs/2202.00082
https://arxiv.org/abs/2301.08491v1
https://arxiv.org/abs/2301.08491v1
http://arxiv.org/abs/2204.03516
https://doi.org/10.1016/j.sysarc.2020.101932
http://arxiv.org/abs/2112.08702
http://arxiv.org/abs/2112.08702


Under review as submission to TMLR

Kaiqing Zhang, Zhuoran Yang, and Tamer Basar. Networked Multi-Agent Reinforcement Learning in
Continuous Spaces. Proceedings of the IEEE Conference on Decision and Control, 2018-Decem(Cdc):
2771–2776, 2018a. ISSN 25762370. doi: 10.1109/CDC.2018.8619581.

Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Başar. Fully decentralized multi-agent
reinforcement learning with networked agents. 35th International Conference on Machine Learning, ICML
2018, 13:9340–9371, 2018b.

Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Basar. Finite-sample analysis for de-
centralized cooperative multi-agent reinforcement learning from batch data. IFAC-PapersOnLine, 53(2):
1049–1056, 2020. ISSN 24058963. doi: 10.1016/j.ifacol.2020.12.1290.

Yan Zhang and Michael M. Zavlanos. Distributed off-Policy Actor-Critic Reinforcement Learning with Policy
Consensus. Proceedings of the IEEE Conference on Decision and Control, 2019-Decem(Cdc):4674–4679,
2019. ISSN 25762370. doi: 10.1109/CDC40024.2019.9029969.

Xiaoxiao Zhao, Peng Yi, and Li Li. Distributed policy evaluation via inexact ADMM in multi-agent
reinforcement learning. Control Theory and Technology, 18(4):362–378, 2020. ISSN 21980942. doi:
10.1007/s11768-020-00007-x.

Yan Zheng, Zhaopeng Meng, Jianye Hao, Zongzhang Zhang, Tianpei Yang, and Changjie Fan. A deep
Bayesian policy reuse approach against non-stationary agents. Advances in Neural Information Processing
Systems, 2018-Decem(NeurIPS):954–964, 2018. ISSN 10495258.

A Appendix

A.1 Proofs

A.1.1 Proof of Lemma 1

Lemma 1 The following bound holds for the difference between the expected returns of the current policy
πold and another policy πnew

η(πnew) ≥ η(πold) + ζπold
(πnew) − C · Dmax

KL (πold||πnew), (19)

where

ζπold
(πnew) = Es∼dπold (s),a∼πnew(·|s)

[∑
i

Aπold
i (s, a)

]
,

C =
4 maxs,a |

∑
i Aπold

i (s, a)|γ
(1 − γ)2

Dmax
KL (πold||πnew) = max

s
DKL(πold(·|s)||πnew(·|s)).

(20)

Lemma 3 Given two joint policies πold and πnew,

η(πnew) = η(πold) + Eτ∼πnew

[
N∑

i=1

∞∑
t=0

γtAπold
i (st, at)

]
, (21)

where Eτ∼πnew
[·] means the expectation is computed over trajectories where the initial state distribution

s0 ∼ d(s0), action selection at ∼ πnew(·|st), and state transitions st+1 ∼ P(·|st, at).

Proof: The expected discounted reward of the joint policy, i.e., Eq. 1, can be expressed as

η(π) =
N∑

i=1
Es0∼d(s0) [V π

i (s0)] . (22)

20
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Using Aπold
i (st, at) = Es′ [ri

t + γV πold
i (s′) − V πold

i (s)], we have

Eτ∼πnew

[
N∑

i=1

∞∑
t=0

γtAπold
i (st, at)

]

= Eτ∼πnew

[
N∑

i=1

∞∑
t=0

γt(ri
t + γV πold

i (st+1) − V πold
i (st))

]

= Eτ∼πnew

[
N∑

i=1

∞∑
t=0

γt+1V πold
i (st+1) −

∞∑
t=0

γtV πold
i (st) +

∞∑
t=0

γtri
t

]

= Eτ∼πnew

[
N∑

i=1

∞∑
t=1

γtV πold
i (st) −

∞∑
t=0

γtV πold
i (st) +

∞∑
t=0

γtri
t

]

= Eτ∼πnew

[
N∑

i=1
(−V πold

i (s0) +
∞∑

t=0
γtri

t)
]

= −
N∑

i=1
Es0∼d(s0)[V πold

i (s0)] +
N∑

i=1
Eτ∼πnew

[ ∞∑
t=0

γtri
t

]
= −η(πold) + η(πnew).

(23)

Thus, we have Eq. 21.

Define an expected joint advantage Ājoint as

Ājoint(s) = Ea∼πnew(·|s)

[
N∑

i=1
Aπold

i (s, a)
]

. (24)

Define Lπold
(πnew) as

Lπold
(πnew) = η(πold) + Eτ∼πold

[ ∞∑
t=0

γtĀjoint(st)
]

= η(πold) +
∑

s

∞∑
t=0

γtP (st = s|πold)Ājoint(s).
(25)

Leveraging the Lemma 2, Lemma 3, and Theorem 1 provided by TRPO (Schulman et al., 2015), we have

|η(πnew) − Lπold
(πnew)| ≤ C · (max

s
DT V (πold(·|s)||πnew(·|s)))2. (26)

Based on the relationship: (DT V (p||q))2 ≤ DKL(q||q), we have

|η(πnew) − Lπold
(πnew)| ≤ C · Dmax

KL (πold||πnew). (27)
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For the second term of the RHS of Eq. 25, we have the following equivalent form∑
s

∞∑
t=0

γtP (st = s|πold)Ājoint(s)

=
∑

s

∞∑
t=0

γtP (st = s|πold)Ājoint(s)

=
∑

s

dπold(s)Ājoint(s)

=
∑

s

dπold(s)Ea∼πnew(·|s)

[
N∑

i=1
Aπold

i (s, a)
]

= ζπold
(πnew),

(28)

where dπ denotes the state visitation distribution under policy π, and the third line is derived based on
the property dπold(s) = P (s0 = s) + γP (s1 = s) + γ2P (s2 = s) + · · · . Thus, we have Lπold

(πnew) =
η(πold) + ζπold

(πnew). Then, replacing Lπold
(πnew) in Eq. 27, we have

|η(πnew) − (η(πold) + ζπold
(πnew))| ≤ C · Dmax

KL (πold||πnew), (29)

and thus Theorem 1 is proved.

A.1.2 Proof of Lemma 2

Lemma 2 The discrepancy between ζπ′(Π̃) and the sum of the expected individual advantages calculated with
policy π′ over the true joint policy π, i.e., ζπ′(π), is upper bounded as follows.

ζπ′(Π̃) − ζπ′(π) ≤ fπ′
+
∑

i

1
2 max

s,a

∣∣∣Aπ′

i (s, a)
∣∣∣ ·
∑
s,a

(
π̃i(a|s) − π(a|s)

)2
, (30)

where
fπ′

=
∑

i

1
2 max

s,a

∣∣∣Aπ′

i (s, a)
∣∣∣ · |A| · ∥dπ′

∥2
2, (31)

and ∥dπ′∥2
2 =

∑
s(dπ′(s))2.

Proof:
ζπ′(Π̃) − ζπ′(π) =

∑
i

Es∼dπ′ (s),a∼π̃i(a|s)

[
Aπ′

i (s, a)
]

− Es∼dπ′ (s),a∼π(a|s)

[
Aπ′

i (s, a)
]

=
∑

i

∑
s,a

dπ′
(s)(π̃i(a|s) − π(a|s))Aπ′

i (s, a),

≤
∑

i

max
s,a

∣∣∣Aπ′

i (s, a)
∣∣∣ ·

∣∣∣∣∣∑
s,a

dπ′
(s)
(
π̃i(a|s) − π(a|s)

)∣∣∣∣∣
≤
∑

i

max
s,a

∣∣∣Aπ′

i (s, a)
∣∣∣ ·
∑
s,a

1
2

(
dπ′

(s)2 +
(
π̃i(a|s) − π(a|s)

)2)
=
∑

i

1
2 max

s,a

∣∣∣Aπ′

i (s, a)
∣∣∣ ·
∑
s,a

(
dπ′

(s)2 +
(
π̃i(a|s) − π(a|s)

)2)
=
∑

i

1
2 max

s,a

∣∣∣Aπ′

i (s, a)
∣∣∣ ·

(
|A| · ∥dπ′

∥2
2 +

∑
s,a

(
π̃i(a|s) − π(a|s)

)2
)

= fπ′
+
∑

i

1
2 max

s,a

∣∣∣Aπ′

i (s, a)
∣∣∣ ·
∑
s,a

(
π̃i(a|s) − π(a|s)

)2

(32)

where
fπ′

=
∑

i

1
2 max

s,a

∣∣∣Aπ′

i (s, a)
∣∣∣ · |A| · ∥dπ′

∥2
2.
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A.1.3 Proof of Theorem 1

Theorem 1 The discrepancy between the return of the newer joint policy and the value of ζπold
(Π̃new) is

lower bounded as follows:

η(πnew) − ζπold
(Π̃new) ≥η(πold) − C ·

∑
i

Dmax
KL (πii

old||πii
new) − fπold

−
∑

i

1
2 max

s,a
|Aπold

i (s, a)| ·
∑
s,a

(
π̃i

new(a|s) − πnew(a|s)
)2

.
(33)

Proof: According to Theorem 1, we have

η(πnew) ≥ ζπold
(πnew) + η(πold) − C · Dmax

KL (πold||πnew). (34)

The KL divergence has the following property (Su & Lu, 2022):

Dmax
KL (πold||πnew) ≤

∑
i

Dmax
KL (πii

old||πii
new). (35)

Based on Eq. 34 and Eq. 35, we have

η(πnew) ≥ ζπold
(πnew) + η(πold) − C ·

∑
i

Dmax
KL (πii

old||πii
new). (36)

Using Theorem 2, ζπold
(Π̃new) and ζπold

(πnew) satisfy the following inequality:

ζπold
(πnew)

≥ ζπold
(Π̃new) −

∑
i

1
2 max

s,a
|Aπold

i (s, a)| ·
∑
s,a

max
s

dπold(s)2 + (π̃i
new(a|s) − πnew(a|s))2.

(37)

According to Eq. 31, Eq. 37 can be transformed as:

ζπold
(πnew)

≥ ζπold
(Π̃new) − fπold −

∑
i

1
2 max

s,a
|Aπold

i (s, a)| ·
∑
s,a

(
π̃i

new(a|s) − πnew(a|s)
)2

.
(38)

By replacing ζπold
(πnew) in Eq. 36 with the RHS of Eq. 38, we can get Eq. 33, and thus Theorem 1 is proved.

A.2 Illustrations of simulated environments

We evaluate the performance of our AS algorithm across a spectrum of tasks, spanning both discrete
(Exchange and Cooperative Navigation) and continuous (Cooperative Predation) spaces. An illustration of
these environments is shown in Fig. 8.

A.3 Hyperparameters

Hyperparameters used in our experiments are given in Tables 1 and 2.
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(a) Cooperative navigation (b) Exchange

(c) Cooperative predation

Figure 8: Illustrations of environments.

Table 1: Common hyperparameters used in all environments.

Hyperparameter Value
Critic learning rate 1e-4
Discount factor γ 0.99
GAE λ 0.98
Clipping ϵ 0.2
Update iteration K 3
Activation ReLU
Optimizer Adam

Table 2: Hyperparameters used in different environments.

Domain Cleanup Harvest C. Predation C. Navigation Exchange
Critic network size (1024, 256, 1) (1024, 256, 1) (128, 64, 1) (128, 64, 1) (128, 64, 1)
Actor network size (1024, 256, d_a) (1024, 256, d_a) (128, 64, d_a) (128, 64, d_a) (128, 64, d_a)
Actor learning rate 5e-5 5e-5 1e-4 5e-5 5e-5
ρ 1e3 0.1 0.1 1e4 1e4
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