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Abstract

As machine learning is applied more to real-world problems like robotics, control
of autonomous vehicles, drones, and recommendation systems, it becomes essential
to consider the notion of agency where multiple agents with local observations
start impacting each other and interact to achieve their goals. Multi-agent rein-
forcement learning (MARL) is concerned with developing learning algorithms that
can discover effective policies in multi-agent environments. In this work, we de-
velop algorithms for addressing two critical challenges in MARL - non-stationarity
and robustness. We show that naive independent reinforcement learning does
not preserve the strategic game-theoretic interaction between the agents, and we
present a way to realize the classical infinite order recursion reasoning [Schaefer
and Anandkumar, 2019] in a reinforcement learning setting. We refer to this frame-
work as Interactive Policy Optimization (IPO) and derive four MARL algorithms
using centralized-training-decentralized-execution that generalize the widely used
single-agent policy gradient methods to multi-agent settings. Finally, we provide a
method to estimate opponent’s parameters in adversarial settings using maximum
likelihood and integrate IPO with an adversarial learning framework to train agents
robust to destabilizing disturbances from the environment/adversaries and for better
sim2real transfer from simulated multi-agent environments to the real world.

1 Introduction

Multi-agent systems consist of multiple intelligent autonomous entities (artificial agents or humans or
both) with computational capabilities interacting in an environment with distributed and decentralized
information with similar, conflicting, or mixed interests. A fundamental difference from single-agent
systems is that here the agents should take into account the presence of other agents in the environment.
One of the frameworks or fields of study to solve the problem of learning in multi-agent systems is
multi-agent reinforcement learning (MARL). MARL is concerned with developing and analyzing
learning rules and algorithms that can discover effective policies in multi-agent settings [Foerster,
2018]. A key characteristic associated with MARL is that the environment is typically non-stationary,
meaning that for a single agent learning in the environment, all the other agents are non-stationary
since they also learn simultaneously. Considering this is essential to develop effective algorithms
for MARL. Furthermore, for applying MARL to real-world systems, it is essential to incorporate
robustness against (unexpected) destabilizing disturbances from environment and potential adversarial
agents. We tackle both the problems in this work. Here we consider two-agent general-sum systems,
but our method is generic and can be extended for more than two agents.
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A standard optimization workhorse for single-agent reinforcement learning is gradient ascent, where
the agent maximizes its objective by following the steepest direction of ascent. This corresponds to
maximizing a local linear approximation of the objective, subject to an L2 quadratic penalty. An
intuitive and commonly used extension of this to a multi-agent setting is a local linear approximation of
the whole game subject to a quadratic penalty for each agent. However, this seemingly natural choice
is flawed as it loses the interactive game-theoretic aspect of the multi-agent problem (discussed in
section 2). Considering this, Schaefer and Anandkumar [2019] proposed the optimization framework
of competitive gradient descent (CGD) that instead considers a local bilinear approximation of the
game objective and is the natural generalization of gradient descent to multi-agent settings. In terms
of game theory, CGD recovers the classical infinite order recursive reasoning, which indicates that
the agents update their parameters with full awareness of what the other agents are doing.

In this work, we first present the extension of CGD to a multi-agent reinforcement learning setting. We
then instantiate and derive a suite of four policy optimization algorithms (stochastic, deterministic, and
natural policy gradients) that generalize the existing single-agent reinforcement learning algorithms
to any type of cooperative, competitive, or mixed setting using the CGD framework and revert
back to standard policy gradients when the interaction between the agents is close to 0. We call
these altogether Interactive Policy Optimization (IPO) and use centralized training of the agents
with decentralized execution of the trained policies to ease the learning process. We present a
game-theoretic interpretation of IPO, explaining how the bilinear approximation captures interactions
between the agents. We then provide a method to estimate the opponent’s parameters via maximum
likelihood for the application of IPO in adversarial settings and environments where we have access
to only the trajectories but not the opponent parameters (hence centralized training is not possible).
Following this, we discuss how to adversarially train IPO agents while being robust to potential
destabilizing disturbances from the environment or other adversarial agents. We integrate IPO with
robust adversarial reinforcement learning (RARL) [Pinto et al., 2017] to propose a novel robust
algorithm that can be used for better sim2real transfer of agents trained in a simulated interactive
multi-agent environment to real world and as a defense against adversarial attacks at the test time.
Finally, we conclude by providing future works.

2 Optimization in Multi-Agent Systems

Let us consider gradient ascent for single-agent systems where f is agent’s maximization objective
parameterized by θ ∈ Rm and α is the step-size. This can be written as:

θk+1 = arg maxθf(θk) + (θ − θk)>∇θf(θk)− 1

2α
‖θ − θk‖22 (1)

This corresponds to maximizing a local linear (first-order) approximation of the objective, subject to
an L2 quadratic penalty that expresses the limited confidence in the approximation. This suggests
that for multiple agents, the gradient ascent update should be the solution of a local first-order
approximation of the full problem, with quadratic regularization terms on each agent that express
their limited confidence in this approximation. But what is the correct notion of local first-order
approximation in multi-agent optimization? Let us consider two agents with the following objectives:

max
θ∈Rm

f(θ, φ) , max
φ∈Rn

g(θ, φ) (2)

, where f, g : Rm × Rn → R are two agents’ objectives2. Note that each agent’s objective is
dependent on both agent’s parameters. This is because we need to consider the effect of all agents on
each agent’s objective in a multi-agent setting. Extrapolating from (1), it is intuitive to use a linear
approximation of both agents’ objective for multi-agent settings. This corresponds to solving:

θk+1 = arg maxθf + (θ − θk)>∇θf + (φ− φk)>∇φf −
1

2α
‖θ − θk‖22

φk+1 = arg maxφg + (θ − θk)>∇θg + (φ− φk)>∇φg −
1

2β
‖φ− φk‖22

(3)

2From now on, we consider the functions and derivatives to be evaluated at (θk, φk), unless specified
otherwise.
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Figure 1: The left figure shows SimGA and CGD on bilinear game f = −g = θ>φ,m = n = 1.
SimGA diverges to infinity while CGD converges to the Nash equilibrium (0, 0). The right figure
shows direction of gradients starting from the same point. The arrows converge inwards, i.e., towards
(0, 0) for CGD and diverge outwards i.e., away from (0, 0) for SimGA. Learning rate used is 0.05.

In (3), the optimal strategy of f is independent of g and vice-versa. Hence it is equivalent to:

θk+1 = arg maxθf + (θ − θk)>∇θf −
1

2α
‖θ − θk‖22

φk+1 = arg maxφg + (φ− φk)>∇φg −
1

2β
‖φ− φk‖22

(4)

Let us call (4) simultaneous gradient ascent (SimGA). Although intuitive, this is not the correct
generalization of gradient ascent to multi-agent settings. SimGA fails even for simple games like
the bilinear game, i.e., f = −g = θ>φ, where m = n = 1. As shown in figure 1, θ and φ diverge
to∞ when using SimGA. At each iteration, θ and φ move farther away from the Nash equilibrium
(0, 0). An explanation for the poor convergence properties of SimGA is that the local game in (4)
has completely lost the underlying game-theoretic structure and instead consists of both players
myopically maximizing their own objective function.

Using SimGA in MARL is straightforward as it would just involve computing the standard policy
gradient for each individual agent and myopic parameter updates. We call this independent reinforce-
ment learning (IRL). IRL is a common algorithm for multi-agent optimization and has been used in
Bansal et al. [2018] in a self-play manner to show the emergence of complex behavior and skills in
two-agent zero-sum games. However, Gleave et al. [2020] show the existence of adversarial policies
which can easily fail the agents trained via the naive gradient ascent-based self-play procedure. They
argue that if the trained policy was to play a Nash, it would not be exploitable by an adversary. The
optimization procedure that Bansal et al. [2018] use to approximate the Nash boils down similar to
SimGA, which we saw does not perform well, and hence the agents are exploitable by adversaries.
IRL inherits the problems associated with SimGA and hence considers other agents to be stationary
in the environment (which is obviously not true).

Let us go back to the question of finding the correct notion of local first-order approximation for
multi-agent optimization. As observed before, using linear functions cannot express any interaction
(via anticipation of other agents’ moves) between the two agents and is thus unable to capture the
interactive nature of the underlying problem. As a solution to this, Schaefer and Anandkumar [2019]
propose competitive gradient descent or CGD (although we do ascent on the objective in this work,
we defer to using the terminology of CGD) which is obtained by considering a bilinear approximation
in the two-agent setting, which is the lowest order approximation that captures interaction between the
two players. They argue that the natural generalization of gradient ascent to multi-agent optimization
is not SimGA but rather CGD. The bilinear approximation uses derivatives up to first-order per agent
and is obtained by including the “mixed” hessians (denoted as Dθφf = ∇θ∇φf ) in the local game:

θk+1 = arg maxθf + (θ − θk)>∇θf + (θ − θk)>Dθφf(φ− φk)− 1

2α
‖θ − θk‖22

φk+1 = arg maxφg + (φ− φk)>∇φg + (φ− φk)>Dφθg(θ − θk)− 1

2β
‖φ− φk‖22

(5)
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This local game preserves the interactive aspect of the underlying problem since the optimal action
of f depends on the next move of g and vice versa. The mixed hessians Dθφf,Dφθg represent the
magnitude of the interaction between the agents. [Schaefer and Anandkumar, 2019] show that among
all possibly randomized strategies with finite first moment, the only Nash equilibrium of the game is
given by differentiating (5), equating to 0 and solving. Schaefer and Anandkumar [2019] show that
there exist only one pair of optimal strategies for (5), and hence we can use these strategies as an
update rule, generalizing the idea of optimality from a single to multi-agent setting:

θk+1 = θk + α (I − αβDθφfDφθg)
−1

(∇θf + αDθφf∇φg)

φk+1 = φk + β (I − βαDφθgDθφf)
−1

(∇φg + βDφθg∇θf)
(6)

The matrix inverses above exist for all but one value of α, β in general-sum games and for all values
of α, β in zero-sum games. By arranging (6) in a block matrix form and using the Neumann series to
compute the inverse, we can show that the partial sums recover different levels of reasoning in game
theory. The first partial sum (each agent thinks the other agent is not changing) recovers SimGA,
and the full sum recovers CGD, which corresponds to infinite recursion reasoning in game theory
(Appendix ??). In practice, we use Krylov subspace methods to compute the update in (5).

3 Extension to Multi-Agent Reinforcement Learning

In this section, we discuss how to use the CGD optimization method in multi-agent reinforcement
learning. We have seen that IRL does not capture the interactive aspect of a MARL setting. Inspired
by Schaefer and Anandkumar [2019], we use CGD as the policy optimization procedure for MARL.
In this framework, each agent derives its update with the full consideration of what the other agent’s
current move and moves in future time steps might be. First, let us define the notation:

We treat the environment with two agents as a finite-horizon MDP, which is defined as M ={
S,A1,A2, r1, r2, P, γ, ρ

}
. S represents the state space. Ai represents the action space of

agent i, where i ∈ {0, 1}. The transition dynamics are described by s′ ∼ P (·|s, a1, a2).
ri(s, a1, a2), γ ∈ [0, 1], and ρ represent the finite reward function for agent i, discount factor,
and initial state distribution respectively. Policy is a mapping from states to distribution over actions,
i.e., π : S → P (A). We consider parameterized policies (θi for agent i). We consider a trajectory
τ =

((
st, a

1
t , a

2
t , r

1
t , r

2
t

)T−1
t=0

, sT

)
. The probability distribution of truncated trajectory is defined as:

p(τ0:t) = ρ(s0)π(a10|s0; θ1)π(a20|s0; θ2)P (s1|s0, a10, a20)....π(a1t |st; θ1)π(a2t |st; θ2) (7)

Let p(τ) be the distribution of the full trajectory. The goal of agent i is to maximize the objective:

J i(θ1, θ2) = Eπ1,π2,M

[
T−1∑
t=0

γtri(st, a
1
t , a

2
t )

]
= Eτ∼p(τ)

[
T−1∑
t=0

γtri(st, a
1
t , a

2
t )

]
(8)

For multi-agent training, we use the paradigm of centralized-training-decentralized-execution (CTDE)
similar to Lowe et al. [2017]. This notion of multi-agent training is appealing as it allows using
extra information to ease training, so long as this information is not used at the test time. This is
commonly applicable in various scenarios, e.g., when training is carried out in a simulator while the
final policies are later deployed in the real world. We consider an actor network for each agent, which
is conditioned on the local observation or state and a critic network for each agent conditioned on the
state information and actions of all the agents. The critics are not used at the test time and hence the
execution at the test time is decentralized. This allows us to generalize to any type of cooperative,
competitive, or mixed games. For agent i, we define the return of the trajectory Rit at time step t,
state value function V , action value function Q, and advantage function A as:

Ri(τt) =

T−1∑
k=t

γk−tri(sk, a
1
k, a

2
k) , Qiθ(st, a

1
t , a

2
t ) = Eτ∼p(τ)

[
T−1∑
k=t

γk−tri(sk, a
1
k, a

2
k)|st, a1t , a2t

]

V iθ (st) = Eτ∼p(τ)

[
T−1∑
k=t

γk−tri(sk, a
1
k, a

2
k)|st

]
, Aiθ(st, a

1
t , a

2
t ) = Qiθ(st, a

1
t , a

2
t )− V iθ (st) (9)
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, where the subscript θ = (θ1, θ2) denotes dependence on both agents’ parameters. Finally, the
update rule for both agents is:

θ1k+1 = θ1k + α
(
I − αβDθ1θ2J

1Dθ2θ1J
2
)−1 (∇θ1J1 + αDθ1θ2J

1∇θ2J2
)

θ2k+1 = θ2k + β
(
I − βαDθ2θ1J

2Dθ1θ2J
1
)−1 (∇θ2J2 + βDθ2θ1J

2∇θ1J1
) (10)

When the interaction between the agents is 0, i.e., Dθ1θ2J
1 = 0, Dθ2θ1J

2 = 0, we get:

θ1k+1 = θ1k + α∇θ1J1 , θ2k+1 = θ2k + β∇θ2J2 (11)

, which is the standard policy gradient update widely used in reinforcement learning [Sutton et al.,
1999]. This confirms that IRL does not capture any interactions between the agents and hence is
prone to failure in multi-agent settings.

4 Interactive Policy Optimization algorithms

In this section, we discuss different ways to derive practical MARL algorithms that use CGD. To use
(10), we require the gradients ∇θiJ i and the mixed hessians DθiθjJ

i for i, j ∈ {1, 2}, i 6= j. We
instantiate these using 4 algorithms: vanilla stochastic policy optimization, natural policy optimization,
trust region policy optimization, and deterministic policy optimization. Altogether, we refer to these
algorithms as Interactive Policy Optimization (IPO).

4.1 Vanilla Stochastic Policy Optimization

This instantiation of (10) extends the conventional single-agent vanilla policy gradients [Sutton et al.,
1999] to a multi-agent setting. For i, j ∈ {1, 2}, i 6= j, the gradients and mixed hessians are given by:

∇θiJ i =

T−1∑
t=0

Ep(τ0:t)
[
γt∇θi log π(ait|st; θi)Qiθ(st, a1t , a2t )

]
(12)

DθiθjJ
i = Ep(τ)

[
T−1∑
t=0

γtrit

(
t∑

k=0

∇θi log π(aik|sk; θi)

)(
t∑

k=0

∇θj log π(ajk|sk; θj)
>
)]

(13)

DθiθjJ
i =

T−1∑
t=0

Ep(τ0:t)
[
γt∇θi log π(ait|st; θi)∇θj log π(ajt |st; θj)

>
Qiθ(st, a

1
t , a

2
t )
]

+

T−1∑
t=1

Ep(τ0:t)

γt∇θi log π(ait|st; θi)∇θj log

(
t−1∏
k=0

π(ajk|sk; θj)

)>
Qiθ(st, a

1
t , a

2
t )


+

T−1∑
t=1

Ep(τ0:t)

[
γt∇θi log

(
t−1∏
k=0

π(aik|sk; θi)

)
∇θj log π(ajt |st; θj)

>
Qiθ(st, a

1
t , a

2
t )

]
(14)

The proofs are in Appendix ??. (13) uses higher variance monte-carlo rollouts while (14) uses value
functions to lower the variance. (14) has an elegant game-theoretic interpretation. The first term
measures the immediate interaction (i.e., at time step t) between two agents multiplied by the quality
of the actions (for agent i) taken at time step t (quantified via Qi). The second term measures the
interaction of agent j’s behavior up to time step t− 1 with the reaction of agent i at time step t times
Qi. The third term measures the interaction of agent i’s behavior up to time step t − 1 with the
reaction of agent j at time step t times Qi. This gives an intuitive explanation of the effectiveness of
using a bilinear approximation in multi-agent settings, as opposed to a linear approximation.

4.2 Natural and Trust Region Policy Optimization

In this section, we provide an instantiation of the bilinear approximation using the natural gradient
method [Amari, 1998]. (10) is the solution to the local game in (5) with bilinear local approximation
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of each agent’s objective and a Euclidean penalty in the parameter space. Alternatively, we can also
use the information geometry by using a penalty in distribution space instead of Euclidean space
(natural gradient descent [Amari, 1998]). Prior work in natural policy gradients (NPG) [Kakade, 2001]
and trust region policy optimization (TRPO) [Schulman et al., 2015] has highlighted the importance
of using such optimization methods in reinforcement learning. For parameterized policies, seemingly
small changes in the parameter space can lead to unexpectedly large changes in the policy space,
which can lead to a collapse in the performance. To address this problem, we extend the bilinear
approximation to natural gradient and trust-region methods. First, let us consider the following
relation between policy performance at θ = (θ1, θ2) and current policy parameters θk = (θ1k, θ

2
k):

J i(θ1, θ2) = J i(θ1k, θ
2
k) + Eτ∼p(τθ)

[
T−1∑
t=0

γtAiθk(st, a
1
t , a

2
t )

]
(15)

where p(τθ), p(τθk) are the trajectory distributions induced by policies π(θ1), π(θ2) and π(θ1k), π(θ2k)
respectively. The proof is provided in Appendix ??. (15) tells that given our current policy parameters
θk, the advantage at θk, and samples from p(τθ), we can compute J i(θ1, θ2) for any θ. However, in
practice we want to reuse samples from the current policy and also we might not have access to p(τθ).
Hence we can define a surrogate objective similar to Schulman et al. [2015]:

Li(θ1, θ2) = J i(θ1k, θ
2
k) + Eτ∼p(τθk )

[
T−1∑
t=0

γt
π(a1t |st; θ1)

π(a1t |st; θ1k)

π(a2t |st; θ2)

π(a2t |st; θ2k)
Aiθk(st, a

1
t , a

2
t )

]
(16)

(15) uses states and actions sampled from p(τθ) in the advantage function, while (16) uses states and
actions sampled from p(τθk) but has the same effect as sampling actions from π(θ1), π(θ2) due to
importance weight correction. The surrogate objective uses trajectories depending on the current
policies π(θ1k), π(θ2k) but actions are sampled from π(θ1), π(θ2). Optimizing this surrogate is key to
this method (as∇iLi = ∇iJ i at θ = θk). We now derive a bound on how well Li approximates J i:

J i(θ1, θ2) ≥ Li(θ1, θ2)− ε
√

2DKL (p(τθk), p(τθ)) (17)

ε = maxs

∣∣∣[∑T−1
t=0 γtĀiθk(s)

]∣∣∣, DKL (p(τθk), p(τθ)) =
∫
τ
p(τθk) log

p(τθk )

p(τθ)
dτ (Appendix ??).

Using this bound, we can optimize Li(θ1, θ2) instead of J i(θ1, θ2) provided p(τθ) is close to p(τθk),
i.e., DKL (p(τθk), p(τθ)) ≤ δ, where δ is a hyperparameter and is small. Hence we solve the
following optimization problem:

max
θ1

L1(θ1, θ2) , max
θ2

L2(θ1, θ2) subject to DKL (p(τθk), p(τθ)) ≤ δ (18)

The traditional NPG or TRPO algorithms use a linear approximation of the surrogate objective above.
Instead, we use a bilinear approximation to exploit the game-theoretic interaction. Further, we use a
quadratic approximation of DKL constraint. Solving using Lagrangian duality, the final update rule
for natural policy gradient in block matrix form is (refer Appendix ?? for proof):[

θ1 − θ1k
θ2 − θ2k

]
=

[
λ1F1 −Dθ1θ2L

1

−Dθ2θ1L
2 λ2F2

]−1 [∇θ1L1

∇θ2L2

]
(19)

Fi = DθiθiDKL (p(τθk), p(τθ)) |θ=θk is the Fisher Information Matrix (refer Appendix ?? for
derivation). The expressions for ∇iLi and DθiθjL

i can be obtained by differentiating (16) and
evaluating at θ = θk. Note that when the mixed hessians are 0 (interaction between the two agents is
0 i.e., Dθ1θ2L

1 = 0, Dθ2θ1L
2 = 0), we get back the original NPG algorithm:

θ1 − θ1k =
1

λ1
F1
−1∇θ1L1 , θ2 − θ2k =

1

λ2
F2
−1∇θ2L2 (20)

For the natural policy gradient extension of CGD, the step sizes λ1, λ2 are chosen by substituting
(θ1 − θ1k), (θ2 − θ2k) from (19) into D̄KL = 1

2

[
(θ1 − θ1k)>F1(θ1 − θ1k) + (θ2 − θ2k)>F2(θ2 − θ2k)

]
(refer (??)), equating to δ and solving. However, due to various approximations made in the derivation
(bilinear approximation of nonlinear Li and quadratic approximation of nonlinear DKL) and in using
conjugate gradient for estimating (19), λ1, λ2 computed using the above method can violate the
KL-constraint that DKL (p(τθk), p(τθ)) ≤ δ. Hence like TRPO, we introduce a line search on λ1, λ2,
to make sure we improve the original nonlinear objective while satisfying the nonlinear constraint.
After computing (θ1 − θ1k), (θ2 − θ2k) using (19), we do a line search by starting with the value of
λ1, λ2 as described above and then exponentially decreasing it until D̄KL ≤ δ and L1 ≥ 0, L2 ≥ 0.
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4.3 Deterministic Policy Optimization

Here we consider deterministic policies, which are a mapping from states to deterministic actions, i.e.,
µ : S → A. Similar to DPG [Silver et al., 2014] and DDPG [Lillicrap et al., 2019], our formulation
will work only for continuous action spaces. We consider parameterized policies (θi for agent i),
which can be a neural network that takes continuous/discrete state as input and outputs the continuous
action. The critic network (Q-function) takes in the continuous states and actions and outputs the
value of the action. For agent i, we can define the return of the trajectory Rit at time step t, state value
function V i, action value function Qi, and advantage function Ai similar to (9) with the difference
that ait will get replaced by µ(st; θ

i). Here we define the distribution of a truncated trajectory as:

q(τ0:t) = ρ(s0)

t−1∏
k=0

P
(
sk+1|sk, µ(sk; θ1), µ(sk; θ2)

)
, with q(τ0:0) = ρ(s0) (21)

This instantiation of (10) extends the conventional single-agent deterministic policy gradients [Silver
et al., 2014, Lillicrap et al., 2019] to a multi-agent setting. For i, j ∈ {1, 2}, i 6= j, the gradients and
mixed hessians are given by (the proofs of (22) and (23) can be found in Appendix ??):

∇θiJ i =

T−1∑
t=0

Eq(τ0:t)

[
γt∇θiµ(st; θ

i)∇aitQ
i
θ(st, a

1
t , a

2
t )|a1t=µ(st;θ1),

a2t=µ(st;θ
2)

]
(22)

DθiθjJ
i =

T−1∑
t=0

Eq(τ0:t)

[
γt∇θiµ(st; θ

i)Daita
j
t
Qiθ(st, a

1
t , a

2
t )|a1t=µ(st;θ1),

a2t=µ(st;θ
2)

∇θjµ(st; θ
j)
>
]

(23)

5 IPO with Opponent Modeling

In the previous sections, the update rules for vanilla (10) and natural policy optimization (19) require
access to the other agent’s policy parameters. This poses a problem in applying IPO in adversarial
settings, where the opponent’s parameters are typically unavailable and have to be inferred from the
opponent’s state-action trajectories. We encounter such settings in section 6 and hence provide a way
to model opponent’s behavior for estimating parameters via maximum likelihood estimator as done
in [Foerster et al., 2018]. We refer to this as IPO-Opponent Modeling (IPO-OM). For agent 1, the
estimation of agent 2’s parameters is done via maximizing the likelihood of its trajectories:

θ̂2 = arg maxθ2Eτ∼p(τ)

[
T−1∑
t=0

log π(a2t |st; θ2)

]
(24)

We can do vice-versa for agent 2 and use (θ̂1, θ̂2) for the updates in (10) and (19).

6 Bringing in Robust Control

For the application of IPO to safety-critical real-world systems like autonomous driving, robotics (e.g.,
RoboCup [Stone et al., 2005]), etc., a promising way is to train policies in simulation and transfer
to the real environment (sim2real). This allows using large amounts of data, which is generally not
possible by collecting real samples. However, simulated dynamics can be different from the real
environment due to inaccuracies in simulator. Furthermore, deployment of agents at the test time
can involve presence of adversarial agents that are intentionally trained to fail the deployed agents
[Gleave et al., 2020]. To address both these issues, it is essential to train agents to be robust while
simultaneously also preserving game-theoretic aspects of the multi-agent problem. Rajeswaran et al.
[2017] propose training the agent over a distribution of dynamics parameters, optimizing only for the
worst-performing trajectories. Doing so incorporates a form of adversarial training. However, this
requires human experts to manually specify distribution over dynamics, which can be challenging.

Alternatively, Pinto et al. [2017] propose the RARL algorithm, which views modeling the differences
between training and testing as extra destabilizing forces/disturbances in the system. They train the
agent to operate in the presence of a destabilizing adversary that applies disturbance forces to it. The
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Algorithm 1 IPO-RARL (IPO embedded in RARL framework)

Input: Environment E ; Parameterized policies π(θ1) and π(θ2)
Initialize: Learnable parameters θ10 for agent 1 and θ20 for agent 2
for i=0,1,..Niter − 1 do
θ1′ ← θ1i , θ

2′ ← θ2i
for j=1,2,..N1 do
{(sit, a1it , a2it , r1it , r2it )} ← rollout

(
E , π(θ1′), π(θ2′), Ntraj,SUP = 1, α1

)
θ1′, θ2′ ← InteractivePolicyOptimizer

(
{(sit, a1it , a2it , r1it , r2it )}, θ1′, θ2′

)
end for
for j=1,2,..N2 do
{(sit, a1it , a2it , r1it , r2it )} ← rollout

(
E , π(θ1′), π(θ2′), Ntraj,SUP = 2, α2

)
θ1′, θ2′ ← InteractivePolicyOptimizer

(
{(sit, a1it , a2it , r1it , r2it )}, θ1′, θ2′

)
end for
θ1i+1 ← θ1′, θ2i+1 ← θ2′

end for
Return: θ1Niter

, θ2Niter

jointly trained adversary is reinforced (it gets a reward for failing the agent), and it learns an optimal
destabilization policy. The policy learning is formulated as a zero-sum minimax game between the
agent and the adversary. Inspired by this, we present IPO-RARL (Algorithm 1), which embeds
IPO algorithms in the RARL framework. IPO-RARL inherits all properties of IPO and provides
robustness against differences in training and testing conditions and against external adversaries.

The procedure is given in Algorithm 1 and consists of two phases inside each outer iteration. Like
RARL, we define “superpower” as the ability of an agent to affect the opponent or environment
in ways the opponent cannot (e.g., suddenly changing the friction or contact forces by applying
forces). We can do so in simulation, which lets one agent to focus on opponent’s weak points, thereby
bringing adversarial training. We give superpower separately to agent 1 in phase 1 and agent 2 in
phase 2 (indicated using SUP) and perform multiple trajectory rollouts. αi controls the amount of
superpower using magnitude of force available (αi = 0 means no superpower and αi = 1 means
maximum superpower). An agent with no superpower cannot apply any destabilizing forces. We use
IPO algorithms (or IPO-OM when opponent parameters are not accessible) for updating policies in
each phase. The agent applying superpower in the corresponding phase gets an additional reward for
failing the opponent. The total reward an agent gets is a combination of rewards it can get by using
superpower and reward for accomplishing the actual objective of the multi-agent game.

Note that another way to perform adversarial training with IPO is to pretrain the agents using IPO and
then apply RARL to robustify each agent separately. However, this could result in the disturbance of
the (approximate) Nash equilibrium established between the pretrained parameters trained using IPO.
Combining both processes as in algorithm 1, lets us find interactive policies that are also robust to
change in dynamics and adversarial disturbances. Moreover, we cannot give superpowers to both the
agents in a single phase; otherwise, the agents would simply learn to maximize reward by utilizing
superpowers instead of taking meaningful actions (actions that accomplish the multi-agent game
objective). This would result in a lack of generalization at the test time when agents do not have
superpowers. Our alternating procedure lets an agent use superpower only in its respective phase.
Hence to continue getting high rewards, it has to learn to take meaningful as well as robust actions.
IPO-RARL also incorporates a form of adversarial training by encouraging the agent with superpower
to hammer at the weak points of the other agent and encourages the non-superpower agent to learn
robust policies. Hence agent 2 learns robust parameters in phase 1 and agent 1 in phase 2. However,
the magnitude of force (the hyperparameter αi) should be controlled as making it very high makes
one agent unreasonably strong, which can destabilize the process.

The adversarial learning procedure described in algorithm 1 is non-conventional since the agent
playing the role of the adversary (i.e., having superpowers) keeps switching between phases. This is
in contrast to RARL and other common methods where only one of the agents acts as an adversary
throughout the training procedure. This is because, unlike RARL, we do not just want to train a single
agent to achieve a particular objective in the environment while being robust to disturbances. Instead,
we have a multi-agent competitive objective, which can only be achieved via interactive play between
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the agents, which is enabled by the game-theoretic aspects of IPO. Giving superpowers to both agents
alternatively enables inheriting properties of IPO as well as adversarial training. Additionally, we can
gradually anneal the hyperparameter αi with time so that the agents eventually learn to accomplish
the task objective via meaningful actions while simultaneously being robust to disturbances.

In RARL, the number of dimensions and the locations to apply destabilizing forces on are predefined,
which is realized by bringing in human intuition. For e.g., in a walker robot, RARL picks specific
joints and dimensions such as forces on both feet. We can further automate the process by just fixing
the number of dimensions that can be perturbed using superpower and let the agent itself learn the
locations (x, y, z coordinates) to apply destabilizing forces on (we just fix the upper limit of force to
prevent the agent from becoming unreasonably strong). Hence the agents need to learn an optimal
perturbation distribution that would fail the other agent (for which it gets a positive reward), thereby
sampling worst-case trajectories. To realize this using neural network policies, in addition to the
usual action distribution, each agent outputs mean vector and diagonal covariance of the perturbation
distribution. It then samples from this distribution to get the locations to apply disturbance forces, the
magnitude of which is controlled using αi. Doing so gives freedom to the learning algorithm to pick
sensitive locations to apply forces on, which human intuition cannot account for.

Finally, the key takeaway from IPO-RARL is that RARL is a container, inside which lies the MARL
optimization process. Using standard policy gradients (SimGA) does not capture any interaction
between agents, which could result in an attacker training an adversarial policy against our trained
agent at test time [Gleave et al., 2020]. However, if the two agents in the multi-agent competition play
a Nash equilibrium, no agent would be exploitable by any adversarial strategy. IPO helps us converge
better to the Nash equilibrium, and integration with its RARL makes the agents robust, which can be
used for sim2real transfer and as a defense against adversaries at test time.

7 Conclusion and Future Work

In this work, we presented an interactive policy optimization (IPO) framework for multi-agent
reinforcement learning that preserves game-theoretic nature of the problem and takes into account
non-stationarity in multi-agent systems. We showed how CGD can be used in a reinforcement
learning setting and how important it is to consider a bilinear approximation of the game objective
instead of linear. We then instantiated and derived IPO using stochastic, deterministic, and natural
policy gradient methods, presented a maximum likelihood estimator for opponent’s parameters and
integrated it with RARL for robustification to differences between training in simulation and testing
in real environment and adversarial attacks. Further, we discussed IPO-RARL only in competitive
zero-sum environments. However, the IPO algorithms and derivations are applicable to more general
settings and it is promising to extend it to robustification and sim2real transfer in general-sum
environments. It is also promising to scale this work to more than two agents. Finally, we do not
foresee any immediate potential negative societal impacts of our work.
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