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ABSTRACT

Large language models (LLMs) provide excellent text-generation capabilities, but
standard prompting and generation methods generally do not lead to intentional or
goal-directed agents and might necessitate considerable prompt tuning. Even the
best current LLMs rarely ask clarifying questions, engage in explicit information
gathering, or take actions that lead to better decisions after multiple turns. Rein-
forcement learning has the potential to leverage the powerful modeling capabilities
of LLMs, as well as their internal representation of textual interactions, to create
capable goal-directed language agents. This can enable intentional and tempo-
rally extended interactions, such as with humans, the emergence of complex skills
such as persuasion, and long-horizon strategic behavior, such as in the context of
games. Enabling this requires the community to develop reliable reinforcement
learning algorithms for training LLMs. Developing such algorithms requires tasks
that can gauge progress on algorithm design, provide accessible and reproducible
evaluations for multi-turn interactions, and cover a range of task properties and
challenges in improving reinforcement learning algorithms. Our paper introduces
the LMRL-Gym benchmark for evaluating multi-turn RL for LLMs, together with
an open-source research framework for getting started on multi-turn RL with offline
value-based and online policy-based RL methods. Our benchmark consists of 3
Interactive Dialogue tasks and 5 RL Capability tests for a total of 8 tasks, which
require multiple rounds of language interaction and cover tasks in open-ended
dialogue and text games.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable abilities when naturally conversing
with humans (OpenAI, 2023; 2022; Touvron et al., 2023; Google, 2023), answering questions and
responding to requests (Shuster et al., 2022b;a; Qin et al., 2023), and even performing coding
tasks (Chen et al., 2021b; Wang et al., 2023b). Many of these capabilities are enabled by learning to
emulate humans from large datasets of text from the web (Völske et al., 2017; Shuster et al., 2022a;
Yao et al., 2023), learning from examples “in context” (Brown et al., 2020), as well as learning
from other sources of supervision such as instruction datasets (Mishra et al., 2022; Wei et al., 2022;
Wang et al., 2022b) and preference fine-tuning with RLHF (Ziegler et al., 2020; Ouyang et al.,
2022). However, directly applying LLMs in settings that require planning or multi-turn interactions
presents new challenges. LLMs are not explicitly goal-directed, as they are not optimized to directly
solve particular tasks, but rather to produce text that resembles the distribution of human-provided
examples or accords with human preferences (Ziegler et al., 2020; Stiennon et al., 2020; Wu et al.,
2021; Bai et al., 2022a). This challenge is apparent in solving temporally extended tasks, such as
multi-turn dialogue (Irvine et al., 2023; , FAIR), complex tool use (Wang et al., 2022a), multi-step
games (Hendrycks et al., 2021b), and other interactive applications. In principle, LLMs should
contain the knowledge necessary to succeed in such settings: if the multi-turn interactions center
around problem domains that are well represented in the model’s training data (such as dialogue),
well-trained LLMs should already serve as powerful predictive models in such settings. However,
leveraging this predictive knowledge to derive effective actions and strategies requires not just
emulating humans, but also planning and optimization.
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My favorite traditional dish from my 
hometown is nasi goreng, a delicious fried 
rice dish that is often served with chicken, 

shrimp, and various spices.

Yes, my city is located on the coast and is 
surrounded by water. 

Yes, the city I am from is Jakarta. 

Is the city you are from Jakarta? 

Is your hometown located near a 
coastline or body of water?

What is your favorite traditional dish 
from your hometown? 

There are walls to your left, below you

There are walls above you, below you

There are walls to your left, below you

There are walls to your right, to your left

move right

move left

move up

move left

LLM

Guess My City Maze

Figure 1: Overview of LMRL-Gym: We show sample trajectories from two tasks in our benchmark.
In the Guess My City task, the agent learns to ask questions to guess the city the oracle is from, while
in the Maze task, the agent learns to make the correct moves based on cues from the oracle.

Multi-turn reinforcement learning (RL) (Sutton & Barto, 2018) in principle offers a path to enable
LLMs to do just that. RL could enable goal-directed reasoning and planning in interactive multi-turn
settings, including complex dialogue, games, and tool use. We hypothesize that RL could serve as
a powerful tool for LLM training, not only for training models to accord with human preferences,
but more generally to accomplish tasks in an intentional and goal-directed manner. Text generation
can be viewed as a sequential decision-making process, treating a sequence of tokens as a trajectory.
Many tasks, such as successfully answering questions or eliciting a desired reaction from a user,
can then be framed as optimizing some reward function over these trajectories. However, despite
extensive interest in RL for LLMs in recent years, much (though not all) of the recent research in
this area has focused on “single-step” RL problems, where a single response is optimized for some
quality metric, typically derived from human preference signals (Stiennon et al., 2020; Ziegler et al.,
2020; Ouyang et al., 2022; Bai et al., 2022a; Anthropic, 2023; Ramamurthy et al., 2023; Christiano
et al., 2023; Casper et al., 2023).

While some works have sought to apply RL for multi-turn tasks (Singh et al., 1999; Li et al., 2016;
Shah et al., 2016; Kwan et al., 2022), particularly for goal-directed dialogue (Lewis et al., 2017;
Verma et al., 2022), there has been comparatively little research on improving the underlying RL
algorithms and very little head-to-head comparison on same sets of tasks. This is perhaps unsurprising:
it is easier to evaluate improvements to algorithms for single-turn text generation as compared to
multi-turn generation. Multi-turn dialogue requires an interactive evaluation procedure rather than
just a static dataset. There is no established protocol for such evaluations, and the “gold standard”
constitutes costly and time-consuming studies with human participants.

In this work, we aim to address this challenge and make it possible for RL algorithm researchers
to iterate on developing better RL methods for multi-turn language-based interaction tasks, such as
dialogue and games. We posit that benchmarking RL algorithms for LLMs presents a very different
set of challenges and merits a different set of solutions compared to other benchmarks in NLP. While
most NLP benchmarks are based on standard supervised machine learning paradigms, with a training
set and a test set (Marcus et al., 1993; Tjong Kim Sang & De Meulder, 2003; Socher et al., 2013;
Rajpurkar et al., 2016; Wang et al., 2019; Williams et al., 2018), RL benchmarks require simulators
that the trained agents can interact with to measure their performance. In this paper, we use an
LLM to simulate a conversation partner in dialogue tasks. While the behavior of the LLM may
deviate from human behavior, we verify in a human study in Appendix A that our LLM simulators
produce natural text reflecting human norms of conversation. However, our goal is not to utilize
this approach to benchmark whether LLMs are good at talking to humans, but rather as a way to
test RL algorithms with datasets that are sufficiently difficult and complex to gauge how effective
they might be if they were then trained on data from real humans. Specifically, our benchmark aims
to rigorously stress-test the ability of RL algorithms to enable complex goal-directed behaviors in
LLMs. To this end, LMRL-Gym also includes a set of text-based strategy games, in addition to the
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dialogue tasks, that are aimed at providing a more controlled and focused diagnostic assessment of
specific RL capabilities.

Our proposed benchmark, LMRL-Gym, consists of 8 tasks. Three tasks are Interactive Dialogue
tasks designed to simulate real-world interactions with humans, requiring information gathering (20
Questions, Guess My City) and negotiation (Car Dealer). Five tasks are RL Capability Tests, which
are text games designed to isolate specific capabilities of RL training. Each task comes with an
offline dataset that can be used for offline RL training, and a “simulator” that can be used to evaluate
the performance of the agents in multi-turn interactive tasks. We provide a research framework and
toolkit for researchers and practitioners to get started with multi-turn RL for LLMs. This framework
includes implementations of PPO (Schulman et al., 2017), ILQL (Snell et al., 2022a), and several
baseline methods, implemented in an extensible way designed for future development of tasks,
experimentation, and algorithm design.

2 RELATED WORKS

Datasets, benchmarks, and libraries. Benchmarks and datasets have been an important factor for
driving progress in NLP in domains that include machine translation (Tiedemann, 2012; Bojar et al.,
2016), natural language understanding (Rajpurkar et al., 2016; Wang et al., 2019; Hendrycks et al.,
2020; 2021a; Ramamurthy et al., 2023), and solving math problems (Cobbe et al., 2021). However,
these tasks generally do not involve multi-turn interaction and do not come with rewards, making
them hard to adapt to RL research. For example, the standard for evaluating dialogue agents has been
to run a human subjects study, but this is time-consuming and costly. Some works have proposed text
games for evaluating language-based agents (Chevalier-Boisvert et al., 2018; Hausknecht et al., 2019;
Yuan et al., 2019; Fan et al., 2020; Hausknecht et al., 2020; Guo et al., 2020; Ammanabrolu et al.,
2020; Yao et al., 2020; Hendrycks et al., 2021b; Singh et al., 2021; Wang et al., 2022a; Yao et al.,
2022; Jansen & Côté, 2022; Yao et al., 2023; Zhang et al., 2023; Gontier et al., 2023) and interactive
dialogue (De Bruyn et al., 2022b;a). Our aim is to cover a variety of problem settings that reflect
challenges in open-vocabulary interaction in addition to text games, that also specifically evaluate
offline RL capabilities, which is not done by prior works. Motivated by successes in using LLMs to
generate synthetic data (Hausknecht et al., 2019; Park et al., 2023; Bai et al., 2022b), our proposed
tasks are based on synthetic data. While such data may differ from natural text, the scope of our
benchmark is specific to evaluating RL algorithms, not the ability to interact with humans.

RL for language models. RL for language models has seen success in aligning LLMs with human
preferences (RLHF) (Ziegler et al., 2020; Stiennon et al., 2020; Bai et al., 2022a;b; Ouyang et al.,
2022; Christiano et al., 2023), optimizing non-differentiable objectives for machine translation (Wu
et al., 2016; Nguyen et al., 2017; Kiegeland & Kreutzer, 2021), generation (Tambwekar et al., 2019;
Pang & He, 2021; Pyatkin et al., 2022), dialogue (Cuayáhuitl et al., 2015; Georgila & Traum, 2011;
Li et al., 2016), question answering (Pyatkin et al., 2022), and summarization (Paulus et al., 2017;
Böhm et al., 2019; Wu & Hu, 2018). These include RL methods that learn by directly interacting
with the environment (online RL) (Carta et al., 2023) and RL methods that only use a static dataset
(offline RL) (Jaques et al., 2020; Snell et al., 2022a; Jang et al., 2022; Verma et al., 2022; , FAIR).
However, many of these works operate in the singe-step bandit setting, and do not consider multi-turn
goal-directed tasks. Our benchmark, on the other hand, focuses on tasks involving multiple turns of
interaction with clearly defined goal-based reward functions.

Capabilities of LLMs. There has been a surge in the capabilities of LLMs for genera-
tion (Ghazvininejad et al., 2017; Radford et al., 2019), dialogue (Lewis et al., 2017; Jaques et al.,
2017; Shuster et al., 2022b; Snell et al., 2022b), question answering (Pyatkin et al., 2022), summariza-
tion (Paulus et al., 2017; Böhm et al., 2019; Wu & Hu, 2018), text-based games (Narasimhan et al.,
2015; Hausknecht et al., 2019), translation (Gu et al., 2017), and more. However, these are often
supervised learning tasks that do not test the LLMs’ abilities to achieve a specific long-term objective.
Research on dialogue generation (Jaques et al., 2017; He et al., 2018; Shuster et al., 2022b;a) has
often focused on generating feasible-looking agent dialogue without explicit consideration for some
multi-turn objective. Our benchmarks allow for the development of algorithms that enable LLMs
to interact with an environment to achieve long-term objectives, by providing tasks with online
simulators and offline datasets.
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3 MULTI-TURN GENERATION WITH RL AND LANGUAGE MODELS

This section introduces the conceptual foundations of using reinforcement learning for multi-turn
generation with language models. We introduce a definition of the Markov decision process for
language and a framework for the methods we focus on in this paper.

Definitions. We formalize language generation tasks as a partially observable Markov decision
process. We define the state to be the history of tokens and an action as the next token generated
by the model. An observation is a single token oi in the history. The probability of generating
the next token is dependent on all of the previous observation tokens oi. Therefore the Markovian
state s is formed by the concatenation of all the previous tokens [o0, . . . , oi]. A policy ⇡ defines
the agent’s behavior by taking in the current state s and outputting a new action token a to get
si+1. The environment assigns a reward r(s, a) based on the entire sequence of tokens so far. The
tokens in the state are either generated by the policy ⇡ or the environment. For example, in the Car
Dealer task, the policy generates the tokens for the Seller’s utterance and the environment generates
the tokens for the Buyer. The full history of their conversation would form the state. A complete
sequence of tokens is referred to as a trajectory ⌧ = o0, . . . , oT . The goal of RL is to produce a
policy ⇡⇤ that maximizes the expected discounted sum of rewards over trajectories (⌧ ) under the
policy ⇡⇤ = argmax⇡ E⌧⇠⇡

hPT�1
t=0 �trt(st, at)

i
, where ⌧ represents the trajectory.

RL Algorithms. Several possible RL algorithms could be used to train language models for multi-
turn tasks (Jaques et al., 2020; Verma et al., 2022; Snell et al., 2022a; Schulman et al., 2017; Stiennon
et al., 2022; Bai et al., 2022a; Casper et al., 2023). Policy gradient methods, such as PPO (Schulman
et al., 2017), directly compute the gradient of the RL objective with respect to the model parameters.
Value-based methods estimate a state-action (Q) and/or state-value (V ) function. The state-action
or state-value function forms a policy by either 1) acting greedily with respect to the Q-function or
2) perturbing the base model’s logits with the learned action-value functions (Snell et al., 2022a).
RL methods for training LLMs can be online or offline. Online methods repeatedly interact with the
environment, collecting additional data during training. Offline RL instead learns to extract the best
behaviors from an existing, potentially suboptimal dataset. Due to the large amount of existing text
interactions on the internet, offline RL is an ideal setting for training language models. Therefore,
our work primarily focuses on benchmarking offline RL algorithms. However, our tasks also fully
support online RL and we include an online PPO baseline in our evaluation.

4 THE LMRL-GYM: SYNTHETIC BENCHMARKS FOR RL WITH LANGUAGE

Our benchmark consists of 8 tasks grouped into two categories: RL Capability tasks and Interactive
Dialogue tasks. The RL Capability tasks focus on desirable capabilities for RL algorithms for
LLMs such as strategic decision-making, credit assignment, trajectory stitching, partial observability,
and use of complex language. For the interactive dialogue tasks, we model them after real-world
interactions with humans, such as persuading someone to buy a car or playing a guessing game.

Below, we define the Interactive Dialogue tasks, describe the specific capabilities of RL algorithms
for LLMs that our benchmark aims to evaluate through RL Capability tasks, and summarize the
data generation and simulation process. We have provided example trials for each task are shown
in Figure 4, and a concise summary of the dataset and task statistics in Table 1. The number of
trajectories and the average length of the trajectories varies based on the complexity of the tasks.

4.1 INTERACTIVE DIALOGUE TASKS

The Interactive Dialogue Tasks aim to simulate real-world goal-oriented dialogues. We focus on tasks
where the agent must make inferences about persuasive strategies and actively gather information by
asking questions. Instead of generating these interactions with humans, we generate such interactions
through simulating LLMs inspired by successes in using LLMs to generate synthetic data. While
the LLM might not be as realistic as a real human, we have found that human raters evaluated the
LLM-generated text as quite realistic in most cases, as discussed in our user study in Appendix A.
You can find examples from the trained models in Appendix I.
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20Qs (Twenty Questions). This task tests whether an agent can gather information about an
unknown subject through twenty yes or no questions. The agent must use semantic knowledge of the
object to infer the correct answer.

Guess (Guess My City). The Guess My City task performs more complex forms of information
gathering, involving open-ended questions about a city. This task evaluates semantic knowledge of a
specific city and the agent’s ability to parse information from a free-form answer.

Car Dealer. The Car Dealer task tests the ability of RL algorithms to learn successful car sale
strategies. This involves decision-making and credit assignment as different persuasion strategies
must be adopted for different kinds of buyers.

4.2 RL CAPABILITY TASKS

Figure 2: We have designed our RL Capability
tasks as text games that include Chess, Endgames,
Wordle, Maze, and Text-Nav. These tasks isolate
some subset of the RL Capabilities outlined in
Appendix B.1.

A central objective of our benchmark is to evalu-
ate the core capabilities that RL enables in large
language models. The RL Capability tasks are
text-based games designed to isolate specific RL
capabilities and are language analogs of tasks
where RL is known to succeed. These tasks
include Chess, Endgames, Wordle, Maze, and
Text-Nav. Below we explain the tasks and the
motivation for including them as tests for RL
capabilities. Further details on task design for
RL Capability tasks can be found in Appendix B.

Desirable RL capabilities. RL shines in goal-directed tasks that require multi-step planning and
strategic decision-making. Strategic decision-making can range from asking follow-up questions
(e.g. 20 Questions), to complex strategy in chess. In RL, it is necessary that algorithms can properly
perform credit assignment as rewards are often delayed relative to the action pivotal to the outcome.
A challenge with optimizing POMDPs is partial observability, where the agent must make deductions
based on incomplete information. In the offline RL setting, the ability of algorithms to perform
trajectory stitching is often desirable for learning optimal policies from suboptimal trajectories.
Lastly, when working with language models, it’s important that algorithms remain effective in the
face of complex language with open-ended generation. We design our RL-capability tests with the
goal of stress-testing each of these capabilities, as shown in Figure 2.

Maze and Text-Nav. We consider a Maze task as well as the Text-Nav featuring more complex
language. Though Text-Nav involves stochastic language, the maze task has longer dataset trajectories
and a more complicated layout. To test partial observability, we include both a partially observed and
fully observed version of each task. In the partially observed version, we remove information from
the maze description such that the agent must infer its position from its move history. To emphasize
the comparison to a non-text-based version, we evaluate the Maze task in a symbolic or grid-based
environment seen in Appendix H.

Strategy games. We include three strategy games; Wordle, Chess, and Endgames. Wordle tests
partial observability over the space of possible words while Chess and Endgames test the ability of
the agent to form longer-term plans. Endgames provide a simpler and more goal-directed variation of
the Chess task. By focusing on the endgame, we encourage algorithms to learn strategy rather than
memorizing the opening moves of a chess game. A classic theoretical endgame position consists of
a position where the only pieces on the board are the two kings and the queen. All RL Capability
tasks evaluate trajectory stitching capability through the inclusion of suboptimal trajectories. Further
details about our dataset generation strategies can be found in Appendix D. The Chess, Endgames,
Maze and Text-Nav tasks test credit assignment, because the RL algorithm must learn to assign credit
to good actions rather than a lucky starting position in the maze task, or a weak opponent moves in
the Chess or Endgames task.

4.3 AN OVERVIEW OF DATA COLLECTION FOR LMRL-GYM

5
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Agent Model
Fine-tuned 

GPT2

gpt3.5
agent: Is it an animal?
environment: No.
agent: Is it an inanimate 
object? 
environment: Yes.

…. 
agent: Is it a river?

environment: Yes.

Use gpt3.5 to 
generate data

No

Distill to environment 
and agent model to 
generate a new dataset

Fine-tune with RL

...

Is it an 
animal?

Data RL

Env Model
Fine-tuned 

GPT2

Figure 3: To generate data for con-
versational tasks, we use LLMs as
“simulators” for the task. Our sim-
ulators can be used to generate of-
fline data, to provide a “simulation
environment” for evaluation, to per-
form online training, and to com-
pute rewards.

To make tasks in LMRL-Gym practical for benchmarking RL
methods, we must balance accessibility and realism. As RL
algorithms need to be evaluated by running a learned policy,
real-world tasks are comparatively inaccessible for rapid itera-
tion (e.g., if they require talking to real humans). We therefore
use simulators for our tasks, derived either from text-based
games, or conversational agents powered by language mod-
els. Although this fully synthetic setup sacrifices the realistic
nature of tasks, we believe significant gain in accessibility is
worthwhile and will enable rapid RL algorithm progress.

RL Capability tests. For each task, we use a simulator such
as a chess engine or maze solver to generate near-optimal data
and then we dilute the policy with suboptimal data by taking
suboptimal actions or using inferior policies. We also convert
our task from a symbolic version to a text-based version in a
programmatic way as discussed in Appendix B.

Interactive Dialogue tasks. For conversational tasks, we
leverage existing LLMs to generate our data, either with two in-
stances of LLMs “talking” to one another or all at once through
few-shot prompting as shown in Figure 3. To train these LLMs,
we use OpenAI’s GPT-3.5 to generate an initial dataset by ask-

ing reasonable questions and answers out-of-the-box, collecting a dataset of differing sizes depending
on the task. In the case of 20Qs and Guess My City, we collected 1K conversations by querying
GPT-3.5 (text-davinci-003) to generate both sides of the conversation based on specific prompts
(which can be found in Appendix D.6. To generate the dataset for training our algorithms, we
fine-tuned a FLAN-T5-XL guesser model and a FLAN-T5-XL oracle model on their respective sides
of the conversation. Using these distilled models, we generated a new dataset of 100K conversations
by having the two models talk to each other. We conducted a similar process for the Car Dealer task
but with a larger model for fine-tuning (GPT2-XL). When generating our datasets, we also spent
considerable effort to ensure diversity in the responses to ensure the collection of high-quality data.
For the Car Dealer task as an example, this included providing different desired brands, features,
classifications (i.e. car or truck), and budgets in our prompting to generate the datasets. Further details
on our data generation process for the three Interactive Dialogue tasks can be found in Appendix D.

Task 20Qs Guess Car Maze Text-Nav Wordle Chess Endgames

Size 100k 100k 19k 1.24k 2.5k 1m 625k 97.756k
avg length 14.9 18.8 16.5 19.7 12.2 4.82 46.7 11.9
std length 4.38 4.57 3.61 24.5 8.77 1.27 18.16 12.0

success rate 0.31 0.53 0.53 0.11 0.26 0.70 0.60 0.59
avg return -17.3 -18.8 0.562 -19.7 0.258 -4.12 0.210 0.586
std return 2.56 4.12 0.422 24.5 0.424 1.59 0.970 0.492

Table 1: Statistics for all tasks in LMRL-Gym. Size represents the number of trajectories, the
average length is the average length of trajectories in the dataset where the unit is a response from the
agent. The success rate is the proportion of trajectories that reach the objective. Finally, the reward
functions for each task are defined in Appendix D.

5 LMRL-GYM RESEARCH FRAMEWORK FOR ALGORITHM DEVELOPMENT

We evaluate the LMRL-Gym tasks on both online and offline RL algorithms, including variations of
behavior cloning, value-based RL methods, and online PPO. We have selected these algorithms have
they are currently the state-of-the-art methods RL methods for LLMs Chen et al. (2021a); Snell et al.
(2022a); Ouyang et al. (2022). With these experiments, we expect to observe (1) a significant spread
in performance between the different algorithms, highlighting differences between RL algorithms; (2)
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room to improve beyond, such that our benchmark can enable future algorithmic development. Our
project page (REDACTED) contains links to our open-sourced datasets (REDACTED) and research
framework (REDACTED).

BC, Filtered BC, Online Filtered BC. In line with standard RL nomenclature, we denote su-
pervised fine-tuning as behavioral cloning (BC). This baseline tests whether LMs can effectively
represent the behaviors in the datasets. Filtered BC is identical, except only the most successful
examples in the offline dataset are used for fine-tuning, a technique which is also used in Snell
et al. (2022a). Online filtered BC collects data online using the current policy and selects the most
successful trajectories for finetuning. See Appendix E for our data filtering criteria for each task.

Offline Value-based RL: MC Returns and ILQL. Monte-Carlo returns (Kakutani, 1945) and
Implicit Language Q-Learning (Snell et al., 2022a) train a value V and Q function. In MC Returns, we
train the Q function with an MSE to predict the reward-to-go. In ILQL we train the two action-value
(Q) functions using the Bellman backup operator (Kostrikov et al., 2021). For both algorithms, the Q
and V functions are then used to perturb the logits of the original BC model (see Equation 5).

Online RL: PPO. PPO (Schulman et al., 2017) is an online RL algorithm widely adopted for
training language models with Reinforcement Learning from Human Feedback (Christiano et al.,
2023; Stiennon et al., 2022; Bai et al., 2022a; Casper et al., 2023). Unlike previous value-function
RL methods, PPO learns a language model policy with no policy extraction step.

GPT4. Few-shot prompting is a common technique for creating interactive language agents Wang
et al. (2023a). To compare this to RL fine-tuning we few-shot prompt GPT4 using dataset examples
and a detailed explanation of the game for each task. The prompts can be found in our code repository.

Training and evaluation protocol for algorithms. For the BC and filtered BC methods, we
initialize our models with the pre-trained GPT2 weights (Radford et al., 2019) and perform standard
fine-tuning. We choose GPT2 rather than a larger model due to memory and time constraints, though
we admit larger models would lead to a performance boost. For each of the RL methods, we initialize
the weights of the base model with the weights from the BC checkpoint and then continue finetuning
with the RL objective. When fine-tuning PPO, we limit the number of samples to less than 100k. We
report the hyperparameters that we used for each task in Appendix E. We evaluate each policy by
measuring the average reward in the simulated environment for each task.

Evaluation of data generation. When using LLMs as a simulator for human actions, it is important
to verify that (1) the text produced by the LLM is natural and (2) LLM simulator is not exploitable
e.g. policy achieves high reward without actually accomplishing the goal. In addition to validating
the data generation process through statistics reported in Table 1, we verified the naturalness of the
LLM-produced text in a user study of 40 users. In this study, found no significant difference in
the naturalness of conversations generated by ChatGPT3.5 and our trained simulators and agents
Appendix A. For example, natural conversations imply that the strategies employed by the Seller to
convince the Buyer followed human patterns of conversation and indicate the robustness of the Buyer
model to hacking. 20 Questions and Guess My City are particularly hard to hack as they require the
agent to successfully guess the word. We verify this through automatic checks as described in our
prompting strategy in Appendix D.6.

6 BENCHMARKING BASELINE RL METHODS

In Table 2 we present the results for each method on each of our text-game and interactive dialogue
tasks. We normalize the scores such that a score of 50 corresponds to the average reward in our
offline dataset, 0 corresponds to the lowest possible score, and 100 to the highest score. Across all
tasks, we see that our offline RL baseline methods consistently outperform both the dataset and the
filtered BC policies, demonstrating the efficacy of offline RL in representing a more optimal policy
than the best behaviors in the data. Similarly, we see that online PPO generally improves over the BC
policies, highlighting the utility of learning from online environment interaction. However, between
RL Capability tasks and Interactive Dialogue tasks, we observe desperate trends in which specific
method performs the best. We discuss this in more detail below.
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alg. BC % BC MC Return ILQL Online PPO Online % BC GPT-4

Interactive Dialogue
20Qs 57.1 77.1 87.1 82.9 72.9 55.2 95.7

Guess 30.0 48.0 88.0 75.0 49.9 31.6 92.3
Car 44.5 54.8 57.2 46.3 50.5 40.4 53.5

RL Capability tasks

FO Maze 58.2 68.9 75.0 99.9 79.7 57.4 78.2
PO Maze 53.1 50.1 52.4 76.3 42.4 53.1 60.4

FO Text-Nav 53.7 65.1 71.9 91.8 87.1 74.5 67.5
PO Text-Nav 49.7 60.5 71.6 83.7 85.5 68.4 40.2

Wordle 79.9 79.1 94.9 97.7 84.2 95.2 15.4
Chess 47.2 42.9 46.5 47.3 48.0 47.2 0

Endgames 35.1 17.7 50.2 45.8 77.5 36.2 0

Table 2: Normalized reward for all tasks. We present the interactive dialogue tasks on top and the RL
capability tasks on the bottom. Value-based methods (MC and ILQL) generally outperform filtered
BC, as we might expect in stochastic settings, though the relative performance of ILQL and the
simpler MC method is, perhaps surprisingly, reversed on the tasks with more complex language,
suggesting that there is room for improvement with such methods. Online RL with PPO often, but not
always, improves over offline methods that are not permitted to collect additional online interaction.
To make the results more comparable across tasks, we normalize the average return for each policy
such that 0 is the minimum possible return, 50 is the dataset average return, and 100 is the maximum
return for each task. We also report the raw score results and evaluation details in Appendix F.

Which algorithm performs best on the RL Capability tasks? On the RL Capability tasks in
Table 2, we see ILQL has the highest performance across all methods for most tasks. ILQL’s
performance on these tasks is likely due to its unique ability to perform trajectory stitching, enabling
it to outperform any individual trajectory in the dataset by learning to compose the best parts of
many different trajectories. However, on the PO text-nav, chess, and endgames tasks, we see that
PPO outperforms ILQL, suggesting that there is likely still much room for improvement in terms of
developing better offline TD-based RL methods for LLMs.

Which offline RL algorithm performs best for Interactive Dialouge tasks? In contrast to the
text-based games, on our Interactive Dialogue tasks, we see that across all tasks ILQL under-performs
the simpler MC returns method. This discrepancy with dialogue, may be because on the more
complex text-based tasks it is harder to scale full TD-learning. In fact, we find that on the car-dealer
task, even filtered BC outperforms ILQL. Overall, these findings demonstrate that there is much
progress to be made in developing better offline RL methods that can effectively optimize LLMs in
complex and realistic dialogue settings.

How does performance of language-based text games compare with their symbolic-based
counterparts? We created a non-text-based version of the Maze task (an RL Capability task) to
investigate what difficulties arise from deploying RL algorithms on language-based tasks. We found
that simple online and offline Q-learning was able to get an optimal score on the maze. Therefore,
the performance symbolic maze is comparable to the fully observed Maze task. However, on the
PO Maze task, the language-based methods perform significantly worse. This highlights room for
improvement in dealing with partial observability in environments with complex language. Further
details for this ablation are found in Appendix H.

How does prompting GPT-4 compare with RL fine-tuning? On the RL Capability tasks, we
find that our much smaller RL finetuned models significantly outperform GPT4, demonstrating the
efficacy of RL for enabling complex goal-directed behaviors in language models. However, on the
Interactive Dialogue tasks, GPT-4 outperforms or performs on par with our best RL-trained models.
These dialogue tasks are likely to be much more in distribution for GPT4 than our text-game RL
capability tasks, and thus GPT4’s broad world-knowledge, reasoning, and conversational abilities
become synchronized allowing it to compensate for its lack of goal-directed RL fine-tuning in these
scenarios. Nonetheless, the mere fact that finetuning small models with RL enables us to close
much of the gap to GPT4 on these more realistic tasks underscores the efficacy of RL finetuning.
In summary, we can see that RL algorithms consistently outperform baselines like filtered BC on
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many of the tasks. However, these results highlight significant areas for growth. For example, the
instabilities observed in training PPO require further investigation beyond hyperparameter tuning.
Moreover, the performance discrepancy between ILQL and the simpler MC Returns highlights that
scaling full TD-learning to Interactive Dialogue settings is another area for improvement.

7 DISCUSSION

We propose LMRL-Gym, consisting of 8 tasks including three Interactive Dialogue tasks, and five RL
Capability tests. We provide a research toolkit for practitioners to get started with multi-turn RL for
LLMs. Our objective is enable the iteration and development of more effective methods for language-
based, multi-turn interaction tasks. This includes enabling core capabilities in LLMs through RL
to perform complex decision-making, complex conversational interactions, credit assignment, and
trajectory stitching. Our evaluation shows promise of RL in several tasks, with further room for
improvement with a push for better methods. We acknowledge several limitations when designing
tasks in our benchmark, including primarily leveraging smaller GPT-based LLMs to generate datasets
and finetune our LLM-based simulators. While we have primarily trained and evaluated models with
a maximum 1.5B parameters, we have maintained a lower parameter count to ensure accessibility
for researchers with limited computational resources. In addition to releasing our code and datasets,
we share all of the hyperparameters we used to train our models in Appendix E and provide more
in-depth insight into our results, training procedure, and evaluation in Appendix F.

We would like to acknowledge that this work is part of a larger effort to improve the performance
of LLMs in settings that require planning or multi-turn interactions including multi-turn dialogue,
complex tool use, multi-step games, and other interactive applications. Our goal is to propose tasks
to evaluate different capabilities expected from an LLM, such as common sense reasoning, credit
assignment, reasoning under uncertainty, information-seeking behaviors, and trajectory stitching. We
hope this benchmark inspires the creation of more synthetic datasets and simulators for dialogue and
is used to design better algorithms to train goal-directed LLM-RL models.

8 IMPACT STATEMENT

This work aims to develop a benchmark for the advancement of research in reinforcement learning
and LLMs. We generate datasets for tasks in our benchmark with existing LLMs for dialogue tasks
and online engines for text games, adhering to best practices in data handling and ensuring there is
no personally identifiable or sensitive information present in the generated datasets. We recognize
that there may be biases present in the datasets we collect, and have taken steps to ensure a diverse
and varied collection of responses from LLMs for our conversational task as detailed in our data
generation process in Appendix D. In considering the ethical implications of interactive RL, we
acknowledge the dual use implication of this research, particularly centered around developing LLM
simulators that could perform persuasion, manipulation, and addictive engagement of users at a large
scale. The optimization processes employed by such algorithms, which aim to maximize certain
objectives, raise ethical considerations when the optimized outcomes may prioritize system goals
over user safety and alignment to human values. We have designed our datasets and reward functions
such that prioritize fairness and human-aligned outcomes. By incorporating these considerations
when designing our framework, we aim to encourage the development of reinforcement learning
models and LLMs that not only excel in performance but also adhere to ethical standards.
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