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Pour the batter 
into the prepared 
baking pan …

Stir in 1 cup of all-
purpose flour and 
matcha powder …

Fold in 1/2 cup 
of white 
chocolate chips

Bake for 20-25 
minutes or until a 
toothpick inserted 
into the center…

Line an 8x8 inch 
baking pan with 
parchment paper

Let the blondies 
cool in the pan 
before cutting into 
squares … 

SD
X

L
L
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Task: How to make matcha blondies?

Missing object: 
parchment paper

With object:
parchment paper

Missing history context:
White chocolate should be in the bowl

Wrong attribute:
batter is not green

Inconsistent identity:
not showing green matcha blondies

Correct attribute:
batter is green

Consistent identity:
baked green matcha blondies

With history context:
White chocolate in the bowl

Figure 1: Visual instruction generated by LIGER, key merits are highlighted in the figure.

ABSTRACT

Visual instructions for long-horizon tasks are crucial as they intuitively clarify
complex concepts and enhance retention across extended steps. Directly generat-
ing a series of images using text-to-image models without considering the context
of previous steps results in inconsistent images, increasing cognitive load. Addi-
tionally, the generated images often miss objects or the attributes such as color,
shape, and state of the objects are inaccurate. To address these challenges, we
propose LIGER, the first training-free framework for Long-horizon Instruction
GEneration with logic and attribute self-Reflection. LIGER first generates a draft
image for each step with the historical prompt and visual memory of previous
steps. This step-by-step generation approach maintains consistency between im-
ages in long-horizon tasks. Moreover, LIGER utilizes various image editing tools
to rectify errors including wrong attributes, logic errors, object redundancy, and
identity inconsistency in the draft images. Through this self-reflection mecha-
nism, LIGER improves the logic and object attribute correctness of the images.
To verify whether the generated images assist human understanding, we manu-
ally curated a new benchmark consisting of various long-horizon tasks. Human-
annotated ground truth expressions reflect the human-defined criteria for how an
image should appear to be illustrative. Experiments demonstrate the visual in-
structions generated by LIGER are more comprehensive compared with baseline
methods. The code and dataset will be available once accepted.

1 INTRODUCTION

Humans learn to accomplish real-world tasks quickly through step-by-step text instructions. How-
ever, without visual aids, it is challenging to imagine the object attribute status and judge the comple-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

tion status of the steps. For instance, when frying potato chips, merely reading the text description
makes it hard to judge whether the chips are done. In contrast, viewing a video or a series of images
accelerates individual understanding of task procedures, enhancing the success rate of completing
various tasks. Generating illustrative visual instructions eases the comprehension burden and there-
fore becomes a crucial and trending task (Lu et al., 2023; Bordalo et al., 2024; Menon et al., 2024;
Damen et al., 2024). Moreover, generating visual instructions unleashes the potential applications
including multi-modal embodied agent perception and new task adaptation (Fan et al., 2024; Zhou
et al., 2024a). In this paper, we aim to generate a series of images given task step descriptions.

A naive approach to generating visual instructions involves directly using text-to-image models,
such as Latent Diffusion Models (LDMs) (Rombach et al., 2022). As Figure 1 illustrates, this
method results in images lacking object consistency, thereby confusing users about the relationships
between steps. To enhance image continuity, GenHowTo (Damen et al., 2024) trains a controllable
U-Net (Ronneberger et al., 2015) model to enhance identity consistency. StackDiffusion (Menon
et al., 2024) uses a diffusion model that takes concatenated latents from different steps as input.
Sequential Latent Diffusion Model (SLDM) (Bordalo et al., 2024) trains a language model to re-
generate consistent textual descriptions and use latents of the previous steps to enhance consistency.
However, these approaches tend to produce overly consistent images that fail to capture changes in
object states. An illustrative visual instruction should balance continuity with sufficient variability.
This leads to the first challenge: the need for logical coherence across steps while allowing for ap-
propriate changes. Moreover, we empirically observe that the attributes of objects, e.g. color, state,
and shape, might be incorrect in the images as depicted in Figure 1. These errors can accumulate,
impacting the generation result of other steps and posing a significant challenge in long-horizon
tasks. This leads to the second challenge, i.e. , attribute error and cumulation.

Our intuition for addressing these issues is to first generate a draft image for each step with the visual
and textual context of previous steps, ensuring continuity between images. Then, through a process
of self-reflection, we refine the draft images by adjusting for excessive continuity and correcting
object attribute errors. This iterative approach not only prevents the accumulation of attribute errors
in long-horizon tasks but also maintains appropriate logic relations across steps, similar to drafting
and refining sketches.

To this end, we propose LIGER, a training-free framework for long-horizon visual instruction gener-
ation consisting of (1) historical prompt and visual memory, (2) self-reflection and memory calibra-
tion. Specifically, we leverage the reasoning ability of LLM to explicitly output history context for
each step, facilitating relation comprehension. Inspired by the recent training-free identity consistent
generation works (Zhou et al., 2024b; Tewel et al., 2024), LIGER additionally injects the previous
step visual latent embedding into the frozen text-to-image diffusion model, generating coherent im-
ages for different steps. To further refine the object attribute in the images and avoid over-consistent,
a MLLM receives multi-modal in-context prompting and tells the rectifying solutions. Various edit-
ing tools deal with errors including attribute error, object redundancy, identity inconsistency, and
logic misunderstanding. Then the visual memory is calibrated to the embedding of the edited image
via a latent inversion procedure, avoiding the error affecting future step image generation. Having
this step-by-step generation manner, LIGER is capable of tasks with arbitrary steps without training.

To evaluate whether the generated visual instructions align with human comprehension, we curate a
benchmark containing 569 long-horizon tasks along with human-annotated ground truth expressions
and logic relations. Moreover, we evaluate the method from semantic alignment, logic correctness,
and illustrativeness. Results show that LIGER surpasses baseline methods by a large margin. User
studies and qualitative comparisons further verify that visual instructions generated by LIGER are
more illustrative. In summary, the contribution of this paper includes:

(1) We propose LIGER, the first training-free framework generating visual instructions for long-
horizon tasks.

(2) History prompts, visual memory, and self-reflection are introduced to promise logic coherent and
object property accuracy. Inversion-based memory calibration is devised to avoid exposure bias.

(3) A dataset for long-horizon tasks with human-annotated expressions is curated to evaluate the
effectiveness of LIGER.
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2 RELATED WORK

2.1 IMAGE GENERATION AND EDITING

Recent advances in multi-modal diffusion models (Ramesh et al., 2022; Koh et al., 2024; Peebles
& Xie, 2023; Saharia et al., 2022; Ho et al., 2020; Song et al., 2020) show a remarkable ability to
generate images in high fidelity. Among these models, Latent diffusion models (LDMs) (Rombach
et al., 2022) show strong robustness and semantic richness since the denoising process is conducted
on the latent space. Based on LDMs, researchers further exploit exciting application topics including
controllable image generation (Zhang et al., 2023; Mou et al., 2024b; Liang et al., 2024; Ma et al.,
2024), personalized generation (Ruiz et al., 2023; Kumari et al., 2023; Shi et al., 2024a; Gal et al.,
2022), coherent generation Zhou et al. (2024b); Tewel et al. (2024), image editing (Brooks et al.,
2023; Hertz et al., 2022; Nichol et al., 2021; Kim et al., 2022; Mou et al., 2023; Shi et al., 2024b;
Mou et al., 2024a), etc. Storydiffusion (Zhou et al., 2024b) and Consistory (Tewel et al., 2024) share
a similar idea of KV sharing to generate content-consistent images in a training-free manner.

Image editing, different from previous image generation tasks, involves manipulating the contents
of the given image (Pan et al., 2023). There are various settings for editing, including text-driven
(Tumanyan et al., 2023; Cao et al., 2023; Kawar et al., 2023), location-based (Chen et al., 2024b;
Avrahami et al., 2023; Nichol et al., 2021), appearance modulation (Chen et al., 2024a; Mou et al.,
2023), object moving (Pan et al., 2023; Mou et al., 2024a), etc. Common techniques for text-guided
editing involve modifying the latent attention module e.g. MasaCtrl (Cao et al., 2023) or fine-tuning
a model e.g. Instructpix2pix and SmartEdit (Brooks et al., 2023; Huang et al., 2024). Location-
based editing leverages the region restriction prior like bounding box, mask, or even point (Ling
et al., 2023). Our method utilizes different image editing methods to rectify the errors in the image.

2.2 TASK INSTRUCTION GENERATION

Generating procedures for a task is a popular research topic as it has potential application scenarios
like intelligent assistants (Shen et al., 2024; Surı́s et al., 2023; Yang et al., 2024b), embodied agents
navigation (Liu et al., 2023; 2024) and instruction comprehension (Xu et al., 2023), etc. This paper
focuses on visual instruction generation, i.e. generating a series of images to explain a task. Previous
work like TIP (Lu et al., 2023) and MGSL (Wang et al., 2022) generates textual instructions for
the tasks based on the visual information. StackDiffusion (Menon et al., 2024) is the first method
for generating coherent visual instructions, which is trained on step-wise annotated VSGI dataset
(Yang et al., 2021). However, the step number for a task is restricted. GenHowTo (Damen et al.,
2024) infers states before and after actions by learning from instructional videos. Sequential Latent
Diffusion Model (Bordalo et al., 2024) trains a model to output coherent text prompts for the text-
to-image diffusion model, therefore generating coherent images. Phung et al. Phung et al. (2024)
propose a training-free method yet the utmost step length is 5. Different from previous methods,
LIGER is a training-free method that can deal with long-horizon tasks having large step lengths.

2.3 TOOL-BASED METHODS

As the growing emergent capabilities of LLMs (Achiam et al., 2023), researchers deal with complex
vision and natural language tasks (Yao et al., 2022) by using surrogate tools (Schick et al., 2024)
or programming languages, pioneer works include VisProg (Gupta & Kembhavi, 2023), ViperGPT
(Surı́s et al., 2023), HuggingGPT (Shen et al., 2024), etc. In the image and video generation area,
LLMs are widely used for arranging layouts (Gani et al., 2023; Lin et al., 2023; Lian et al., 2023;
Yang et al., 2024a), enriching textual prompts (Cheng et al., 2024; Long et al., 2024; Yuan et al.,
2024; Zhuang et al., 2024), tool calling (Wang et al., 2024), verification (Wu et al., 2024). Our
method is also a tool-based framework unleashing the strong reasoning ability of Multi-modal Large
Language Models (MLLMs) to call tools, enrich textual information, and do self-reflection.

3 METHOD

The overall pipeline of LIGER is shown in Figure 2. Harnessing the visual memory and historical
prompt, LIGER generates a draft image for each step. Self-reflection mechanism corrects the errors
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(2) Self-Reflection (3) Post-Processing
   Referee 
  (GPT4O)

Rectifier
Removal

(Lama)
Identity 

(DragonDiff)
Attribute

(SD Inpaint)

   Error Detector
        (GPT4O)

  Regenerate
     (SDXL)

Memory Calibration
...... Locator

  (LISA)

Draft Image

Step 1:  Start by
preheating the grill to
burn off any ...
Step 2:  Use a wire
brush to scrape off
the burnt food ...

 History 
 Analyse 
  (GPT4O)

 Generation  
  (SDXL with 
  Consist Attn)

Wipe the exterior
of the grill with a

damp cloth 

(1) Draft Image Generation

+ +

Input: 
Historcal Prompt +     Step Description    + Visual Memory

Revised Image Output 

Previous Steps

Draft Image

Clean grates
reinstalled

Figure 2: Pipeline overview. LIGER generates visual instructions step-by-step, starting with (1)
generating a draft image taking the visual memory, step description and historical prompt as input.
(2) The error detector identifies the error and the corresponding tool fixes it, generating a revised
image. (3) The referee tool compares the two images and selects one as the final output. LIGER
further uses inversion-guided visual memory calibration for future step generation.

in the draft images. To prevent error accumulation in the long horizon generation procedure, LIGER
calibrates the visual memory according to the edited image through inversion.

3.1 HISTORY-AWARE DRAFT IMAGE GENERATION

Given a set of step descriptions Sn for a task Q of n steps, our goal is to generate a series of
coherent images V for corresponding descriptions without training. To this end, a frozen text-to-
image diffusion model generates a draft image V ′

i for step i for each step in the task. The diffusion
model generates a single image through iterative denoising steps. Specifically, a U-Net network U
predicts the noise

ϵt = U(zt, c), (1)
where zt is the latent representation at timestep t and c is the textual condition. Naively generating
individual images using the step description ignores the continuity between steps. Therefore, we
first introduce the historical prompt and visual memory to enhance consistency.

Historical prompt. Each step description Si ∈ S often describes an incremental action relative
to the previous scene settings. For instance, in a task cooking potato chips, two consecutive steps
are: place the potato chips on a paper towel to drain excess oil and seasoning with salt and pepper.
Without context, the text-to-image diffusion model is unaware that salt and pepper should be added
to the potato chips. Motivated by this, we use an LLM to generate a description Hi for each step that
specifies which objects from the previous steps should appear in the current step. The text condition
c for the diffusion model is formulated as

c = ET (Si, Hi), (2)
where ET is the text encoder network.

Visual memory sharing. Merely using the historical prompt results in generating objects with
varied appearances and backgrounds. To address this issue, inspired by StoryDiffusion (Zhou et al.,
2024b), we incorporate visual embeddings from the previous step as the visual context. When
generating the draft image V ′

i of step i, we randomly sample several visual feature tokens pi−1 ∈
RM×C of the previous image Vi−1 ∈ V and inject them into the self-attention operation in the U-
Net. Here M represents the number of sampled tokens and C is the number of feature channels.
The query input of the attention operation is the current image feature tokens pi ∈ RN×C , the key
and value inputs are the concatenation of pi−1 and pi. The procedure can be formulated as:

Qi = W qpi,Ki = W k[pi,pi−1], Vi = W v[pi,pi−1],

Oi = Attention(Qi,Ki, Vi),
(3)

where W q , W k,W v are the linear projection layers for the query, key, and value respectively. The
output feature Oi is used as the input of the next layer in the UNet U . Note that neither the historical
prompt nor the visual memory are provided in the first step of any task.
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Previous Step:
Blend the mixture until
smooth

Current Step: Pour the milkshake into a glass

Begining Step: Preheat the oven to 325 degrees Fahrenheit

(a)

(c)

Begining Step: Place the chicken breasts on a cutting board

(b)

(d)

Draft Image

Draft Image

Draft Image

Draft Image

After Self-relection After Self-relection

After Self-relection After Self-relection

Current Step: Heat olive oil in a skilletPrevious Step:
Shape the mixture into
small meatballs Over-consistent Object Redundant

Inconsistent identity Wrong Attribute

Figure 3: Visualization of different error types and the effect of self-reflection. The motivation of
self-reflection is to rectify errors including (a) over-consistent, (b) object redundant, (c) inconsistent
identity, and (d) wrong attributes.

3.2 TOOL-BASED SELF-REFLECTION

Empirically, we observe errors in the draft images as illustrated in Figure 3. Leveraging the advanced
multi-modal capabilities of MLLMs, LIGER employs the state-of-the-art GPT4O model as an error
detector to identify errors across four aspects, then output tool calling instructions to revise the draft
images. For accuracy in error recognition, the error detector is prompted with multimodal in-context
examples. The prompt template is attached in the appendix.

Over-consistent. In long-horizon tasks, not all steps necessarily require visual continuity. For
example, consider the task of cooking wanton noodles where the steps Drain the noodles and rinse
with cold water and In a separate pan, heat some oil are sequential yet independent. The former
step concludes noodle preparation, while the latter step initiates cooking with different ingredients.

Algorithm 1 Single Step Self-reflection
Input: Draft Image V ′

i , Previous Image Vi−1,
Step Description Si, Si−1, and Task Q.
if i = 0 then

A← [Attribute, Object]
else

A← [Relation, Identity, Attribute, Object]
end
for A in A do

if A in [Attribute, Object] then
error ← Detect(V ′

i , Si, Q)
else

error ← Detect(V ′
i , Si, Q, Si−1, Vi−1)

end
if error is detected then

V̂i ← Rectify(V ′
i , Si, Q)

Vi ← Compare(V ′
i , V̂i)

break
end

end
if Vi = V̂i then Refresh(V̂i) end
Output: Final Image Vi,

These steps lack logistic connection, making con-
sistency between the two images unnecessary.
Breaking this consistency can help users recognize
the transition to a new step. To address the over-
consistent issue, the error detector assesses whether
to maintain or disrupt the continuity. If breaking
consistency is required, the error detector outputs
the error rectification instruction in the format of
Regenerate(New text), then regenerates an im-
age according to the new description.

Identity inconsistent. Despite historical prompt
and visual memory contributing to global visual
consistency, local details occasionally remain mis-
aligned, as depicted in Figure 3. To enhance
local consistency, LIGER employs an intuitive
method that aligns object appearances across im-
ages. Specifically, the error detector compares ob-
jects in successive images, identifying whether two
objects should have similar appearance with the
command Modify(object in V ′

i , object in Vi−1).
Subsequently, a locator tool, i.e. LISA (Lai et al.,
2024) outputs the masks of the objects according to
the object descriptions generated by the error detector. Then the identity-keeping tool i.e. Dragon-
Diffusion (Mou et al., 2023) receives the masks and modifies the object appearance in the current
image to match the previous image.

5
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Wrong attribute. Correct object attributes such as color, shape, and state are crucial for instructions.
For instance, considering the tasks of baking chicken wings, the model may incorrectly generate
cooked chicken wings at the seasoning the prepared chicken wings step, where they should be raw.
To address this problem, the error detector describes the desired attributes for an object with the
instruction Add(new description, object in V ′

i ). The same locator tool segments the object, then
an attribute reformulation tool i.e. SD inpainting Rombach et al. (2022) generates an image with
modified object attributes according to the object mask.

Redundant object. The last type of error is object hallucination, where frozen text-to-image dif-
fusion models sometimes generate irrelevant objects for a step description. For instance, in Figure
3 (b), the image illustrating preheating the oven mistakenly includes bread in the pan. The error
detector flags the object to be removed in a format of Remove(object in V ′

i ), and the locator tool
pinpoints the specific region. LIGER opts for the widely used LAMA (Suvorov et al., 2022) as an
object removal tool. The tool removes the corresponding part of the image given the object mask.

LIGER evaluates the image across these four aspects iteratively and only modifies the draft image for
once. In other words, once an error is detected, the verification procedure halts, and the correspond-
ing editing operation is applied to the draft image. It is also worth noting that the over-consistent
and identity inconsistent are verified based on two consecutive steps, while wrong attribute and re-
dundant object are conducted as single-image verifications. The execution order of the pipeline is
detailed in Algorithm 1. Consequently, for the draft image of the first step in each task, LIGER only
performs attribute modification or object removal. Having the various tools collaboratively verify
the images, LIGER generates illustrative visual instructions for long-horizon tasks with accurate
logic in a self-reflection manner.

3.3 JUDGEMENT AND MEMORY CALIBRATION

The aforementioned tool-based self-reflection generates a revised image V̂i. Yet every rose has its
thorn, self-reflection sometimes produces low-quality images or makes incorrect judgments during
editing. To stabilize the pipeline predictions and improve robustness, we devise a referee tool to
compare the draft image with the revised image. The referee evaluates both the quality and semantic
alignment of the images and selects the better one as the final result Vi. For more details, refer to
the prompt template provided in the appendix. Since LIGER generates images step by step, with
visual memory providing visual continuity between steps, any error in the output image Vi impacts
the memory and can accumulate in subsequent steps of image generation. To prevent this exposure
bias, we propose inversion-guided visual memory calibration to update the memory.

Inversion-guided visual memory calibration. As discussed in Section 3.1, the visual memory is a
set of image feature tokens sampled from the previous generation step pi−1 ∈ RM×C . These tokens
are saved during the denoising process of the draft image, which exhibits a discrepancy with the
features of the revised images. Since the revised image is generated in a post-processing manner, it
is unable to store the feature tokens alongside the generation process. Given the nature of diffusion
models, however, the sampling process can be reversed using DDIM inversion which is formulated
as:

xt+1 =
√
αt+1/αt · xt +

√
αt+1 (βt+1 − βt) · ϵt, (4)

where αt is the variance schedule depend on timestep t, and the step-wise coefficient is set to βt =√
1/αt − 1. ϵt is the noise predicted by the U-Net according to Eq 1. This allows us to obtain the

attention output of the U-Net during the inversion procedure reversely. Therefore, for the revised
images, we apply this inversion operation over the same number of timesteps as in the generation
procedure, effectively calibrating the visual memories to current image Vi features. Correcting
the visual memories prevents errors from accumulating and affecting subsequent image generation
procedures in long-horizon tasks.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

For the historical textual prompt, the error detector and referee, we use GPT-4O (Achiam et al.,
2023) introduced by OpenAI. The draft image generation uses the SDXL (Podell et al., 2023) with

6
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Figure 4: Dataset statistics and the influence of the step length of tasks.

a guidance scale of 5 along with the Free-U plugin (Si et al., 2024). The DDIM generation and
inversion timesteps are set to 50. In terms of the visual memory, we set the number of the previous
step image feature token M to half of the sequence length N , in other words, M = N/2. For the
location tool, we leverage the LISA-7B model (Lai et al., 2024) to balance the performance and
computing resources requirement. All experiments are conducted on a single RTX A6000 GPU.

4.2 DATASET

Effective visual instructions for long-horizon tasks should help users quickly understand complex
procedures, but evaluating this capability remains challenging. Existing datasets lack appropriate
evaluation methods for this aspect. To address this gap, we curate a new textual dataset consisting
of 569 long-horizon tasks. These tasks are extracted from different resources including Howto100M
(Miech et al., 2019), Youcook2 (Zhou et al., 2018), and RecipeQA (Yagcioglu et al., 2018). The
tasks focus on the recipe domain, as cooking procedures typically involve strong logical relations
between steps and require multiple stages. Specifically, we prompt the GPT4O model with in-
context samples to filter out tasks that are hard to illustrate and tasks that are easy to accomplish,
e.g. How to prepare a family meal for 20 people. The LLM then outputs step-by-step action
descriptions for each task. Unlike existing planning datasets (Menon et al., 2024; Lu et al., 2023),
our dataset offers following novel features:

Long-horizon tasks. The average number of steps per task is 9.8, with a minimum of 6 steps and
a maximum of 17. The detailed distribution is shown in Figure 4 (a). We categorize the tasks into
short, medium, and long based on the number of steps: 6-8 steps are classified as short, 9-11 as
medium, and 12 or more as long.

Manual annotations for step logics. For each task, we ask human annotators to select a pair of
consecutive steps with continuous logic and another pair with logically independent steps. Our intu-
ition is that the images corresponding to logically consistent steps should exhibit visual continuity,
while the images of locally independent steps should be visually distinct.

Human-written ground truth descriptions reflecting comprehension. We introduce a novel an-
notation for evaluating illustrative images. Since step descriptions often omit details about object
attributes, we ask the annotators to write a sentence describing what components should appear in
the illustrative image for every step. These sentences reflect the appearance and state of the ob-
jects with previous steps information. For example, the step Arrange the chicken wings on the wire
rack from task How to bake chicken wings, one can infer the wings are raw and ready for baking.
Therefore, a suitable illustrative expression could be The raw chicken wings are neatly arranged in a
single layer on the wire rack, with the spices and oil giving the skin a glossy, seasoned appearance.
These expressions allow us to evaluate whether the generated images match human expectations of
how an illustrative image should look. Annotation examples are provided in the appendix.

4.3 BASELINES

To thoroughly evaluate the effectiveness of LIGER and its components, we conduct both quantita-
tive and qualitative comparisons with different baselines including: (1) Frozen SDXL (Podell et al.,
2023). We simply generate visual instructions for the tasks using a frozen SDXL model prompted
with the vanilla textual step descriptions. (2) Frozen SDXL + Visual memory (+V). The image
generation model is provided with the visual memory while the text prompts remain vanilla step
descriptions. (3) Frozen SDXL + Historical prompt (+H). The text prompt for the frozen SDXL
model is modified by concatenating the step description and the historical prompt. No visual mem-
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Step6:
Place a handful of 
French fries on top 
of the pico de gallo

Step2:
Spread guaca-
mole in the 
center of tortilla

Step3:
Add a generous 
portion of carne 
asada on top of 
the guacamole

Step4:
Sprinkle shredded 
cheese over the 
carne asada

Step5:
Add a serving of 
pico de gallo on 
top of the cheese

Step7:
Drizzle some 
sour cream over 
the French fries

Step1:
Lay out a large 
flour tortilla on 
a clean surface

Step8:
Carefully fold the 
sides of the tortilla 
in, then roll it up to 
form the burrito

Step9:
Grill the burrito on a 
heated skillet for a 
couple of minutes on 
each side …

SL
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M
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Step1:
Cut 500g of 
chicken breast 
into bite-sized 
pieces

SL
D

M
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Step2:
In a bowl, mix 1 
cup of cornstarch 
with the chicken 
pieces until they 
are well coated

Step3:
Heat oil in a deep 
fryer or large skillet 
to 350°F (175°C) 
and fry the chicken 
pieces until golden 
brown and crispy

Step4:
Remove the 
chicken pieces 
and place them 
on paper towels 
to drain excess oil

Step5:
In a separate bowl, 
prepare the sauce by 
combining 1 tbsp 
hoisin sauce, 1 tbsp 
cornstarch, and…

Step6:
Heat 1 tbsp of oil 
in a large skillet 
or wok over 
medium heat

Step7:
Add the sauce 
mixture to the 
skillet and cook 
until thickened 
and bubbly

Step8:
Add the fried 
chicken pieces to 
the skillet and toss 
to coat them  with 
the sauce

Step9:
Garnish with 
chopped green 
onions and 
sesame seeds

Step10:
Serve hot with 
steamed rice or 
your choice of 
side

How to make a california burrito?

How to make general tso chicken? 
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How to make penne pasta with arrabiata sauce?

SL
D

M

Step1:
In a large pot, 
bring water 
to a boil and 
add salt

Step2:
Add 2 cups 
of penne 
pasta to the 
boiling water

Step3:
Cook the pasta 
until al dente 
according to 
the package 
instructions

Step4:
Drain the 
pasta and set 
aside

Step5:
In a separate 
pan, heat 2 
tablespoons of 
olive oil over 
medium heat

Step6:
Add 2 minced 
garlic cloves and 
2 chopped red 
chili peppers to 
the pan

Step7:
Sauté until 
the garlic is 
golden 
brown

Step8:
Add 2 cups 
of tomato 
sauce and stir 
to combine

Step9:
Add a pinch 
of salt and 
pepper to 
the sauce

Step10:
Simmer the 
sauce for 
about 10 
minutes

Step11:
Add the 
drained penne 
pasta to the 
sauce

Step12:
Toss the pasta 
in the sauce 
until evenly 
coated

Step13:
Serve the pasta 
hot and garnish 
with freshly 
chopped 
parsley…

Figure 5: Detailed qualitative comparisons on different long-horizon tasks. Zoom in to see details.
ories are provided. (4) Frozen SDXL + Visual Memory + Historical prompt (+V+H). The image
generation model is equipped with both visual memory and the historical prompt. This baseline can
also be considered LIGER without self-reflection. (5) T2I-Bridge (Lu et al., 2023) uses an LLM
to imagine what the image for each step should depict based on the step descriptions. T2I-Bridge
represents a type of re-captioning method. (6) Sequential Latent Diffusion Model (SLDM) (Bor-
dalo et al., 2024) trains a language model to produce coherent captions for the steps of a task and
uses a sequential context decoder to establish visual connections between images. Note that the
text-to-image generation diffusion model is still frozen in SLDM.

4.4 QUANTITATIVE EVALUATION

To assess the effectiveness of LIGER, we conduct a detailed quantitative comparison including:
Automatic evaluation. We calculate several metrics using pre-trained models. First, we evalu-
ate the semantic alignment between the images and human-annotated ground truth expressions by
calculating the CLIP (Radford et al., 2021) similarity. These curated expressions reflect human un-
derstanding of each step. Hence a higher CLIP-Score indicates that the images are more relevant to
the expressions, implying that the images are more illustrative for human comprehension.
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Method Automatic evaluation GPT evaluation
CLIP-Score↑ DINO-Score ↓ BERT-Score ↑ Semantic↑ Logic↑ Illustrative↑

T2I-Bridge 2.4350 0.8576 0.8669 3.4717 2.5843 2.5150
SLDM 2.5054 0.6746 0.8694 3.3634 2.7286 2.5771

Ours 2.7555 0.6338 0.8743 4.1141 3.0595 3.0536

Table 1: Automatic quantitative evaluation and GPT evaluation results.

The second metric tests the logic correctness between consecutive steps. To evaluate image similar-
ity, we use the DINO-v2 (Caron et al., 2021; Oquab et al., 2023) model and calculate the average
l2 Distance between the embeddings of the two images for the annotated step pairs. Inspired by
the Signal-to-Noise Ratio formulation, we define the DINO-Score Ds as the l2 distance between
coherent steps divided by the l2 distance between independent steps which can be expressed as
Ds = lp2/l

n
2 . This metric evaluates the ability to generate consistent images for logically coherent

steps and distinct images for unrelated steps. A lower DINO-Score indicates higher logical accuracy.

The last metric evaluates the method performance in a modality-transfer test. Our intuition is that
illustrative visual instruction should help people summarize or describe the steps in text. There-
fore, we transfer the images back into text and measure the textual similarity with the annotated
descriptions. Specifically, we adopt the widely-used BLIP-2 (Li et al., 2023) model to gener-
ate captions for images, then calculate the BERT-Score (Zhang et al., 2019) between the cap-
tions and descriptions. A higher BERT-Score represents the image is more illustrative. The re-
sults shown in Table 1 demonstrate that LIGER significantly outperforms the baseline methods.

SD
X

L
SD

X
L+

H
SD

X
L+

V
SD

X
L+

V
+H

L
IG

E
R

Step5:
Place the dough in

a greased bowl,
and let it rise...

Step10:
Sprinkle shredded
mozzarella cheese

over ...

Step6:
Preheat the

oven to 475°F
(245°C) 

Step7:
Punch down the

dough then roll out
on a floured surface...

Step8:
Transfer the rolled

dough on pizza
stone or...

Step9:
Spread pizza

sauce over the
dough

How to make pizza from scratch?

Figure 6: Qualitative ablation on different components.

GPT evaluation. We further
harness the advanced logical
reasoning and multi-modal per-
ception ability of MLLMs to
evaluate the methods. Specif-
ically, we prompt the GPT4O
model to rate how well each
individual image aligns with
its corresponding description.
Then we input the entire image
series to the MLLM and ask it
to rate whether the image series
is illustrative with correct logics.
The rating ranges from 1 to 5,
where 1 represents low quality
and 5 indicates perfect quality.
The results are shown in Table
1, and the prompt templates are
attached in the appendix.

User study. We invite 20 par-
ticipants for the user study, with
each person asked to select the
best generation results for 15
tasks. Participants rate aspects
including semantic alignment, logical correctness, and task illustration. Results in Table 3 show
that LIGER generates visual instructions that better match user preferences while maintaining se-
mantic alignment and logic accuracy.

4.5 QUALITATIVE COMPARISONS

The overall qualitative comparisons between LIGER and baseline methods are shown in Figure
5. We provide a detailed comparison of LIGER with two prior works, namely T2I-Bridge and
SLDM. For the task How to make a California burrito, both T2I-Bridge and SLDM overlook that
the seasoning and ingredients are added to the tortilla in Steps 3 to 7. In contrast, LIGER clearly
illustrates the progressive process of adding different ingredients. Additionally, LIGER correctly
visualizes the burrito being wrapped and heated in a skillet. For the task How to make general

9
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tso chicken, LIGER presents a smooth sequence, showing the process of frying the chicken pieces,
making the sauce, combining sauce with chicken, and serving with rice. In comparison, SLDM
omits the chicken pieces in Step 2 and incorrectly shows the finished dish in Step 5. T2I-Bridge
lacks visual continuity, making it hard to comprehend. To further demonstrate the effectiveness of
LIGER in long-horizon tasks, we visualize the results for the task How to make penne pasta with
arrabbiata sauce consisting of 13 steps. SLDM shows an over-consistent process during cooking,
while T2I-Bridge generates distinct images. In contrast, LIGER accurately illustrates the procedure.

4.6 ABLATION STUDY

Effectiveness of different components. We provide both qualitative and quantitative comparisons
in Figure 6 and Table 2. Results show that adding historical prompts and visual memory both
improve the alignment between image and text semantics while also increasing logical accuracy.
Additionally, these two components complement each other. When self-reflection is introduced, we
observe a performance gain of +0.04 in CLIP-Score, a reduction of -0.112 in DINO-Score, and an
improvement of +0.002 in BERT-Score, demonstrating the importance of self-reflection. In Figure
6, we observe that self-reflection correctly identifies which steps should be visually coherent and
which steps should be distinct. Moreover, LIGER effectively shows the process of transforming
pizza dough into a raw pizza. Essentially, the historical prompt and visual memory enhance visual
continuity, while self-reflection aligns the images with human comprehension.

We further highlight the importance of visual memory calibration in Figure 7. For Step 2 of season
the steak, the steak should be raw, yet the draft image incorrectly shows a cooked appearance. After
correcting the attribute, the subsequent step should also depict the steak as raw since the description
does not indicate a state change. Without memory calibration, the steak in the next step still appears
cooked, but with calibration, the steak is correctly shown in a raw state.

CLIP-Score ↑ DINO-Score ↓ BERT-Score ↑
SDXL 2.5837 0.8516 0.8699

SDXL+V 2.6251 0.8239 0.8719
SDXL+H 2.6842 0.8224 0.8707

SDXL+V+H 2.7168 0.7459 0.8721
Ours 2.7555 0.6338 0.8743

Table 2: Ablation on different components of LIGER.

Method Semantic Logic Illustrative

T2I-Bridge 24% 18.3% 22.3%
SLDM 11.7% 21% 9.3%
Ours 64.3% 60.7% 68.3%

Table 3: User study on image-text semantic matching,
logic continuity and illustrative.

Step2:
Place the
Seasoned steak
on a skillet

Step1:
Season the steak
with salt and
pepper on both
sides

Draft Image After Self-reflection

W/O Memory Calibration After Memory Calibration

Figure 7: Ablation on visual memory cali-
bration.

Influence of task step length. In Figure 4 (b) and (c), we present the CLIP-Score and DINO-Score
for tasks of varying lengths, comparing LIGER with SLDM. As the number of task steps increases,
the CLIP-Score of SLDM decreases significantly, while LIGER maintains stable performance. Ad-
ditionally, the relative improvement in DINO-Score increases for medium and long tasks, indicating
LIGER is robust to long-horizon tasks.

5 CONCLUSION

In this paper, we propose LIGER, the first training-free framework for long-horizon visual instruc-
tion generation. LIGER first leverages historical prompts and visual memory to generate draft
images step-by-step, enhancing continuity between images in long-horizon tasks. The tool-based
self-reflection rectifies four types of errors in the draft images including over-consistent, identity
inconsistent, wrong attributes, and object redundant. LIGER also deploys inversion-guided visual
memory calibration to prevent error accumulation in the sequential image generation procedure. We
also curate a new benchmark testing the alignment of generation results with human comprehension.
We hope this work inspires future research on instruction generation.
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Idan Szpektor, and Joao Magalhaes. Generating coherent sequences of visual illustrations for
real-world manual tasks. arXiv preprint arXiv:2405.10122, 2024.

Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
editing instructions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 18392–18402, 2023.

Mingdeng Cao, Xintao Wang, Zhongang Qi, Ying Shan, Xiaohu Qie, and Yinqiang Zheng. Mas-
actrl: Tuning-free mutual self-attention control for consistent image synthesis and editing. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 22560–22570,
2023.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
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A APPENDIX

A.1 ADDITIONAL QUANTITATIVE EXPERIMENTS

We present the following quantitative ablation studies in addition:

(1) Effectiveness of self-reflection. To thoroughly evaluate the importance of self-reflection,
we conduct further ablation study of vanilla SDXL only combining the self-reflection mechanism
(termed SDXL+R). Results are shown in Table 4. A performance boost is observed when compared
with vanilla SDXL, demonstrating the effectiveness of self-reflection. We additionally test the per-
formance when only combining the self-reflection mechanism with visual memory (SDXL+V+R)
or history prompt (SDXL+H+R) on a 100-task subset. Results are reported in Table 5, self-reflection
mechanism consistently improves performance.
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Method CLIP-Score↑ DINO-Score ↓ BERT-Score ↑
SDXL 2.5837 0.8516 0.8699

SDXL+R 2.7270 0.7346 0.8732
LIGER 2.7555 0.6338 0.8743

Table 4: Effectiveness of self-reflection alone on the whole dataset.

Method CLIP-Score↑ DINO-Score ↓ BERT-Score ↑
SDXL 2.5783 0.8504 0.8690

SDXL+H 2.6743 0.8145 0.8700
SDXL+H+R 2.7330 0.6602 0.8735

SDXL+V 2.6312 0.7920 0.8709
SDXL+V+R 2.7213 0.6609 0.8740

LIGER 2.7671 0.6117 0.8746

Table 5: Different combination of Self-reflection and other components on subset.

(2) Robustness towards MLLMs. LIGER integrates the strong GPT4o as the error detector and
referee agent. To evaluate the influence of MLLM, we conduct an ablation by substituting the
GPT4o model with two open-source models i.e. Pixtral-12B and QwemVL-7B. Automatic metric
comparison is shown in Table 6. There is a performance drop when using open-source models, yet
the gap between Pixtral-12B and GPT-4O is small. We empirically find the output of the open-source
model lacks reasoning ability and detail region comprehension ability, leading to misunderstanding
the error type or missing the obvious errors.

Method CLIP-Score↑ DINO-Score ↓ BERT-Score ↑
SDXL 2.5837 0.8516 0.8699

LIGER(QwenVL-7b) 2.7244 0.7305 0.8725
LIGER(Pixtral-12b) 2.7316 0.7061 0.8716

LIGER(GPT4o) 2.7555 0.6338 0.8743

Table 6: Ablation on MLLMs.

(3) Variance test. We run another trial on the whole 569 tasks and report the result in Table 7.
Besides, we randomly sampled 50 tasks and ran 5 trials to see the variance as shown in Table 8.
Results indicate that there is a relatively small variance in the three evaluation metrics. The reason
is that MLLM inference inevitably brings some uncertainty. Never the less, LIGER still consistently
outperforms baseline methods.

Method CLIP-Score↑ DINO-Score ↓ BERT-Score ↑
T2I-Bridge 2.4350 0.8576 0.8669

SLDM 2.5054 0.6746 0.8694
LIGER 2.7555 0.6338 0.8743

LIGER (new trial) 2.7738 0.6276 0.8745

Table 7: Variance test results on the whole dataset.

Trial CLIP-Score↑ DINO-Score ↓ BERT-Score ↑
T2I-Bridge 2.4890 0.8216 0.8665

SLDM 2.5202 0.6106 0.8713
1 2.7947 0.5244 0.8730
2 2.8200 0.5141 0.8732
3 2.8200 0.5339 0.8737
4 2.8193 0.5304 0.8741
5 2.8154 0.5216 0.8734

Avg 2.8139 0.5249 0.8735

Table 8: Variance test results on subset.

(4) Image quality evaluation. We evaluate the image quality using the GPT4O model to rate the
quality of individual images of the whole 569 tasks from 1 to 5 where a higher rating indicates
higher quality. We further conduct a user study, 5 participants view 50 images generated by each
method and picked the best image from the three methods, and the win rate is reported in Table 3.
It is worth mentioning that LIGER is a training-free method, the image quality also depends on the
pre-trained diffusion model. LIGER outperforms the baseline models.
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Method GPT-score↑ User Win Rate ↑
T2I-Bridge 3.8525 41.2%

SLDM 3.7078 11.6%
LIGER 3.8976 47.2%

Table 9: Image quality evaluation.

A.2 ADDITIONAL QUALITATIVE EXPERIMENTS

We present the following qualitative comparison in addition:

(1) Comparison with relative works. Figure 8 shows a comparison between LIGER, Consistory
and StoryDiffusion. LIGER shows a clear object attribute change along the task procedure. Not that
we also need to manually define a subject concept for Consistory and StoryDiffusion, which id not
required by LIGER.

Figure 8: Additional qualitative results generated by LIGER. Zoom in to see the detail.

(2) Error analysis. LIGER has many components and the components may generate unsatisfying
results in some case. Figure 9 shows two types of errors in LIGER. For the reasoning error case, the
precious step is putting an egg in the batter and whisk. The current step is adding vanilla extraction.
However, the error detector mistakenly believes the egg should still be visible in the current step,
which should not be after whisking. The referee agent finds the error and logic error and keeps the
draft image as the final output. The right lane shows a case of generation error due to the editing tools
or the location tool failure. The balls are mistakenly removed and also the quality of the generated
image is not satisfying, the referee agent finds the mistake considering image quality and picks the
draft image as the final output.

Figure 9: Error case analysis.
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(3) Qualitative results in different scenarios. In Figure 10, we show the generalization ability of
LIGER on tasks in other scenarios.

Figure 10: Qualitative results on other scenarios.

(4) Comparison on other short datasets. Figure 11 shows comparison on the recipeplan dataset with
short abstract textual instructions. LIGER generates images fluently indicating the task procedure.

Figure 11: Qualitative results on recipeplan dataset.

A.3 LIMITATIONS

LIGER shows a strong ability to generate visual instructions for various tasks, yet there are still
limitations. First is that the action generation is still uncontrollable. Future work may efficiently
fine-tune the generation model to add illustrative actions in the images. Second, the amount of
ingredients is not controllable. It is challenging for the frozen text-to-image diffusion models to
identify how to visualize 1/2 cup of water and 1/4 teaspoon of salt. We believe future research on
generating videos for instructions might be an ideal way to show these details.

Another limitation is that since LIGER is a training-free framework, the generation quality depends
on the pre-trained diffusion model. We find the current models struggle to generate fine-grained
actions, or part of a complex structures. We believe LIGER can benefit from storng models.
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LIGER adopts many tools to collaboratively generate illustrative instructions, therefore the inference
time is longer. A speed test over 50 randomly selected tasks using a locally deployed multi-modal
large language model. LIGER takes around 120 seconds to generate instructions for a 10-step task
while the frozen stable diffusion model takes around 60 seconds on a single A100 GPU. In the
future, using quantilized models or conducting accelerating strategies may increase the efficiency.

A.4 PROMPT TEMPLATES

We provide several detailed prompt templates here. The prompt for the four types of error are:

(1) Over-consistent:

Now I wish you to use logic reasoning ability to judge whether
the current image should be regenerated. If the previous and
current step action does not have logic correlation, the
previous scene description of current step description is wrong,
then the current image needs to be regenerated. You need to
change the step description and tell me in a format of:
*-Regenerate(new step description)-*. The new description should
describe in detail about what objects should be in the new image.
For example, {In-context example with reason}
If the logic between the two step action descriptions are
coherent, you just answer Correct, no error.
Please ignore the objects in the background and be tolerent to
errors that are not obvious. You must tell why to make the
choice and only correct the most obvious error with only one
operation. Now, for a procedure of {task}, the previous step
is {pre_step}, and the previous image is: {pre_image} the
current step description is {cur_step} and the current image
is: {cur_image}

(2) Identity:

Use logic reasoning ability to judge whether the subject object
should look exactly the same between the two images based on the
previous and current step description. If there is an object
should look totally the same but not, tell in a format of:
*-Modify(object in current image, object in previous image)-*.
For example, {In-context example with reason}. If the image is
correct, you just answer Correct, no error. You only consider
whether the foreground object appearance texture (not including
shape and size) should be the exactly the same. Please ignore
the objects in the background and be tolerent to errors that
are not obvious. You must tell why to make the choice and only
correct the most obvious error with only one operation.
Now, for a procedure of {task}, the previous step is {pre_step},
and the previous image is {pre_image}. The current step
description is {cur_step} and the current image is {cur_image}.

(3) Attribute:

We are generating illustrations for a procedure. Please evaluate
the image quality according to the current step description. You
need to identify whether the salient main object attribute
matches the step description. If the attribute is not ideal, you
need to tell me how to add it in a format of:
*-Add(object description, place to add the object)-*.
Must start with *-Add( and end with )-*. \
For example, {In-context example with reason}
If the image is correct, you just answer Correct, no error. You
only consider the forground salient object of the image. Please

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

ignore the objects in the background and be tolerent to errors
that are not obvious. You must tell why to make the choice and
only correct the most obvious error with only one operation.
The current procedure is {task} and the current step is
{cur_step}, and the image is {cur_image}

(4) Redundant:

We are generating illustrations for a procedure. Please
evaluate the image quality according to the current step
description. You need to identify whether there are
redundant objects. If redundant object exists, you need
to tell me in a format like:
*-Remove(object description)-*. Must start with *-Remove(
and end with )-*. For example, {In-context example with
reason}. The objects described in the Previous scene part
of the step description should not be regarded as
redundant object. If the image is correct, you just
answer Correct, no error. You only consider whether there
is obvious redundant object in foreground of the image.
Please ignore the objects in the background and be
tolerant to errors that are not obvious. You must tell
why to make the choice and only correct the most obvious
error with only one operation. The current procedure is
{task} and the current step is {cur_step}, and the image
is {cur_image}.

The prompt for comparing the draft image and the revised image is:

Please pick the better image between the two images
considering the image quality and the alignment with the
current step description. You only answer A or B within
one word. For example, {In-context example with reason}.
Now, consider the following step, {input_cur}, and the
image A is: {image_initial}, the image B is: {image_final}.

The prompt for GPT evaluation is:

(1) Single image evaluation

Rate the image from 1 (worst) to 5 (perfect) considering:
A. Does the image contains the objects should appear for
the text description?
B. The image does not contain unrelated objects?
C. According to the text description, imagine the subject
object attribute (adjective, state, color, texture), and
does the image show correct attributes?
Give a rate from 1 to 5 on each aspect within 30 words
in a format like A:rating*.
The text description is {input_overall} and the image is:

(2)Image series evaluation

Please rate the series images from 1 (worst) to 5 (ok)
considering:
A. In some consecutive steps, the images are coherent.
B. The image is diverse when the text descriptions deviate.
C. Overall, can the whole image series roughly describe
the coarse idea of the task?
Give a rate from 1 to 5 on each aspect. Do not be too
strict since the task is hard. The response should be in
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a format of A:(number of ratings)* Reason: (reasons).
Considering the task of {task}. The text description for
each step is {steps} and the image series are:

A.5 ADDITIONAL RESULTS

Additional qualitative results are shown in Figure 12 and Figure 13.

A.6 DATASET EXAMPLES AND DISCUSSIONS

We showcase an example of How to cook salmon fillet in the annotated dataset:

Most unrelated step: 1 and 2
related step: 4 and 5 *
Step 1:
Action: Preheat your oven to 400°F (200°C).
Ground Truth Description: A modern metal oven is slightly
open with the display showing 400°F. The interior oven light
softly illuminates the empty metal racks inside, indicating
the oven is warming up. *
Step 2:
Ground Truth Description: A baking sheet is lined with
aluminum foil or parchment paper.
Action: Line a baking sheet with aluminum foil or
parchment paper. *
Step 3:
Ground Truth Description: The salmon fillet is placed
on the prepared baking sheet, skin side down, with the
pink flesh exposed for seasoning.
Action: Place the salmon fillet on the baking sheet,
skin side down. *
Step 4:
Ground Truth Description: Olive oil is being drizzled
over the top of the salmon fillet, giving it a glossy
sheen and helping to lock in moisture while baking.
Action: Drizzle olive oil over the salmon fillet. *
Step 5:
Ground Truth Description: The salmon is seasoned with
salt and pepper, and herbs or spices are sprinkled
over the top for added flavor.
Action: Season with salt and pepper, and add any
desired herbs or spices. *
Step 6:
Ground Truth Description: The baking sheet with the
seasoned salmon fillet is placed in the preheated oven.
Action: Place the baking sheet in the preheated oven. *
Step 7:
Ground Truth Description: The salmon is baking in the
oven for 12-15 minutes, turning opaque and flaking
easily with a fork when fully cooked.
Action: Bake for 12-15 minutes, or until the salmon is
cooked through and flakes easily with a fork. *
Step 8:
Ground Truth Description: The baked salmon is removed
from the oven, resting for a few minutes on the baking
sheet to allow the juices to settle.
Action: Remove the salmon from the oven and let it
rest for a few minutes before serving. *
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Task: How to Make General Tso Chicken

Task: How to Cook Parathas

Task: How to cook calamari

Task: How to cook singapore curry laksa

Task: How to Make a California Burrito

Step1:
Cut 500g of 
chicken breast 
into bite-sized 
pieces

Step2:
In a bowl, mix 1 
cup of cornstarch 
with the chicken 
pieces until they 
are well coated

Step3:
Heat oil in a 
deep fryer or 
large skillet and 
fry the chicken 
pieces …

Step4:
Remove the 
chicken pieces 
and place them 
on paper towels 
to drain excess 
oil

Step5:
In a separate 
bowl, prepare 
the sauce by 
combining 1 
tbsp hoisin 
sauce …

Step6:
Heat 1 tbsp of 
oil in a large 
skillet or wok 
over medium 
heat 

Step7:
Add the sauce 
mixture to the 
heated skillet 
and cook until 
thickened and 
bubbly

Step8:
Add the fried 
chicken pieces 
to the skillet 
and toss to coat 
them evenly 
with the sauce

Step9:
Garnish with 
chopped green 
onions and 
sesame seeds 

Step10:
Serve hot with 
steamed rice or 
your choice of 
side

Step1:
In a mixing 
bowl, add 2 
cups of whole 
wheat flour

Step2:
Add a pinch of 
salt and a 
tablespoon of 
oil or ghee

Step3:
Slowly pour in 
water and knead 
the mixture to 
form a smooth 
dough

Step4:
Cover the dough 
with a damp 
cloth and let it 
rest for 20-30 
minutes

Step5:
Divide the 
dough into 
small, equal-
sized balls

Step6:
Roll each ball 
into a flat, 
round shape 
using a rolling 
pin

Step7:
Heat a tawa or 
flat skillet 

Step8:
Place the rolled-
out dough onto 
the tawa and 
cook until small 
bubbles appear

Step9:
Flip the dough 
and apply oil or 
ghee on the 
cooked side

Step10:
Cook both sides 
until golden 
brown

Step11:
Serve hot with 
your choice of 
accompaniment

Step1:
Clean the fresh 
calamari by 
removing the 
head, beak, 
and innards

Step2:
Slice the 
calamari body 
into rings

Step3:
Marinate the 
calamari rings with 
lemon juice, salt, 
and pepper for 
about 15 minutes

Step4:
In a separate 
bowl, mix flour, 
paprika, and 
garlic powder

Step5:
Dredge the mari-
nated calamari 
rings in the flour 
mixture, ensuring 
well coated

Step6:
Heat oil in a deep 
skillet or fryer to 
350°F (175°C)

Step7:
Fry the coated 
calamari rings in 
batches until 
golden brown…

Step8:
Remove the fried 
calamari and place 
them on a paper 
towel-lined plate 
to drain excess oil

Step9:
Serve the calamari 
hot with lemon 
wedges and your 
choice of dipping 
sauce

Step1:
Gather rice 
noodles, coconut 
milk, curry paste, 
vegetables, and 
proteins like 
shrimp or chicken

Step2:
Boil water and 
cook the rice 
noodles according 
to package 
instructions

Step3:
Drain the noodles 
and set them 
aside

Step4:
In a pot, heat 
some oil and add 
curry paste

Step5:
Stir in coconut 
milk, bringing the 
mixture to a 
simmer

Step6:
Add vegetables 
and proteins (like 
shrimp or chicken) 
to the pot

Step7:
Simmer until 
proteins are 
cooked and 
vegetables are 
tender

Step8:
Add cooked 
noodles to the 
laksa soup

Step9:
Serve hot, 
garnished with 
fresh herbs like 
coriander and 
lime wedges

Step1:
Lay out a large 
flour tortilla on a 
clean surface

Step2:
Spread a layer of 
guacamole in the 
center of the 
tortilla

Step3:
Add a generous 
portion of carne 
asada on top of 
the guacamole

Step4:
Sprinkle shredded 
cheese over the 
carne asada

Step5:
Add a serving of 
pico de gallo on 
top of the cheese

Step6:
Place a handful of 
French fries on 
top of the pico de 
gallo

Step7:
Drizzle some sour 
cream over the 
French fries

Step8:
Carefully fold the 
sides of the 
tortilla in, then 
roll it up to form 
the burrito

Step9:
Grill the burrito on 
a heated skillet for a 
couple of minutes 
on each side to seal 
it and make it crispy

Task: How to Make Popcorn in a Pan

Step1:
Place a large, 
heavy-bottomed 
pan on the stove

Step2:
Add 2-3 
tablespoons of 
vegetable oil and 
let it heat up

Step3:
Put 2-3 corn 
kernels into the 
pan and cover 
with a lid

Step4:
Wait until the test 
kernels pop

Step5:
Remove the test 
kernels from the 
pan with a spoon

Step6:
Add 1/3 cup of 
popcorn kernels 
to the pan

Step7:
Cover the pan 
with a lid

Step8:
Shake the pan 
occasionally to 
ensure even 
popping

Step9:
Listen for the 
popping sounds 
to slow down, 
then remove the 
pan from heat 

Step10:
Carefully 
remove the lid 
and pour the 
popcorn into a 
large bowl 

Figure 12: Additional qualitative results generated by LIGER. Zoom in to see the detail.
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Task: How to make a Jelly Sandwich

Task: How to Make a Sweet Cream Cake

Task: How to Make Cabbage Rolls

Task: How to Make Gulab Jamun (Indian Sweet) from Package Mix

Task: How to Make Stuffed Acorn Squash
Step1:
Preheat the 
oven to 400°F 
(200°C)

Step2:
Cut the acorn 
squash in half 
and scoop out 
the seeds

Step3:
Place the 
squash halves, 
cut side up, on 
a baking sheet

Step4:
Drizzle the 
squash halves 
with olive oil 
and season 
with salt and 
pepper

Step5:
Roast the 
squash in the 
oven for about 
40-50 minutes 
until tender

Step6:
In a skillet, 
cook sausage 
until browned

Step7:
Add chopped 
onions, celery, 
and apple to 
the skillet and 
cook until 
tender

Step8:
Stir in cooked 
quinoa and 
season with 
herbs and 
spices

Step9:
Fill each 
roasted squash 
half with the 
quinoa and 
sausage 
mixture

Step10:
Return the 
stuffed squash 
to the oven 
and bake for an 
additional 10 
minutes

Step11:
Remove from 
oven and serve 
hot

Step1:
Take two slices of bread and 
place them on a clean 
surface

Step2:
Open a jar of jelly 

Step3:
Use a butter knife to scoop 
out a good amount of jelly 
from the jar 

Step4:
Spread the jelly evenly on 
one slice of bread 

Step5:
Place the other slice of 
bread on top of the jelly-
covered slice

Step6:
Cut the sandwich in half if 
desired and serve

Step1:
Preheat your 
oven to 
350°F (175°C)

Step2:
Grease and 
flour two 9-
inch round 
cake pans 

Step3:
In a mixing bowl, 
cream together 1 
cup of unsalted 
butter and 2 cups 
of sugar until light 
and fluffy

Step4:
Add 4 eggs one 
at a time, 
beating well 
after each 
addition

Step5:
In another bowl, 
whisk together 
3 cups of flour, 
1 tablespoon of 
baking powder, 
and 1/2 
teaspoon of salt

Step6:
Gradually add 
the dry 
ingredients to 
the creamed 
mixture…

Step7:
Stir in 2 
teaspoons of 
vanilla extract

Step8:
Divide the batter 
evenly between 
the prepared 
cake pans

Step9:
Bake in the 
preheated oven 
until a toothpick 
inserted into the 
center comes 
out clean

Step10:
Allow the cakes 
to cool in the 
pans for 10 
minutes, …

Step11:
Once the cakes 
are completely 
cool, frost with 
your favorite 
sweet cream 
frosting

Task: How to Make Pickles

Step1:
Remove the core 
from a head of 
cabbage and 
blanch the 
cabbage leaves …

Step2:
In a bowl, 
combine ground 
meat, cooked rice, 
chopped onions, 
salt, and pepper

Step3:
Place a portion of 
the meat mixture 
onto each 
cabbage leaf

Step4:
Roll up the 
cabbage leaves, 
folding in the 
sides to enclose 
the filling

Step5:
Place the cabbage 
rolls seam-side 
down in a baking 
dish

Step6:
Pour tomato 
sauce over the 
cabbage rolls

Step7:
Cover the baking 
dish with foil and 
bake in a preheated 
oven at 350°F for 
about 1 hour

Step8:
Remove the foil 
and bake for an 
additional 10-15 
minutes to thicken 
the sauce

Step9:
Serve the cabbage 
rolls hot, garnished 
with fresh parsley if 
desired

Step1:
Start by gathering 
cucumbers and 
preparing them by 
washing 
thoroughly

Step2:
Slice the 
cucumbers into 
your desired 
thickness (spears 
or chips)

Step3:
In a saucepan, 
combine water, 
vinegar, and 
pickling salt, and 
bring to a boil

Step4:
Add garlic, dill, and 
any other desired 
spices or herbs to 
the boiling vinegar 
mixture

Step5:
Pack the cucumber 
slices tightly into 
sterilized jars

Step6:
Pour the hot vinegar 
mixture over the 
cucumbers, leaving 
a small amount of 
headspace

Step7:
Seal the jars with 
sterilized lids and let 
them cool to room 
temperature

Step8:
Store the jars in the 
refrigerator or 
process them in a 
hot water bath for 
longer shelf life

Step1:
Pour the package 
mix into a mixing 
bowl

Step2:
Add water or milk 
as directed on the 
package

Step3:
Knead the mixture 
to form a smooth 
dough

Step4:
Divide the dough 
into small, 
marble-sized balls

Step5:
Heat oil or ghee in 
a deep frying pan

Step6:
Fry the dough 
balls until they are 
golden brown 

Step7:
Remove the fried 
balls and drain the 
excess oil

Step8:
Prepare sugar 
syrup by boiling 
sugar and water 
with cardamom 
and saffron

Step9:
Soak the fried 
dough balls in the 
sugar syrup for a 
few hours

Step10:
Serve the gulab
jamun warm or 
at room 
temperature

Figure 13: Additional qualitative results generated by LIGER. Zoom in to see the detail.

23


	Introduction
	Related Work
	Image Generation and Editing
	Task Instruction Generation
	Tool-based methods

	Method
	History-aware Draft Image Generation
	Tool-based Self-reflection
	Judgement and Memory Calibration

	Experiments
	Implementation Details
	Dataset
	Baselines
	Quantitative Evaluation
	Qualitative Comparisons
	Ablation Study

	Conclusion
	Appendix
	Additional Quantitative Experiments
	Additional Qualitative Experiments
	Limitations
	Prompt Templates
	Additional Results
	Dataset Examples and discussions


