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ABSTRACT

Large language models (LLMs) have demonstrated impressive capabilities in var-
ious language-based reasoning tasks (e.g., math reasoning). Among all LLM
reasoning frameworks, multi-agent debate (MAD), which employs multiple LLM
agents and performs reasoning in the way of multi-round debate, has emerged as a
powerful reasoning paradigm since it allows agents to access previous memories
to refine their reasoning iteratively in each debate round and facilitates LLMs in
alleviating the potential intrinsic self-preference bias. Although MAD improves
the reasoning capabilities of LLMs significantly, in this paper, however, we theoret-
ically demonstrate that the performance of MAD is closely related to the quality
of memories. This indicates that MAD remains vulnerable to erroneous reasoning
memories, which poses a threat to the robustness of MAD. To address this problem,
we introduce a simple yet effective multi-agent debate framework, multi-agent
debate with memory masking (MAD-M2), to enhance the robustness of MAD by
allowing LLM agents to select memories in the previous debate round before they
perform reasoning in the current debate round. In this way, MAD-M2 can polish
the contextual information at the beginning of each debate round by preserving
as many informative and meaningful memories as possible while dropping the
erroneous memories and, in turn, achieve better reasoning performance. Exten-
sive evaluations on mainstream mathematical and logical reasoning benchmarks
demonstrate that MAD-M2 can achieve better reasoning performance than MAD.

1 INTRODUCTION

Large language models (LLMs) have shown impressive instruction-following capabilities in language
understanding and question answering. In particular, reasoning is a typical case among various
capabilities and has attracted more and more attention. Specifically, in LLMs, given detailed cognitive
instruction (Ouyang et al., 2022), comprehensive reasoning behaviors can be effectively elicited.
Moreover, it has been demonstrated that the reasoning capability can be further enhanced (e.g.,
step-by-step reasoning (Wei et al., 2022; Kojima et al., 2022), task decomposition (Zhou et al., 2023),
and reflection (Madaan et al., 2023)) by feeding LLMs with some demonstrations (e.g., In-Context
Learning). Notably, the test-time scaling law (Snell et al., 2024; Brown et al., 2024) of LLMs exhibits
the potential to further enhance the reasoning with repeated sampling (Wang et al., 2023; Taubenfeld
et al., 2025), which provides a simple yet powerful reasoning strategy in complex problems. Despite
such an impressive capability, the reasoning performed via individual models is still faced with
notable limitations, especially the insufficient generation diversity problem (Si et al., 2025; Hayati
et al., 2023), where multiple samplings are limited to a single reasoning method, which reduces the
effectiveness of scaling up sampling and restricts the practical application of the scaling up concept.

Recently, inspired by the theory of The Society of Mind (Minsky, 1986), the multi-agent debate
(MAD (Du et al., 2023)) framework has emerged as a promising approach to overcome the limitations
of the single LLM reasoning paradigm. In this framework, multiple LLMs are employed as agents to
perform reasoning on a given question in a multi-round debate. Specifically, in each debate round
(except for the first round), LLM agents are allowed to observe their memories in the previous
debate round and are required to propose candidate answers based on their critical evaluations of
all previous memories. Compared to the single LLM reasoning paradigm, the multi-agent debate
framework improves the reasoning capabilities mainly from two perspectives. On the one hand, in
such a multiple-agent and multiple-round reasoning framework, LLMs have access to all memories of
the previous round and are required to generate new answers based on their critical thinking on these
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Gerry goes to sleep at 11 pm each night. But he doesn't sleep very well, so he
awakens at a random time between 1:00 am and 3:59 am, with each minute
equally likely (including 1:00 and 3:59). He then reads the hour and minute shown
on his clock as a three digit number, so 2:56 am would be 256. What is the
probability that that number will be divisible by 7?"

Debate Round 1

Agent1

• Gerry can wake up anytime between 1:00 and 3:59 → 180 
possible minutes. 
• Each minute is written as a three-digit number (e.g., 1:00 →
100). 
• Count how many of these are divisible by 7: 
• 1:00–1:59 → 8 numbers, 
• 2:00–2:59 → 9 numbers, 
• 3:00–3:59 → 9 numbers. 
• Total favorable = 26. 
•Probability = 26/180 = 13/90.

Agent 2

• Gerry can wake up anytime from 
1:00 to 3:59 → 180 possible minutes. 
• Each time is written as a three-digit 
number (HMM). 
• Find numbers divisible by 7 between 
100 and 359. 
• Smallest is 105, largest is 357 →
total 37 valid times. 
• Probability = 37/180.

Debate Round 2

Take both responses as references

Agent1

• Gerry can wake between 1:00 and 3:59 → 180 possible 
minutes. 
• Each time is written as a three-digit number (100–359). 
• Numbers divisible by 7 in this range go from 105 to 357 →
37 valid cases. 
• Probability = 37/180.

Agent 2

• Gerry can wake between 1:00–3:59 
→ 180 total minutes (180 possible 
numbers from 100–359). 
• Numbers divisible by 7 in this range 
are from 105 to 357. 
• There are 37 such valid times. 
• Probability = 37/180.

Figure 1: An illustration of the effect of wrong memories. The example is derived from DeepSeek-V3
with a case in the MATH dataset. In the conventional multi-agent debate framework, all memories
in the previous debate round are taken into consideration in the next debate round. However, the
memories from the previous round may include wrong reasoning responses (see the responses of
debate round 1 in the figure). If the incorrect memory is referred in the next round, the agent, which
originally correctly performs the reasoning may be misled (see Agent 1 in the debate round 2).

memories. Thus, the debate process can be treated as a refinement of reasoning, which facilitates
achieving better reasoning results. On the other hand, it has been demonstrated that there exists a
self-preference phenomenon (Panickssery et al., 2024) that LLMs tend to assign higher scores to
answers generated by themselves, though all answers are considered as equal quality by human
annotators. Such a preference may potentially amplify the bias of LLMs to their own memories and
subsequently result in incorrect reasoning (Xu et al., 2024). Thus, by applying the multi-agent debate
framework, the phenomenon can be alleviated through the critical evaluations of memories of LLMs.

However, a concern about the typical MAD framework is that LLM agents are not robust to the
erroneous memories. Specifically, as shown in Fig. 1, the memories derived in the previous debate
round probably contain incorrect reasoning paths (e.g., Agent 2 in the debate round 1), and the agent,
which takes all memories into consideration, will be misled and generate the incorrect answers (e.g.,
Agent 1 in debate round 2). Such a phenomenon potentially undermines the performance of MAD.

For a better understanding, in this paper, we first theoretically demonstrate that the conventional multi-
agent debate framework is vulnerable to erroneous memories. Specifically, the performance of LLM
agents in a debate round is closely related to the number of wrong memories in the previous debate
round. When the number of wrong memories increases, the capability decreases correspondingly.
According to our theoretical analyses, in both easy and hard reasoning scenarios, enhancing the
robustness of LLM agents to erroneous memories consistently improves the performance of MAD.

Motivated by these theoretical and empirical observations, we propose a simple yet effective method,
multi-agent debate with memory masking (MAD-M2), to enhance the robustness of the MAD
framework to erroneous memories by allowing LLMs to mask the wrong memories in the previous
debate round based on their evaluations. Specifically, at each debate round (except for the first debate
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round), LLM agents are required to critically evaluate and score the memories in the previous debate
round. Then, a binary mask vector will be generated according to the scores to filter the memories.
The number of preserved memories varies across agents and tasks. Then, LLM agents are required to
generate new responses based on the preserved memories. The final answer will be selected from a
set of responses by performing majority voting in the final round. Intuitively, the initial round of the
multi-agent debate can be viewed as zero-shot reasoning, while the latter rounds are equivalent to
in-context learning. Specifically, in the initial round, responses are generated merely with the query.
However, in the latter rounds, responses are generated with both the query and the memories from the
previous round. From this perspective, the reason that performing memory masking helps improve
the performance of MAD can, to some extent, be attributed to context engineering (Mei et al., 2025),
which aims at polishing the quality of contextual information in prompts by incorporating critical
information while filtering out trivial content based on the specific question-answering objectives.

To validate the effectiveness of our proposed MAD-M2, four mainstream mathematical reasoning and
language understanding benchmarks, which are MATH (Hendrycks et al., 2021), MMLU-Pro (Wang
et al., 2024), AIME24, and AIME25, are adopted for evaluation. According to the empirical results,
MAD-M2 can achieve better performance than the conventional MAD framework (Du et al., 2023) on
easy reasoning tasks with weak LLMs. Moreover, the empirical results also demonstrate our analysis
that enhancing the capability/robustness of agents benefits the performance of MAD in Section 2.2.

Overall, our contribution in this paper can be primarily summarized as the following several aspects:
• We find that LLM agents in the conventional multi-agent debate framework are vulnerable to wrong

memories and may be misled to generate incorrect reasoning responses (c.f. Fig. 1). Further, we
demonstrate the vulnerability of the MAD framework from the theoretical perspective in Section 2.2,
and find that performing memory masking is a feasible way to enhance the performance of the
MAD framework. As far as we know, we are the first work to discuss the phenomenon in the MAD.

• To alleviate the detriment derived from the wrong memories, we propose a simple yet effective
multi-agent debate framework, multi-agent debate with memory masking (MAD-M2), to enhance
the capability of the multi-agent debate framework by allowing LLM agents to critically evaluate
memories and mask the undesirable cases for further reasoning in the next debate round in Section 3.

• Our empirical evaluations on four mainstream reasoning benchmarks demonstrate the effectiveness
of our proposed MAD-M2 can achieve better performance than MAD in most cases. This further
indicates that MAD-M2 facilitates the capability of the reasoning framework (c.f. Section 4).

2 AN OVERVIEW OF MULTI-AGENT DEBATE FRAMEWORK

In this section, we first introduce an overview of the typical multi-agent debate framework (Du
et al., 2023) and formulate the workflow of the MAD framework. Then, we theoretically analyze the
probability that CoT-SC (Wang et al., 2022) and MAD successfully infer the answer to the query and
further show that the naive MAD framework is vulnerable to wrong memories in the previous debate.

2.1 PROBLEM FORMULATION OF MULTI-AGENT DEBATE

Multi-agent debate (MAD) (Du et al., 2023) is a powerful reasoning paradigm that infers the answers
to questions through multiple rounds of interactions among multiple LLM agents. Specifically, in the
typical multi-agent debate framework, LLMs are first instructed to perform reasoning on the queries
independently at the initial round. Then, from the second round, agents are required to critically
evaluate the memories of all agents in the last debate round to generate new responses. After a
multi-round debate, the final answer is obtained when a consensus is reached among all LLM agents.

Consider a typical multi-agent debate framework (Du et al., 2023) composed of a total of Nround

debate rounds and a set of Na LLM agents A = {Aθ1 , Aθ2 , ..., AθNa
} that are parameterized with

parameters θi, respectively. Consider a query prompt xtest ∈ X that includes both task instructions
and the question, where X = {xtest

1 , xtest
2 , ..., xtest

Nt
} is a discrete set of query prompts. Let Mr =

[Aθ1(x
test,Mr−1), Aθ2(x

test,Mr−1), ..., AθNa
(xtest,Mr−1)], where 1 < r < Nround,M1 = ∅,

denote the memory set derived from the r-th debate round. Then, for each LLM agent Aθi ∈ A,
given the memories Mr and prompt xtest, the response generation in the next round is formulated as:

Aθi(x
test,Mr) = x̂1:L,where x̂l = argmax

x
P (x|x̂<l;x

test;Mr; θi), (1)

where x̂l denotes the l-th word prediction of the response, x̂<l denotes the previous word predictions
of x̂l, and L denotes the length of the response. The response x̂1:L is a sequence with the length of L.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.2 VULNERABILITY OF MAD TO WRONG MEMORIES

In the typical multi-agent debate framework, as shown in Eq. (1), LLM agents are required to generate
new reasoning responses based on the memories derived from the previous debate round. Thus,
intuitively, erroneous memories in the previous debate round may potentially damage the performance
of MAD. However, as far as we know, few works have discussed the issue in detail. To figure out this
issue, we provide analyses in the following to explore the negative effect of erroneous memories.

2.2.1 A THEORETICAL PERSPECTIVE FOR UNDERSTANDING OF MAD

As a comparison, we select CoT-SC (Wang et al., 2022) as the counterpart of MAD. From the
perspective of the reasoning paradigm, both CoT-SC and MAD can be seen as test-time scaling
reasoning (Snell et al., 2024; Brown et al., 2024), which improves the robustness and the performance
of reasoning by applying multiple response generations for a single query. The main difference
between the two reasoning paradigms is that CoT-SC performs reasoning once and obtains the answer
by voting for the majority among a set of responses, while MAD is formulated as multi-round
reasoning, where the final answer is voted from a set of responses generated in the final debate round.
Assumption 2.1. Assume that the probability that an agent independently generates the correct
answer only with the given query is p ∈ [0, 1], while the probability that the agent generates correct
answers to the query based on the previous memories is assumed to be e−αNe , where Ne denotes the
number of erroneous memories and α ∈ R+ is a consistent coefficient that indicates the robustness
of agents to erroneous memories. The reasoning is deemed as successful when the number of correct
answers Ncor in the final round satisfies Ncor >

Nres

2 , where Nres denotes the number of responses.
Remark 1. In Assumption 2.1, we formulate the probability that a single LLM agent generates
the correct answer to the given query based on the previous memories as e−αNe , where Ne ∈
{0, 1, 2, ..., Na} denotes the number of erroneous memories. Two aspects are considered here. On
the one hand, in an ideal case where the number of erroneous memories is 0, the probability of the
agent generating the correct reasoning in the next debate round will be 1. On the other hand, in the
case where all memories are erroneous (i.e., Ne = Na), the probability of the agent generating a
correct response to the query will degrade to e−αNa > 0, which aligns with the intuition that agents
can retain a non-zero probability of generating correct reasoning even if all memories are erroneous.
Proposition 2.2 (CoT-SC). Consider a total number of Nsc independent responses generated in the
way of CoT-SC. With Assumption 2.1, the probability that the final answer is correct is bounded by:

P (Ncor >
Nsc

2
) ≤ exp

(
−2Nsc(

1

2
− p)2

)
, p <

1

2
,

P (Ncor >
Nsc

2
) ≥ 1− exp

(
−2Nsc(

1

2
− p)2

)
, p ≥ 1

2
.

The corresponding lower bound and upper bound of cases p < 1
2 and p ≥ 1

2 are 0 and 1, respectively.

Proposition 2.3 (MAD). Consider a 2-round MAD reasoning, where Na agents are involved in each
debate round. With Assumption 2.1, the probability that the final answer is correct is bounded by:

P (Ncor >
Na

2
) ≤

Na∑
j=0

(
Na

j

)
pj(1− p)Na−j exp

(
−2Na

(
1

2
− eα(j−Na)

)2
)
, eα(j−Na) <

1

2
,

P (Ncor >
Na

2
) ≥

Na∑
j=0

(
Na

j

)
pj(1− p)Na−j

(
1− exp

(
−2Na

(
1

2
− eα(j−Na)

)2
))

, eα(j−Na) ≥ 1

2
.

The corresponding lower and upper bounds of cases eα(j−Na) < 1
2 and eα(j−Na) ≥ 1

2 are 0 and 1.
Remark 2. The proofs of Propositions 2.2 and 2.3 are available in Appendix B. In Propositions 2.2
and 2.3, we investigate the bounds of the probability of CoT-SC and MAD correctly generating
correct reasoning responses to a query based on the workflow of their pipelines. In the case of
CoT-SC, we can observe that the performance is mainly determined by the number of generated
responses (i.e., Nsc) and the capability of the LLM agents in reasoning (i.e., the probability of LLM
agents correctly answering the query p). However, in the case of MAD, although the performance is
explicitly determined by the number of agents (i.e., Na) and the probability of LLM agents generating
correct answers based on the memories in the previous round (i.e., e−α(Na−j)), some other aspects
also implicitly influence the reasoning performance of the MAD framework due to the multi-round
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reasoning paradigm. On the one hand, the probability e−α(Na−j) is determined by the number of
erroneous memories in the previous round. On the other hand, the performance is also influenced
by the probability distribution of the memories in the previous debate round. In our 2-round MAD
analysis, the distribution is formulated as a binomial distribution: P (X = j) =

(
Na

j

)
pj(1− p)Na−j .

According to Propositions 2.2 and 2.3, we can observe that the bounds of the probability that MAD
correctly generates correct reasoning share a similar format with those of CoT-SC. In both cases,
the bounds are closely related to the number of responses and the capability of a single LLM agent
in handling the given reasoning task. However, the capability of agents in the MAD framework is
determined by the quality of memories generated in the previous debate round. Consider a case,
where Na = Nsc. With the assumption that eα(j−Na) does not deviate too much from p (e.g., α
is small), since the probability

(
Na

j

)
pj(1− p)Na−j ≤ 1 in all cases, the performance of MAD can

hardly be superior to CoT-SC. This observation, to some extent, contributes to explaining why MAD
empirically fails to outperform CoT-SC in reasoning (Huang et al., 2023). Moreover, in the case where
more erroneous memories are involved (i.e., j → 0), the probability eα(j−Na) drops significantly.
Correspondingly, both the upper and lower bounds will then shrink exponentially. This phenomenon
indicates that erroneous memories tend to deteriorate the performance of MAD. Thus, we find that
MAD is vulnerable to erroneous memories. More discussions are provided in the following section.

2.2.2 FURTHER DISCUSSIONS ABOUT THE THEORETICAL RESULTS

In both CoT-SC and MAD, the bounds of the probability that the answer to the given query is correctly
inferred are discussed in two cases. Specifically, when p < 1

2 or e−αNe < 1
2 , the probability is upper

bounded, while the probability is lower bounded when p ≥ 1
2 or e−αNe ≥ 1

2 . Both cases implicitly
correspond to two types of reasoning cases: hard problem reasoning and easy problem reasoning.

Hard Problem Reasoning. In the context of hard problem reasoning (HPR) settings, LLM agents
can hardly correctly infer the answer to the query due to the difficulty of the problem and the
erroneous memories in the previous reasoning round. Such a case corresponds to the case of p < 1

2

or e−αNe < 1
2 . In CoT-SC, when the capability of LLM agents (i.e., the probability p) is fixed,

increasing the number of responses does not contribute to improving performance. In contrast, when
the number of responses (i.e., Nsc) is fixed, enhancing the capability of LLM agents (p → 1

2 ) will
improve the reasoning performance. Meanwhile, in MAD, we can obtain similar observations. In the
2-round multi-agent debate case, the answers are independently generated from multiple LLM agents
at the final round of debate. However, memories from the previous round will affect the probability
of LLM agents correctly answering the query in the final round. By treating the probability of all
reasoning cases in the first round as a constant, we can observe that increasing the number of agents
(i.e., Na) does not contribute to improving the reasoning performance while enhancing the robustness
of agents to wrong memories (i.e., eα(j−Na) → 1

2 ) facilitates improving the performance of MAD.

Easy Problem Reasoning. In contrast to hard problem reasoning settings, LLM agents can easily
handle the query correctly in the context of easy problem reasoning settings (EPR). Such a case
corresponds to the case of p ≥ 1

2 or e−αNe ≥ 1
2 . In both CoT-SC and MAD frameworks, we can

observe that either increasing the number of agents (i.e., Nsc or Na) or enhancing the robustness of
the LLM agents (i.e., p → 1 or eα(j−Na) → 1) improves the performance of the reasoning paradigms.

Thus, with both hard and easy problem reasoning settings above taken into consideration, we find
that a feasible way to improve the performance of the multi-agent debate framework is to improve the
robustness of LLM agents. In the context of our analysis framework, the probability that LLM agents
generate correct answers to the query based on the memories in the previous round is influenced
by two aspects: the capability of the LLM agents p and the number of erroneous memories in the
previous round Na−j. Since the capability of LLMs is determined by the pre-training, the robustness
of agents can be improved by reducing the number of erroneous memories in the previous round.

3 MAD-M2: MULTI-AGENT DEBATE WITH MEMORY MASKING

In Section 2, we have demonstrated that a feasible way to improve the performance of the multi-agent
debate framework is to improve the robustness of LLM agents by removing the wrong memories in
the previous round. To this end, we propose a simple yet effective multi-agent framework, multi-agent
debate with memory masking (MAD-M2), to allow LLM agents to mask wrong memories in the
previous debate round and perform reasoning with the remaining memories in the next debate round.
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While staying in a 15-story hotel, Polya plays the following game. She enters an elevator on the 6-th floor.
She flips a fair coin five times to determine her next five stops. Each time she flips heads, she goes up one
floor. Each time she flips tails, she goes down one floor. What is the probability that each of her next five
stops is on the 7-th floor or higher? Express your answer as a common fraction.

Answer1
*** Reasoning ***
•Find 4 valid sequences out of 16.
•So probability = (½) × (¼) = 1/8.

Answer 2
*** Reasoning: Ballot/Dyck path ***
•Find the same 4 valid sequences out of 
16, so probability = 1/8.

Answer 3
•*** Reasoning ***
•Find 6 valid sequences satisfy the condition
•So total = (½) × (6/16) = 3/16.

First Debate Round

Let me see… Answer 1… Answer 2
… Answer 3…

Ops, my answer seems wrong, and
Answer 2 is also wrong. I would like
to select Answer 3.

Reference:Answer 3

Emm… Answer 1 is the same as mine,
but mine seems wrong. Okay, let’s take
Answer 3.

Reference:Answer 3

Let me check… both Answer 1 & 2
undercounted valid paths… Mine is
correct. Okay, take Answer 3.

Reference:Answer 3

•The first flip must be H to move 
to the 7th floor. 
•Then checks all possible four-flip 
sequences to see which keep her 
≥7. 
•Explicitly enumerates them and 
finds 6 valid sequences out of 16. 
•Probability = (½) × (6/16) = 3/16.

•The first flip must be H to move to 
the 7th floor.
•Analyzes the problem with Catalan / 
ballot path analogy but notices 
mismatch. 
•Falls back on explicit enumeration of 
4-flip sequences. 
•Identifies again 6 valid sequences 
out of 16. 
•Probability = (½) × (6/16) = 3/16.

•Begin with Polya moving to the 7th floor 
after one H. 
•Systematically lists sequences with 0, 1, 
or 2 tails across the next 4 moves. 
•Confirms exactly 6 valid sequences 
remain valid. 
•Computes probability = (½) × (6/16) = 
3/16.

Evaluation andMasking

Reason with MaskedMemories

Figure 2: An illustration of MAD-M2 framework. In general, MAD-M2 mainly includes three steps.
(i) In the initial debate round, LLM agents independently generate responses based on the given
query. (ii) The responses generated in the previous round are treated as memories. Each LLM agent
is required to evaluate all memories critically and mask the undesirable memories for the reasoning in
the next debate round. (iii) With the masked memories, agents perform reasoning in the next round.

3.1 DETAILED IMPLEMENTATION OF MAD-M2

An overview of our proposed MAD-M2 framework is visualized in Fig. 2. In general, the core idea
of the proposed MAD-M2 framework is inserting an evaluation and masking operation between two
reasoning rounds to reduce the potential wrong memories. In this way, it is equivalent to enhancing
the capability of agents in generating correct answers based on the memories in the previous round.

Step 1. Initial Debate Round. In the MAD-M2 framework, at the initial debate round, all Na

LLM agents are required to independently generate responses to the given query xtext ∈ X without
any contextual information. Specifically, a total of Na responses are independently generated from
LLM agents Aθi ∈ A, respectively, to formulate the memory vector of the initial round: M1 =
[Aθ1(x

test, ∅), A′
θ2
(xtest, ∅), ..., AθNa

(xtest, ∅)], where A′
θi
(xtest, ∅) denotes the wrong reasoning

responses generated by the i-th LLM agent while Aθi(x
test, ∅) denotes correct reasoning responses.

Step 2. Evaluation and Masking. After a round of debate, a set of memories regarding the given
query is obtained. Here, we consider a case where both correct and incorrect reasoning results are
contained. Specifically, the memories can be completely correct, partially correct, or completely
wrong. According to our previous demonstration, in the case where wrong memories are included,
the capability of agents to generate correct responses in the next debate round will be undermined. To
solve this problem, in MAD-M2, we propose to allow each agent to critically evaluate the memories
from the previous debate round and generate a binary vector M = {0, 1}Na to mask wrong memories
identified by the agent. Then, we can obtain a new set of memories with the wrong memories reduced:

M̂(i)
r = M (i) ⊙Mr,where M (i) = s ◦Aθi(Mr), (2)

where s ◦Aθi(Mr) 7→ {0, 1}Na denotes an operation that maps the evaluation of agent Aθi over the
memory Mr obtained from the r-th debate round into a binary mask vector, M̂(i)

r denotes the new set
of memories selected by the agent from the memory, and ⊙ denotes the element-wise multiplication.
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Subjective Masking Strategy. In the subjective masking strategy, memories are masked according
to the subjective evaluations of LLM agents. Specifically, in MAD-M2, LLM agents are required to
evaluate memories with the flags “YES”, “NO”, and “NOT SURE”. Depending on the strictness of
the predefined filtering rule, the “NOT SURE” is treated as either “YES” or “NO” correspondingly.

Objective Masking Strategy. Inspired by previous work (Fu et al., 2025), we also leverage the
perplexity of LLMs to perform memory masking. Since high perplexity usually implies that LLMs
are not confident of the generated content, answers with high perplexity may contain erroneous
information (e.g., incoherent logic and hallucination). Thus, as an objective masking strategy, the
perplexity of responses is measured, and half of the responses with high perplexity are filtered out.

Step 3. Reasoning with Masked Memories. With the new set of memories M̂(i)
r obtained for each

LLM agent through Eq. (2), in the r+1-th debate round, a set of new reasoning responses (memories)
Mr+1 = [A′

θ1
(xtest,M̂(1)

r ), Aθ2(x
test,M̂(2)

r ), ..., AθNa
(xtest,M̂(Na)

r )], where both correct and
incorrect responses are included, is generated from agents with the query and the refined memories.

In our proposed MAD-M2 framework, steps 2 and 3 are conducted iteratively until the end of the
debate. At the final round of debate, majority voting is conducted to obtain the answer to the query.

3.2 MORE DISCUSSIONS

In the previous section, we introduce a simple yet effective MAD-M2 method to improve the
robustness of the conventional multi-agent debate framework by reducing the incorrect memories
derived in the previous debate round. In this section, we propose to provide more analyses and
discussions about our proposed MAD-M2 to have a more comprehensive understanding of its property.

Token Consumption Analysis. Due to the multi-round interactions in the multi-agent debate
paradigm, the consumption of tokens of reasoning paradigms has become a significant concern in
recent works (Liu et al., 2024; Zeng et al., 2025). In our proposed MAD-M2, the introduction of
the evaluation and masking step tends to result in more consumption of tokens. Thus, in order to
comprehensively compare conventional MAD and our proposed MAD-M2 frameworks, we follow Liu
et al. (2024) to conduct an analysis on the token consumption of both multi-agent debate paradigms.

Let’s denote the token of the query xtest as T q, the token of the output of the agent Aθi at the r-th
debate round as T o

i,r. Then, we formulate the token consumption of both MAD and MAD-M2as:

N token
MAD = NaNroundT

q +Na

Nround∑
r=2

Na∑
i=1

T o
r−1,i +

Nround∑
r=1

Na∑
i=1

T o
r,i,

N token
MAD−M2 ≤ NaNroundT

q + 2Na

Nround∑
r=2

Na∑
i=1

T o
r−1,i +

Nround∑
r=1

Na∑
i=1

T o
r,i.

According to the results above, compared to the conventional MAD method, our proposed MAD-M2

consumes a similar number of tokens. Specifically, even in the worst case, where all memories are
preserved, MAD-M2 consumes Na

∑Nround

r=2

∑Na

i=1 T
o
r−1,i more input tokens than MAD framework.

Comparison to Existing Works. In literature, many works have been done to perform memory
selection in the multi-agent debate framework (Liu et al., 2024; Li et al., 2024; Zeng et al., 2025).
Specifically, Li et al. (2024) proposes Sparse MAD (S-MAD) to formulate the MAD framework
as a graph, where one agent can access the response of the other if the two agents are connected.
Moreover, Zeng et al. (2025) proposes Selective Sparse MAD (S2-MAD) to reduce the exchange
of less informative memories and unproductive discussions among agents. Among these works,
the most related work to our proposed MAD-M2 is S-MAD. The main idea of S-MAD is that only
static (predefined) topologies are taken into consideration for sparse communications among agents.
Although dynamic topology is also mentioned in the paper, the memories are selected in a random
way. However, in our proposed MAD-M2, the selected memories from the previous round and the
sparsity of communications are determined by LLM agents with a cost of more token consumption.

4 EXPERIMENTS

In this section, in order to evaluate our proposed MAD-M2 method, we propose to conduct experi-
ments on both mathematical reasoning and language understanding benchmarks. Specifically, we first
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Table 1: Empirical results of accuracy and token consumption. We evaluate four mainstream open-
source reasoning LLMs on four mathematical reasoning and language understanding benchmarks.

Methods AIME24 AIME25 MMLU_Pro MATH

ACC (%) ↑ Tokens ↓ ACC (%) ↑ Tokens ↓ ACC (%) ↑ Tokens ↓ ACC (%) ↑ Tokens ↓
Qwen2.5-7B-Instruct

CoT 6.7 ×0.17 3.3 ×0.17 40.6±6.3 ×0.16 47.2±4.0 ×0.17
CoT-SC 10.0 ×1.01 6.7 ×0.97 42.8±3.9 ×1.00 54.6± 2.7 ×1.02
MAD 10.0 ×1.00 3.3 ×1.00 42.0±6.3 ×1.00 47.4± 3.6 ×1.00
MAD-M2(S) 13.3 ×1.59 6.7 ×1.56 41.0±3.0 ×1.58 48.8±5.0 ×1.64
MAD-M2(O) 10.0 ×1.00 3.3 ×1.00 42.0±6.3 ×1.00 47.8±3.3 ×1.00

Qwen2.5-Math-7B-Instruct

CoT 6.7 ×0.15 10.0 ×0.16 27.6±4.5 ×0.17 59.6±3.8 ×0.17
CoT-SC 13.3 ×0.96 10.0 ×0.98 31.0±2.8 ×1.00 63.4±4.8 ×0.97
MAD 13.3 ×1.00 10.0 ×1.00 27.2±1.3 ×1.00 61.2±5.2 ×1.00
MAD-M2(S) 13.3 ×1.50 10.0 ×1.64 28.6±3.6 ×1.69 61.4±5.5 ×1.96
MAD-M2(O) 13.3 ×1.00 10.0 ×1.00 27.2±1.3 ×1.00 61.2±5.2 ×1.00

DeepSeek-Math-7B-Instruct

CoT 0.0 ×0.13 0.0 0.16 20.2±2.9 ×0.17 23.0±2.4 ×0.17
CoT-SC 0.0 ×0.99 0.0 ×1.00 18.2±4.5 ×0.99 32.4±4.8 ×0.99
MAD 0.0 ×1.00 0.0 ×1.00 17.6±2.8 ×1.00 26.4±4.4 ×1.00
MAD-M2(S) 0.0 ×1.72 3.3 ×1.72 17.4±4.3 ×1.66 27.0±3.5 ×1.74
MAD-M2(O) 0.0 ×1.00 0.0 ×1.00 17.6±2.8 ×1.00 26.4±4.4 ×1.00

QwQ-32B

CoT 73.3 ×0.17 56.7 ×0.17 74.0±6.3 ×0.17 74.4±4.0 ×0.17
CoT-SC 76.7 ×1.02 73.3 ×0.99 74.8±6.0 ×1.01 83.6±6.4 ×1.00
MAD 73.3 ×1.00 70.0 ×1.00 75.2±5.3 ×1.00 78.8±4.5 ×1.00
MAD-M2(S) 80.0 ×1.69 73.3 ×1.63 75.2±4.8 ×1.62 76.8±4.8 ×1.61
MAD-M2(O) 73.3 ×1.03 73.3 ×0.99 76.0±3.7 ×1.00 77.4±5.0 ×1.01

introduce the settings adopted in experiments and then provide the empirical results to validate the
performance of MAD-M2. Moreover, to obtain a comprehensive understanding of MAD-M2, further
empirical analyses are also conducted. Complete experimental settings are available in Appendix D.

4.1 EXPERIMENTAL SETUPS

Models. In this work, to validate the performance of MAD-M2, we mainly consider 4 mainstream
open-source large language models: Qwen2.5-7B-Instruct (Yang et al., 2024a), Qwen2.5-Math-7B-
Instruct (Yang et al., 2024b), DeepSeek-Math-7B-Instruct (Shao et al., 2024), and QwQ-32B (Team,
2025). Specifically, we consider Qwen2.5-7B-Instruct as an LLM with weak capability, Qwen2.5-
Math-7B-Instruct, DeepSeek-Math-7B-Instruct, and QwQ-32B as LLMs with powerful capability.

Benchmarks. We evaluate MAD-M2 on both math reasoning and language understanding tasks.
Specifically, we adopted MATH (Hendrycks et al., 2021), MMLU_Pro (Wang et al., 2024), AIME24,
and AIME25 datasets in our experiments. Specifically, both MATH and MMLU_Pro represent the
easy problem reasoning tasks, while AIME24 and AIME25 are the hard problem reasoning tasks.

Baselines. To validate the effectiveness of our proposed MAD-M2 method, the following reasoning
frameworks are adopted as baselines: (1) Chain-of-Thought (CoT) (Wei et al., 2022); (2) Self-
Consistency Chain-of-Thoughts (CoT-SC) (Wang et al., 2023) with 7 independent reasoning paths;
and (3) Multi-Agent Debate (MAD) (Du et al., 2023). For all the multi-agent debate frameworks
above, the number of LLM agents and the number of debate rounds are set to 3 and 2, respectively.

4.2 MAIN RESULTS

In this section, we evaluate our proposed MAD-M2with both the subjective masking strategy (MAD-
M2(S)) and the objective masking strategy (MAD-M2(O)) on the four mainstream mathematical and
language understanding benchmarks. The accuracy and token consumption are reported in Table 1.

Observation 1. MAD-M2outperforms MAD in most cases. As shown in Table 1, we can observe
that MAD-M2achieves better performance than MAD in most cases. For example, with Qwen2.5-7B-
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Figure 3: Comparison of time consumption between MAD-M2and baselines on Qwen2.5-7B-Instruct.

Table 2: Results of LLMs successfully identify and mask the erroneous memories.

Models Rules MATH MMLU_Pro AIME24 AIME25

Qwen2.5-7B-Instruct Strict 32.0% 7.4% 90.0% 96.7%
Loose 43.8% 33.4% 90.0% 96.7%

Qwen2.5-Math-7B-Instruct Strict 54.4% 4.2% 100.0% 100.0%
Loose 64.6% 4.4% 100.0% 100.0%

DeepSeek-Math-7B Strict 7.8% 0.2% 96.7% 100.0%
Loose 11.0% 2.2% 96.7% 100.0%

QwQ-32B Strict 49.8% 15.6% 90.0% 86.7%
Loose 52.0% 45.9% 90.0% 86.7%

Instruct, MAD-M2achieves 3.3%, 3.4%, and 1.6% improvements on AIME24, AIME25, and MATH
benchmarks, respectively. Moreover, with QwQ-32B, MAD-M2also achieves 6.7%, 3.3%, and 0.8%
improvements on AIME24 AIME25, and MMLU_Pro benchmarks, respectively. All these empirical
results demonstrate the effectiveness of our proposed MAD-M2.

Observation 2. MAD-M2fails to outperform CoT-SC in almost all cases. According to the results,
we can observe that MAD-M2consistently underperforms CoT-SC in most cases. This phenomenon is
consistent with our theoretical results, which find that the performance of MAD can hardly outperform
CoT-SC, in Section 2.2.1. This is also consistent with the results reported by Huang et al. (2023).

Observation 3. Powerful LLMs achieve better performance on HPR, while weak LLMs perform
better on EPR. According to the empirical results, we find that weak LLMs, such as Qwen2.5-7B-
Instruct, achieve more improvements on easy benchmarks (e.g., MATH and MMLU_Pro), while
powerful LLMs, such as QwQ-32B, perform better on hard benchmarks (e.g., AIME). We conjecture
that the reason for such a phenomenon is that the performance of powerful LLMs has reached a
saturation point, where less incoherent content is included in responses, on easy benchmarks. In
contrast, for weak LLMs, incoherent content remains in the responses even for easy benchmarks.

Observation 4. Subjective masking strategy achieves better performance than objective masking
strategy. Empirically, according to the reported results, MAD-M2with the subjective masking
strategy outperforms MAD-M2with the objective masking strategy in most cases. The reason for this
phenomenon may be that the objective masking strategy implicitly assumes that the performance
is positively related to the perplexity of LLMs. Nevertheless, MAD-M2with the objective masking
strategy still achieves comparable or even better performance than MAD/MAD-M2in some cases.

4.3 ANALYSES

Erroneous Memory Identification. The main goal of our proposed MAD-M2is to identify the
erroneous memories in the previous debate round and mask them for better performance. To validate
the effectiveness of MAD-M2, we propose to examine whether MAD-M2correctly detects and masks
the erroneous memories. Two rules are considered here: (1) Strict rule: All erroneous memories are
detected and masked. (2) Loose rule: At least one erroneous memory is detected and masked. The
results are reported in Table 2. According to the results, we can obtain the following observations. (1)
LLMs can hardly identify all erroneous memories in most cases. Although all erroneous memories are
identified in some cases of AIME benchmarks, we conjecture the reason here is that these memories
have evident logical errors that can be easily detected since the problems are too hard. (2) Although
erroneous memories can be identified on hard problems, the performance is not improved for those
7B LLMs (cf. Table 1). This phenomenon indicates that the capability of LLMs plays an essential
role in improving the reasoning performance. (3) LLMs that are specific to math reasoning tasks
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Figure 4: Comparison of scaling of agents between MAD and MAD-M2 on Qwen2.5-7B-Instruct.
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Figure 5: Comparison of debate round scaling between MAD and MAD-M2 on Qwen2.5-7B-Instruct.

(e.g., Qwen-Math and DeepSeek-Math) can hardly identify the erroneous memories in the previous
debate round, which helps explain why these LLMs perform poorly on language understanding tasks.

Token Consumption. In Section 3.2, we have theoretically demonstrated that our proposed MAD-M2

consumes more tokens than MAD. Here, we compare the token consumptions of all methods listed
in Table 1. According to the table, we find that multi-round/multi-agent reasoning consumes more
tokens than the single-round/single-agent counterpart (e.g., CoT vs. CoT-SC & MAD vs. MAD-M2).
Specifically, MAD-M2consumes about 60% more tokens than MAD. According to our empirical
results, the high cost of tokens mainly results from input tokens, depending on LLMs. Specifically,
for LLMs except QwQ-32B, the input tokens consumed by MAD-M2are about 2 ∼ 4 times as large
as MAD. For QwQ-32B, the consumption of input tokens is about 10 ∼ 20 times as large as MAD.

Time Consumption. To validate the efficiency, in Fig. 3, we compare the time consumption of
MAD-M2and other baselines on Qwen2.5-7B-Instruct. According to the visualization results, we
find that MAD-M2consumes more time than MAD but less time than CoT-SC. Meanwhile, we also
notice that time consumption on solving hard problems is much more than that on easy problems.

Scaling of Agents. To study the scaling capability of MAD-M2 on the number of agents, we propose
to fix the number of debate rounds to 2 and increase the number of agents to 4, 5, 6, 8, and 10,
respectively. The performance of Qwen2.5-7B-Instruct on various numbers of agents is visualized
in Fig. 4. According to the figures, we can observe that both MAD and MAD-M2benefit from the
increase in agent numbers. Compared to MAD, MAD-M2can achieve better performance when the
number of agents is small (e.g., in MATH, AIME24, and AIME25 benchmarks).

Scaling of Number of Rounds. To study the scaling capability of our proposed MAD-M2 on the
number of debate rounds, we propose to fix the number of agents to 3 and increase the number of
debate rounds to 5, 6, 8, and 10, respectively. The empirical results are visualized in Fig. 5. Different
from increasing the number of agents, increasing the number of debate rounds does not increase the
number of reasoning responses. According to our empirical results, we can observe that increasing
the number of debate rounds fails to improve the reasoning performance. Instead, in most cases, we
can observe a deterioration of performance.

5 CONCLUSION

Our work mainly focuses on the robustness of the conventional multi-agent debate framework and
the effect of erroneous memories on LLM agents during the debate phase. In this paper, we first
investigate the effect of erroneous memories in the MAD and find that LLM agents may be misled by
those erroneous memories in the previous debate round and, in turn, generate incorrect reasoning
responses in the next debate round. Moreover, we further theoretically demonstrate that the reasoning
capability of LLM agents in the next debate round is closely related to the memories in the previous
round, and enhancing such a capability can improve the performance of the multi-agent debate
framework. Inspired by this, we propose a multi-agent debate framework, multi-agent debate with
memory masking, to enhance the capability of agents by allowing them to mask incorrect memories
in the previous round. Extensive empirical results demonstrate the efficacy of our proposed method.
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A DETAILED RELATED WORK

Recently, more and more attention has been attracted to large language models (Achiam et al., 2023;
?; Yang et al., 2024a), which are parameterized with millions of weights and trained on numerous
corpora. Along with the improvements in performance on conventional natural language tasks, one
important emergent ability of these large language models is performing reasoning tasks.

LLM Reasoning. As the most impressive emergent capability of large language models, reasoning
has received more and more attention from the community. Such a capability enables LLMs to address
complex questions in a logical way as human beings based on their prior knowledge without further
training. So far, numerous research works have been conducted to improve the reasoning capability
of LLMs. One typical framework to enhance the reasoning capability of LLMs is Chain-of-Thought
(CoT) (Wei et al., 2022). In CoT, LLMs address the questions by breaking the tasks into sequential
steps. Based on CoT, some other variants are proposed to further improve the reasoning capability of
LLMs (Zelikman et al., 2022; Wang et al., 2022; Shum et al., 2023). Among these works, a famous
work is Self-Consistency Chain-of-Thought (CoT-SC) (Wang et al., 2022). CoT-SC improves the
reasoning capability of LLMs significantly by simply sampling multiple reasoning trajectories and
performing majority voting with these trajectories. In addition to modeling the reasoning trajectories
into the chain of thoughts, some works also try to explore other structures. Specifically, Jin & Lu
(2023) (Tab-CoT) proposes to model the reasoning trajectories in a highly structured way. Yao et al.
(2023) proposes to model the reasoning trajectories into a tree-like path (a.k.a Tree-of-Thought,
ToT). This further facilitates evaluating multiple reasoning paths and self-assessment. However, both
chain-based or tree-based reasoning paradigms are constrained to linear reasoning tasks. To solve this
problem, Graph-of-Thoughts (Besta et al., 2024) is proposed to model the reasoning into a flexible
graph. In such a way, the non-linear tasks can be well solved.

Multi-agent Debate. Multi-agent debate (MAD) (Du et al., 2023) can be treated as a scaling of
conventional reasoning paradigms, such as CoT. The main goal of MAD is to perform reasoning with
multiple LLMs in the way of debate as human beings. Specifically, in such a case, the reasoning
is performed with multiple LLMs in several rounds, and the final answer is generated via majority
voting. By taking previous responses into consideration, the answers generated in the new round
can be further refined. Compared to the conventional reasoning paradigms, such as CoT, MAD
consumes more resources (e.g., tokens and time) (Du et al., 2023; Li et al., 2024; Liu et al., 2024;
Zeng et al., 2025). Moreover, due to the inconsistency of the quality, multi-agent debate also suffers
from the noisy responses (Zeng et al., 2025). Thus, a series of work is proposed to reduce the resource
consumption and improve the performance of MAD by polishing the memories. Specifically, Sparse
MAD (S-MAD) (Li et al., 2024) proposes to formulate the MAD framework as a graph and sparsify
the topology of the graph, which is able to simultaneously reduce resource consumption and improve
the performance. Moreover, Liu et al. (2024) proposes Group Debate (GD) to divide all agents into
several debate groups and only allow agents to debate in their own group. Further, Selective Sparse
MAD (S2-MAD (Zeng et al., 2025)) is proposed to reduce the redundant content and inproductive
discussions in debate to improve the efficiency and performance of MAD.

Context Engineering. Context Engineering methods (Mei et al., 2025) manipulate unstructured
streaming LLM reasoning to construct structured context systems, enabling sophisticated LLM-driven
MAD systems and agentic systems by managing scaling context length, where numerous tokens
are irrelevant or confusing for answers. Recent advancements in context engineering are two-fold:
context augmentation and context compression. Context augmentation methods extend critical
information in context to optimize reasoning performance. Retrieval-augmented Generation (RAG)
methods (Lewis et al., 2020; Gao et al., 2023; Fan et al., 2024) provide access to external information
sources, including databases (Lian et al., 2024), knowledge graphs (Sun et al., 2024; LUO et al., 2024),
and textual document collections (Asai et al., 2024; Sarthi et al., 2024), enabling access to relevant
knowledge. Additionally, comprehensive feedback approaches like Self-Refine (Madaan et al., 2023)
employ LLMs to evaluate their prior reasoning for self-improvement, while Reflexion (Shinn et al.,
2023), STaR (Zelikman et al., 2022), and AlphaEvolve (Novikov et al., 2025) introduce reliable
external environment feedback for consistent performance improvement. Context compression
methods address overlong context issues that challenge finite context window sizes by dynamically
reducing reasoning context. INFTYTHINK (Yan et al., 2025) iteratively summarizes prior reasoning
contexts for short-context reasoning, while CoThink (Fan et al., 2025) employs short-response
LLMs to orchestrate reasoning strategy and dynamically control context length. Additionally, O1-
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Pruner (Luo et al., 2025), L1 (Aggarwal & Welleck, 2025), and DAST (Shen et al., 2025) consider
the reasoning length during training to encourage LLMs to solve problems with fewer tokens.

B PROOFS

B.1 PROOF OF PROPOSITION 2.2

Proof. Since CoT-SC performs reasoning on the given query by voting the majority on a set of
independently generated multiple responses, given Assumption 2.1, the number of the correct
responses conforms to a binomial distribution Ncor ∼ B(Nsc, k):

P (Ncor = k) =

(
Nsc

k

)
pk(1− p)Nsc−k,

where B denotes the binomial distribution. Thus, the case that CoT-SC correctly answers the question
can be formulated as the event: Ncor > Nsc

2 . Then, we further have the probability that CoT-SC
correctly infers the answer to the query

P (Ncor >
Nsc

2
) =

Nsc∑
k=⌈Nsc

2 +1⌉

P (Ncor = k)

=

Nsc∑
k=⌈Nsc

2 +1⌉

(
Nsc

k

)
pk(1− p)Nsc−k,

where ⌈·⌉ is the ceiling operator, and
(
Nsc

k

)
= Nsc!

k!(Nsc−k)! is the binomial coefficient with Nsc and k.

Consider a set of independent random variables {Xi}Nsc
i=1, where Xi ∈ {0, 1}, P (Xi = 1) = p and

P (Xi = 0) = 1− p. Let Ncor =
∑Nsc

i=1 Xi, we then have E[Xi] = p and E[Ncor] = Nscp. With the
Hoeffding Inequality, we have

P (Ncor − E[Ncor] ≥ t]) ≤ exp

(
− 2t2

Nsc

)
,

If p < 1
2 , then E[Ncor] = Nscp < Nsc

2 . Let t = ( 12 − p)NNsc > 0:

P (Ncor >
Nsc

2
) ≤ exp

(
−2Nsc

(
1

2
− p

)2
)
.

Else, if p ≥ 1
2 , then E[Ncor] ≥ Nsc

2 . Thus, we consider the complementary case: P (Ncor−E[Ncor] ≤
Nsc

2 ). Then, let t = (p− 1
2 )Nsc > 0, we can get:

P (Ncor ≤
Nsc

2
) ≤ exp

(
−2Nsc

(
1

2
− p

)
)2
)
.

Thus, for the original case P (Ncor >
Nsc

2 ), we have

P (Ncor >
Nsc

2
) ≥ 1− exp

(
−2Nsc

(
1

2
− p

)2
)
.

The proof is completed.

B.2 PROOF OF PROPOSITION 2.3

Proof. In a 2-round multi-agent debate case, where Na agents are involved in each debate round, we
first consider the initial debate round, where the responses are only conditioned on the query prompt.
Thus, the probability of MAD achieving N

(1)
cor ∈ {0, 1, 2, ..., Na} correct reasoning responses is:

P (N (1)
cor = j) =

(
Na

j

)
pj(1− p)Na−j ,where j ∈ {0, 1, 2, ..., Na}.
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For the second round, assume that the probability of LLM agents correctly reasoning the answer
is modified to e−Ne , where Ne = Na − N

(1)
cor , depending on the number of correct memories in

the previous debate round. We consider that new responses are generated independently in the
second round, and the number of correct responses in the second round also conforms to a binomial
distribution N

(2)
cor ∼ B(Na, e

j−Na). In this case, the probability that the answer is correctly inferred
is:

P (N (2)
cor >

Na

2
) =

Na∑
j=0

Na∑
k=⌈Na

2 +1⌉

P (N (2)
cor = k|N (1)

cor = j)

=

Na∑
j=0

Na∑
k=⌈Na

2 +1⌉

P (N (2)
cor = k)P (N (1)

cor = j)

=

Na∑
j=0

P (N (1)
cor = j)

Na∑
k=⌈Na

2 +1⌉

(
Na

k

)
ek(j−Na)(1− ej−Na)Na−k,

where P (N
(1)
cor = j) =

(
Na

j

)
pj(1− p)Na−j .

Then, similar to Proposition 2.2, if ej−Na < 1
2 , we have the upper bound:

P (N (2)
cor >

Na

2
) ≤

Na∑
j=0

(
Na

j

)
pj(1− p)Na−j exp

(
−2Na

(
1

2
− ej−Na

)2
)
.

Else, if ej−Na ≥ 1
2 , we have the lower bound:

P (N (2)
cor >

Na

2
) ≥

Na∑
j=0

(
Na

j

)
pj(1− p)Na−j

(
1− exp

(
−2Na

(
1

2
− ej−Na

)2
))

.

The proof is completed.

C DETAILED ANALYSIS ON TOKEN CONSUMPTION

Denote the token of the query xtest as T q, the token of the output of the agent Aθi at the r-th debate
round as T o

i,r. Then, we formulate the token consumption of both MAD and MAD-M2as follows.

For MAD, at the initial round, the query xtest is fed into Na LLM agents and then Na responses are
generated from these LLM agents. Thus, the consumption of MAD at the initial debate round is:

N token
1 = NaT

q +

Na∑
i=1

T o
1,i.

Then, from the second debate round, each agent will take all Na outputs in the last debate round and
output a new reasoning response with the query. Thus, the consumption of tokens for MAD at the
r-th debate round is:

N token
r = Na

(
T q +

Na∑
i=1

T o
r−1,i

)
+

Na∑
i=1

T o
r,i.

Thus, the total consumption of tokens of MAD can be formulated as:

N token
MAD =

Nround∑
r=1

N token
r

= NaNroundT
q +Na

Nround∑
r=2

Na∑
i=1

T o
r−1,i +

Nround∑
r=1

Na∑
i=1

T o
r,i.
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For MAD-M2, at the initial round, the consumption of tokens is the same as MAD:

N token
1 = NaT

q +

Na∑
i=1

T o
1,i.

From the second round, the agents will first evaluate the previous memories and mask the potentially
incorrect memories. In this step, all memories are fed into each agent, and the agent will output “yes”,
“no”, or “unsure”. Here, we ignore the tokens of outputs and the instructions. We then formulate the
consumption of tokens at this step as:

N eval_token
r = Na

Na∑
i=1

T o
r−1,i.

Then, based on the selected memories M̂(i)
r−1, the input tokens for each agent in the r-th debate round

should be no more than the sum of the query tokens and the tokens of all previous tokens. Thus,
considering the output tokens, we have:

N token
r ≤ Na

(
T q +

Na∑
i=1

T o
r−1,i

)
+

Na∑
i=1

T o
r,i.

Thus, the total consumption of MAD-M2 can be formulated as:

N token
MAD−M2 = N token

1 +

Nround∑
r=2

(
N eval_token

r +N token
r

)
≤ NaT

q +

Na∑
i=1

T o
1,i +

Nround∑
r=2

(
Na

Na∑
i=1

T o
r−1,i +Na

(
T q +

Na∑
i=1

T o
r−1,i

)
+

Na∑
i=1

T o
r,i

)

= NaNroundT
q + 2Na

Nround∑
r=2

Na∑
i=1

T o
r−1,i +

Nround∑
r=1

Na∑
i=1

T o
r,i.

D COMPLETE EXPERIMENTAL SETTINGS

In this section, we provide more detailed implementations adopted in the experiment section of our
paper to ensure that the results reported in this paper are reproducible.

D.1 TEST DATA SETTINGS

In this paper, all single-round and multi-round reasoning methods are evaluated on MATH,
MMLU_Pro, AIME24, and AIME25 datasets. However, due to the multi-round paradigms of
the multi-agent debate framework, it is really expensive to evaluate all the test data of MATH and
MMLU_Pro. Thus, to avoid this problem, we follow previous works (Du et al., 2023) to perform
evaluation on a subset of 100 randomly sampled test data.

D.2 HYPERPARAMETER SETTINGS

Hyperparameters of LLMs. In this paper, all reasoning responses are performed on LLMs with a
temperature of 1.0 and a top p of 1.0.

Fairness of Comparison between CoT-SC and MAD. For the CoT-SC baseline, the final answer is
achieved by performing majority voting among 5 responses that are independently generated from
LLMs in the way of CoT. Since the MAD framework is performed with 3 agents in 2 rounds, the
total number of reasoning responses in MAD is 6. Thus, we think the comparison between CoT-SC
and MAD in this paper is fair.

Computational Resources. In this paper, all experiments are conducted through the platform API.
Thus, none of other computational resources, such as GPUs are involved.
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D.3 DETAILS OF BENCHMARKS

In this work, all baselines and our proposed MAD-M2 are evaluated in four mainstream mathematical
reasoning and language understanding benchmarks, which are AIME24, AIME25, MATH, and
MMLU_Pro. In this section, we provide a brief introduction for each of these four benchmark.

• AIME 2024: A challenging competition mathematical question set on the 2024 American Invita-
tional Mathematics Examination for high school students.

• AIME 2025: The questions of the American Invitational Mathematics Examination in 2025,
providing the latest difficult mathematical problems.

• MATH: A comprehensive mathematical dataset designed to rigorously challenge large language
models’ reasoning abilities in algebra, geometry, number theory, and combinatorics, thoroughly
evaluating their mathematical understanding and problem-solving capabilities.

• MMLU-Pro: MMLU-Pro is an advanced extension of the Massive Multitask Language Under-
standing (MMLU) dataset (Hendrycks et al., 2020), encompassing 57 diverse tasks across domains
such as mathematics, computer science, biology, and physics. Compared to MMLU, MMLU-Pro
introduces more complex, reasoning-intensive problems to enhance the evaluation of advanced
language models.

D.4 DETAILS OF PROMPTS

CoT prompt for math problem (AIME24 AIME25 MATH)

Please solve this mathematical problem step by step, and provide the final answer in \boxed{}
format.

CoT Prompt for MMLU-Pro

The following are multiple-choice questions (with answers) about {$}. Think step by step
and then finish your answer with the answer is (X), where X is the correct letter choice.

Debate Prompt

These are the solutions to the problem from other agents:
{context} Use the opinions from other agents as additional information.
{question} Please think step by step and solve the problem.

Masking Prompt

Evaluate the given solutions based on the question. Your response MUST end with
the following format: <label>YES</label> or <label>NO</label> or <label>NOT
SURE</label>. Return YES if the solution is completely correct, NO if any part of the
solution is incorrect, and NOT SURE if you are unsure.
{question}
{solution}
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