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Abstract

Accurate and robust 3D object detection is a critical component in autonomous vehi-
cles and robotics. While recent radar-camera fusion methods have made significant
progress by fusing information in the bird’s-eye view (BEV) representation, they
often struggle to effectively capture the motion of dynamic objects, leading to lim-
ited performance in real-world scenarios. In this paper, we introduce CRT-Fusion,
a novel framework that integrates temporal information into radar-camera fusion to
address this challenge. Our approach comprises three key modules: Multi-View
Fusion (MVF), Motion Feature Estimator (MFE), and Motion Guided Temporal
Fusion (MGTF). The MVF module fuses radar and image features within both the
camera view and bird’s-eye view, thereby generating a more precise unified BEV
representation. The MFE module conducts two simultaneous tasks: estimation
of pixel-wise velocity information and BEV segmentation. Based on the velocity
and the occupancy score map obtained from the MFE module, the MGTF module
aligns and fuses feature maps across multiple timestamps in a recurrent manner. By
considering the motion of dynamic objects, CRT-Fusion can produce robust BEV
feature maps, thereby improving detection accuracy and robustness. Extensive
evaluations on the challenging nuScenes dataset demonstrate that CRT-Fusion
achieves state-of-the-art performance for radar-camera-based 3D object detection.
Our approach outperforms the previous best method in terms of NDS by +1.7%,
while also surpassing the leading approach in mAP by +1.4%. These significant
improvements in both metrics showcase the effectiveness of our proposed fusion
strategy in enhancing the reliability and accuracy of 3D object detection.

1 Introduction

3D object detection plays a crucial role in autonomous vehicles and robotics, leveraging sensors such
as lidar, cameras, and radar to localize and classify objects in the environment. Extensive research has
been conducted to explore various strategies for improving detection accuracy and robustness. One
prominent approach is the integration of data across multiple timestamps, which aims to mitigate the
inherent limitations associated with relying solely on instantaneous data. By incorporating historical
information, this approach provides a more robust perception of the environment, addressing the
challenges of incomplete data caused by occlusions, sensor failures, and other factors.

Numerous studies have investigated the utilization of temporal information to enhance the perfor-
mance of LiDAR-based and camera-based 3D object detection methods. Recent works have also
explored the incorporation of temporal cues in radar-camera fusion methods [1, 2]. These methods
generated bird’s-eye view (BEV) feature maps for each frame by fusing radar and camera data into a
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Figure 1: Comparison of temporal fusion methods: (a) Previous methods concatenate BEV feature
maps without considering object motion. (b) CRT-Fusion estimates and compensates for object
motion before concatenation. (c) Performance gain of CRT-Fusion over the direct concatenation
method, showing CRT-Fusion’s superior accuracy across different object velocity ranges.

unified BEV representation. The resulting BEV feature maps are then concatenated across frames to
create a comprehensive spatio-temporal representation, as illustrated in Figure 1(a). However, these
approaches face limitations in effectively capturing object motion, as they merge data from different
time intervals without explicitly considering the dynamics of moving objects. Consequently, the
performance accuracy for dynamic objects is compromised.

To address these challenges, we propose a motion-aware approach, as illustrated in Figure 1 (b),
which goes beyond simple concatenation of BEV feature maps. Our method first estimates the
locations of dynamic objects with their corresponding velocity vector for each timestamped BEV
feature map. Subsequently, we leverage this predicted information to rectify the motion of dynamic
objects in each feature map and fuse them in a temporally consistent manner. Figure 1(c) presents a
graph depicting the performance gain achieved by our proposed method over the direct concatenation
of temporal BEV feature maps for different object velocity ranges. It is evident that our approach
consistently outperforms the existing method across all velocity ranges, with a notable performance
improvement for objects moving at medium velocities. This demonstrates the effectiveness of our
motion-aware fusion strategy in capturing and compensating for object motion, leading to superior
performance in 3D object detection.

In this paper, we introduce CRT-Fusion, a novel approach for integrating temporal information
into radar-camera fusion. Our framework comprises three modules: Multi-View Fusion (MVF),
Motion Feature Estimator (MFE), and Motion Guided Temporal Fusion (MGTF). The MVF module
generates radar-camera fused BEV feature maps for each timestamp. The MVF enhances image
features with radar BEV features, achieving more precise depth predictions through Radar-Camera
Azimuth Attention (RCA). The enhanced camera BEV features and radar BEV features are integrated
through a gating operation. The MFE module predicts velocity information and performs BEV
segmentation for each pixel in the fused BEV features to identify object regions and provide values
for shifting the feature map spatially. Finally, the MGTF module generates the final feature map by
leveraging the fused BEV feature maps, segmentation results, and velocity predictions. The MGTF
module begins with the BEV features from the (t−N)th time step and aligns them with those from
each subsequent time step. These aligned features are then aggregated one-by-one across all N
timestamps in a recurrent manner. Consequently, CRT-Fusion achieves state-of-the-art performance
on the nuScenes 3D object detection benchmark for radar-camera fusion methods, with improvements
of +1.7% in NDS and +1.4% in mAP compared to existing state-of-the-art approaches.

In summary, the main contributions of this work are as follows:

• We introduce CRT-Fusion, a novel framework that effectively integrates temporal informa-
tion into radar-camera fusion for 3D object detection. By considering the motion of dynamic
objects, CRT-Fusion significantly improves detection accuracy and robustness in complex
real-world scenarios.

• We design a Multi-View Fusion module that enhances depth prediction by leveraging radar
features to improve image features before fusing them into a unified BEV representation.
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• We introduce an effective temporal fusion strategy through MFE and MGTF modules. MFE
estimates pixel-wise velocity information, and MGTF iteratively aligns and fuses feature
maps across multiple timestamps using the motion information obtained from MFE.

• CRT-Fusion achieves state-of-the-art performance on the nuScenes dataset for radar-camera-
based 3D object detection, surpassing previous best method by +1.7% in NDS and +1.4%
in mAP.

2 Related Works

2.1 Camera-Radar 3D Object Detection

Due to the high cost of LiDAR sensors, research on 3D object detection using radar-camera sensor
fusion has gained significant traction in recent years. These studies aim to utilize radar sensors
as auxiliary sensors to overcome the fundamental limitation of camera-based 3D object detection
research, which is the lack of depth information.

CenterFusion [3] adopts a frustum-based approach to establish connections between radar point
clouds and image features, enabling the refinement of 3D proposals. CRAFT [1] captures the
interactions between radar and camera data within a polar coordinate system using a cross-attention
mechanism, effectively integrating information from both modalities. RCM-Fusion [4] combines
radar and image features at both feature-level and instance-level to achieve more precise 3D object
detection. RADIANT [5] fuses radar and image features within image pixel coordinates to provide
more accurate 3D location estimation. CRN [6] employs a 3D object detection method that strikes a
balance between speed and performance by leveraging radar information to enhance camera BEV
features and fusing multi-modal BEV features. RCBEVDet [2] introduces a novel radar backbone
network that utilizes point-based feature extraction techniques for radar and fuses radar and image
features using deformable cross-attention. CRKD [7] employs a method to transfer the knowledge
possessed by the LiDAR-Camera fusion detector to the Camera-Radar fusion detector using the
Cross-modality Knowledge Distillation technique.

2.2 Temporal fusion in 3D Object Detection

The approach to utilizing temporal information in 3D object detection varies depending on the type
of sensors employed. In LiDAR-based methods, relying solely on single-frame point cloud data
introduces challenges such as occlusion and partial views. To mitigate these issues, several studies
have integrated temporal information at the feature level [8, 9, 10, 11]. Another approach involves
extracting proposals using an object detector and subsequently leveraging temporal information at
the object level [12, 13, 14]. A third method focuses on fusing temporal information within the query
representation [15].

On the other hand, camera-based approaches have exploited temporal information to overcome
the inherent limitations of image data, such as inaccuracies in depth prediction. One common
methodology in camera-based perception research is to fuse temporal information with BEV-based
methods [16, 17, 18, 19, 20]. Another approach has centered on enhancing the accuracy of depth
estimation through temporal-stereo methods [21, 22, 20].

In the context of radar-camera fusion methods, the utilization of temporal information remains less
explored, with most studies following the strategies employed in BEV-based camera-only methods.
However, our proposed CRT-Fusion deviates from existing research methods by introducing a novel
temporal fusion method. Our approach incorporates a temporal BEV fusion mechanism that explicitly
considers the movement of objects, thereby enhancing object detection performance.

3 CRT-Fusion

In this work, we introduce CRT-Fusion, a novel framework for 3D object detection that efficiently
fuses information from radar, camera, and temporal domains. The overall architecture of CRT-Fusion
is illustrated in Figure 2. Our approach first extracts the features from radar and camera data separately
using their respective backbone networks. Subsequently, we employ the MVF module to generate
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Figure 2: Overall architecture of CRT-Fusion: Features are extracted from radar and camera data
using backbone networks at each timestamp. The MVF module combines these features to generate
fused BEV feature maps. The MFE module predicts the location and velocity of dynamic objects
from these maps. The MGTF module then uses the predicted motion information to create the final
feature map for the current timestamp, which is fed into the 3D detection head.

a fused BEV feature map for each timestamp by combining the radar and camera features. The
sequence of fused feature maps is then utilized by the MFE module to predict the location and
velocity information of dynamic objects. The predicted motion information is exploited by the MGTF
module to align the BEV feature maps spatially within a time window. Then, the aligned features
maps are aggregated to obtain the final feature maps. Finally, 3D object detection is performed using
the detection head proposed by CenterPoint [23].

3.1 Multi-View Fusion

Recent advancements in BEV-based camera-only approaches have significantly improved perfor-
mance, leading to an increased focus on radar-camera fusion approaches within BEV representations.
These studies [6, 4, 2] primarily aimed to address the inherent limitations of camera-only approaches,
particularly the challenge of accurate depth prediction, by leveraging radar data. The existing state-
of-the-art model [6] enhanced this process by combining occupancy information from radar point
clouds with camera frustum features, effectively incorporating radar positional data. While this
method facilitates the direct integration of radar positional information, noise in radar point clouds
can adversely affect depth prediction accuracy. To mitigate this issue, we propose a novel fusion
strategy that incorporates radar and camera features in both bird’s eye view and perspective view.
Unlike the existing method [6], our approach enhances camera features using radar information
prior to depth prediction, enabling more accurate camera BEV features. Subsequently, we employ a
CNN-based gated fusion network to obtain the final fused features.

Perspective view fusion. As illustrated in Figure 3 (a), the Radar-Camera Azimuth attention (RCA)
module takes the camera perspective view features Fc ∈ RN×C×H×W and the radar BEV features
Fr ∈ RC×X×Y as inputs, where H and W represent the height and width of the camera features,
and X and Y denote the size of the radar BEV features along the x-axis and y-axis, respectively.
For the i-th image, the camera feature F i

c ∈ RC×H×W is compressed along both height and width
dimensions using max pooling and MLP layers, resulting in W i

c ∈ RC×1×W and Hi
c ∈ RC×H×1.

Let W i
c(j) be the value of the W i

c features at the j-th position along the width direction. We associate
the radar feature element Fr(x, y) at the position (x, y) with W i

c(j) through Azimuth Grouping.
The azimuth angle values corresponding to W i

c(j) and Fr(x, y) are denoted as θic(j) and θr(x, y),
respectively. A set of M radar features Ri

j associated with W i
c(j) is obtained using:

Ri
j =

{
Fr(x, y) | argmin

x∈[0,X],y∈[0,Y ]

(
|θic(j)− θr(x, y)|,M

)}
(1)
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Figure 3: Core components of CRT-Fusion: (a) RCA module enhances image features with radar
features for accurate depth prediction. (b) MGTF module compensates for object motion across
multiple frames, producing the final BEV feature map for 3D object detection.

where argmin(X ,M) returns the indices of the smallest M elements in X , and Ri
j represents M

radar features Fr(x, y) whose azimuth angles are closest to θic(j). Pixel-wise fusion module is then
applied to Ri

j to obtain an enhanced feature W̄ i
c(j) as

M i
j(m) = MLP2(MLP1(concat(W i

c(j),Ri
j(m)))) (2)

W̄ i
c(j) =

M∑
m=1

softmax(MLP3(M
i
j(m))) ·M i

j(m) (3)

where Ri
j(m) denotes the m-th element of Ri

j . The concatenation of W i
c(j) and Ri

j(m) is passed
through two MLP layers to obtain an intermediate feature M i

j(m). These intermediate features are
then processed through another MLP layer followed by a softmax function to determine the relevance
to W i

c(j). The weighted sum of these intermediate features yields the enhanced W̄ i
c(j). Finally, we

perform an element-wise multiplication of W̄ i
c ∈ RC×1×W and Hi

c ∈ RC×H×1 to obtain the camera
perspective view features F̄ i

c . The concatenation of F̄ i
c and F i

c is then passed through a convolution
layer to obtain F̂ i

c , which is the perspective view features for the i-th image fused with the radar BEV
features. These steps are depicted in Figure 3 (a).

Bird’s eye view fusion. The enhanced camera feature F̂ i
c in the perspective view is employed for

depth prediction and camera view semantic segmentation. Inspired by SA-BEV [24], we utilize a
1x1 CNN layer head structure to predict both depth map and segmentation scores in the perspective
view. The network outputs Di

c ∈ R(b+1)×H×W , where b denotes the number of depth bins and the
additional dimension corresponds to the foreground score prediction. The predicted segmentation
scores are thresholded using a value τP to identify the foreground regions only, which are then
projected to the BEV domain. The resulting camera BEV features are fused with the radar BEV
features obtained from the radar pipeline using a gated fusion network [25, 26] to yield the final BEV
features B. The gated fusion network assigns weights to each feature according to their significance,
effectively boosting the effect of feature fusion.

3.2 Motion Feature Estimation

Temporal fusion methods that consider object motion have been extensively studied in the context
of 3D object detection [12, 13, 14]. These methods typically predict object locations and velocities
at each timestamp using an object detector, and then aggregate object information from the past
timestamps to the current timestamp at the object level. However, this approach has a drawback
as the overall model performance heavily depends on the initial detector’s performance. Moreover,
object-level temporal fusion methods have not utilized motion information of objects effectively.
To address these limitations, we propose a simple yet effective solution: by predicting velocity
information and object presence for each pixel in the BEV features, the model can produce the
aligned BEV features, which can be temporally fused at the feature level in the BEV domain rather
than at the object level.

5



Suppose that we obtain a set of BEV features B = {Bt−k|k ∈ {0, 1, ..., N}} from the preceding
Multi-View Fusion module, where Bt−k represents the BEV feature at timestamp t − k. Each
feature Bt−k is then processed in parallel by two distinct heads: a velocity head and an object
occupancy head, both composed of 3x3 and 1x1 convolutions. The velocity head extracts motion
information Mt−k ∈ R2×X×Y , containing velocity estimates along the x and y axes for each pixel
in the feature map Bt−k. Simultaneously, the object occupancy head produces an occupancy score
map Ot−k ∈ R1×X×Y , where each element indicates whether the corresponding pixel belongs to an
object. To facilitate training of these modules, we generate ground truth targets for each timestamp
using the following equations. The IoU ratio r(x, y) for a pixel at location (x, y) is defined as:

r(x, y) =
|H(x, y) ∩ P(G)|

|H(x, y)|
(4)

where H(x, y) is the physical box in the BEV domain corresponding to one pixel located at (x, y), G
is the set of ground truth 3D object boxes, and P(G) is the projection of these boxes onto the BEV
domain. The IoU ratio calculates the overlap between the physical box and the projected ground truth
boxes, helping to determine positive samples. The ground truth values are then given by:

MGT
t−k(x, y) =

{
(vgtx , vgty ) if r(x, y) ≥ τiou
(0, 0) otherwise

(5)

OGT
t−k(x, y) =

{
1 if r(x, y) ≥ τiou
0 otherwise

, (6)

where MGT
t−k(x, y) and OGT

t−k(x, y) are the ground truth velocity and occupancy scores for pixel (x, y)
in the BEV feature Bt−k, respectively. The velocity vector of the corresponding ground truth object is
denoted by (vgtx , vgty ), and τiou is a predefined threshold set to 0.5. Pixels with an IoU ratio exceeding
τiou are classified as positive and assigned the GT velocity and GT occupancy state for supervision.

3.3 Motion-Guided Temporal Fusion

Figure 3 (b) presents the Motion-Guided Temporal Fusion (MGTF) module, which integrates BEV
features to construct a dynamic representation of object motion across multiple timestamps. Our
model utilizes a memory bank structure, where previously computed BEV features generated through
the MGTF process are stored in the buffer, effectively minimizing redundant computations. This
memory-efficient design significantly reduces the computational overhead during temporal fusion.

At each timestep t−k, the BEV feature map B̂t−k is retrieved from the memory bank, representing the
previous result processed through the MGTF. For each coordinate (x, y) in B̂t−k, the corresponding
velocity vector Mt−k(x, y) = [vx, vy] is used to compute the positional shift ∆x = vx · ts and
∆y = vy · ts, where ts denotes the duration of a single frame. These positional shifts are applied to
the feature values if the velocity magnitude exceeds a predefined threshold τv. The shifted feature
maps are then obtained as

B′
t−k(x, y) =

1

|S(x, y)|
∑

(i,j)∈S(x,y)

B̂t−k(i, j) (7)

where
S(x, y) = {(i, j) : x = i+ ⌊∆x⌉, y = j + ⌊∆y⌉, |Mt−k(i, j)| > τv}. (8)

Here |S(x, y)| denotes the cardinality of S(x, y) and ⌊·⌉ denotes the rounding operation. The shifted
feature map B′

t−k is then concatenated with the feature map Bt−k+1 at the next timestamp. To
filter out any irrelevant features resulting from the shifting process, the concatenated feature map is
element-wise multiplied with the occupancy score map Ot−k+1 as

B̂t−k+1 = concat(B′
t−k, Bt−k+1)⊙Ot−k+1. (9)

This process is iteratively applied N times, generating the BEV feature maps B̂t−N+1, . . . , B̂t

sequentially. The final B̂t is then passed through a 1x1 convolution to obtain the final BEV feature
map. This sequential nature of the process enhances overall comprehension of the MGTF module.

By incorporating motion information and occupancy score maps, the MGTF module captures the
dynamics of moving objects while filtering out irrelevant features, resulting in a more robust BEV
representation. Compared to traditional methods, MGTF captures trajectories of moving objects to
enhance 3D object detection performance.
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Table 1: Performance comparisons with 3D object detector on the nuScenes val set. ’L’, ‘C’, and ‘R’
represent LiDAR, camera, and radar, respectively. †: trained with CBGS. ‡: use TTA.

Method Input Backbone Image Size NDS mAP mATE mASE mAOE mAVE mAAE FPS
CenterPoint-P† [23] L Pillars - 59.8 49.4 0.320 0.262 0.377 0.334 0.198 -
CenterPoint-V† [23] L Voxel - 65.3 56.9 0.285 0.253 0.323 0.272 0.186 -
CenterFusion† [3] C+R DLA34 448×800 45.3 33.2 0.649 0.263 0.535 0.540 0.142 -
BEVDepth† [17] C R50 256×704 47.5 35.1 0.639 0.267 0.479 0.428 0.198 11.6
RCBEV4d† [31] C+R R50 256×704 49.7 38.1 0.526 0.272 0.445 0.465 0.185 -

CRAFT† [1] C+R DLA34 448×800 51.7 41.1 0.494 0.276 0.454 0.486 0.176 4.1
RCM-Fusion† [4] C+R R50 450×800 52.8 44.4 0.527 0.272 0.450 0.515 0.180 -

SOLOFusion† [20] C R50 256×704 53.4 42.7 0.567 0.274 0.411 0.252 0.188 11.4
CRN [6] C+R R50 256×704 56.0 49.0 0.487 0.277 0.542 0.344 0.197 20.4

RCBEVDet† [2] C+R R50 256×704 56.8 45.3 0.486 0.285 0.404 0.220 0.192 21.3
CRT-Fusion-light† C+R R50 256×704 57.8 48.8 0.480 0.265 0.480 0.248 0.189 20.5

CRT-Fusion C+R R50 256×704 57.2 50.0 0.499 0.277 0.531 0.261 0.192 14.5
CRT-Fusion† C+R R50 256×704 59.7 50.8 0.461 0.264 0.419 0.234 0.186 14.5

MVFusion† [32] C+R R101 900×1600 45.5 38.0 0.675 0.258 0.372 0.833 0.196 -
BEVFormer [16] C R101 900×1600 51.7 41.6 0.673 0.274 0.372 0.394 0.198 1.7
BEVDepth† [17] C R101 512×1408 53.5 41.2 0.565 0.266 0.358 0.331 0.190 5.0

SOLOFusion [20] C R101 512×1408 54.4 47.2 0.518 0.275 0.604 0.310 0.210 -
SOLOFusion† [20] C R101 512×1408 58.2 48.3 0.503 0.264 0.381 0.246 0.207 -

CRN [6] C+R R101 512×1408 59.2 52.5 0.460 0.273 0.443 0.352 0.180 7.2
CRN‡ [6] C+R R101 512×1408 60.7 54.5 0.445 0.268 0.425 0.332 0.180 -

CRT-Fusion C+R R101 512×1408 62.1 55.4 0.425 0.264 0.433 0.237 0.193 4.9

4 Experiment

4.1 Experimental setup

Dataset We evaluated our proposed method using the nuScenes dataset [27], a popular public dataset
for autonomous driving. This dataset consists of 1,000 scenes, divided into 700 scenes for training,
150 scenes for validation, and 150 scenes for testing. Each scene contains approximately 20 seconds
of data. The nuScenes dataset provides comprehensive 360-degree coverage with data from six
cameras, and five radars. Keyframes are annotated at a frequency of 2Hz, covering 10 object classes.
We use the official evaluation metrics provided by the nuScenes benchmark, which are mean Average
Precision (mAP) and nuScenes Detection Score (NDS).

Implementation details We adopted BEVDepth [17] as our baseline model. For a fair comparison
with existing methods, we employed ResNet [28], and ConvNeXt [29] as backbone encoders in the
camera branch. In the radar branch, we accumulated the past 6 radar sweeps to obtain the input
point clouds and used PointPillars [30] with randomly initialized weights as the backbone network.
Our proposed CRT-Fusion model performed temporal fusion using the BEV features from the past
6 frames. We also introduce CRT-Fusion-Light, a lightweight version of CRT-Fusion, where the
2D-CNN backbone is removed from the radar pipeline. CRT-Fusion-Light performs temporal fusion
using the BEV features from the past 3 frames. Detailed values of hyperparameters including learning
rate, optimizer, and data augmentation methods are provided in Appendix.

4.2 Comparison to the state of the art

Table 1 compares our proposed CRT-Fusion method with state-of-the-art 3D object detection methods
on the nuScenes validation set. CRT-Fusion consistently outperforms existing radar-camera fusion
models and camera-only models across various camera backbone configurations. With the ResNet-50
backbone, CRT-Fusion achieves an improvement of 12.2% in NDS and 15.7% in mAP compared
to the baseline model BEVDepth [17]. Additionally, CRT-Fusion achieves 1.2% higher NDS and
1.0% higher mAP than the state-of-the-art model CRN under the same configurations without class-
balanced grouping and sampling (CBGS) [37]. Furthermore, when CBGS is applied, our approach
outperforms the current best model, RCBEVDet [2] by 2.9% in NDS and 5.5% in mAP. When using
the ResNet-101 backbone, CRT-Fusion surpasses CRN by 1.4% in NDS and 0.9% in mAP without
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Table 2: Performance comparisons with 3D object detector on the nuScenes test set. ’L’, ‘C’, and ‘R’
represent LiDAR, camera, and radar, respectively. ‡: use Test Time Augmentation.

Method Input Backbone NDS mAP mATE mASE mAOE mAVE mAAE
PointPillars [30] L Pillars 55.0 40.1 0.392 0.269 0.476 0.270 0.102
CenterPoint [23] L Voxel 67.3 60.3 0.262 0.239 0.361 0.288 0.136

KPConvPillars [33] R Pillars 13.9 4.9 0.823 0.428 0.607 2.081 1.000
RadarDistill [34] R Pillars 43.7 20.5 0.461 0.263 0.525 0.336 0.072
CenterFusion [3] C+R DLA34 44.9 32.6 0.631 0.261 0.516 0.614 0.115

RCBEV [31] C+R Swin-T 48.6 40.6 0.484 0.257 0.587 0.702 0.140
MVFusion [32] C+R V2-99 51.7 45.3 0.569 0.246 0.379 0.781 0.128

CRAFT [1] C+R DLA34 52.3 41.1 0.467 0.268 0.456 0.519 0.114
BEVFormer [16] C V2-99 56.9 48.1 0.582 0.256 0.375 0.378 0.126
BEVDepth [17] C ConvNeXt-B 60.9 52.0 0.445 0.243 0.352 0.347 0.127

SOLOFusion [20] C ConvNeXt-B 61.9 54.0 0.453 0.257 0.376 0.276 0.148
CRN‡ [6] C+R ConvNeXt-B 62.4 57.5 0.416 0.264 0.456 0.365 0.130

SparseBEV [35] C V2-99 63.6 55.6 0.485 0.244 0.332 0.246 0.117
StreamPETR [36] C V2-99 63.6 55.0 0.493 0.241 0.343 0.243 0.123

RCBEVDet [2] C+R V2-99 63.9 55.0 0.390 0.234 0.362 0.259 0.113
CRT-Fusion C+R ConvNeXt-B 64.9 58.3 0.365 0.261 0.405 0.262 0.132
CRT-Fusion‡ C+R ConvNeXt-B 65.6 58.9 0.358 0.258 0.392 0.248 0.130

test time augmentation (TTA). Our lightweight version, CRT-Fusion-light, maintains a comparable
FPS while delivering better performance compared to existing radar-camera 3D object detectors,
demonstrating the efficiency and effectiveness of our approach.

Table 2 shows the performance of CRT-Fusion on the nuScenes test set. Our method outperforms all
existing radar-camera fusion models, achieving state-of-the-art performance in both settings with and
without TTA. Note that the V2-99 backbone is pre-trained on the external depth dataset DDAD [38].

4.3 Ablation studies

We conducted comprehensive ablation studies on the nuScenes validation set to evaluate the effec-
tiveness of the key components in CRT-Fusion. Throughout these experiments, unless otherwise
specified, we used a ResNet-50 backbone and an image size of 256 × 704 for the camera branch, and
a BEV size of 128 × 128. All models are trained for 24 epochs without applying CBGS.

Component analysis. To assess the effect of each component, we gradually added each to our
baseline model and analyze the performance improvements, as shown in Table 3. The first row shows
the performance of the BEVDepth model as reported in the paper, achieving an NDS of 47.5% and an
mAP of 35.1%. Our baseline model, represented in the second row, reproduces BEVDepth without
CBGS and incorporates long-term temporal fusion [20], achieving an NDS of 47.4% and an mAP of
37.8%. By fusing radar and camera features at the BEV stage, including gating fusion, we observe
a significant improvement, reaching an NDS of 55.4% and an mAP of 47.8%. RCA, which fuses
radar features in the frustum view, contributes to an additional 1.2% and 1.1% improvement in NDS
and mAP, respectively. Finally, by using MFE and MGTF, we achieve an additional gain of 1.1%
in both NDS and mAP, resulting in the highest performance with an NDS of 57.2% and an mAP of
50.0%. These results demonstrate the effectiveness of each key component in CRT-Fusion, with our
proposed modules providing significant improvements over the baseline model.

Robustness to diverse weather and lighting conditions. In Table 4, we analyze the performance
of our model under varying weather and lighting conditions. For a fair comparison, we use the
same settings as CRN, with a ResNet-101 backbone and an input size of 512 × 1408. The baseline
model BEVDepth shows low mAP scores due to the impact of weather and light on camera sensors.
However, by incorporating radar sensors, which are less affected by these factors, CRT-Fusion
achieves over 15% higher mAP in all scenarios. Compared to CRN, the state-of-the-art camera-radar
3D object detection model, CRT-Fusion achieves higher mAP in all conditions except Sunny, offering
particularly notable gains in night environments.

Impact of accurate velocity estimation on MFE and MGTF. Table 5 demonstrates the importance
of accurate velocity prediction for each BEV grid. When the MFE and MGTF modules are applied to
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Table 3: Ablation study of the main components of
CRT-Fusion.

Model Configuration Input NDS mAP mATE mAOE
BEVDepth [17] C 47.5 35.1 0.639 0.479

Baseline C 47.4 37.8 0.676 0.654
+ BEV Fusion C+R 55.4 47.8 0.528 0.584

+ RCA C+R 56.1 48.9 0.516 0.574
+ MFE & MGTF C+R 57.2 50.0 0.497 0.532

Table 4: Performance comparison under dif-
ferent weather and lighting conditions.

Method Input Sunny Rainy Day Night
BEVDepth [17] C 39.0 39.0 39.3 16.8

RCBEV [31] C+R 36.1 38.5 37.1 15.5
RCM-Fusion [4] C+R 49.4 51.4 50.1 25.6

CRN [6] C+R 54.8 57.0 55.1 30.4
CRT-Fusion C+R 54.7 57.9 55.8 33.0

Table 5: Ablation study of the MFE and MGTF
module applied to both the camera-based model
([17]) and our proposed model.

Method MFE & MGTF NDS mAP mAVE

BEVDepth X 47.4 37.8 0.312
O 46.9 37.3 0.349

CRT-Fusion X 56.1 48.9 0.278
O 57.2 50.0 0.265

Table 6: Comparison of radar-based view trans-
formation methods. RGVT: Radar-Guided
View Transformer. RVT: Radar-assisted View
Transformation.

Method NDS mAP mATE mAOE mAVE

RGVT [39] 48.6 41.3 0.571 0.603 0.522
RVT [6] 48.2 41.4 0.576 0.577 0.560

RCA 50.5 41.7 0.573 0.541 0.432

the camera-based baseline BEVDepth, performance degrades, as shown in the second row of the table.
The NDS and mAP scores both drop by 0.5%, highlighting the challenge of accurately estimating
velocities solely from camera information. In contrast, CRT-Fusion leverages radar information to
achieve more precise velocity predictions. By incorporating the MFE and MGTF modules, CRT-
Fusion achieves an improvement of 1.1% in both NDS and mAP, demonstrating the effectiveness of
these modules in enhancing the performance. These results indicate that the successful operation of
the MFE and MGTF modules is highly dependent on accurate velocity estimation. In the absence
of radar data, velocity estimation accuracy is significantly compromised, suggesting that MFE and
MGTF modules are optimally suited for radar-camera fusion frameworks.

Comparison of radar-based view transformation methods. Table 6 compares various view
transformation methods leveraging radar information. For a fair comparison, we used CRN as the
baseline model and conducted experiments in a single-frame setting. The LSS approach predicts 3D
depth from camera features and transforms them into BEV features, but can generate inaccuracies
due to imprecise depth information. RGVT [39] projects radar points onto the image plane and
encodes radar depth features using a lightweight CNN, which are then combined with image features
to predict 3D depth. RVT [6] refines the depth distribution predicted from camera features using
radar occupancy information. Our proposed RCA outperforms existing methods in almost all
metrics, demonstrating its effectiveness in utilizing radar information to transform camera features
into accurate BEV features. The superior performance of RCA demonstrates that leveraging radar
information for depth prediction significantly enhances BEV perception.

Qualitative results. Figure 4 presents a qualitative comparison between our proposed CRT-Fusion
model and the previous state-of-the-art CRN model across various real-world scenarios. CRT-Fusion
demonstrates enhanced detection capabilities, accurately identifying objects and showing superior
precision in predicting orientations and center positions. Furthermore, CRT-Fusion maintains high
accuracy across diverse conditions, effectively capturing multiple targets. These results underscore
the robustness and enhanced spatial perception of CRT-Fusion. Additional qualitative results are
available in the Supplemental Materials.

5 Discussion and Conclusion

Limitations and future work. While CRT-Fusion achieves significant performance gains over the
baseline, the computational cost increases with the number of previous frames used for temporal
fusion, limiting the number of frames that can be incorporated due to hardware constraints. This
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Figure 4: Qualitative results comparing CRT-Fusion and CRN: Green boxes indicate CRT-Fusion
prediction boxes, blue boxes denote CRN prediction boxes, and red boxes represent ground truth
(GT) boxes.

issue is likely due to the parallel fusion structure used for combining BEV features. To address this, a
potential solution is to adopt a recurrent fusion structure, which fuses BEV features temporally in
a sequential manner. This approach could maintain computational feasibility while incorporating
long-term historical BEV features. Future work will explore this recurrent fusion architecture for
CRT-Fusion to further reduce its computational complexity.

Conclusion. In this paper, we introduced CRT-Fusion, a novel framework that integrates temporal
information into radar-camera fusion for 3D object detection. By explicitly taking the motion of
dynamic objects into account through our proposed Motion Feature Estimator and Motion Guided
Temporal Fusion modules, CRT-Fusion significantly improves detection accuracy and robustness in
complex real-world scenarios. Our Multi-View Fusion module enhances depth prediction by leverag-
ing radar features to improve image features before fusing them into a unified BEV representation.
Extensive experiments on the challenging nuScenes dataset demonstrate that CRT-Fusion achieves
state-of-the-art performance in the radar-camera-based 3D object detection category, surpassing all
existing methods. Additionally, our approach demonstrates remarkable robustness under diverse
weather and lighting conditions, highlighting its potential for real-world deployment. We believe that
our work will inspire further research on the fusion of temporal and multi-modal information for
robust perception in adverse environments.

Acknowledgement

This work was partly supported by the Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2022-0-00957,
Distributed on-chip memory-processor model PIM (Processor in Memory) semiconductor technology
development for edge applications); the IITP grant funded by the Korea government (MSIT) (No.
RS-2021-II211343, Artificial Intelligence Graduate School Program, Seoul National University); and
the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)
(No. 2020R1A2C2012146).

10



References
[1] Youngseok Kim, Sanmin Kim, Jun Won Choi, and Dongsuk Kum. Craft: Camera-radar

3d object detection with spatio-contextual fusion transformer. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pages 1160–1168, 2023.

[2] Zhiwei Lin, Zhe Liu, Zhongyu Xia, Xinhao Wang, Yongtao Wang, Shengxiang Qi, Yang Dong,
Nan Dong, Le Zhang, and Ce Zhu. Rcbevdet: Radar-camera fusion in bird’s eye view for 3d
object detection. arXiv preprint arXiv:2403.16440, 2024.

[3] Ramin Nabati and Hairong Qi. Centerfusion: Center-based radar and camera fusion for 3d object
detection. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 1527–1536, 2021.

[4] Jisong Kim, Minjae Seong, Geonho Bang, Dongsuk Kum, and Jun Won Choi. Rcm-fusion:
Radar-camera multi-level fusion for 3d object detection. arXiv preprint arXiv:2307.10249,
2023.

[5] Yunfei Long, Abhinav Kumar, Daniel Morris, Xiaoming Liu, Marcos Castro, and Punarjay
Chakravarty. Radiant: Radar-image association network for 3d object detection. 2023.

[6] Youngseok Kim, Juyeb Shin, Sanmin Kim, In-Jae Lee, Jun Won Choi, and Dongsuk Kum. Crn:
Camera radar net for accurate, robust, efficient 3d perception. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 17615–17626, 2023.

[7] Lingjun Zhao, Jingyu Song, and Katherine A Skinner. Crkd: Enhanced camera-radar object
detection with cross-modality knowledge distillation. arXiv preprint arXiv:2403.19104, 2024.

[8] Junho Koh, Junhyung Lee, Youngwoo Lee, Jaekyum Kim, and Jun Won Choi. Mgtanet:
Encoding sequential lidar points using long short-term motion-guided temporal attention for 3d
object detection. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37,
pages 1179–1187, 2023.

[9] Zhenxun Yuan, Xiao Song, Lei Bai, Zhe Wang, and Wanli Ouyang. Temporal-channel trans-
former for 3d lidar-based video object detection for autonomous driving. IEEE Transactions on
Circuits and Systems for Video Technology, 32(4):2068–2078, 2021.

[10] Zhenyu Zhai, Qiantong Wang, Zongxu Pan, Zhentong Gao, and Wenlong Hu. Muti-frame
point cloud feature fusion based on attention mechanisms for 3d object detection. Sensors,
22(19):7473, 2022.

[11] Rui Huang, Wanyue Zhang, Abhijit Kundu, Caroline Pantofaru, David A Ross, Thomas
Funkhouser, and Alireza Fathi. An lstm approach to temporal 3d object detection in lidar
point clouds. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XVIII 16, pages 266–282. Springer, 2020.

[12] Zetong Yang, Yin Zhou, Zhifeng Chen, and Jiquan Ngiam. 3d-man: 3d multi-frame attention
network for object detection. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 1863–1872, 2021.

[13] Charles R Qi, Yin Zhou, Mahyar Najibi, Pei Sun, Khoa Vo, Boyang Deng, and Dragomir
Anguelov. Offboard 3d object detection from point cloud sequences. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6134–6144, 2021.

[14] Xuesong Chen, Shaoshuai Shi, Benjin Zhu, Ka Chun Cheung, Hang Xu, and Hongsheng Li.
Mppnet: Multi-frame feature intertwining with proxy points for 3d temporal object detection.
In European Conference on Computer Vision, pages 680–697. Springer, 2022.

[15] Jinghua Hou, Zhe Liu, Zhikang Zou, Xiaoqing Ye, Xiang Bai, et al. Query-based temporal
fusion with explicit motion for 3d object detection. Advances in Neural Information Processing
Systems, 36, 2024.

11



[16] Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chonghao Sima, Tong Lu, Yu Qiao, and
Jifeng Dai. Bevformer: Learning bird’s-eye-view representation from multi-camera images via
spatiotemporal transformers. In European conference on computer vision, pages 1–18. Springer,
2022.

[17] Yinhao Li, Zheng Ge, Guanyi Yu, Jinrong Yang, Zengran Wang, Yukang Shi, Jianjian Sun, and
Zeming Li. Bevdepth: Acquisition of reliable depth for multi-view 3d object detection. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages 1477–1485,
2023.

[18] Junjie Huang and Guan Huang. Bevdet4d: Exploit temporal cues in multi-camera 3d object
detection. arXiv preprint arXiv:2203.17054, 2022.

[19] Zhuofan Zong, Dongzhi Jiang, Guanglu Song, Zeyue Xue, Jingyong Su, Hongsheng Li, and
Yu Liu. Temporal enhanced training of multi-view 3d object detector via historicalobject
prediction. arXiv preprint arXiv:2304.00967, 2023.

[20] Jinhyung Park, Chenfeng Xu, Shijia Yang, Kurt Keutzer, Kris Kitani, Masayoshi Tomizuka,
and Wei Zhan. Time will tell: New outlooks and a baseline for temporal multi-view 3d object
detection. arXiv preprint arXiv:2210.02443, 2022.

[21] Zengran Wang, Chen Min, Zheng Ge, Yinhao Li, Zeming Li, Hongyu Yang, and Di Huang. Sts:
Surround-view temporal stereo for multi-view 3d detection. arXiv preprint arXiv:2208.10145,
2022.

[22] Yinhao Li, Han Bao, Zheng Ge, Jinrong Yang, Jianjian Sun, and Zeming Li. Bevstereo:
Enhancing depth estimation in multi-view 3d object detection with dynamic temporal stereo. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages 1486–1494,
2023.

[23] Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Center-based 3d object detection and track-
ing. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 11784–11793, 2021.

[24] Jinqing Zhang, Yanan Zhang, Qingjie Liu, and Yunhong Wang. Sa-bev: Generating semantic-
aware bird’s-eye-view feature for multi-view 3d object detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 3348–3357, 2023.

[25] Jaekyum Kim, Junho Koh, Yecheol Kim, Jaehyung Choi, Youngbae Hwang, and Jun Won
Choi. Robust deep multi-modal learning based on gated information fusion network. In Asian
Conference on Computer Vision, pages 90–106. Springer, 2018.

[26] Jin Hyeok Yoo, Yecheol Kim, Jisong Kim, and Jun Won Choi. 3d-cvf: Generating joint
camera and lidar features using cross-view spatial feature fusion for 3d object detection. In
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XXVII 16, pages 720–736. Springer, 2020.

[27] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu,
Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal
dataset for autonomous driving. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 11621–11631, 2020.

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[29] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining
Xie. A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 11976–11986, 2022.

[30] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom.
Pointpillars: Fast encoders for object detection from point clouds. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 12697–12705, 2019.

12



[31] Taohua Zhou, Junjie Chen, Yining Shi, Kun Jiang, Mengmeng Yang, and Diange Yang. Bridging
the view disparity between radar and camera features for multi-modal fusion 3d object detection.
IEEE Transactions on Intelligent Vehicles, 8(2):1523–1535, 2023.

[32] Zizhang Wu, Guilian Chen, Yuanzhu Gan, Lei Wang, and Jian Pu. Mvfusion: Multi-view 3d
object detection with semantic-aligned radar and camera fusion. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pages 2766–2773. IEEE, 2023.

[33] Michael Ulrich, Sascha Braun, Daniel Köhler, Daniel Niederlöhner, Florian Faion, Claudius
Gläser, and Holger Blume. Improved orientation estimation and detection with hybrid object
detection networks for automotive radar. In 2022 IEEE 25th International Conference on
Intelligent Transportation Systems (ITSC), pages 111–117. IEEE, 2022.

[34] Geonho Bang, Kwangjin Choi, Jisong Kim, Dongsuk Kum, and Jun Won Choi. Radardistill:
Boosting radar-based object detection performance via knowledge distillation from lidar features.
arXiv preprint arXiv:2403.05061, 2024.

[35] Haisong Liu, Yao Teng, Tao Lu, Haiguang Wang, and Limin Wang. Sparsebev: High-
performance sparse 3d object detection from multi-camera videos. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 18580–18590, 2023.

[36] Shihao Wang, Yingfei Liu, Tiancai Wang, Ying Li, and Xiangyu Zhang. Exploring object-
centric temporal modeling for efficient multi-view 3d object detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 3621–3631, 2023.

[37] Benjin Zhu, Zhengkai Jiang, Xiangxin Zhou, Zeming Li, and Gang Yu. Class-balanced grouping
and sampling for point cloud 3d object detection. arXiv preprint arXiv:1908.09492, 2019.

[38] Vitor Guizilini, Rares Ambrus, Sudeep Pillai, Allan Raventos, and Adrien Gaidon. 3d packing
for self-supervised monocular depth estimation. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 2485–2494, 2020.

[39] Zhijian Liu, Haotian Tang, Alexander Amini, Xinyu Yang, Huizi Mao, Daniela L Rus, and Song
Han. Bevfusion: Multi-task multi-sensor fusion with unified bird’s-eye view representation.
In 2023 IEEE international conference on robotics and automation (ICRA), pages 2774–2781.
IEEE, 2023.

[40] MMDetection3D Contributors. MMDetection3D: OpenMMLab next-generation platform for
general 3D object detection. https://github.com/open-mmlab/mmdetection3d, 2020.

[41] Junjie Huang, Guan Huang, Zheng Zhu, Yun Ye, and Dalong Du. Bevdet: High-performance
multi-camera 3d object detection in bird-eye-view. arXiv preprint arXiv:2112.11790, 2021.

[42] Zhaoqi Leng, Guowang Li, Chenxi Liu, Ekin Dogus Cubuk, Pei Sun, Tong He, Dragomir
Anguelov, and Mingxing Tan. Lidar augment: Searching for scalable 3d lidar data augmentations.
In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages 7039–7045.
IEEE, 2023.

[43] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convolutional detection. Sensors,
18(10):3337, 2018.

13

https://github.com/open-mmlab/mmdetection3d


Supplementary Materials for CRT-Fusion
In this Supplementary Material, we provide additional details that were not covered in the main
paper. We organize the content as follows: comprehensive formulation of loss functions (Section A),
architectural specifications and training protocols (Section B), extensive ablation studies and com-
putational efficiency analysis (Section C), in-depth qualitative evaluation on the nuScenes dataset
(Section D), and discussion of societal implications (Section E).

A Loss Function

The total loss function used in CRF-Fusion is composed of five components: a standard 3D object
detection loss and four additional losses derived from different head networks within our model. The
total loss Ltotal is given by

Ltotal = Ldet + λdepthLdepth + λsegLseg + λvelLvel + λoccLocc, (10)

where Ldet is the 3D object detection loss, Ldepth is the loss from the Depth Prediction Head in MVF,
Lseg is the loss from the Perspective-View Semantic Segmentation Head in MVF, Lvel is the loss
from the Velocity Prediction Head in MFE, and Locc is the loss from the Object Occupancy Prediction
Head in MFE. The parameters λdepth, λseg , λvel, and λocc are the weights for the corresponding loss
terms. The Depth Prediction Loss uses binary cross-entropy loss for depth estimation, with a weight
of λdepth = 3.0, following the approach used in BEVDepth. For the Perspective View Segmentation
Loss, we also employ the binary cross-entropy loss, with a weight of λseg = 25, inspired by SA-BEV.
The Velocity Prediction Loss, which handles velocity (vx, vy) and orientation prediction, utilizes
Mean Squared Error (MSE) with a weight of λvel = 1. Finally, the BEV Object Occupancy Loss
uses Binary Focal Loss for foreground and background segmentation, with a weight of λocc = 30.

B Implementation Details

The nuScenes datasets [27] are publicly available to use under CC BY-NC-SA 4.0 license and
can be downloaded from https://www.nuscenes.org/. We implemented our model using the
MMDetection3D [40] codebase and trained it for a total of 24 epochs. The training process consists
of two phases. In the initial phase, the model is trained for 6 epochs without the MGTF module. Then,
the entire model is trained for the remaining 18 epochs. For the ResNet50-based model, we used 4
NVIDIA RTX 3090 GPUs for training, while for ResNet101 and ConvNeXt-B, we used 3 NVIDIA
A100 GPUs. Table 7 summarizes the training settings for different camera backbone networks.

In the perspective view, we apply data augmentation techniques consistent with previous studies
[41, 17, 6], including horizontal random flipping, random scaling ([−0.06, 0.11]), and random
rotation (±0.54◦). For the bird’s-eye view, we employ random flipping along the x and y axes,
random scaling ([0.95, 1.05]), and random rotation (±0.3925 rad). Additionally, we use a technique
that randomly drops radar sweeps and points [42]. To ensure a fair comparison with other models,
we do not utilize ground-truth sampling augmentation (GT-AUG) [43], which is commonly used in
LiDAR-based models.

C Additional Experimental Results

C.1 Analysis of the Motion Feature Estimation Module.

The Motion Feature Estimation (MFE) module generates a motion-aware BEV feature map by
estimating velocity for each grid and using it to refine the BEV representation. While MFE can be
integrated into various architectures, its effectiveness is highly reliant on accurate velocity predictions.
To demonstrate this, we applied MFE to both the camera-based model BEVDepth and our proposed
CRT-Fusion, which incorporates radar data.

Figure 5 shows the results of applying the MFE module to each model. The red boxes represent
Ground Truth (GT) boxes, the red arrows indicate GT velocity, and the white arrows show the
predicted velocity from the MFE module. The size and direction of the arrows reflect the velocity’s
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Table 7: Training settings for different backbone networks.

Configs ResNet-50 ResNet-101 ConvNext-B
Image size 256× 704 512× 1408 512× 1408
BEV size 128× 128 256× 256 256× 256
Optimizer AdamW AdamW AdamW
Base Learning Rate 2e-4 1e-4 1e-4
Weight Decay 1e-7 1e-7 1e-2
Optimizer Momentum 0.9, 0.999 0.9, 0.999 0.9, 0.999
Batch Size 16 12 12
Training Epochs 24 24 24
LR Schedule Step Decay Step Decay Step Decay
Gradient Clip 5 5 5

(a) BEVDepth (b) CRT-Fusion

Figure 5: Comparison of velocity prediction using the MFE module in BEVDepth and CRT-
Fusion. Red boxes are the Ground Truth (GT) boxes, red arrows show GT velocity, and white arrows
represent predicted velocity. Yellow highlights indicate areas where CRT-Fusion predicts velocity
more accurately, while orange highlights show static objects correctly identified by CRT-Fusion but
misclassified by BEVDepth.

magnitude and direction. The yellow and orange highlights illustrate the differences in velocity
prediction accuracy and the ability to distinguish static objects. Specifically, in the yellow-highlighted
areas, CRT-Fusion predicts velocities closely aligned with GT, whereas BEVDepth shows inaccuracies.
In the orange-highlighted areas, CRT-Fusion accurately identifies static objects, while BEVDepth
misclassifies them as dynamic. In conclusion, the effectiveness of the MFE module is closely tied to
the accuracy of velocity estimation. Integrating radar data in CRT-Fusion significantly enhances the
module’s ability to generate reliable motion-aware BEV features, underscoring the value of sensor
fusion for robust 3D object detection.
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Table 8: Ablation study of temporal frames.

# of prev frames NDS mAP mATE mAOE mAVE

0 50.4 44.4 0.515 0.598 0.567
1 55.1 47.1 0.508 0.570 0.295
2 56.0 48.1 0.506 0.542 0.280
3 56.6 48.8 0.498 0.540 0.269
4 56.7 49.3 0.505 0.556 0.268
5 56.6 49.2 0.506 0.557 0.262
6 57.2 50.0 0.494 0.557 0.265
7 57.3 49.8 0.497 0.532 0.265
8 57.3 49.7 0.499 0.531 0.261

Table 9: Ablation study of the hyperparameters of CRT-Fusion.

τP NDS mAP

0.15 56.8 49.4
0.20 56.6 49.0
0.25 57.2 50.0
0.30 56.7 49.4

(a) τP : Perspective view
segmentation threshold

τB NDS mAP

0.00 56.7 49.2
0.05 57.2 50.0
0.10 56.0 48.7
0.15 55.8 48.4

(b) τB : Bird eye’s view
segmentation threshold

τv NDS mAP

0.0 57.0 49.2
0.5 56.6 48.9
1.0 57.2 50.0
1.5 56.8 49.3

(c) τv: Motion estimation
threshold

# of grid NDS mAP

32 56.1 48.8
64 56.8 49.3

128 57.2 50.0
256 56.7 49.4

(d) Number of radar grid
in RCA

C.2 Hyperparameter Analysis.

The ablation studies on the hyperparameters used in CRT-Fusion are shown in Tables 8 and 9. Table 8
examines the optimal number of previous frames to consider for achieving the best performance. The
results show that the performance of CRT-Fusion improves as the number of frames increases, with 6
frames yielding the best results when considering computational cost and performance. Tables 9 (a)
and (b) investigate the optimal segmentation thresholds for the perspective view and bird’s eye view
(BEV), respectively. In the perspective view, a segmentation threshold τP of 0.25 achieves the best
performance, while in the BEV, a threshold τB of 0.05 yields the highest performance. Increasing the
threshold may lead to the removal of foreground regions, resulting in a decline in performance. Table
9 (c) explores the velocity threshold τv for considering a BEV grid as a dynamic object in the MFE
module. The results demonstrate that considering BEV grids with velocities above 1 m/s achieves the
highest performance. Finally, Table 9 (d) examines the number of radar BEV grids to match with
each image feature pixel in the RCA module. The experiments reveal that matching 128 grids yields
the best performance.

C.3 Evaluating Model Efficiency.

Table 10 presents the analysis of performance, latency, and GPU memory usage of CRT-Fusion and
CRN as the number of past frames increases. We reproduced the CRN model following the official
implementation. For a fair comparison, both models employ identical camera and radar backbones
with consistent input image dimensions. All experimental evaluations were conducted on a single
NVIDIA RTX 3090 GPU and an Intel Xeon Silver 4210R CPU.

Our experimental results demonstrate that CRT-Fusion consistently achieves superior performance in
both NDS and mAP metrics across all temporal configurations. Notably, as we extend the temporal
context by incorporating additional past frames, CRT-Fusion exhibits stable resource usage with
minimal degradation. The memory efficiency of our approach is evidenced by its peak consumption
of 3.754 GB at 7 frames, while CRN reaches 4.342 GB under identical conditions. In terms of
computational latency, CRT-Fusion demonstrates robust scalability, with inference time increasing

16



Table 10: Quantitative results comparing of CRT-Fusion and CRN. Comparison of accuracy (NDS,
mAP) and efficiency (GPU memory, Latency) of CRT-Fusion and CRN with increasing number of
history frames. Mem. represents the GPU memory consumption at inference phase.

# of prev frames
CRT-Fusion CRN

NDS mAP Mem (GB) Latency (ms) NDS mAP Mem (GB) Latency (ms)
0 50.35 44.37 3.686 57.1 44.24 41.36 4.232 55.6
1 55.08 47.07 3.692 62.0 53.14 43.80 4.244 85.0
2 56.03 48.07 3.698 62.8 54.79 45.88 4.270 120.2
3 56.60 48.82 3.706 64.2 55.57 46.87 4.286 138.6
4 56.66 49.29 3.714 64.9 56.01 47.10 4.302 187.1
5 56.55 49.19 3.724 66.2 55.83 47.18 4.310 212.0
6 57.15 50.01 3.744 67.1 55.55 47.40 4.326 243.5
7 57.30 49.75 3.754 69.6 56.30 47.61 4.342 273.0

moderately from 57.1 ms to 69.6 ms when expanding from 0 to 7 frames. CRN also benefits from
increased temporal information, although it experiences a more substantial increase in computational
overhead, with latency reaching 273 ms at 7 frames. These empirical results highlight the efficiency
of our proposed architecture in maintaining real-time inference capabilities while utilizing temporal
information effectively.

C.4 Latency Analysis of CRT-Fusion and CRT-Fusion-light.

Table 11 presents the component-wise latency analysis of our CRT-Fusion variants. CRT-Fusion-light,
which incorporates a lightweight radar backbone and processes fewer temporal frames, achieves an
overall latency of 48.8 ms compared to 67.1 ms of the original architecture. The efficiency gains
primarily originate from the radar processing pipeline, where the radar backbone latency decreases
from 13.9 ms to 3.9 ms, and the MGTF module reduces from 15.2 ms to 8.6 ms.

Table 11: Ablation study of Inference Time.

Methods C.B. R.B. MVF MFE MGTF Head Total
CRT-Fusion 13.4 ms 13.9 ms 15.0 ms 0.7 ms 15.2 ms 8.9 ms 67.1 ms

CRT-Fusion-light 13.4 ms 3.9 ms 13.3 ms 0.7 ms 8.6 ms 8.9 ms 48.8 ms

D Qualitative results of CRT-Fusion.

Figure 6 showcases qualitative results of our proposed CRT-Fusion method on the nuScenes validation
set. We compare the object detection performance of CRT-Fusion with the baseline model, BEVDepth,
by visualizing the predicted bounding boxes in the BEV representation. Both models employ a ResNet-
101 as the camera backbone for feature extraction. The examples demonstrate the effectiveness of
CRT-Fusion in various driving scenarios, such as urban streets, intersections, and highways. Our
model consistently produces more accurate and well-aligned bounding boxes compared to the baseline
model.

E Discussions of potential societal impacts.

CRT-Fusion has the potential to enhance the accuracy and robustness of 3D object detection in
autonomous vehicles and robotics systems by fusing radar, camera, and temporal information.
Despite its benefits, the reliance on sophisticated technology and data fusion could lead to increased
costs and complexity, potentially limiting accessibility and widespread adoption.
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(b) CRT-Fusion(a) BEVDepth

Figure 6: Qualitative results under different scenarios on the nuScenes validation set. Red boxes
represent ground truth annotations, while blue and green boxes indicate the predicted bounding boxes
from BEVDepth and CRT-Fusion, respectively. The white points represent the radar point cloud.
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paper’s contributions and scope?
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Justification: Our contribution aims to enhance object detection performance through
temporal fusion considering dynamic objects, as shown in Figure 1 and Tables 3 and 5.
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• The answer NA means that the abstract and introduction do not include the claims
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implications would be.
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will be specifically instructed to not penalize honesty concerning limitations.
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• Inversely, any informal proof provided in the core of the paper should be complemented
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
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Fusion section.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Implementation details of our experiments are provided in both the main text
and Supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our performance evaluation on the nuScenes dataset adheres to standard
practice in the field, which does not include probabilistic values or error bars.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: This is mentioned in Supplementary Section A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research fully adheres to the NeurIPS Code of Ethics, ensuring ethical
methodologies, privacy protections, and consideration of societal impacts throughout the
study.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This is mentioned in Supplementary Section E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our model poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: This is mentioned in Supplementary Section A.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• If assets are released, the license, copyright information, and terms of use in the
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has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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Answer: [NA]
Justification: We do not release new assets.
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• The answer NA means that the paper does not release new assets.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
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well as details about compensation (if any)?
Answer: [NA]
Justification: Our research does not involve crowdsourcing or research with human subjects.
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tion of the paper involves human subjects, then as much detail as possible should be
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or other labor should be paid at least the minimum wage in the country of the data
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Question: Does the paper describe potential risks incurred by study participants, whether
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approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]
Justification: Our research does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
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may be required for any human subjects research. If you obtained IRB approval, you
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• We recognize that the procedures for this may vary significantly between institutions
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