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ABSTRACT

Token-level attention tuning—a class of training-free methods including Post-hoc
Attention Steering (PASTA) and Attention Calibration (ACT)—has emerged as a
promising way to improve frozen LLMs with interpretable interventions. How-
ever, these methods depend on auxiliary heuristics to identify “important” task-
specific tokens, which can introduce bias and limit applicability when token im-
portance is unclear or when using optimized kernels where attention maps are
inaccessible. We propose a simpler and more elegant alternative: acting only
on the initial token (e.g., <BOS> in LLaMA). We show theoretically that adding
lightweight biases to this token’s attention logits systematically shifts and reshapes
the downstream attention patterns—an effect amplified by its natural function as
an attention sink. Our empirical analysis reveals that this tuning process can posi-
tively affect LLMs and better unlock their pretrained knowledge, with stronger ef-
fects in early layers and distinct scaling preferences across attention heads. Build-
ing on these insights, we introduce ZeroTuning: a training-free method that im-
proves LLM performance by applying head-specific attention adjustments to the
initial token, requiring zero parameter updates. We present two variants: a su-
pervised mode that calibrates on validation examples, and a novel unsupervised
mode that directly minimizes the model’s output entropy. Our method requires
no KV-cache or decoding changes, and is kernel-agnostic (works with SDPA and
FlashAttention). The method is lightweight and requires only four lines of mod-
ification to standard L1lamaAttention code. It achieves broad gains across
15 datasets and outperforms previous, more complex methods; for instance, with
Llama-3.1-8B, it yields relative improvements of 19.9% on classification, 4.5%
on question answering, and 2.1% on dialogue. ZeroTuning also works out-of-
the-box with quantized inference and maintains its performance improvements
with increasing context lengths. Our code and runnable demo are available at
https://anonymous.4open.science/r/ZeroTuning.

1 INTRODUCTION

Training-free methods have been widely explored to enhance Large Language Models (LLMs) per-
formance at inference time. Among these, token-level attention tuning has emerged as a partic-
ularly promising direction, offering an interpretable way to steer model behavior by modifying the
attention distribution without any parameter updates. Unlike fine-tuning (Hu et al.l 2021} |Dettmers
et al., 2023)) or prompt engineering (Wei et al.,[2022; Wang et al., 2022), which largely treat LLMs
as black boxes, attention tuning provides a transparent mechanism to guide the model’s focus. Meth-
ods such as Post-hoc Attention Steering (PASTA (Zhang et al., 2023a), AutoPASTA (Zhang et al.,
2024a))), and Attention Calibration (ACT) (Yu et al.,|2024) have demonstrated the power of this ap-
proach, even outperforming prompting-based techniques in complex tasks like open-domain ques-
tion answering (Zhang et al [2024a). Similar principles have been successfully applied to vision-
language models to mitigate hallucinations by re-weighting attention towards image tokens (Liu
et al.,[2024b; Zhu et al., [2024}; |We1 & Zhang] 2024).

However, the efficacy of these methods is fundamentally constrained by their reliance on external,
often heuristic, mechanisms to identify task-specific “important” tokens. This dependency not only
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introduces the risk of bias (e.g., amplifying misleading cues) but also limits their applicability in
scenarios where token importance is ambiguous or when using optimized attention kernels where
attention maps are inaccessible. This critical limitation motivates a fundamental question: Is it pos-
sible to enhance model performance by tuning a universal, task-agnostic token, thereby bypassing
the need for fragile, task-specific token identification?

Class LlamaAttention(nn.Module):
def forward(self, [PIFTIMENY, [PIFTINIITE, OTTETTRINTN. ...): Lama-3.1-38 [ES LR:LA +4.5% +2.1% =
# omitting unmodified LLamaAttention code
# 1. Standard attention weight calculation
attn_weights = F.softmax(torch.matmul(query_states
key_states.transpose(2, 3)), dim=-1)
# 2. Our [ZeroTuning] Method
if self.layer_idx in [TAf a0 :
# Shape: (bsz, num_heads, q_len, kv_len)

attn_weights[:, [TIPTMIE, =, [ *= -10
Deepseek-R1-14B +6.2% +3.6%

Qwen-2-7B +23.8% +2.8% —

# Re-normalize the Attention

attn_weights[:, TIfMITIE] =

F.normalize(attn_weights[:, [TIRTaMT L], p=1, dim=-1)
# 3. Compute attention output

attn_output = torch.matmul(attn_weights, value_states) Llama-2-13B-Chat +4.0%

Relative Improvement with ZeroTuning (%)

# omitting unmodified LLamaAttention code

Text Classification ~Multiple Choice Conversation

Figure 1: Overview of the ZeroTuning method and its effectiveness. Left: Our method requires only a
few lines of code to scale the initial token’s attention within the model’s forward pass. Right: This simple
intervention yields significant and consistent improvements across a variety of LLMs and tasks.

In this paper, we demonstrate that the answer is a definitive yes. The solution lies not in adding
complexity, but in leveraging a ubiquitous yet often overlooked architectural artifact: the initial
token (e.g., <BOS> in LLaMA). While its tendency to function as an attention sink” is well-
documented (Xiao et al.| 2023} |[Kaul et al.| 2024; |Gu et al.| |2024; Barbero et al., 2025), its potential
as an active control lever for performance enhancement has remained largely untapped.

Our theoretical analysis reveals that modulating the attention on this single token allows for precise
control — sharpening or smoothing — over the entire downstream attention distribution while pre-
serving the relative importance of task-relevant tokens. Its natural role as an attention sink further
amplifies this effect (Sec @ Furthermore, we show this control can be achieved even without
direct access to attention weights by modifying the initial token’s key or query states.

To validate this insight, we conducted a systematic investigation and uncovered three key findings:

1. Despite lacking semantic meaning, the initial token acts as a positive and effective control
point for steering model behavior. Tuning its attention corrects the model’s biases and
unlocks its pretrained knowledge with reduced output entropy. This approach consistently
yields greater performance gains than tuning any other token (Sec [3.2).

2. The influence of this tuning is systemic, propagating consistently across layers. The shal-
low and middle layers are the most impactful, though jointly tuning all layers produces the
strongest results (Sec[3.3).

3. The effect is heterogeneous across attention heads; some respond positively to increased
attention (up-effective), while others respond negatively (down-effective). We show that
selectively targeting the dominant head type outperforms uniform tuning (Sec 3.4} Sec[3.3).

Building on these findings, we introduce ZeroTuning (see Figure [T), a simple, powerful, and
training-free method that recalibrates the initial token’s attention to boost LLM performance with-
out any task-specific identification (Sec [3.6). We introduce two variants for attention calibration:
a supervised mode by maximizing the accuracy on the labeled validation set, and a novel unsuper-
vised mode by minimizing output entropy. Across a suite of 15 benchmarks, ZeroTuning achieves
substantial gains on models like Llama-3.1-8B-Instruct, Llama-2-13B-Instruct, Qwen-2-7B, and
Deepseek-R1-14B. For instance, it boosts Llama-3.1-8B-Instruct performance by a relative 19.9%
on classification, 4.5% on question answering, and raises its MT-Bench score from 7.804 to 7.966.
The method demonstrates remarkable robustness across long contexts, few-shot settings, quanti-
zation, and prompt variations. Our work not only delivers a practical tool for lightweight model
enhancement but also sheds new light on a fundamental control mechanism within LLMs, advanc-
ing both inference-time optimization and model interpretability.
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2 RELATED WORK

Our work is situated at the intersection of two active research areas: inference-time attention tun-
ing and the mechanistic understanding of initial tokens. A growing body of work has shown that
modifying token-level attention at inference time can enhance the performance of both LLMs and
VLMs (Yu et al.| 2024} [Zhang et al.| 2023a} [Liu et al., [2024bj Wei & Zhang]| 2024). However, pre-
vailing methods like PASTA (Zhang et al 2023a) and Auto-PASTA (Zhang et al., 2024a), which
identify and up-weight key tokens, or ACT (Yu et al., 2024), which down-weights non-initial sink
tokens, fundamentally rely on heuristics to identify fask-specific tokens. This reliance limits their
universality and introduces potential biases. Concurrently, another line of research has focused on
explaining why the initial token often becomes an “attention sink” (Xiao et al.;,[2023), attributing it to
architectural biases and its role as a stabilizing anchor (Barbero et al., 2025} |Gu et al.| |2024). While
these studies provide a crucial understanding of what the phenomenon is, the question of how to ac-
tively and elegantly harness it for performance gains remains largely unexplored. Our work bridges
this gap. We shift the focus from task-specific token identification to a universal, task-agnostic con-
trol point, and move from passive observation of the initial token to a practical tuning framework
that leverages its unique properties. Detailed related work is provided in Appendix [A]

3 UNVEILING THE POWER OF THE INITIAL TOKEN

In this section, we first formalize the mechanism of tuning the initial token’s attention, then empiri-
cally demonstrate its unique importance and dissect its effects across the model’s layers and heads.
This systematic analysis culminates in our proposed ZeroTuning methodology. Unless otherwise
specified, all experiments use the Llama-3.1-8B-Instruct model, with setup details in Section[4.1]

3.1 FORMALIZING THE TUNING PROCESS

In a decoder-only Transformer, autoregressive generation for a sequence X = [zg, Z1,...,2Z7_1] €
R¥*T involves a causal self-attention mechanism. At timestep 7', the query is derived from the final
token representation, x7_1, which attends to all preceding token representations (including itself)
as keys. This process yields an attention weight distribution over the input sequence:

T-1
a = [ag,a1,...,ap_1], where a; >0 and Z a; = 1. (D
i=0
Here, a is the attention score assigned to the initial token, while a1, . . ., ap_ correspond to subse-

quent tokens. To control the influence of x(, we introduce a tuning factor v > 0 to scale its attention
and re-normalize: va a
0 j :
a{):?, a;:ﬁ fori=1,...,T—1, (2)
o T—1
where the normalization constant D = vyao + Y, a; = (v — 1)ag + 1.
This rescaling preserves the relative proportions among all non-initial tokens:

/ ai

@i D ; .
o1 ;T ~T-1la;  ~~T-1__ fori > 1, 3)
Zj:l a; Zj:l ) ijl a;
but compresses or expands their differences as
/ / a; — a]‘ a; — aj o
4y = a5 = = fori,j > 1. 4
' ’ D (’Y—l)ao—f—l’ )= ()

Intuitively, v > 1 amplifies ag, flattening the remaining distribution, while v < 1 suppresses ao,
sharpening it. Theoretically, the magnitude of this effect is governed by the initial token’s own
attention weight, ag. We define this effect, Egs ; j, as the change in attention difference between
any two non-initial tokens ¢ and j:

Eaitrij = |(a; —a) — (a; — aj)| = |a; — a;]
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To analyze how Egisr; ; varies with ag, we take its partial derivative with respect to ag:
O0Fqitr ;.5 1

— 2 —|a;, — a; S — 6

aao | T J||’y | ((’y—l)a()+1)2 ( )

Given that |a; — a;||y — 1| > 0 and the denominator ((y — 1)ag + 1)*> = D? > 0, the derivative

is non-negative. Thus, Eg,; ; is a monotonically non-decreasing function of ag. In any non-trivial

case (v # 1 and a; # a;), the relationship is strictly increasing. A detailed proof and visualization
are in Appendix [C]

This result provides a crucial insight: the larger the initial token’s attention score (ay), the more
powerful it becomes as a lever for controlling the entire attention distribution. Since prior work has
established that initial tokens are natural attention sinks (Barbero et al., [2025), they are inherently
potent control points for this tuning process.

3.2 THE UNIQUE IMPORTANCE OF THE INITIAL TOKEN
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Figure 2: Impact of attention scaling factor  on different token positions across three tasks: (a) SST-
2, (b) BoolQ, and (c) LogiQA. Modifying the initial token’s attention consistently yields significant
accuracy improvements, often surpassing adjustments to other tokens.

Given the special role of the initial token, we first investigate a key empirical question: (a) Does
tuning its attention positively impact performance on downstream tasks? (b) Is this position more
effective and influential than others? To investigate, we conduct a controlled experiment in which
we uniformly scale the attention scores of a single token position across all heads and layers us-
ing a scaling factor y. We evaluate the resulting performance on three downstream tasks: SST-2,
BoolQ, and LogiQA. For comparison, we repeat the same procedure for other positions, including
the second, third, middle (|7'/2]), and final tokens. As shown in Figure tuning the attention of the
initial token consistently yields the largest and most stable performance gains across all tasks. Inter-
estingly, performance varies with the direction of tuning: tasks like SST-2 benefit from up-scaling
(v > 1), while BoolQ and LogiQA improve with down-scaling (y < 1).

Previous work has identified the initial token as — cemeie o) viscadngcues  prampie 1oy Tuned aention - smoothea
an attention sink that helps prevent over-mixing of £:: £ "
information during autoregressive generation (Gu
et al.| 2024} [Barbero et al. [2025). Our empirical re-  £:2 I I — . _
sults extend this understanding, showing that tuning ™ ° " "> G * " 0 7 nias L0 ©
the initial token’s attention beneficially reshapes the e | & e S e
distribution over subsequent tokens and, in turn, im-

proves model performance across tasks. This benefi-
cial effect can be understood from two perspectives.

g
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<

Token Index

Token Index E

1. Correcting Biases. The tuning process counter-

acts reasoning flaws caused by pretrained attention Figure 3: The impact of the tuning.
biases for each dataset, as visualized in Figure 3] Our error analysis reveals a clear pattern: (a)
Up-scaling (v > 1) benefits tasks requiring holistic context integration. It flattens the attention dis-
tribution, preventing the model from over-focusing on misleading local cues. For instance, in SST-2
sentiment analysis (see Appendix [F), LLMs often fixate on isolated negative keywords while ignor-
ing the surrounding positive context. Increasing the initial token’s attention promotes a more bal-
anced, global understanding, thereby correcting such biased predictions. (b) Down-scaling (y < 1)
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benefits tasks demanding sharp focus on critical evidence. It amplifies the relative weights of non-
initial tokens, helping the model pinpoint key details in a diffuse context. In long-context tasks like
BoolQ, a model’s focus can become diluted, failing to locate the precise text segment containing the
answer. Reducing the initial token’s attention sharpens the model’s focus on this salient information.

2. Reducing Predictive Uncertainty.
The tuning process can be viewed
through the lens of output entropy, a
proxy for model uncertainty. As illus-
trated in Figure[d] a clear inverse corre-
lation emerges: the scaling factor that
minimizes entropy consistently aligns
with the factor that maximizes accu- (a) SST-2 (b) LogiQA

racy. This suggests our method better . .
unlocks the model’s pretrained knowl- Figure 4: A strong inverse correlation between accuracy

edge, leading to more confident and (orange) and next-token prediction entropy (blue).
correct predictions.

Entropy

1 2 3
Scaling Factor Scaling Factor

3.3 LAYER-WISE ANALYSIS OF INITIAL TOKEN SCALING

To understand the propagation of this effect, we examine how its effect varies when applied se-
lectively across different layers. Following prior work on layer functionality in transformer-based
models (Jin et al.|, [2024; Zhang et al., |2024b)), we divide the 32 layers of Llama-3.1-8B-Instruct
into three groups: shallow (Layers 1-10), middle (Layers 11-21), and deep (Layers 22-31). We
then perform independent attention scaling experiments for each group on six tasks: BoolQ, SST-2,
SST-5, MR, LogiQA, and MathQA. Based on earlier findings, we apply a scaling range of [0, 1] for
BoolQ and LogiQA, and [1, 2] for the remaining tasks.
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Figure 5: Accuracy trends when scaling the initial token’s attention across different layer groups:
shallow (Layers 1-10), middle (Layers 11-21), and deep (Layers 22-31). Different depths exhibit a
consistent accuracy trend with varying magnitudes.

As shown in Figure 5] tuning yields consistent trends at any depth (i.e., accuracy changes similarly
with scaling regardless of depth), and jointly tuning all layers amplifies these benefits, often resulting
in the highest accuracy. However, the magnitude of improvement varies. In most cases, tuning the
shallow and middle layers leads to greater accuracy than tuning the deep layers.

Prior studies have found that early and middle layers mainly support representation learning and
knowledge integration, while deep layers focus on task-specific reasoning over aggregated features
(Chen et al., 2024} Jin et al., 2025)). Therefore, we argue that the tuning process more effectively
reshapes the representational space in shallow and middle layers, promoting better downstream per-
formance and reducing uncertainty.



Under review as a conference paper at ICLR 2026

3.4 ANALYZING THE ROLE OF THE INITIAL TOKEN ACROSS ATTENTION HEADS
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Figure 6: Accuracy of scaling the initial token’s attention in individual heads using v = 1.5 across
(a) SST-2, (b) BoolQ, (c) MMLU, and (d) MathQA. Results reveal heterogeneous behavior among
heads, motivating head-specific tuning strategies.

Unlike layers passing information sequentially, attention heads operate in parallel and contribute
independently via concatenation. It remains unclear how they differ in response to the initial token.
To investigate this, we increase the initial token’s attention of each head individually by applying
v = 1.5, and evaluate the model’s performance on SST-2 and MMLU. For comparison, we also
evaluate (i) no scaling (v = 1), (ii) uniform up-scaling (y = 1.5) across all heads, and (iii) uniform
down-scaling (v = 0.6) across all heads.

As shown in Figure [6] attention heads exhibit distinct behaviors in response to initial token am-
plification. We categorize heads as up-effective if this modification improves performance, and
down-effective if it results in performance degradation. Interestingly, the relative proportions of
up-effective and down-effective heads vary across datasets, which in turn explains the observed dif-
ferences in response to uniform scaling. For example, SST-2 contains more up-effective heads and
thus benefits from uniform up-scaling. In contrast, MMLU has a higher proportion of down-effective
heads, making down-scaling more effective than up-scaling.

These results align with prior studies showing that attention heads specialize into distinct functional
roles during pretraining (Zheng et al.| 2024b; |Guo et al., |2024), such as global retrieval, structural
parsing, option discrimination, and negation sensitivity. We propose that these functional differ-
ences may explain the variable impact of initial token attention scaling, with some heads supporting
broad global reasoning and others focusing on salient tokens. This interpretation requires further
exploration in future work.

3.5 EVALUATING HEAD-SPECIFIC TUNING STRATEGIES

Given the diversity in head responses, we investigate whether head-specific tuning offers greater
effectiveness than uniform tuning. Specifically, we compare four strategies: (i) uniform scaling of
all heads (ALL), (ii) scaling only up-effective heads (UP), (iii) scaling only down-effective heads
(DOWN), and (iv) a hybrid strategy (UP+DOWN) that scales up-effective heads to a fixed optimal
value and tunes down-effective ones.

As shown in Figure [/} head-specific tuning (UP, DOWN) yields higher accuracy and faster conver-
gence compared to uniform scaling (ALL). Notably, UP is most effective when v > 1, while DOWN
excels when v < 1. Interestingly, the UP+DOWN strategy does not outperform UP or DOWN indi-
vidually, possibly due to the concatenative nature of attention heads and suboptimal joint scaling.

3.6 ZEROTUNING METHODOLOGY

Building on our empirical findings, we propose ZeroTuning, a method that enhances LLM perfor-
mance via head-specific attention adjustments to the initial token, without requiring task-specific
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Figure 7: Accuracy comparison of different tuning strategies on (a) SST-2 and (b) MMLU. Head-
specific tuning (UP, DOWN) consistently outperforms uniform scaling, validating the importance of
accounting for head-level behavior.

token identification. The core methodology involves three steps: head behavior profiling, selective
rescaling, and renormalization. To accomplish the first two steps, hyperparameter calibration, we
introduce both supervised and unsupervised variants to cater to different application scenarios.

Supervised Calibration Consistent with standard practices in inference-time adaptation (Yu et al.,
2024; Zhang et all [2023a}; 2024a)), our primary approach utilizes a labeled calibration set (e.g.,
validation examples) to perform:

1. Head Behavior Profiling: Assessing each attention head’s sensitivity to the initial token’s
attention scaling. A head is classified as up-effective if increased attention improves accu-
racy, and down-effective otherwise.

2. Selective Rescaling: Applying a scaling factor -, identified by searching for the value that
maximizes accuracy on the calibration set, exclusively to the dominant head type (i.e., the
most numerous group).

Unsupervised Calibration via Entropy Minimization To mitigate the reliance on labeled data,
we propose a novel unsupervised calibration strategy. Based on our finding that a model’s output
entropy strongly correlates with its accuracy (Section[3.2)), this variant does not require any labeled
calibration or validation set. Instead, it identifies the optimal heads and scaling factor + by mini-
mizing the average next-token prediction entropy over a batch of unlabeled inputs. Crucially, the
unlabeled inputs can be obtained in two practical ways: (i) in an offline setting, by running Zero-
Tuning on a held-out, unlabeled corpus from the same domain; or (ii) in a test-time adaptation style,
by performing entropy-based search over the current batch of test-time queries. We provide a more
detailed analysis of this unsupervised variant in Appendix [E]

Finally, the third step, Renormalization, is applied in both variants by re-normalizing the scaled
attention scores via the softmax function to maintain a valid probability distribution. For optimized
attention implementations (e.g., SDPA, Flash Attention) where direct score modification is infeasi-
ble, ZeroTuning applies scaling to the query or key states. We demonstrate and show that this yields
similar effects in Appendix

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

Our evaluation includes four recent LLMs with distinct attention implementations (Llama-3.1-8B,
Llama-2-13B, Qwen-2-7B, and DeepSeek-R1-14B). We test performance across 15 datasets span-
ning three categories: Text Classification, Multiple-Choice QA, and Multi-Round Conversation. We
benchmark ZeroTuning against three methods: (1) Vanilla inference; (2) ACT (Yu et al., |2024)), a
sink-token down-scaling method and (3) Auto-PASTA (Zhang et al.,[2024a), an LLM-guided key-

'Since ACT explicitly manipulates attention maps, we only evaluate it on Llama-3.1-8B-Instruct
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token up-scaling method. All experiments are conducted in a zero-shot setting with greedy decoding
for fair comparison. For our supervised variant and the baselines, hyperparameters are calibrated on
a fixed validation set. A detailed description of all models, datasets, baselines, and implementation
specifics is provided in Appendix [B]

Table 1: Performance Comparison of Classification Tasks Across Models. The best performance in each
dataset is bolded and the ZeroTuning method is highlighted in gray.

Model Method Datasets

Vanilla 7320 4540 8920 69.60 82.14 1400 44.60 59.59
ACT 85.00 43.80 90.80 58.60 82.14 15.80 44.60 60.11
Auto-PASTA  89.60 4720 9140 7260 83.93 16.00 4540 63.73
ZeroTuning 91.60 52.00 92.00 8240 89.29 2620 66.60 71.44

Vanilla 78.80 4540 7240 85.00 7850 12.60 13.00 55.10
ACT — — — — — — — —

Auto-PASTA  89.00 47.00 77.70 85.00 89.29 14.00 57.00 65.57

ZeroTuning  89.60 47.20 87.40 86.40 8571 26.60 5440 68.19

Vanilla 91.20 4940 89.20 8340 89.29 20.80 5040 67.67
ACT — — — — — — — —

Auto-PASTA  92.00 52.20 89.80 83.40 92.86 22.60 50.40 69.04

ZeroTuning  93.00 51.20 90.20 88.00 92.86 32.00 55.80 71.87

Llama-3.1-8B-Instruct

Qwen-2-7B (SDPA)

Deepseek-R1-14B (Flash)

Table 2: Performance Comparison of Multiple-Choice Tasks Across Models.

Model Method Datasets
MMLU AQUA MathQA LogiQA CQA PIQA ARCC Avg.
Vanilla 67.40 25.69 33.60 39.40 77.60 83.60 84.62 58.84
ACT 67.60 29.64 33.60 38.00 77.60 83.00 84.62 59.15

Llama-3.1-8B-Instruct — ;  pASTA  67.00 3123 3520 4040 7820 8460 8462 6018

ZeroTuning 68.80 30.43 36.60 4280 80.40 8540 8595 61.48

Vanilla 69.80 36.76 39.20 45.00 78.80 8520 86.96 63.10
ACT — — — —
Auto-PASTA  69.80 39.13 39.20 45.00 82.60 8540 86.96 64.01
ZeroTuning 70.40 39.92 40.20 4740 81.80 86.20 87.96 64.84

Vanilla 66.60 38.74 38.20 27.80 7820 8420 86.62 60.05
ACT —
Auto-PASTA  66.60 38.74 39.40 2820 7820 84.40 86.62 60.31
ZeroTuning 70.00 39.13 39.80 3560 78.60 85.00 87.29 62.20

Qwen-2-7B (SDPA)

Deepseek-R1-14B (Flash)

4.2 OVERALL PERFORMANCE OF ZEROTUNING

For a fair and direct comparison with existing supervised baselines, our main experiments focus on
the supervised ZeroTuning approach.

Text Classification We first evaluate ZeroTuning on various text classification datasets using dif-
ferent LLMs, as shown in Table [I| Despite tuning only a single token, ZeroTuning consistently
outperforms baselines and methods that require tuning more tokens. With Llama-3.1-8B-Instruct,
it achieves an average improvement of +11.71% over vanilla, with peaks of +22.00% on SUBJ and
+18.40% on SST-2. It outperforms AutoPASTA by an average of 7.71%. On Qwen-2-7B, ZeroTun-
ing gains +13.09%, and on Deepseek-R1-14B, it improves by +4.20%, with a notable increase of
+11.20% on TREC.

Domain-Specific Multiple Choice Next, we evaluate ZeroTuning on common domain-specific
multiple-choice datasets under various settings, as shown in Table For Llama-3.1-8B-Instruct,
it increases the average accuracy by +2.64%, with gains of +3.40% on LogiQA and +1.40% on
MMLU. Qwen-2-7B gains +1.74%, and Deepseek-R1-14B gains +2.15%, with an outstanding
+7.80% on LogiQA.
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Multi-Round  Conversation We further Table 3: MT-Bench Performance Scores for

demonstrate ZeroTuning’s effectiveness in  Multi-Round Conversation Across Models
multi-round conversations using MT-Bench

(Zheng et al., 2024a), with results in Table @ Model FirstTum  SecondTum  Average
For Llama-3.1-8B-Instruct, ZerOTuning im- ﬁ:::a-}.l-SB-ZemTuning 8.294 (+0.029)  7.638 (+0.282) 7.966‘(9+901.162)
proves the average score by 0.162 points (7.966  Sptssurbo s I T
vs. 7.804). For Llama-2-13B-Chat, it achieves dadeyl 8150 7% 790

a 0.266 points gain (6.916 vs. 6.650) showing Llama-2-13B-Chat-ZeroTuning  7.106 (+0.043) 6.725 (+0.487) 6.916 (+0.266)
. L .. . N ’ Llama-2-13B-Chat-vanilla 7.063 6.238
its effectiveness in interactive settings

4.3 UNSUPERVISED ZEROTUNING

100 Method
3 Vanilla

We validate the fully unsupervised variant of B ZoroTuning (Supervised)
ZeroTuning, which eliminates the need for B zeroTuning (Unsupervised)
any labeled calibration data by minimizing the
model’s average output entropy. Appendix [E]
provides a detailed empirical validation for this
approach, including visual comparisons, empir-
ical analysis, and a breakdown of error pat- - ; Boolo MM LogiGA  Average
terns. As shown in Figure[§] this entropy-guided Datoset

method achieves performance highly competi-  Fjgure 8: Performance comparison of Vanilla, Su-
tive with its supervised counterpart, extending  pervised, and Unsupervised ZeroTuning on Llama-
its applicability to label-scarce scenarios. 3.1-8B-Instruct.

Accuracy

5 FURTHER ANALYSIS AND KEY FINDINGS

Robustness Across Diverse Conditions. ZeroTuning demonstrates remarkable stability. It main-
tains strong performance gains even when faced with: (1) long contexts padded with irrelevant dis-
tractors, where it stabilizes information flow better than the vanilla model (Appendix m); (2) few-shot
scenarios, where it consistently improves instruction-following and reduces invalid outputs (Ap-
pendix[I); (3) significant prompt variations, including missing or altered instructions (Appendix [M);
and (4) low-precision 4-bit and 8-bit quantization, where it partially mitigates the associated accu-
racy degradation (Appendix [N]).

Practicality and Methodological Choices. Our method is not only robust but also highly prac-
tical. We theoretically and empirically confirm that tuning key states provides a viable, kernel-
agnostic alternative to direct attention score manipulation, proving effective in optimized envi-
ronments like FlashAttention (Appendix [G). Furthermore, ZeroTuning is adaptable to resource-
constrained settings, delivering gains even with a minimal, search-free scaling approach (Ap-
pendix [H). We also analyze key methodological choices, showing that tuning a moderate subset
of heads (40%—-70%) is optimal, providing a clear and efficient configuration (Appendix [LJ).

Boundaries of Efficacy. Finally, we analyze the method’s boundaries and potential side effects.
We quantitatively demonstrate that ZeroTuning excels at correcting a model’s uncertain errors but
cannot override high-confidence mistakes rooted in flawed pretrained knowledge. We also charac-
terize the negative effects of extreme tuning, which provides a clearer picture of the method’s oper-
ational limits (Appendix [D)). This positions our method as a powerful tool for unlocking a model’s
latent knowledge, rather than a substitute for fine-tuning. Intriguingly, we also find that within a
safe operational range, the scaling factor can modulate output diversity in a manner analogous to
temperature, but with the unique ability to alter the rank-ordering of logits and thereby correct errors
that temperature scaling cannot fix. This aligns with our experiments on temperature tuning, where
pure temperature adjustment fails to improve benchmark performance, while ZeroTuning yields
consistent gains substantially.
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6 FURTHER DISCUSSION

6.1 EFFICIENT CALIBRATION AND SEARCH

In our current implementation, the offline search for the scaling factor « and head selection with
Llama-3.1-8B takes roughly 4-5 minutes on a single GPU, and the inference-time overhead is neg-
ligible. We also highlight an interesting empirical observation: the clear U-shaped entropy curve
identified in Appendix [E] suggests that more efficient search strategies, such as Bayesian optimiza-
tion or simple rule-based early stopping, could further reduce calibration cost. We view this as a
promising direction for future optimization.

6.2 ZEROTUNING AND SUPERVISED FINE-TUNING

Supervised fine-tuning (SFT) remains a strong and versatile way to improve LLMs: by updating
parameters, it can simultaneously adjust task knowledge, instruction following, output formatting,
and various biases. However, this also means SFT is an indirect optimization over many intertwined
behaviors and typically requires more data, compute, and careful hyperparameter tuning.

ZeroTuning takes a complementary approach. Instead of changing parameters, it directly adjusts the
attention pattern on the initial token, targeting the specific failure modes identified in our analysis
(e.g., format traps and biased attention over context tokens). This makes the intervention more
localized and training-free, while still being compatible with SFT.

To study this relationship, we run a controlled experiment on BoolQQ where both SFT and supervised
ZeroTuning use the same 500 labeled examples. We fine-tune the model with a lightweight LoRA
setup (rank r» = 4, 3 epochs) and compare four configurations:

Method BoolQ Accuracy
Vanilla 69.60
Vanilla + SFT (LoRA) 81.20
Vanilla + ZeroTuning (Ours) 82.40
Vanilla + SFT + ZeroTuning (Ours) 83.60

In this limited setting, the training-free ZeroTuning slightly outperforms our small-scale LoRA SFT,
and applying ZeroTuning on top of the SFT model yields the best performance. While stronger fine-
tuning setups (more data, higher rank, more epochs) may implicitly learn to adjust the initial-token
attention in a similar way, we hope our observations provide a useful lens for understanding how SFT
optimizes attention patterns and inspire future work on combining training-free and training-based
approaches.

7 CONCLUSION

In this work, we present a systematic analysis of tuning the initial token’s attention and propose Ze-
roTuning, a novel, training-free method to enhance LLMs. By recalibrating this single, task-agnostic
token, ZeroTuning outperforms previous methods that require task-specific tuning. It operates ef-
fectively in both supervised and unsupervised modes and demonstrates broad compatibility across
various implementations. This work advances inference-time tuning and contributes to the inter-
pretability of LLMs, opening new avenues for lightweight model optimization.

REPRODUCIBILITY STATEMENT

We release all code and data used in our experiments, along with detailed instructions and an easy-to-
run Jupyter notebook demo. Additional limitations and ablation studies are provided in the Appendix
to support diverse research needs.
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A RELATED WORK

A.1 TOKEN-LEVEL ATTENTION TUNING

Token-level attention tuning typically aims to increase attention to critical input tokens or decrease
attention to less informative tokens. Lu et al.| (2021) proposes a mask perturbation method to ad-
just attention weights for key tokens, thereby improving translation quality. Zhang et al.| (2023a)
introduce PASTA, which allows manual designation of important tokens during inference. This is
extended by AutoPASTA (Zhang et al.||2024a), which uses LLMs to autonomously identify salient
tokens and increase attention to them. In contrast, ACT (Yu et al.| 2024) reduces attention to seman-
tically trivial sink tokens and redirects it to meaningful content. Similar strategies have been applied
to VLMs to mitigate hallucinations. PAI (Liu et al., 2024b) enhances attention to image tokens at
inference time to counteract text-dominant bias. IBD (Zhu et al.||2024) and OPERA (Wei & Zhang,
2024) further refine this idea by prioritizing visual information or penalizing overconfident summary
tokens. While effective, these methods depend on identifying task-specific tokens, which may intro-
duce bias (e.g., overemphasizing misleading tokens) and limit applicability when token importance
is unclear or attention maps are unavailable. In contrast, our method focuses on a task-invariant
initial token, removing the need for costly token identification, and can be easily applied by tuning
key states.

A.2 THE MAGIC OF THE INITIAL TOKEN

Recent studies highlight the significance of the initial token, especially through the lens of the az-
tention sink phenomenon, where it draws substantial attention despite low semantic content. |Xiao
et al.| (2023)) show that preserving such tokens is critical for maintaining performance in sliding win-
dow attention. |[Kaul et al.| (2024)) attribute this effect to softmax normalization and causal masking,
while [Gu et al.| (2024) and Barbero et al.| (2025)) identify architectural biases that amplify attention
to the initial token, including key-query alignment and LayerNorm effects. Functionally, the ini-
tial token is hypothesized to serve as a stabilizing “no-op” anchor, enhancing robustness to prompt
variations (Barbero et al., 2025)). It has been leveraged in applications such as long-context mod-
eling (Zhang et al., 2023b; Xiao et al., [2023), but also poses challenges for quantization due to its
high attention weight (Dettmers et al., [2023} |Liu et al.,|2024a). While previous work has identified
the structural and functional importance of the initial token, its potential as a target for attention
tuning remains underexplored. In this work, we provide a detailed analysis of attention tuning of the
initial token across layers and heads, demonstrating its consistent influence across different tasks.
Our approach bridges the gap between the these lines of research by proposing a novel method that
advances interpretable attention tuning.

B DETAILED EXPERIMENTAL SETUP

Models, Tasks, and Datasets. Models: We evaluate ZeroTuning on four LLMs with distinct at-
tention implementations: Llama-3.1-8B-Instruct (Grattafior1 et al.| [2024) and Llama-2-13B-Chat
(Touvron et al., [2023)) with eager attention, Qwen-2-7B (Yang et al., [2024) with SDPA attention,
and DeepSeek-R1-14B (DeepSeek-Al et al.| [2025) with Flash attention Tasks and Datasets: Our
experiments encompass three task types across 15 datasets: (1) Text Classification and Reasoning,
including SST-2 (binary sentiment classification) (Socher et al., [2013), SST-5 (fine-grained senti-
ment analysis) (Socher et al, 2013)), MR (movie review polarity detection) (Pang & Lee, [2005),
SUBJ (subjectivity classification) (Pang & Lee, [2004), TREC (question type classification) (L1 &
Roth, [2002), CB (commitment detection) (De Marneffe et al., 2019), and BoolQ (boolean question
answering) (Clark et al., 2019); (2) Domain-Specific Multiple-Choice, including MMLU (cross-
domain knowledge testing) (Hendrycks et al., 2020), AQUA (math word problems) (Zheng et al.,
2024a), MathQA (algebraic reasoning) (Amini et al., 2019), LogiQA (logical reasoning) (Liu et al.,
2023)), CQA (commonsense reasoning) (Talmor et al.l 2018), PIQA (physical commonsense QA)
(Bisk et al.} [2020), and ARCC (scientific reasoning) (Clark et al.,2018); and (3) Multi-Round Con-
versation, using MT-Bench (Zheng et al., 2024a).

’Eager, SDPA, and Flash are official attention implementations in modern Transformer libraries. Eager
computes the full attention map; SDPA uses PyTorch’s efficient API to select the optimal implementation;
Flash relies on fused CUDA kernels from the FlashAttention library.
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Baselines and Evaluation Metrics. Baselines: We benchmark ZeroTuning against three baselines:
(1) vanilla inference, which performs standard inference without any modifications; (2) ACT (Yu
et al.,2024), which identifies none-initial sink tokens using an attention score threshold and reduces
their attention weights; and (3) Auto-PASTA (Zhang et al) [2024a), which leverages an LLM to
locate important tokens and enhance their attention weights. Evaluation Metrics: We assess perfor-
mance using accuracy for text classification and multiple-choice tasks. For the multi-round con-
versation task, we report average quality scores as evaluated by GPT-4, following the methodology
outlined in Zheng et al.|(2024a).

Implementation Details. All experiments are implemented in PyTorch using the Hugging Face
Transformers library. We use a zero-shot setting with greedy decoding for consistency across all
methods. For our supervised variant and the baselines, we use a fixed validation set of 500 randomly
selected samples (seed 42) for calibration. For ZeroTuning, we tune the top 40% of identified heads
unless otherwise specified. For ACT, we use the official hyperparameter (5 = 0.4), and since it
requires explicit attention maps, we only evaluate it on Llama-3.1-8B-Instruct. Prompts for all tasks
and baselines are detailed in Appendix

C THEORETICAL ANALYSIS OF TUNING EFFICACY VIA THE INITIAL TOKEN

This appendix provides a formal proof for the claim made in Section [3.I} that the tuning effect’s
magnitude is governed by the initial token’s attention weight ay.

Proposition 1. For any given scaling factor vy # 1 and any two non-initial tokens i,j > 1 with
unequal initial attention weights (a; # aj), the magnitude of the tuning effect on their attention
difference is a strictly monotonically increasing function of the initial token’s attention weight, a.

We aim to show that the tuning effect, Eg; ; ;, is a monotonically increasing function of ag by prov-
ing its partial derivative with respect to ag is positive. Recall the definition of the effect magnitude
from Eq. equation 5}

|7 — 1]ag
Eini,j(a0) = |a; — aj]| ————0—. 7
diff, J(ao) |a’ a‘]| ('7 — 1)@0 +1 ( )
Taking the partial derivative of Egi with respect to ag, we treat the term |a; —a; ||y — 1| as a constant
factor:
O0Fiti ;5 0 ag
— = |a; —a; -1 8
Oag | il =1l dag \ (v —1)ao +1 ®
1-((y—=Dag+1) —ap-(y—1)
=|a; —aj||y—1]- 9
1
=la—ajlly -1 — . (10)
=l = G Dag 1y

The term |a; — a;|| — 1| is non-negative. The denominator, ((y —1)ag +1)? = D2, is the square of

the normalization constant and is strictly positive for any valid probability distribution. Therefore,
s OFgi i, 5

the derivative Dac > 0.

Furthermore, for any non-trivial case where the tuning factor is active (y # 1) and the attention
weights are not uniform (a; # a; for some ¢, j), the derivative is strictly positive. This proves that
FEqir 1s a strictly monotonically increasing function of ag. Consequently, a larger initial attention
weight provides a more powerful lever for modulating the attention distribution. This theoretical
result is visually corroborated by Figure[9]
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Figure 9: Visualization of the tuning effect on attention differences |a; — a}| as a function of the
scaling factor + for various initial attention weights ag € {0,0.2,0.4,0.6,0.8}. The plot demon-
strates that a higher initial attention weight aq (e.g., the red curve) leads to a significantly stronger
response to changes in . We identify three primary regimes: sharpening (v < 1), where attention
differences are amplified; smoothing (v > 1), where differences are diminished; and regions of
excessive tuning (e.g., v — 0 or v > 1), which may degrade performance.

D DEEPER ANALYSIS OF POTENTIAL FAILURES AND NEGATIVE EFFECTS

To provide a comprehensive understanding of ZeroTuning, we analyze its operational boundaries
and potential negative side effects when pushed to its limits.

Boundaries of Efficacy: Unlocking Latent Knowledge vs. Correcting Factual Errors. Our
analysis reveals a key insight into ZeroTuning’s mechanism: it primarily unlocks and disambiguates
a model’s latent knowledge, rather than correcting deeply ingrained factual errors. To test this, we
quantitatively analyzed ZeroTuning’s corrective power as a function of the vanilla model’s initial
prediction confidence. We partitioned the set of SST2 incorrect predictions into “uncertain errors”
(vanilla softmax confidence < threshold) and “certain errors” (confidence > threshold) and evalu-
ated our method’s performance on each group.

Corrected Accuracy vs. Certainty Threshold
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Figure 10: Corrected accuracy on initially incorrect samples as a function of the vanilla model’s
confidence (certainty threshold).

The results, shown in Figure[T0] provide strong empirical validation. ZeroTuning is highly effective
on the uncertain error population (blue line), correcting over 80% of mistakes where the vanilla
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model’s confidence was below 0.5. Conversely, its ability to fix certain errors (red line) decays
sharply as the base model’s confidence increases, dropping to near-zero on predictions where the
model was already confidently wrong. This confirms a clear operational boundary: ZeroTuning
excels at resolving low-confidence mistakes by refining the model’s focus, but it is not designed to
overwrite high-confidence knowledge learned during pretraining.

This finding positions ZeroTuning not as a replacement for fine-tuning, but as a powerful, com-
plementary inference-time technique. It assists a model in better leveraging its existing, albeit
sometimes uncertain, knowledge. The potential for synergistic interaction between ZeroTuning and
parameter-efficient fine-tuning methods like LoRA remains a promising avenue for future research.

Negative Effects of Extreme Tuning. We also investigated the effects of applying extreme scaling
factors (), far outside the optimal range. These experiments reveal predictable failure modes that
further illuminate the role of the initial token:

* Overly-suppressed attention (v — 0): When the initial token’s attention is excessively
reduced, the model’s output often becomes degenerative. We observe a tendency for the
model to enter repetitive loops, outputting a single answer (e.g., “True”’) without any of
the semantic elaboration or reasoning present in the vanilla output. This suggests that a
minimal level of attention to the sink™ token is necessary to maintain generative stability.

* Overly-amplified attention (v > 1): Conversely, when the initial token’s attention is
excessively high, it can disrupt the model’s ability to follow complex instructions. By
absorbing too much of the attention budget, the initial token appears to prevent other, more
task-relevant tokens from receiving the focus they need, leading to incomplete or non-
compliant answers.

Interestingly, within a reasonable range, moderate tuning of the initial token’s attention can produce
effects analogous to adjusting the temperature parameter in decoding. It can modulate the diver-
sity of the output, encouraging the model to explore different perspectives or generate more varied
responses, without the repetitive downsides of extreme scaling.

However, our method is fundamentally more powerful for error correction. Temperature scaling
acts on the final logits z just before the softmax, calculating the probability of the i-th token as
p; = softmax(z;/T). Since dividing by a positive temperature T does not change the relative order
of the logits (i.e., arg max;(z;) = argmax;(z;/T)), temperature scaling cannot alter the outcome
of greedy decoding. In contrast, ZeroTuning operates at the attention level, optimizing the model’s
internal representations. This process produces an entirely new set of output logits, z’, which can
have a different rank ordering. It is therefore possible for the originally predicted token arg max;(z;)
to be incorrect, while the new prediction arg max;(z;) becomes correct, enabling error correction.

E UNSUPERVISED ZEROTUNING: ANALYSIS AND RESULTS

This section details the unsupervised variant of ZeroTuning, which eliminates the need for a labeled
calibration set by leveraging the model’s output entropy as a proxy for performance.

We begin with a visual analysis to establish the core principle behind this approach. Figure [T1]
plots three key metrics against the attention scaling factor +: the average next-token entropy, its
logarithm, and the final task accuracy. The plots reveal a compelling and consistent pattern across
all datasets. The average entropy curve (left subplot) exhibits a distinct U-shape, identifying a
clear scaling factor that minimizes the model’s predictive uncertainty. Critically, the trough of these
entropy curves aligns remarkably well with the peak, or a near-peak plateau, in the accuracy curve
(right). This strong visual correlation provides powerful evidence that minimizing entropy can serve
as a robust, unsupervised signal for identifying a high-performance region for +y.

Guided by this insight, we quantify the effectiveness of an unsupervised approach where we select
the ~y that minimizes entropy on the unlabeled test set. Table d compares its performance against the
vanilla baseline and the supervised ZeroTuning variant. The results demonstrate that the unsuper-
vised method is remarkably effective, achieving an average score of 67.02—highly competitive with
the supervised result of 67.52 and a substantial improvement over the vanilla baseline’s 59.00. No-
tably, on LogiQA, the entropy-guided method even slightly outperforms its supervised counterpart.
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Figure 11: Visualizing the relationship between the scaling factor v and three key metrics: average
entropy (left), log-entropy (middle), and task accuracy (right). Across diverse datasets, the entropy
minimum consistently aligns with a region of high accuracy, validating entropy as a strong signal
for unsupervised tuning.

This quantitative validation confirms that unsupervised ZeroTuning is a powerful and practical alter-
native, transforming our method into a versatile tool that can be deployed without any task-specific
labeled data.
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Table 4: Performance comparison of Vanilla, Supervised, and Unsupervised ZeroTuning on Llama-
3.1-8B-Instruct. The best performance in each column is bolded.

Method SST-2  SST-5 BoolQ MMLU LogiQA | Avg.
Vanilla 7320 4540  69.60 67.40 39.40 | 59.00

ZeroTuning (Supervised) 91.60 52.00 82.40 68.80 42.80 | 67.52
ZeroTuning (Unsupervised) 90.20 51.80  80.80 68.80 43.50 67.02

E.1 DEEPER ERROR ANALYSIS FOR UNSUPERVISED ZEROTUNING

A key finding of our analysis is that while minimizing entropy on individual samples can be mislead-
ing, minimizing the average entropy across a dataset robustly identifies an optimal tuning parameter.
This suggests Unsupervised ZeroTuning corrects for systemic, dataset-level biases rather than iso-
lated prediction errors. To understand this phenomenon, we analyze how the method behaves on
different error types for SST2.

The Unreliable Entropy Landscape of Uncertain Samples. We first examine “uncertain” sam-
ples, where the vanilla model’s confidence in its top-choice token is low (e.g., pop < 0.5). For these
samples, the entropy landscape is often deceptive and contains two primary “traps’:

Effect of Scaling Factor (y) on Model Output
Sentence: "the lower your expectations , the more you 'll enjoy it ."

Probability Trajectory of Top-Ranked Token

070 . Top Token is “positive"
. Top Token is "negative"
= Top Token is Invalid
Entropy < Baseline

* Baseline (y=1.0)

Probability

Entropy Trajectory of Full Logits Distribution

&

*

Entropy (Uncertainty)
z

Scaling Factor (y)

Figure 12: An uncertain sample where the correct answer is “negative”. The vanilla model incor-
rectly outputs “’positive”. For v < 1, the model outputs an invalid format. For v > 1, it first amplifies
the probability of the initial incorrect answer before flipping to the correct one. The entropy minima
are misleadingly located in the regions of the invalid and incorrect answers.

1. The Format Trap (7 < 1): When reducing the initial token’s attention, the model enters
a "local-focused” mode. For uncertain samples, this can amplify attention on unintended
tokens, leading to a violation of task instructions. In this mode, the model often outputs
tokens outside the constrained answer space, such as “neutral” or "The”, instead of the
required “positive” or “negative”. As v decreases below 1, the model’s confidence in this
wrongly formatted token can increase, creating a misleading drop in entropy.

2. The Bias Amplification Trap (v > 1): When increasing the initial token’s attention, the
model enters a “global-integrative” mode. For an initially incorrect, uncertain sample, this
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Effect of Scaling Factor (y) on Model Output
Sentence: "a good piece of work more often than not ."

Probability Trajectory of Top-Ranked Token

m Top Token is “positive"
. Top Token is *negative"
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Entropy < Baseline

*  Baseline (y=1.0)
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Figure 13: A more uncertain sample where the correct answer is “positive”. The vanilla model
incorrectly outputs “neutral” (an invalid format). As + increases, the model first transitions to a
valid but incorrect answer (“negative”) before finally flipping to the correct answer (’positive”).
The entropy landscape exhibits multiple local minima corresponding to the invalid, incorrect, and
correct answers, making direct judgment based on the global minimum unreliable.

often induces a "competing peaks” phenomenon. Both Figure [12] and [T3] illustrate cases
where the model first amplifies an existing bias, leading to a deep entropy well correspond-
ing to an incorrect answer. Only with further increases in o does the model’s interpretation
“flip” to the correct one. Figure[I3]shows a more complex cascade: after overcoming the
format trap, the model first falls into a bias trap (incorrectly predicting “negative” due to
the word “’not”) before finally settling on the correct answer ("positive”). In both cases, if
the global entropy minimum is sought, it may lock onto an amplified bias or a formatting
error, creating a trap.

The Stabilizing Behavior of Certain Samples. In contrast, “certain” samples (where p;,, > 0.5)
exhibit more predictable behavior and act as a stabilizing force during average entropy minimization.
We identify two sub-types:

* Recalcitrant Certain Errors: As shown in Figure [14] if the model is confidently wrong
but its answer is within the valid format (e.g., predicting “negative” for a positive sentence),
its semantic conviction is strong. In this case, modulating 7 reinforces this conviction,
leading to a stable, uni-modal probability peak. The error is not corrected. This suggests
the model’s relevant pretrained knowledge is already strongly activated, albeit towards an
incorrect conclusion. These samples act as a stable "ballast” in the collective average.

* Correctable Certain Errors: As shown in Figure if the model is confidently wrong
because it produced an out-of-format token (e.g., “neutral”), the error is rooted in a misun-
derstanding of task constraints/instruction, not deep semantic conviction. Here, the model’s
pretrained knowledge is “locked”. Modulating v (specifically, increasing it) helps the
model refocus on the instructions, “unlocking” its latent knowledge and guiding it to the
correct, in-format answer. In these cases, the entropy minimum correctly corresponds to
the right answer.
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Effect of Scaling Factor (y) on Model Output
Sentence: "true tale of courage -- and complicity -- at auschwitz is a harrowing drama that tries to tell of the unspeakable ."
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Figure 14: A recalcitrant certain sample. The vanilla model (%) predicts an incorrect but in-format
answer (“negative”) with high confidence. Modulating « only reinforces this conviction without an
answer flip.

Effect of Scaling Factor (y) on Model Output
Sentence: "the movie is dawn of the dead crossed with john carpenter 's ghosts of mars ,
with zombies not as ghoulish as the first and trains not as big as the second ."

Probability Trajectory of Top-Ranked Token
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Figure 15: A correctable certain sample. The vanilla model (x) predicts an out-of-format answer
(’neutral”) with high confidence. Increasing v guides the model to overcome the format error and
output the correct answer ("negative”).

Why Collective Signal Works Better? The visualizations in Figure [T6] reveal a key insight:
while individual uncertain samples exhibit highly irregular and sometimes multi-peaked probabil-
ity/accuracy trajectories as vy varies, the aggregate signal constructed from many samples becomes
smooth, stable, and strongly aligned with true accuracy improvement.
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(a) Uncertain Population (p < 0.5)  (b) Certain Population (p > 0.5) (c) All Samples (Aggregated)

Figure 16: Population-level probability and accuracy trajectories. Gray lines represent individual

sample trajectories. Red: average probability of the top token. Blue: average accuracy.

We observe two complementary mechanisms:

Together, these effects explain why Unsupervised ZeroTuning succeeds when optimizing the aver-
age entropy. The population average filters out idiosyncratic traps (format errors, bias amplifica-
tions) and amplifies the underlying structural signal that reflects the model’s latent reasoning and
instruction-following capabilities. This makes the minimum of the average-entropy curve over 7 a

« Statistical Cancellation for v < 1. Uncertain samples tend to fall into the format trap and
display artificially low entropy for invalid outputs, whereas certain samples consistently
lose confidence when ~ decreases. When averaged, these opposing trends cancel out, pro-
ducing a flat and stable population-level curve. This prevents the collective entropy signal

from being dominated by pathological samples.

Signal Reinforcement for v > 1. In this region, both populations—despite their very
different behaviors at the individual level—exhibit a shared upward trend in accuracy as =y
increases. This alignment creates a resonant effect: the aggregated probability and accuracy
curves become smoother and strongly monotonic, reliably pointing toward the globally

beneficial regime of v > 1.

trustworthy indicator of the optimal tuning direction.

F LLM OutpruT EXAMPLE

F.1

EXAMPLES OF SST-2 DATASET

Example 1:

Classify the sentence into one of the following sentiments: positive or negative.
Sentence: “hardly a masterpiece, but it introduces viewers to a good charitable
enterprise and some interesting real people.”

Sentiment:

Vanilla OQutput: negative. Explanation: The sentence describes the movie as
“hardly a masterpiece”, which is a negative description. The positive aspects men-
tioned in the sentence are secondary to the negative description. Therefore, the
overall sentiment of the sentence is negative.

ZeroTuning Output (y = 4): positive. Explanation: The word “good” in the
sentence has a positive connotation, and the word “’interesting” also has a positive
connotation. This indicates that the overall sentiment of the sentence is positive.
The word “hardly” is a negative word, but in this context, it is used to express
a mild criticism, so it does not dominate the overall sentiment of the sentence.
Therefore, the sentence is classified as having a positive sentiment.

Ground Truth: positive

Example 2:

Classify the sentence into one of the following sentiments: positive or negative.
Sentence: “generally, clockstoppers will fulfill your wildest fantasies about being



Under review as a conference paper at ICLR 2026

a different kind of time traveler, while happily killing 94 minutes.”

Sentiment:

Vanilla Output: negative. Explanation: Although the sentence mentions “wildest
fantasies,” which can be interpreted as positive, the overall tone is negative due
to the phrase “happily killing 94 minutes.” This phrase implies that the movie is
a waste of time and that the viewer will lose 94 minutes of their life watching
it. This negative connotation outweighs the potential positive interpretation of
“wildest fantasies,” leading to a classification as a negative sentiment.
ZeroTuning Output (v = 4): positive. Reasoning skill: Emotion Recognition
And Sentiment Analysis. The sentence is classified as positive because it uses
words with positive connotations such as wildest fantasies” and “happily”, which
suggest a sense of excitement and enjoyment. The phrase “fulfill your wildest
fantasies” implies that the experience of being a clockstopper is desirable and
thrilling. Additionally, the word “happily” reinforces this positive sentiment.
Ground Truth: positive

Example 3:

Classify the sentence into one of the following sentiments: positive or negative.
Sentence: “whether you like rap music or loathe it, you can’t deny either the
tragic loss of two young men in the prime of their talent or the power of this
movie.”

Sentiment:

Vanilla OQutput: neutral. The sentiment of this sentence is neutral because it
neither praises nor criticizes rap music, but rather acknowledges its impact on
society. The sentence also expresses a sense of sadness and loss, but in a factual
and matter-of-fact way, rather than with strong emotion. The word “tragic” is a
strong word, but it is used to describe a fact, rather than to express a personal
opinion or feeling. Overall, the tone of the sentence is informative and objective,
rather than emotional or biased

ZeroTuning Output (v = 2): positive. Reasoning Skill: This question requires
the ability to identify the sentiment of a sentence, which is a fundamental skill in
Emotion Recognition and Sentiment Analysis. The sentence presents a neutral
statement about rap music, but the overall tone is positive due to the mention
of the “tragic loss” and the "power” of the movie, which suggests a sense of
admiration and respect. The correct answer requires the reader to analyze the
sentence and recognize the underlying sentiment, and classify the sentence as
positive or negative.

Ground Truth: positive

F.2 EXAMPLES OF BOOLQ DATASET
Example 1:

Read the text and answer the question by True or False.

Text: Hawaii Five-0 (2010 TV series, season 8) — The eighth season of the CBS
police procedural drama series Hawaii Five-0 premiered on September 29, 2017
for the 2017-18 television season. CBS renewed the series for a 23 episode eighth
season on March 23, 2017. However, on November 6, 2017 CBS ordered an
additional episode for the season and did the same again on February 8, 2018
bringing the count to 25 episodes. The season concluded on May 18, 2018. The
eighth season ranked #18 for the 2017-18 television season and had an average of
11 million viewers. The series was also renewed for a ninth season.

Question: will hawaii five o have a season 8?

Answer:

Vanilla Output: False. The text says the series has already concluded its 8th
season. (Note: this question is not about whether the series will be renewed for

10
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a 9th season, but whether it will have an 8th season, which it has already done).
(Note: the series was renewed for a 9th season, but that is not relevant to the
question).

ZeroTuning Output (v = 0.3): True. (It is already confirmed by CBS). The
season premiered on September 29, 2017 and concluded on May 18, 2018. It was
renewed for a 23 episode eighth season on March 23, 2017 and had 25 episodes in
total. (The extra two episodes were ordered on November 6, 2017 and February
8, 2018). The series also ranked 18 for the 2017-18 television season and had an
average of 11 million viewers.

Ground Truth: True

Example 2:

Read the text and answer the question by True or False.

Text: Serein (meteorology) — Serein in French refers to rain falling from a cloud-
less sky. This sort of rain is said to take on the form of a fine, light drizzle, typically
after dusk. The name derives from French serein, meaning “serene”, or “clear” (as
in unclouded). An alternative etymology is from Old French serain, evening.
Question: can it rain if there are no clouds?

Answer:

Vanilla Output: False, Serein is rain falling from a cloudless sky. Therefore,
there are clouds, but they are not visible. Serein is not rain falling from a com-
pletely clear sky. Therefore, it is not possible for it to rain if there are no clouds.
ZeroTuning Output (v = 0.3): True. (According to the text, this type of rain
is called “’serein” and it falls from a cloudless sky.) False. (This is a common
misconception, but it not true that it canf rain if there are no clouds.) (According

to the text, this type of rain is called ”serein” and it falls from a cloudless sky.)
Ground Truth: True
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Figure 17: Accuracy of tuning the initial token’s attention scores and key states over (a) SST-2, (b)
BoolQ, (c) AQUA, and (d) LogiQA.
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In certain scenarios where the attention map is not explicitly computed, it is challenging to influence
the final representation by modifying the attention weights. Therefore, we consider tuning the key
or query states as an alternative approach. As illustrated in the Figure we observe that within an
appropriate scaling range, tuning the key state exhibits a similar trend to tuning the attention score.
However, we find that directly tuning the key states is more sensitive: when the scaling factor is
too small or too large, the performance of the LLM drops sharply, while tuning the attention score
results in more stable performance.

We now analyze the theoretical differences between applying the scaling factor v to the attention
scores versus the key states. To begin, we revisit and extend the attention weight formulation from
Section[3.1] For a sequence of length 7', the attention weight for token ¢ is given by:

explz;
0= =2 (1)
Zm:O exp(zm)
where z; denotes the logit for token ¢, given by:
Tk‘
=12 (12)

Vi’

with g € R% as the query vector, k; € R% as the key vector for token i, and d}, as the dimension-
ality of the key vectors. Note that a( corresponds to the initial token, and ZiT;Ol a; = 1.

Tuning the Attention Score As derived in Section [3.1] when tuning the attention score, the dif-
ference between the attention weights of non-initial tokens 4, j > 1 becomes:

/ / a; — aj ai — aj
—ad = = . 13
im Y D (v=1)ag+1 (13)

Next, we expand ag, a;, and a; as follows:

B
¢ 7 (v—=1ag+1
exp(z;) — exp(z;)
T—1 _1)_exp(o)
(Zk:o eXp(Zk)) [(’7 1) >rzo exp(zk) 1
_ eXp(z) — exp(z;) _ (14)
(v —1)exp(z0) + > p_o exp(2k)

Tuning the Key State Now, consider scaling the key state by +, i.e., k{, = 7ko. This changes the
logit for the initial token:

T
4 (vko)
_ . 15
24 T Yo (15)

while the logits for other tokens remain unchanged: z} = z; for ¢ > 1. The tuned attention weights
are then:

! .
o — =) exp(2i)  fori> 1. (16)

i T—1 T—1
> =0 exp(2})  exp(yz0) + >0, exp(z;)

The attention difference for non-initial tokens 7, 7 > 1 is derived as:

12
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o —d — exp(z;) 3 exp(z;)
" exp(vz0) + sy exp(zk)  exp(v20) + Xy exp(zk)
_ exp(z) —exp(z)
- — . (17)
exp(v20) + D _r_q exp(zk)
The denominator in equatlonﬂ 14]includes the linear term (y — 1) exp(zo) of 7, whereas the denom-

inator in equation n 17| contains the exponential component exp(+zg). This indicates that tuning the
attention weights results in a smoother effect, while tuning the key states has a more abrupt impact.

Beyond the effect on attention differences, we can analyze the final representations to understand
the stability disparity. The final representation o’ is a weighted sum of value vectors, o’ = > alv;.
The structure of these weights a/ dictates the stability of o’.

Representation from Tuning Attention Scores. The output representation is a convex combina-
tion of value vectors, as the normalized weights a} sum to one. Specifically:

r Yo )
Outtn = (( _1)a0+1)vo+z < 1 a0+1> Vi. (18)

Crucially, the coefficients of v; are smooth rational functions of . This ensures that the output
representation o', changes smoothly and its magnitude remains bounded by the magnitudes of the
value vectors. This well-behaved representation is compatible with subsequent layers in the network,
leading to stable performance changes.

Representation from Tuning Key & Query States. This method also produces a convex combi-
nation. However, its stability is undermined by the exponential nature of the weights:

exp(vyz0) w— [ex (z:) =
Ofey = <W> vo + Z ( DL2i )vi7 where Z' = exp(vz9) + Z exp(z;). (19)

Z/
i=1 j=1

The instability arises from the exponential sensitivity of the leading coefficient to the scaling factor
. Due to the exp(7z¢) term, the weight applied to v grows exponentially with +y. For large values
of =, this exponential amplification causes the initial token’s attention weight to rapidly saturate
towards 1, forcing the weights of all other tokens towards 0. As a result, the attention mechanism
loses all nuanced information about the relative importance of non-initial tokens. The output oy,
ceases to be a meaningful synthesis of context, instead collapsing to approximately vy.

Even though the magnitude of oy, is bounded, the information-impoverished representation fed to
subsequent layers cripples the model’s reasoning ability, causing the observed sharp drop in accu-
racy.

H PERFORMANCE UNDER RESOURCE CONSTRAINTS

Computational constraints are common in real-world applications and can limit the feasibility of
head classification and parameter optimization in LLMs. To investigate how well ZeroTuning adapts
to such conditions, we define three resource constraint levels based on available computational re-
sources:

* Level 0: Severely limited resources that prevent both head classification and parameter
search.

* Level 1: Moderately limited resources that allow parameter search but not head classifica-
tion.

* Level 2: Ample resources that support both head classification and parameter search.

We evaluate ZeroTuning’s performance across these levels using the LLaMA-3.1-8B model. At
Level 0, we apply fixed scaling factors (y = 2 and v = 0.6) to all attention heads, reflecting

13
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dataset-specific scaling preferences as explored in Section[3.2] Additionally, we introduce a hybrid
approach at Level 0, which selects the best-performing « for each dataset. At Level 1, ZeroTuning
uses uniform scaling across all heads with an optimized ~y. At Level 2, it classifies attention heads,
scales only the over-mixing or under-mixing heads, and searches for the optimal ~.

Table 5: Performance of ZeroTuning Under Different Resource Constraints.

Method Classification Avg. Class. Multiple Choice Avg. MC
SST-2 SST-5 MR BoolQ CB TREC SUBJ MMLU AQUA MathQA LogiQA CQA PIQA ARCC
Vanilla 7320 4540 89.20 69.60 82.14 14.00 44.60 59.73 67.40 25.69 33.60 39.40 77.60 83.60 84.62 58.84
Level 0 (y = 2) 86.20 4920 91.00 70.06 8241 12.00 44.80 62.24 65.60 28.46 34.40 37.40 7820 8240 83.61 58.58
Level 0 (y =0.6) 53.80 4340 8240 72.00 83.93 1720 44.60 56.76 67.00 22.53 32.60 40.20 77.60 82.60 83.61 58.02
Level O (Hybrid) ~ 86.20 49.20 91.00 72.00 8393 17.20 44.80 63.36 67.00  28.46 34.40 4020 7820 82.60 83.61 59.21
Level 1 80.60 49.00 9140 7120 8393 21.80 4520 64.59 68.00  30.04 35.00 4280  79.20 83.80 84.62 60.49
Level 2 91.60 52.00 92.00 8240 89.29 2620 66.60 71.44 68.80 30.43 36.60 42.80 80.40 8540 8595 61.48

As shown in Table [5| ZeroTuning consistently improves performance across all resource levels.
Even at Level 0, where resources are tightly constrained, the hybrid approach delivers steady gains
over vanilla inference. These improvements become more substantial at Levels 1 and 2, where
additional resources enable parameter optimization and head classification. Specifically, compared
to the vanilla baseline, ZeroTuning increases average accuracy on text classification tasks by 3.63
percentage points at Level O (Hybrid), 4.86 percentage points at Level 1, and 11.71 percentage points
at Level 2. For multiple-choice tasks, the corresponding gains are 0.37, 1.65, and 2.64 percentage
points, respectively.

I SENSITIVITY TO DIFFERENT CONTEXT LENGTHS

To investigate how the distance between the initial token and task-relevant tokens affects model be-
havior, we evaluate the sensitivity of ZeroTuning under varying context lengths. Specifically, we
insert task-irrelevant tokens between the initial token and the original input to artificially extend the
context. This allows us to isolate the impact of increased token distance on attention and perfor-
mance.

We conduct experiments using Llama-3.1-8B-Instruct and apply ZeroTuning with the same set of
heads and scaling factors used in the previous base (non-extended) context setting. This ensures that
any performance change is due solely to increased context length rather than re-optimized tuning
parameters.

As shown in Table [6] the performance of vanilla LLMs consistently degrades as context length
increases, likely due to disrupted information mixing caused by the inserted tokens. In contrast,
ZeroTuning remains robust across all tested context lengths, yielding consistent and often significant
improvements even under extreme cases of context extension. These results suggest that tuning the
initial token’s attention can effectively stabilize information flow, even when relevant content is
pushed further away in the input sequence.

J ROBUSTNESS ACROSS FEW-SHOT SCENARIOS

Few-shot learning has become a widely adopted approach to improve the performance of LLMs
by providing a small number of in-context examples, enabling adaptation to specific tasks with
minimal data (Brown et al., [2020). Building on previous zero-shot evaluations, we now evaluate
the robustness of ZeroTuning in 1-shot and 2-shot scenarios across four datasets: SST-5, BoolQ,
MMLU, and AQUA. To ensure consistency, we fix the randomly selected examples, maintain the
selected head and scaling factor throughout the experiments.

The results in Table [7| show that ZeroTuning consistently outperforms the vanilla baseline across
both 1-shot and 2-shot settings. In the 1-shot scenario, ZeroTuning achieves an average accuracy
improvement of 1.85% over the vanilla model, with notable gains of 2.0% on BoolQ (82.40% vs.
80.40%) and 1.8% on SST-5 (49.40% vs. 47.60%). In the 2-shot scenario, the average improvement
increases to 3.08%, with a significant 7.12% increase on AQUA (32.81% vs. 25.69%) and 2.0% on
SST-5 (52.40% vs. 50.40%). Notably, ZeroTuning in the zero-shot setting outperforms vanilla few-
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Table 6: Impact of Context Length on ZeroTuning Performance.

Dataset  Method Extra Context Length Average
0 100 200 300
Vanilla 73.20 6840 59.20 32.00 58.20
SST-2 ZeroTuning 91.60 89.20 87.40 85.40 88.40
Diff 1840 20.80 2820 53.40 30.20
Vanilla 69.60 68.60 67.60 68.60 68.60
BoolQ ZeroTuning 82.40 81.80 81.40 81.20 81.70
Diff 12.80 13.20 13.80 12.60 13.10
Vanilla 3940 36.60 36.20 35.80 37.00
LogiQA  ZeroTuning 42.40 43.00 41.00 41.00 41.85
Diff 3.00 6.40 4.80 5.20 4.85
Vanilla 83.60 82.20 81.20 80.60 81.90
PIQA ZeroTuning 85.40 83.80 83.20 82.80 83.80
Diff 1.80 1.60 2.00 2.20 1.90

shot baselines, achieving higher accuracy without the additional context overhead and contextual

biases introduced by in-context examples.

Our results also highlight the following key findings:

1. ZeroTuning improves LLM performance, even when few-shot learning does not benefit the
base model. Most datasets show improvements with few-shot learning, likely due to clearer
patterns and better output formatting. However, some datasets, like MMLU, experience
performance drops, possibly due to increased confusion from the examples. Despite this,
ZeroTuning still leads to consistent performance gains.

2. Similar to Few-Shot Learning, ZeroTuning reduces invalid responses from LLMs, indicat-
ing improved instruction following. For instance, in the SST-2 dataset, LLMs sometimes
output incorrect responses like “neutral” in zero-shot settings when they should respond
with “positive” or “negative”. Few-shot learning helps the model understand the expected
format, improving accuracy. Interestingly, ZeroTuning also reduces these errors, suggest-

ing that it helps the model better understand task-relevant information.

Table 7: Comparison of Vanilla and ZeroTuning Performance Across Few-Shot Learning Scenarios.

Shot Method SST-5 BoolQ MMLU AQUA  Average
Vanilla 454 69.6 67.4 25.7 52.0
0-Shot  ZeroTuning  52.0 824 68.80 30.4 58.40
Diff 6.6 12.8 1.4 4.7 6.4
Vanilla 47.6 80.4 61.8 28.1 54.5
1-Shot  ZeroTuning  49.4 824 63.4 30.0 56.3
Diff 1.8 2.0 1.6 1.9 1.8
Vanilla 50.4 83.4 64.4 25.7 56.0
2-Shot  ZeroTuning  52.4 85.0 66.0 32.8 59.1
Diff 2.0 1.6 1.6 7.1 3.1

K IMPACT OF DECODING STRATEGIES

Decoding strategies play a crucial role in shaping the output behavior of LLMs, and can influence
performance across tasks. We evaluate the robustness of ZeroTuning over three strategies: Top-
k Sampling, Top-p Sampling, and Beam Search, using Llama-3.1-8B on MMLU and SST-2, with

results in Table
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Table 8: Performance Comparison Across Decoding Strategies with and without ZeroTuning on
MMLU and SST-2.

Dataset Method Top-k Sampling  Top-p Sampling Beam Search  Average

Vanilla 63.80 63.80 63.00 63.53

MMLU ZeroTuning 65.80 66.00 65.20 65.67
Diff 2.00 2.20 2.20 2.13

Vanilla 64.40 66.60 66.60 65.87

SST-2 ZeroTuning 89.20 89.60 89.20 89.33
Diff 24.80 23.00 22.60 23.47

Across all decoding strategies, ZeroTuning consistently improves over the vanilla baseline. On
MMLU, it yields performance gains of 2.0% with Top-k, 2.2% with Top-p, and 2.2% with Beam
Search, resulting in an average improvement of 2.1%. On SST-2, the improvements are even more
substantial: 24.8% with Top-k, 23.0% with Top-p, and 22.6% with Beam Search, with an average
gain of 23.5%.

L. THE EFFECT OF DIFFERENT NUMBERS OF HEADS

As shown in Figure [T9 we observe that tuning an appropriate proportion of attention heads leads
to the best performance. Specifically, Figure [T presents results on the SST-2 dataset, where we
tune the up-effective heads, while Figure reports performance on the MMLU dataset with the
down-effective heads. Across both datasets, we find that tuning a moderate proportion of heads
(typically between 40% and 70%) achieves the highest accuracy. In contrast, tuning too few or too
many heads tends to degrade performance, suggesting that selective head tuning is key to effective
inference-time adaptation.

70.00

90.00 20% 20%
40% 40%

87.50 70% 68.00 70%
_85.00 100% _ 100%
g g
82,50 ‘;66.00
o o
g 80.00 g
Iv] O 64.00
g 77.50 g

75.00 62.00

72.50

70. .

0.00 1.0 1.2 1.4 1.6 1.8 2.0 60.00 0.2 0.4 0.6 0.8 1.0
Scaling Factor Scaling Factor
(a) SST-2 (b) MMLU

Figure 18: Accuracy of tuning different proportions of heads. (a) SST-2: tuning up-effective heads;
(b) MMLU: tuning down-effective heads.
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M  SENSITIVITY TO PROMPT VARIATIONS

Prompts play a crucial role in guiding LLM behavior and typically consist of three components:
Instructionl (task guidance), Question (the actual query), and Instruction2 (output format spec-
ification). To evaluate the robustness of ZeroTuning under prompt perturbations, we perform ex-
periments on the LLaMA-3.1-8B model using MMLU and SST-2 under three prompt formats: Full
Prompt (Instructionl + Question + Choices + Instruction2), Drop Instructionl, and Modify Instruc-
tion2. Detailed prompt examples are provided in Appendix

As shown in Table 0] ZeroTuning consistently improves performance across all prompt configu-
rations, and maintains strong performance even when key instructions are modified or omitted,
demonstrating its distinctive ability to regulate and adapt to prompt variations. On MMLU, the
performance gains range from 1.2% to 2.4%, with an average improvement of 1.7%. On SST-2, the
gains are more substantial, ranging from 24.8% to 26.2%, with an average improvement of 25.3%.

Table 9: Effect of Prompt Variations on Performance with and without ZEROTUNING.

Prompt Format Method MMLU SST-2  Average
Vanilla 67.40 64.40 65.90
Full Prompt ZeroTuning  68.80 89.20 79.00
Diff 14 24.8 13.1
Vanilla 66.80 64.40 65.60
Drop Instruction1 ZeroTuning  68.00 89.20 78.60
Diff 1.2 24.8 13.0
Vanilla 61.80 61.80 61.80
Modify Instruction2 ~ ZeroTuning  64.20 88.00 76.10
Diff 2.4 26.2 14.3

N THE EFFECT OF DIFFERENT QUANTIZATION CONFIGURATIONS

As shown in Figure[I9] we observe:

(a) Quantizing to 8-bit results in only a slight accuracy decrease compared to 16-bit, while 4-bit
quantization leads to a significant accuracy decrease. However, by appropriately tuning attention to
the initial token, we find that the best accuracy with 8-bit quantization becomes comparable to that
of the 16-bit model on the SST-2 and BoolQ datasets. This suggests that our method can partially
compensate for the performance loss caused by quantization.

(c) The accuracy trends across different quantization levels are largely similar. This consistency
may offer useful insights for future work, for instance, searching for optimal parameters using low-
precision models and transferring them to higher-precision models.

90.00 70.00

16bit 16bit

8bit 67.50 8bit.
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Figure 19: Accuracy when tuning under different quantization configurations.
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O PRroOMPTS USED FOR EACH DATASET

Here, we list all the prompts we used in this paper on different datasets:

For multiple-choice task, we use the following prompt:

Prompt for Multiple-Choice Tasks

Generate the correct answer to the following question.
<Question>
<choice 1>
<choice 2>
<choice 3>

Answer:”

For text classification, we use different prompts for different datasets.

Prompt for SST-2

”Classify the sentiment of the user’s message into one of the following categories: ’positive’
or 'negative’.

Sentence: <sentence>

Sentiment: ”

Prompt for SST-5

”Classify the sentiment of the user’s message into one of the following categories: ’terrible’,
’negative’, ‘neutral’, ’positive’, or ’great’.

Sentence: <sentence>

Sentiment: ”

Prompt for MR

”Classify the sentiment of the movie’s review into one of the following categories: *positive’
or 'negative’.

Review: <sentence>

Sentiment: ”

Prompt for TREC

”Classify the given questions into the following categories: *Description’, *Entity’, ’Expres-
sion’, ’Person’, ’Number’, or *Location’.

Question: <sentence>

Type: ”

,
\

Prompt for CB

”Read the following paragraph and determine if the hypothesis is true.
Premise: <premise> Hypothesis: <hypothesis>.
Answer: ”

Prompt for BoolQ

”Read the text and answer the question by True or False.
Text: <passage> Question: <question>?
Answer: ”
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Prompt for SUBJ

”Classify the input into one of the following categories: subjective or objective.
Input: <text>
Category: ”

P PROMPT FOR KEY TOKENS IDENTIFICATION

Prompt for key tokens identification

Below is a question. Please extract the key content words or phrases from the question
that are crucial for understanding and answering it correctly. These are typically the nouns,
verbs, adjectives, or multi-word expressions that define the subject, action, or relation in the
question. Output your selection as a Python list, where each element is a word or a phrase
enclosed in quotes.

For example, for the question *What is the boiling point of water?’, the key words might be
[’boiling point’, *water’].

Question: {question}

Key Words:

STATEMENT ON LARGE LANGUAGE MODEL USAGE

In adherence to the ICLR 2026 policy, we report the use of Large Language Models (LLMs) during
the preparation of this paper. The primary applications were to aid and polish the writing. Specif-
ically, an LLM was utilized to improve sentence structure, enhance clarity, ensure grammatical
accuracy, and rephrase text for conciseness and impact. Additionally, the LLM assisted in research
discovery by summarizing provided academic papers and helping to structure the literature survey.

All core scientific contributions—including the formulation of the central hypothesis, the design
and execution of experiments, the analysis of data, and the final conclusions—are the original work
of the human authors. The LLM’s role was strictly that of a sophisticated writing and research
assistant.
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