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ABSTRACT

This work proposes FedMoDN, a novel federated modular neural network archi-
tecture for collaborative learning across all features of an imperfectly interoper-
able distributed dataset. Here, distributed data centers that collect variable com-
binations of features are able to use the full complement of their features with
minimal exposure to biased missingness. Our approach enables data owners col-
lecting different feature subsets to train a joint model without sharing, discarding,
or imputing any data. We evaluate the robustness of our approach through experi-
ments that mirror realistic challenges encountered with medical data, particularly
in resource-limited settings. Our results show that this modular approach is signif-
icantly more robust than a monolithic neural network when dealing with missing
data, systematic bias, or heterogeneous feature subsets.

1 BACKGROUND

Collaborative learning approaches can greatly benefit clinical environments where pooling the in-
sights of several distributed small databases can improve the effectiveness of local models. However,
learning across fragmented data becomes complex when there is a high amount of heterogeneity
across data sets. Particularly challenging is the case of imperfect interoperability (IIO) where nodes
collect different feature subsets, and are thus vertically partitioned. This scenario is particularly
relevant in clinical environments where resource limitations or variations in clinical practices and
protocols can result in a high degree of systematically missing features. Another major source of bias
stems from the way clinical data is often collected as a byproduct of decision-support tools. This can
introduce spurious correlations between feature availability and outcome values, particularly when
decision-tree-based tools are used.

In this work, we propose to address these challenges by adapting Modular Decision Support Net-
works (MoDN) (Trottet et al.,[2023), a modular neural network architecture to the federated learning
(FL) setting. This allows clinicians working with IO clinical variable subsets to collaboratively train
a model without discarding incomplete patient records or relying on feature imputation. We show its
ability to match and outperform traditional FL, especially in the face of systematic bias. Although
designed for low-resource medical environments, our approach is use case agnostic and applicable
across domains.

1.1 RELATED WORK

Modular deep learning (DL) architectures are promising for transfer and multi-task learning by en-
abling composability, re-usability, and personalization of model components. For a taxonomy and
recent survey of modular deep learning architectures, see Pfeiffer et al. (2023)). In federated learning
(McMabhan et al.| [2017a)), recent work has focused on personalization to tackle data heterogeneity
between nodes. |Arivazhagan et al.| (2019) introduced “personalization layers”, which are private
model components tailored to local data within shared model architectures. Similarly, Wang et al.
(2022) proposed to adaptively select personalized modules from a federated pool of modules. Their
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work focuses on identifying optimal module combinations to build heterogeneous neural architec-
tures. In contrast, our approach is based on modular decision support networks (MoDN (Trottet
et al., 2023; Swamy et al., [2024)), which allows users to compose modules based on the specific
feature subsets they wish to use, with a focus on interpretability by design, making the architecture
particularly well-suited for medical applications.

1.2 CONTRIBUTIONS

Our work explores the potential of modular networks for collaborative learning in settings with
sparse, biased, and I1O distributions. In particular, to incentivize collaboration, we prioritize major-
ity robustness, aiming to mitigate the adverse effects of isolated data poisoning and shifts in minority
datasets. To this end, we adapt the MoDN architecture (Trottet et al.,[2023)), which is modular across
both input and output spaces, and demonstrate how it can be trained in a federated way to address
the challenge of vertical partitioning in I1O datasets. Our model, FedMoDN, is composable, allow-
ing the contributing hospitals/nodes to train and use only the modules relevant to their local dataset,
without requiring any imputation for missing features or modalities. This is a significant improve-
ment over standard horizontal federated learning (HFL) approaches, where incomplete datapoints
must be discarded or imputed. Even more challenging is the mixed horizontal and vertical federated
learning (HVFL), i.e. scenarios where different hospitals may have some overlap in patient IDs but
distinct features Panel 2.). This typically requires that non-overlapping IDs and features
be discarded. FedMoDN allows learning from the entire dataset. We create a proof-of-concept using
well-established FL paradigms, such as centralized server aggregation. However, our approach is
flexible and can be readily adapted to other FL. frameworks.

2 METHODS

2.1 MODEL ARCHITECTURE

We provide a brief overview of the model architecture and refer to [Trottet et al.| (2023); Swamy
et al| (2024) for more specific details. As shown in Panel 3. the architecture relies on
three main components: a state vector, a set of encoder modules, and a set of decoder modules. The
state vector represents the current internal model representation learned about a patient. For each
available feature f1, ..., f,, we define a corresponding encoder multilayer perceptron (MLP). Note
that different encoder types could be defined for different modalities, such as convolutional neural
networks for images. Each encoder module takes the corresponding feature value and the current
patient state as input, and outputs the updated state. Similarly, we define one MLP decoder module
for each target. The decoders take the current state as input and output the target prediction.

2.2 TRAINING

We describe the training procedure for FedMoDN, which involves two main steps: local module
parameter updates and federated module parameter updates. In the federated step, we consider two
scenarios: (1) local datasets with entirely distinct (non-overlapping) patients/training instances, and
(2) local datasets with partial or complete overlap. While we outline a potential approach for training
in the overlapping scenario, our experiments currently focus on the non-overlapping case, leaving
identifying optimal strategies for training with overlap for future work.

2.2.1 LOCAL PARAMETER UPDATES

Each node defines sets of encoder and decoder modules based on their local availability of features
and targets. Specific architecture details such as the number or size of layers of each module are
predefined by the centralized server to ensure compatibility during federated training. After ini-
tializing the state vector to zero, the encoders are applied sequentially in random order. Each time
a feature is encoded, the state is updated, and all decoders are applied to predict their respective
targets. This trains the model to learn to predict the targets for any given set of available features,
without requiring missing value imputation.
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Figure 1: FedMoDN implementation pipeline. Panel 1. Decentralized data collection and algorithm
deployment by various hospitals/nodes. Panel 2. The aggregated database is both horizontally
partitioned (different patients) and vertically partitioned (different features/targets). Furthermore, it
can be sparse and contain systematic biases. We assume each node collects at least one target per
patient. Panel 3. FedMoDN architecture. Starting with the initial patient state vector sy (current
internal patient representation) the state is sequentially updated by feature-specific encoder neural
networks, which take the current state and the feature value as inputs. If a feature is missing, its
encoder is not applied. After each state update, any target-specific decoder neural network can be
used to generate predictions. Panel 4. Federated training of FedMoDN without training instance
overlap. Each node trains only the modules corresponding to its available features, performing a
predefined number of local training steps before sending module parameters to the central server.
The central server aggregates the module parameters for shared features/targets and redistributes
them for the next training round.
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2.2.2 HORIZONTAL AND VERTICAL FLL WITHOUT TRAINING INSTANCE OVERLAP

After completing a predefined number of local training steps and updating their encoder and decoder
module parameters, the nodes transmit the module parameters to the central server. The server then
updates parameters for modules shared by multiple nodes (i.e. modules handling the same feature
or target) using a federated optimization algorithm such as FedAVG (McMabhan et al.,, [2017b)) or
FedProx (L1 et al.l 2020), and distributes the updated parameters back to the nodes for the next
round of local training (Figure T|Panel 4.). This process is repeated iteratively until convergence.

2.2.3 HORIZONTAL AND VERTICAL FLL WITH TRAINING INSTANCE OVERLAP

We briefly outline potential strategies for handling training instance overlap, while leaving a detailed
analysis for future work. We assume the same setting as previously, where each local dataset has
access to the target values of interest. The simplest solution is to train the model as if no overlap
exists, which is reasonable if overlap sizes are negligible. Another approach, suited to a collabo-
rative peer-to-peer setup without a central server, is to train separate local models while securely
exchanging intermediate encoded patient states. Each node locally encodes its features and shares
the encoded states with nodes holding the same patients; since encoders can be applied in any order,
receiving nodes can update and decode the states as needed. This way, each node retains its own
model parameters while leveraging shared patient states, which is especially useful when the overlap
is substantial. Finally, hybrid approaches that share both patient states and module parameters, or
leverage states of similar patients, could be investigated depending on the context. Naturally, en-
suring secure data sharing is critical to prevent information leakage in all scenarios (Castiglia et al.,
2022} |Liu et al., [2024)).

3 EXPERIMENTS & RESULTS

We conducted three representative experiments to evaluate FedMoDN’s robustness against miss-
ing data, limited feature subset interoperability, and systematic bias. To simulate realistic clinical
challenges, we generated synthetic data, and we used subsets of the California Housing datase to
demonstrate performance on publicly available data. We assessed model performance across various
regression tasks. Details on the synthetic data generation process and the public dataset are provided
in[A.T.T)and[A.T.2]respectively. We simulated FL with 10 synthetic nodes and 5 nodes for the public
dataset. We emphasized experiments in small data regimes (i.e. around 100 samples per node and 5-
10 input features), to reflect real-world scenarios where clinicians train and deploy models on tablets
in low-resource settings. In such contexts, mitigating bias and overfitting is particularly important.

Models We compared FedMoDN to two baselines: (1) CBaseline, an upper baseline in which
MoDN is trained centrally on the entire dataset (i.e. data is shared among nodes), and (2) FedBase-
line, a federated MLP approach. Like most deep learning architectures, MLPs require complete
data, making imputation necessary for missing or incompatible features. We applied mean-value
imputation to handle these cases. Alternatively, one could discard incomplete datapoints, but per-
formance would suffer as missingness increases. Moreover, in limited-interoperability scenarios,
this could leave some nodes with empty datasets, making the approach infeasible. Details on model
architectures are provided in[A.T]

Evaluation We evaluated each model on 5 different train/validation/test splits derived from each
dataset. To ensure a fair comparison, we allowed similar capacities for FedMoDN and FedBaseline,
to achieve comparable performance on fully interoperable, unbiased, and complete data, serving as
a reference for subsequent experiments. Training and architecture details are provided in appendix
[A1] We measured performance by computing the Root Mean Square Error (RMSE) on the test
set and compared the errors of the different models against FedMoDN using paired t—tests. For
selected experiments, we assessed the impact on different types of nodes separately, particularly
focusing on how unreliable nodes influence federated training and affect reliable nodes. We observe
similar trends on both datasets and present the synthetic data results in the main text, with figures
for the public dataset in the Appendix.

1https ://scikit-learn.org/stable/modules/generated/sklearn.datasets.
fetch_california_housing.html
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3.1 IMPACT OF MISSING DATA
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Figure 2: Comparison of model performance under different constraints. (a) Impact of missing data
on RMSE. (b) Effect of limited feature interoperability on RMSE.

In this first experiment (Figure 2a), we evaluate the robustness of each approach to missing data,
maintaining a consistent missingness level across the train and test sets for each node. Missing data
is a common challenge, often arising from incomplete patient records or resource constraints.

The first set of bars in (corresponding to 0% missingness) shows the performance on
complete, unbiased, and fully interoperable data, serving as a reference for subsequent experiments.
In this setting, FedBaseline slightly outperforms FedMoDN, likely due to its simpler training process.
However, as missingness is introduced, reflecting real-world conditions, FedMoDN consistently
outperforms the monolithic baseline at all levels. This highlights FedMoDN’s potential to effectively
train a shared model even when some nodes experience substantial missingness. Lastly, CBaseline
usually performs similarly or only slightly outperforms FedMoDN, indicating that the architecture
is well suited to be trained in a federated way. Similar observations can be made about [Figure 4a]in
Appendix [A.2.T|for the public data.

3.2 FEATURE INTEROPERABILITY

We examine how limited feature interoperability affects model performance. Limited feature inter-
operability is especially relevant in clinical resource-limited settings, where inconsistent feature sets
arise due to differences in data collection, equipment availability, and cost constraints. Understand-
ing its impact on FL is crucial for developing models that can handle heterogeneous data sources.
To evaluate this, we design an experiment where half of the nodes are restricted to a random subset
of the features, while the others have access to all features. This setup is illustrated in
Panel 2, where hospitals A and B use a limited feature subset, while hospital C has access to all
features. Feature availability remains consistent across each node’s train and test sets, allowing us
to separately assess its impact on nodes with full and limited feature access in a federated training
setup.

As Figure 2b] shows, when training under feature heterogeneity, FedBaseline significantly harms
nodes with full feature access compared to FedMoDN. However, all models perform similarly on
nodes with restricted feature access. Notably, on the public dataset, FedMoDN significantly outper-

forms the baseline on both node types (Figure 4b).
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Figure 3: Impact of systematic bias on model performance. Each bar represents the test RMSE for a
specific biased feature, using a test set with the corresponding bias pattern. Models are trained with
systematic bias in half of the nodes, while a different bias pattern is applied at test time. FedMoDN
consistently outperforms FedBaseline, demonstrating greater resilience to biased feature availability.

3.3 ROBUSTNESS TO SYSTEMATIC BIAS

To evaluate each model’s robustness to systematic bias, we designed experiments to evaluate how
bias in some nodes impacts the overall model. We introduced bias by systematically masking a spe-
cific feature in half of the nodes whenever the target variable exceeded the local dataset’s average
target value. This simulates a common clinical scenario where certain features are recorded only
under specific conditions, creating an unintended correlation between feature availability and pa-
tient outcomes. To test whether the models learn this bias or the true relationships between input and
target values, we applied the inverse bias pattern in the test set, masking the value when the target
variable is below average. We repeated this process for five different features, creating five distinct
biased train and test sets. [Figure 3|shows the results across different biased features. FedMoDN con-
sistently outperforms FedBaseline in each scenario, indicating better resilience to systematic bias.
Notably, there is no significant difference between centralized training (CBaseline) and federated
training (FedMoDN). On the public dataset, FedMoDN performs similarly or better than FedBase-
line in every scenario (Figure 5]in Appendix [A.2.3). Additionally, we evaluated model performance
using FedProx instead of FedAvg, as it is designed to better handle non-IID datasets. However, in
this setting, it showed no significant advantage over FedAvg in Appendix [A:23). This
suggests that the benefits of a modular architecture outweigh those of changing the optimization
algorithm in this setting.

4 CONCLUSION

In this work, we explored the utility of adapting modular neural networks to complex federated learn-
ing settings with both horizontal and vertical partitioning in the presence of bias and missingness.
Our experiments highlight the model’s robustness to missing data, systematic biases, and limited
feature interoperability, challenges that frequently arise when integrating data from heterogeneous
sources acquired as a byproduct from existing decision support tools. Moreover, FedMoDN ofters
a promising solution for vertical FL, both with and without training instance overlap, as it does not
require discarding heterogeneous data. This is especially beneficial in low-resource settings, where
data is already scarce.

4.1 FUTURE WORK

As a proof of concept, this work opens opportunities for many extensions and further investigations,
both in terms of applications and collaborative learning strategies. First, we plan to evaluate our
framework on real-world clinical data, where limited interoperability is a common challenge. In
particular, we will explore how feature and target distribution shifts can be optimally handled, for
example, through local fine-tuning of federated modules. Then, we aim to explore optimal strategies
for training FedMoDN in a fully decentralized setting, allowing training instance overlap while
eliminating the need for a centralized server. In particular, we plan to investigate how nodes can
share patient states to enhance learning without compromising sensitive patient information. Lastly,
we plan to extend this work to support multimodal IO settings where state size optimization would
be particularly challenging.
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A APPENDIX

A.1 MODEL ARCHITECTURE AND TRAINING
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neurons. To ensure a fair comparison, we set the state dimensions to 4 and 5 for the synthetic/public
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The optimal architecture and hyperparameters were selected using cross-validation on the complete,
unbiased, and fully interoperable datasets.

We trained the models for 5 — 10 local epochs for the synthetic/public datasets respectively before
each federated aggregation round. Unless specified otherwise, our method follows the standard
FedAvg framework. We applied early stopping based on validation data to determine the optimal
number of aggregation rounds.

A.1.1 SYNTHETIC DATA GENERATION PROCESS

For each node, we independently sample data points to generate feature vectors z € R from
a multivariate normal distribution with zero mean and identity covariance. The continuous target
variable y is then computed as a nonlinear function of z, incorporating sinusoidal transformations,
quadratic and cubic terms, and feature interactions. To introduce variability, we assign small weights
to different components of the transformation. Finally, we add Gaussian noise to simulate real-world
uncertainty.

A.1.2 CALIFORNIA HOUSING DATASET

The California Housing dataset is derived from the 1990 US Census and includes features
describing median income, age, and household characteristics such as the number of rooms
in Californian houses.  The target variable is the median house value. It is publicly
available at https://scikit-learn.org/stable/modules/generated/sklearn.
datasets.fetch_california_housing.html. Given the dataset’s large size (= 20,000
data points), we randomly sampled 100 datapoints per node to fit our experimental setting.
The selected features include: [‘longitude’, ‘latitude’, ‘housing_median_age’, ‘total_rooms’, ‘to-
tal_bedrooms’, ‘population’, ‘households’, ‘median_income’]. We applied standard preprocessing
steps, including scaling continuous features, one-hot encoding categorical variables and scaling the
target variable.

A.2 EXPERIMENTS & RESULTS ON CALIFORNIA DATASET

We present here the results of the experiments on the public California dataset.

A.2.1 IMPACT OF MISSING DATA
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Figure 4: Comparison of model performance under different constraints using the California Hous-
ing dataset. (a) Impact of missing data on RMSE. (b) Effect of limited feature interoperability on
RMSE.

presents the robustness of each approach to missing data on the California dataset. As
in the synthetic data experiments, FedBaseline slightly outperforms FedMoDN on the complete,
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unbiased, and fully interoperable dataset. However, once missingness is introduced, FedMoDN
consistently achieves superior performance.

A.2.2 FEATURE INTEROPERABILITY

As described in some nodes in this FL experiment have access to only a random
subset of features, while others use the full feature set. For the California dataset, 3 out of 5 nodes
were limited to a random subset of half the features. shows that FedMoDN significantly
outperforms FedBaseline on both nodes with full feature access and those with restricted access.

A.2.3 ROBUSTNESS TO SYSTEMATIC BIAS
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Figure 5: Impact of systematic bias on model performance. Each bar represents the test RMSE for a
specific biased feature, using a test set with the corresponding bias pattern. Models are trained with
systematic bias in half of the nodes, while a different bias pattern is applied at test time. FedMoDN
consistently performs similarly or better than FedBaseline, demonstrating greater resilience to biased
feature availability.
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Figure 6: Comparison between FedAvg and FedProx training. Different FedProx settings show no
clear advantage over FedAvg on this dataset.

We conducted the same experiments described in[subsection 3.3| introducing systematic bias in fea-
ture availability and evaluating the models on test sets with different bias patterns. This experiment
was repeated for each feature in the California dataset. FedMoDN consistently demonstrated greater
robustness to bias than FedBaseline. Notably, performance varied across features; for instance, Fed-
Baseline experienced a significant drop when systematic missingness was introduced in features like
“longitude” and “latitude”.

Lastly, in we tested whether FedProx better handled bias than FedAvg during training.
However, we observed no significant difference for either FedBaseline or FedMoDN, suggesting
that the benefits of a modular architecture outweigh those of changing the optimization algorithm in
this setting.
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