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Learning Spherical Radiance Field for Efficient
360◦ Unbounded Novel View Synthesis

Minglin Chen , Graduate Student Member, IEEE, Longguang Wang , Yinjie Lei , Senior Member, IEEE,
Zilong Dong , and Yulan Guo , Senior Member, IEEE

Abstract— Novel view synthesis aims at rendering any posed
images from sparse observations of the scene. Recently, neural
radiance fields (NeRF) have demonstrated their effectiveness in
synthesizing novel views of a bounded scene. However, most
existing methods cannot be directly extended to 360◦ unbounded
scenes where the camera orientations and scene depths are
unconstrained with large variations. In this paper, we present
a spherical radiance field (SRF) for efficient novel view synthesis
in 360◦ unbounded scenes. Specifically, we represent a 3D scene
as multiple concentric spheres with different radii. In particular,
each sphere encodes its corresponding layered scene into implicit
representations and is parameterized with an equirectangular
projection image. A shallow multi-layer perceptron (MLP) is
then used to infer the density and color from these sphere
representations for volume rendering. Moreover, an occupancy
grid is introduced to cache the density field and guide the
ray sampling, which accelerates the training and rendering
procedures by reducing the number of samples along the ray.
Experiments show that our method can well fit 360◦ unbounded
scenes and produces state-of-the-art results on three benchmark
datasets with less than 30 minutes of training time on a 3090 GPU,
surpassing Mip-NeRF 360 with a 400× speedup. In addition,
our method achieves competitive performance in terms of both
accuracy and efficiency on a bounded dataset. Project page:
https://minglin-chen.github.io/SphericalRF

Index Terms— Novel view synthesis, neural radiance fields,
equirectangular projection image.

I. INTRODUCTION

NOVEL view synthesis is a long-standing problem in
computer vision and graphics, which aims to render

images at arbitrary viewpoints from a set of captured images
at some sparse viewpoints. Traditional methods synthesize
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novel views by formulating the scene as a textured point
cloud [1] or mesh based on unstructured multi-view stereo
(MVS) [2], [3], [4], [5], or learning a 4D light field func-
tion [6], [7], [8], [9], [10] without geometric reconstruction.
Recently, neural radiance fields (NeRF) [11] is introduced
as a powerful paradigm for novel view synthesis. NeRF
combines implicit scene representation [12], [13] with tra-
ditional volumetric rendering [14] to achieve photo-realistic
novel view synthesis. Later works further advances NeRF by
improving synthesized image quality [15], [16], [17], [18],
[19], training and rendering speed [20], [21], [22], [23], [24],
[25], [26], [27], generalization ability [28], [29], [30], [31], and
extending to other research fields, such as large-scale scene
reconstruction [32], [33], [34], [35], [36], embodied artificial
intelligence [37], [38], [39], and text-conditioned 3D object
generation [40], [41].

Despite the great success of NeRF in novel view synthesis,
existing NeRF-based approaches [11], [15], [16], [21], [22],
[23], [25], [42] mainly focus on bounded scenes. These
methods are applied to synthesized small objects (e.g., lego)
or captured real-world images after background removal
using segmentation methods [43], [44], [45], [46], [47], [48],
[49], [50]. However, in real-world scenes, acquired images
contain not only nearby objects but also their surrounding
environments, e.g., distant trees and buildings. As a result,
the aforementioned NeRF-based methods suffer from blurry
results in distance regions. In essence, the challenges of 360◦

unbounded scenes are twofold:
(i) Sparse Rays. For NeRF-based methods, the perception

of depth relies on the intersection between rays, which is
largely affected by the density of rays. In a 360◦ unbounded
scene, the outward rays for backgrounds are much sparser
than those for central objects such that the under-sampling
of backgrounds leads to the difficulty of reconstruction.

(ii) Large Depth Variation. NeRF-based methods com-
monly employ a uniform sampling strategy in Euclidean space
to render bounded scenes. However, the depth for a 360◦

unbounded scene varies significantly, usually ranging from ten
of centimeters to tens of meters. Consequently, the uniform
sampling strategy cannot be directly extended to unbounded
scenes as too many samples are required to render the back-
grounds.

In this paper, we propose a spherical radiance field (SRF)
for efficient novel view synthesis in 360◦ unbounded scenes.
Our SRF encodes the scene into layered spherical implicit
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Fig. 1. Comparison of typical settings of scenes in novel view synthesis.
(a) All cameras face inward to capture central objects. Existing accelerated
NeRF-based methods [22], [23], [24], [25], [51] are suitable for this setting.
(b) All cameras face outward to capture the background. MSI-based meth-
ods [52] are used for these scenes. (c) Cameras capture not only the central
objects but also the background. While previous methods cannot well handle
this complicated setting, the proposed method can efficiently synthesize novel
views with unconstrained perspectives.

representations and employs MLPs to render novel views.
Specifically, the 3D scene is represented as multiple concentric
spheres with different radii, where each sphere is param-
eterized using an equirectangular projection (ERP) image.
On the ERP image, each pixel encodes the scene within its
neighboring 3D space into a trainable feature, which is fed
to a shallow MLP to infer the density and color for volume
rendering. By incorporating layered spherical structure with
implicit representations, our SRF can well model a 360◦

unbounded scene with superior performance in terms of both
accuracy and efficiency.

Our main contributions can be summarized as follows:
• We propose a spherical radiance field for 360◦ unbounded

novel view synthesis. Our SRF formulates a 3D scene as
multiple concentric spheres and employs volume render-
ing to synthesize novel views.

• Our method achieves state-of-the-art performance on
three real-world 360◦ unbounded datasets in 23 minutes
of training time while producing competitive results on
bounded datasets.

II. RELATED WORK

In this section, we first review NeRF-based methods devel-
oped for bounded and unbounded scenes. Then, we briefly
discuss the multi-sphere images that are related to our method.

A. Bounded View Synthesis

Bounded view synthesis assumes that the relevant scene
is contained within a limited range, e.g., object-level and
enclosed room-level view synthesis. As shown in Fig. 1(a),
the methods of bounded view synthesis can only model the
central region. In real-world scenarios, additional processing
is required to remove the background regions [21], [42] before
bounded view synthesis. Recently, Mildenhall et al. [11] pro-
posed neural radiance field, which synthesizes photorealistic
views by combining implicit representation [12], [13] with
volume rendering. Instead of using one MLP to represent
the whole scene, Liu et al. [42] embedded features in sparse

voxel grids which were considered as local properties of
implicit fields. Barron et al. [15] introduced conical frustums
rendering to NeRF, which helps to reduce aliasing artifacts and
achieve higher image quality. Verbin et al. [16] introduced
the bidirectional reflectance distribution function (BRDF) in
NeRF to model shiny surfaces. Subsequent works further
advance NeRF to improve its capability to reconstruct fine
details, making NeRF generalizable [28], [29], [30], [31], [53],
dynamic [54], [55], [56], and controllable [57], [58].

Despite the promising results produced by NeRF-based
methods [12], [15], [16], they are high in computational
complexity due to the overhead of MLP query on each
sampled point. To remedy this, Lindell et al. [59] proposed
AutoInt [59] to learn closed-form solutions of integrals, which
replaces hundreds of forwarding passes with two queries.
Reiser et al. [20] utilized thousands of shallow MLPs instead
of one deep MLP to represent a scene. In addition, hybrid
radiance field representation has been studied to accelerate
NeRF-based approaches, which combines an explicit data
structure (e.g., dense or sparse voxel grid [20], [22], [23], [24],
[42], and Octree [21]) with shallow MLPs.

B. Unbounded View Synthesis

Different from bounded view synthesis, unbounded view
synthesis aims to synthesize novel views under an uncon-
strained setting. Early works [6], [60], [61] focus on
forward-facing unbounded scenes and employ multi-plane
images to represent the scene as a set of RGBA images in
different depths. However, these methods can only synthesize
novel views within a limited angle range, and cannot adapt to
360◦ novel view synthesis. As shown in Fig. 1(c), the methods
of 360◦ unbounded view synthesis can model both central and
background regions. Recently, several methods extend NeRF
to 360◦ unbounded scenes. Specifically, Zhang et al. [62]
first proposed inverted sphere parameterization that employs
another single MLP to model the background. Neff et al. [63]
explored to warp the metric space using a radial distortion
function. However, the available camera region is limited to a
small cell. Barron et al. [64] adapted Mip-NeRF [15] to 360◦

unbounded scene with a newly-developed space contraction
method. Nevertheless, these methods synthesize highly real-
istic images at the cost of a very high computational cost,
usually requiring a training time of several days to one week
for a single scene.

To accelerate training in unbounded scenes, a naive idea
is to transfer the core techniques of Mip-NeRF 360 [64]
to NGP [22], as done in [65]. However, such a straight-
forward method is not trivial, as the integrated positional
encoding (IPE) of Mip-NeRF 360 is incompatible with the
grid-based method (e.g., NGP). Recently, several concurrent
methods [66], [67], [68] attempt to achieve fast training
in unbounded scenes. Barron et al. [66] proposed a spiral
multisampling strategy and an anti-aliased interlevel loss to
solve the spatial and z-axial aliased problem caused by directly
combining Mip-NeRF 360 and NGP. Kerbl et al. [67] represent
the scene as a set of optimizable 3D Gaussian points, and
accelerate training based on the point splatting rendering
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Fig. 2. Illustration of our method for 360◦ unbounded novel view synthesis. (a) a 3D scene is represented using multiple concentric spheres with different
radii, where each sphere is parameterized by an equirectangular projection (ERP) image. ERP images are stacked as an ERP volume. (b) Multi-resolution ERP
volumes with hashing encoding are used to maintain the trainable features as input to the following shallow MLPs. (c) The density σ and color c predicted
from the MLPs are used in the volumetric rendering algorithm to synthesize an image.

method. Orthogonal to these concurrent works, we explore
the effect of spherical mapping in grid-based methods for
unbounded scenes.

C. Multi-Sphere Images

Inspired by the success of multi-plane images [60]
in forward-facing unbounded view synthesis, multi-sphere
images (MSI) is introduced for unbounded novel view syn-
thesis under the setting that all cameras face outward to the
background. As shown in Fig. 1(b), the methods of outward
view synthesis require modeling of the background region.
Specifically, MatryODShka [52] is developed to synthesize
novel views from an omnidirectional stereo image pair. The
scene is decomposed into multi-sphere images (MSI) to explic-
itly encode RGB and alpha values. However, this method can
only model the outward background (Fig. 1(b)) and cannot
handle central objects.

Motivated by the powerful capacity of implicit represen-
tation in modeling central objects and the ability of sphere
images in handling 360◦ unbounded backgrounds, we develop
a spherical radiance field by incorporating advantages of both
techniques. Different from NeRF-based methods that can only
model central objects, the spherical structure enables our
SRF to efficiently model background regions. In contrast to
MatryODShka [52], our SRF encodes layered scenes into
implicit representations such that central objects can be well
synthesized.

III. METHODOLOGY

Given a set of posed images acquired from 360◦ unbounded
scenes, our task is to synthesize a novel view with a specified
pose. In this section, we first introduce the formulation of
our spherical radiance field. Then, we describe the spherical
warped occupancy grid used to accelerate the training and
rendering. Finally, we introduce the implementation details
of our approach. Figure 2 illustrates the proposed SRF for
efficient 360◦ unbounded novel view synthesis.

A. Spherical Radiance Field

1) Overview: Our spherical radiance field models a 3D
scene using multiple concentric spheres with different radii,

as shown in Fig. 2(a). Specifically, the spherical radiance
field encodes scene information at different radii into their
corresponding spheres. Formally, N concentric spheres S =

{S1, . . . , SN } are constructed, and the radius rn of sphere Sn
is set as:

rn =


2 ·

n
N

, n ∈ [1,
N
2

)

((1 − k) · r−1
near + k · r−1

far )−1, n ∈ [
N
2

, N ]

(1)

where k = 2 ·
n
N − 1, rnear and rfar denote the nearest

and farthest distances, respectively. Note that, a half of these
spheres are uniformly placed inside the unit sphere to model
central objects. Meanwhile, the other half spheres are scattered
outside the unit sphere, with radii being uniformly sampled in
the disparity space to better model unbounded background.
In addition, we translate and scale the scene to ensure it is
located at the origin with central objects being bounded by a
unit sphere.

2) ERP Volume: For each sphere Sn , an equirectangular
projection image (ERP) of size H × W × 2 is used to encode
its corresponding layered scene at different positions into a
representation of length 2.

For a 3D position (x, y, z) on the surface of sphere Sn
with a radius of rn =

√
x2 + y2 + z2, we map it to spherical

coordinate (θ, φ) as: θ = arctan(
y
x
)

φ = arcsin(
z

||rn||
).

(2)

Correspondingly, the converse transformation can be written
as: 

x = rnsin(φ)cos(θ)

y = rnsin(φ)sin(θ)

z = rncos(φ).

(3)

To map a 3D sphere to a 2D image, several spherical
projections have been exploited to preserve the properties, such
as equidistant, equal-area, and equal-angle. As an equidistant
projection, the equirectangular projection (ERP) directly maps
the spherical coordinate to the pixel coordinate with a simple
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normalization: (i, j) = normalize(θ, φ), where i ∈ [0, H),
j ∈ [0, W ) are the pixel coordinate. As an equal-area projec-
tion, the sinusoidal projection represents the poles as points
using the transformation as: (i, j) = normalize(θcos(φ), φ).
As an equal-angle projection, Mercator projection preserves
the angle locally as: (i, j) = normalize(θ, ln(tan(π

4 +
φ
2 )).

We use the ERP in our method, as it performs better than
others (as demonstrated in Table V).

By stacking all ERP images, the 3D scene is encoded in an
ERP volume (as shown in Fig. 2(b)) of size N × H × W × 2.

3) Hashing Encoding: Instead of using a dense grid to
store the ERP volume, we leverage a hashing encoding tech-
nique [22] to reduce storage consumption. For each ERP,
a hashing table of size T × 2 is stored and a spatial hashing
function [22] is used to calculate hashing index using the
indices (n, h, w) in the ERP volume as follows:

I (n, h, w) =

(
n

⊕
hπh

⊕
wπw

)
mod T, (4)

where
⊕

is the bit-wise XOR operation, πh and πw are large
prime numbers.

4) Multi-Scale Strategy: To efficiently model the scene at
different scales, we construct multi-scale ERP volumes to
capture details of different granularities. Specifically, the 3D
scene is represented using M ERP volumes with resolution
ranging from Nmin × Hmin × Wmin to Nmax × Hmax × Wmax.
The resolution of the m-th ERP volume (Nm , Hm , and Wm)
grows in a geometric progression as in [22] and [69]:

Nm = [Nmin · bm
], (5)

b = exp
(

lnomax − lnomin

M − 1

)
. (6)

5) Rendering: Volumetric rendering [14] is used to render
the ray casting from each pixel. Specifically, a ray of the
pixel rrr = ooo + t · ddd is first generated from the camera pose,
where ooo and ddd are the camera position and view direction,
respectively. Then, several points are sampled along the ray,
with their features being generated using trilinear interpolation
in the multi-scale ERP volumes. Next, the concatenation of
the sampled features fff is fed to two MLPs (i.e., φdensity, and
φcolor) to obtain the densities {σi } and colors {ci } for these
sampled points {ti }, as shown in Fig. 2(c).

[σ, fff σ ] = φdensity( fff ), (7)
c = φcolor( fff σ , γ (ddd)), (8)

where fff σ is the bottleneck feature used for color prediction,
ddd and γ (·) are the view direction and spherical harmonics
encoding [22], respectively. Note that, the ray color Ĉ(rrr) is
obtained by:

Ĉ(rrr) =

∑
i

Tiσi ci1ti , (9)

where Ti = exp(−
∑

j<i σ j1t j ) and 1ti = ti+1 − ti . The
density measures the objectness of the corresponding posi-
tion in the 3D scene and the view-dependent color captures
the appearance at the corresponding position by considering
diverse influences, including ambient, diffuse, and specular
light.

6) Discussion: We compare three space warping methods
(i.e., linear warping [22], radial distortion [63], and space
contraction [64]) for 360◦ unbounded novel view synthesis,
and highlight the motivation of our spherical mapping of ERP
volume.

Since NeRF-based methods require a bounded domain, e.g.,
[−1, 1]

3 or [0, 1]
3, a straightforward strategy to handle 360◦

unbounded scene is to linearly scale and translate the large
scene. Specifically, a 3D point ppp ∈ R3 in Euclidean space is
transformed into the bounded domain as:

p̂pp = s · ppp + ttt, (10)

where s ∈ R and ttt ∈ R3 are the predefined scale and the
translation of the scene. In practice, linear warping is usually
performed on camera positions such that the large scene is fit
in a bounded domain as in [22]. However, the ray intersection
far from the origin is highly sparse (Fig. 3(g)) and thus lacks
sufficient samples for NeRF training, leading to artifacts in
distant background of synthesized novel views.

To migrate the above issue, the radial distortion [63] and
space contraction [64] methods are proposed to non-linearly
warp the space along the radial axis. Specifically, radial
distortion employs the following transformation:

p̂pp =
ppp

√
|ppp| · dmax

, (11)

where dmax is the maximum depth. To eliminate the need of
a predefined maximum depth, space contraction is introduced
to transform a 3D point ppp when |ppp| > 1:

p̂pp = (2 −
1

|ppp|
) ·

ppp
|ppp|

. (12)

In this way, the distant region becomes closer in the warped
space.

However, as pointed out in the Mip-NeRF-360 bench-
mark [64], the ray intersections are still sparse in the warped
space (Fig. 3(h) and (i)), which motivates us to explore
more suitable space warping method for unbounded scenes.
As shown in Fig. 3(j), our spherical mapping of ERP volume
produces denser ray intersections in the warp space.

Compared with other space warping methods, our method
proposes to use spherical mapping for 360◦ unbounded novel
view synthesis, which has the following unique advantages: (1)
With spherical coordinates, most trainable features are gath-
ered near the central object (Fig. 4), providing more capacities
to reconstruct the object with finer details. The effectiveness of
spherical coordinates is highlighted in Table IV. (2) The train-
able features are widely scattered in the background regions of
sparse rays, as the 3D distance at the same angular resolution
increases with the radius. This facilitates background regions
to be efficiently rendered, as shown in Table I.

B. Spherical Warped Occupancy Grid

We develop an occupancy grid to accelerate the ray march-
ing of spherical radiance fields. The caching strategy is
well explored in NeRF to accelerate both training [22], [24]
and rendering [21], as the sampling skips the empty space
and reduces the number of sampled points. In the original
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Fig. 3. Comparison of different space warping methods for unbounded novel view synthesis. First row: 2D visualization of original Euclidean space (a), and
warped space for linear warping (b), radial distortion (c), space contraction (d), and spherical mapping (e). Second row: top-down view of the bicyle scene
in the Mip-NeRF-360 dataset [64] (f), and distribution of ray intersection for linear warping (g), radial distortion (h), space contraction (i), and spherical
mapping (j). Both radial distortion and space contraction warps the space along the radial axis, making distant areas closer in warped space. With these
warping methods, the distribution of ray intersection becomes denser in the warped space (see (h) and (i)). Our method warps the metric space along the
angle axis using spherical mapping, making the distance points as close as those of the same angle after warping. The ray intersection distributes densely in
spherical warped space (see (j)). (Note that, we visualize the ray intersection distribution by counting the number of points in warped space, where the point
cloud of the scene is obtained from the rendered depth image by [64]).

Fig. 4. Euclidean vs Spherical Coordinates. The colored dot denotes
the trainable feature. (a) With Euclidean coordinates, the trainable features
uniformly distribute in the space. (b) With spherical coordinates, the trainable
features are dense near the central object for fine-grained reconstruction and
scattered away from the central object for efficient rendering of backgrounds.

NGP [22], they use multi-layer occupancy grids with expo-
nentially growing sizes to cache the density in the Euclidean
space. However, the strategy is not suitable for unbounded
scenes, as the memory consumption of the occupancy grid is
growing exponentially.

In contrast, we employ a single-layer occupancy grid G with
a size of g × g × g in the warped space of SRF. During
training, we alternatively update the occupancy grid and train
the SRF. The occupancy grid is updated with the exponential
moving average (EMA) from the uniform samples in the
warped spaced. Specifically, suppose pppw = (θ ′, φ′, r) is the
sampled point in the warped space and σ is its density from
Eq. (7).

G(gθ ′, gφ′, gr) = ωG(gθ ′, gφ′, gr) + (1 − ω)σ (13)

where θ ′ and φ′ are the [0, 1]-normalized versions of θ and φ,
respectively, ω is the decay weight (0.98 in our experiments).

During the SRF training, we discard the sampled points whose
value in the occupancy grid is below the threshold T (0.01 in
our experiments).

C. Implementation

We train the proposed SRF for each scene. In the train-
ing phase, the multi-resolution ERP volumes and MLPs are
optimized simultaneously. During preprocessing, the scene
is translated and scaled to ensure that the mean of camera
positions is zeros and all cameras are located at the unit sphere.
To render a ray, we sample points along the ray using the
ray-marching algorithm [22]. The marching interval of ray at
length t is set as 1t = k · t , where k = 1/256. Our marching
interval has a small interval at close sample points, and a large
interval at distant sample points.

During training, the photometric loss is used for
optimization:

L =

∑
rrr

||Ĉ(rrr) − C(rrr)||2, (14)

where Ĉ(rrr) and C(rrr) are the rendered color and ground-truth
color of ray rrr .

In our experiments, we implemented our method using
TCNN [70] with an NVIDIA RTX3090. A 16-level ERP
volume is constructed (i.e., M = 16) with the coarsest and
finest resolutions being set as Nmin = Hmin = Wmin = 16,
Nmax = Hmax = Wmax = 2048. The hashing table size T for
each ERP volume is 219. The density MLP ( fdensity) has one
hidden layer, while the color MLP ( fdensity) has two hidden
layers. We randomly sampled 4096 rays from all images for
each training iteration. We used the ADAM [71] optimizer
with an initial learning rate of 0.01.
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IV. EXPERIMENTS

In this section, we first present the datasets and metrics.
Then, we compare our method with previous state-of-the-
art approaches on unbounded and bounded scenes. Finally,
we conduct ablation experiments to validate the effectiveness
of our method designs.

A. Datasets and Metrics

We evaluated our method on 3 public real-world 360◦

unbounded benchmarks, including Mip-NeRF-360 [64], Light-
Field [72], and Tanks-and-Temples [73]. For a fair comparison
with existing NeRF-based methods, we also evaluate our
method on a bounded benchmark, i.e., the NeRF-Synthetic
dataset [11].

1) Mip-NeRF-360: We use 9 scenes from the Mip-NeRF-
360 dataset [64], which contains 5 outdoor scenes (i.e., bicycle,
flowers, garden, stump, and treehill) and 4 indoor scenes (i.e.,
room, counter, kitchen, and bonsai). For each scene, there
are 125-311 images captured surrounding a central object.
These images observe not only the central object but also
the complex background, e.g., irregular plants, and distant
buildings. We use the poses provided by [64] and split the
train/test sets with a ratio of 7:1 as in [64].

2) Light-Field: We use 4 scenes from the Light-Field
dataset [72], i.e., africa, basket, ship, and torch. Each scene
contains a sequence of images captured by the hand-held
camera. We use the temporally subsampled images provided
by [62], resulting in 64-109 images for each scene. We use
the train/val sets and poses provided by [62].

3) Tanks-and-Temples: We use a subset of the Tanks-and-
Temples dataset [73], i.e., m60, playground, train, and truck.
These images are captured with a hand-held camera in large-
scale outdoor scenes. Although the camera faces toward the
central object, its trajectory is not close to a sphere. We eval-
uate our method on this dataset to validate its robustness to
complicated camera distributions. We use the train/val sets and
poses provided by [62].

4) NeRF-Synthetic: The NeRF-Synthetic dataset [11] con-
sists of 8 human-designed objects, i.e., chair, drums, ficus,
hotdog, lego, materials, mic, and ship. For each object, there
are 100 and 200 images at 800×800 resolution with different
poses for training and testing, respectively. These images are
rendered using the Blender Cycles engine according to the
poses perfectly sampled on an upper hemisphere.

To measure the quality of synthesized images, we use
PSNR, SSIM, and LPIPS-VGG as evaluation metrics follow-
ing [11]. In addition, we focus on the evaluation of training
time on an NVIDIA 3090 GPU.

B. Results on 360◦ Unbounded Scenes

We evaluate our method on 360◦ unbounded scenes and
compare it to 3 NeRF-based methods, including NeRF [11],
NeRF++ [62], and Mip-NeRF 360 [64]. Note that, NeRF++

and Mip-NeRF 360 are developed for 360◦ unbounded
scenes. In particular, Mip-NeRF achieves state-of-the-art 360◦

unbounded novel view synthesis in terms of image quality.
In addition, we also include 3 accelerated NeRF methods

(i.e., Plenoxels [23], DVGO v2 [24], [74], and NGP [22]) for
comparison to evaluate the efficiency of our method.

For Mip-NeRF 360, Plenoxels, DVGO v2 and NGP,
we re-trained these models on 360◦ unbounded scenes (i.e.,
the Mip-NeRF-360 dataset, the Tanks-and-Temples dataset,
and the Light-Field dataset) for comparison with our SRF.
We present the training details for these methods as follows:

Mip-NeRF 360: For each scene in the Tanks-and-Temples
dataset and the Light-Field dataset, we trained Mip-NeRF
360 with a batch size of 214 using 4 NVIDIA 3090 GPUs.
It took approximately 42 hours for a training step of 250k.
For other settings, we used the configuration file provided in
the Mip-NeRF 360 codebase.1 In addition, we provide the
results of the Mip-NeRF-360 dataset at a training step of 5k
on an NVIDIA 3090 GPU (∼ 40 minutes).

Plenoxels: We trained Plenoxels on each scene in the Mip-
NeRF-360 dataset and the Light-Field dataset. The resolution
of voxel grids was initially set to 1283, and gradually upscaled
to 6403, which is limited by the maximum memory of an
NVIDIA RTX 3090. We trained Plenoxels with a total step of
102400 and a batch size of 5000.

DVGO v2: We trained DVGO v2 on three unbounded
datasets using the configuration provided in their codebase.2

NGP: We trained NGP on three unbounded datasets. For
each scene, we recentered and scaled all camera positions such
that they lie within the [0, 1]

3 cube. The marching step size
was exponential with a factor of 1/256. We tuned the scale of
axis-aligned bounding box (AABB) on each scene for better
results. The number of training steps was set to 300k. There
was no significant improvement with more training steps.

1) Quantitative Results: Tables I, II, and III show the
comparison result on the Mip-NeRF-360, Light-Field, and
Tanks-and-Temples datasets, respectively. Our SRF achieves
the best performance in terms of PSNR and SSIM among
all efficient approaches with training time less than an hour.
Specifically, compared to Plenoxels, DVGO v2, and NGP, our
SRF produces much better performance with a comparable
training time.

As compared to NeRF and NeRF++, our method achieves
better performance while outperforming them by two orders
of magnitude in training time. Compared to Mip-NeRF 360,
our SRF produces comparable or even better results with
a 438× speedup during training. In particular, our method
outperforms Mip-NeRF 360 on several outdoor scenes (i.e.,
the bicyle, flowers, and treehill scenes) of the Mip-NeRF-
360 dataset in terms of both PSNR and SSIM (Table I).
Under comparable training time, our SRF surpasses Mip-
NeRF 360 with PSNR scores being improved from 21.17 to
27.06. For the Light-Field dataset, our method consistently
outperforms Mip-NeRF 360 in all scenes of the Light-Field
dataset (Table II), while achieving better performance on the
Tanks-and-Temples dataset in terms of averaged PSNR and
SSIM (Table III). Note that, the camera distribution of the
Tanks and Temples dataset is more complicated than the other
two datasets. Therefore, the higher accuracy of our SRF clearly

1https://github.com/google-research/multinerf
2https://github.com/sunset1995/DirectVoxGO
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TABLE I
QUANTITATIVE RESULTS ON THE MIP-NERF-360 DATASET. ‘MRF 360” REPRESENTS THE MIP-NERF 360. “TIME” REPRESENTS THE EQUIVALENT

TRAINING TIME ON AN NVIDIA 3090 GPU

TABLE II
QUANTITATIVE RESULTS ON THE LIGHT-FIELD DATASET.

“TIME” REPRESENTS THE EQUIVALENT TRAINING TIME ON AN NVIDIA 3090 GPU

TABLE III
QUANTITATIVE RESULTS ON THE TANKS-AND-TEMPLES DATASET.

“TIME” REPRESENTS THE EQUIVALENT TRAINING TIME ON AN NVIDIA 3090 GPU

demonstrates its superior robustness against different camera
trajectories.

As compared to existing accelerated methods with hybrid
representation (i.e., Plenoxels, DVGO v2, and NGP), our
method consistently outperforms in all scenes of three datasets.
Specifically, our method outperforms NGP from 24.97 to
27.06 in the Mip-NeRF-360 dataset (Table I), from 25.08 to
27.60 in the Light-Field dataset (Table II), from 20.39
to 20.80 in the Tanks-and-Temples dataset (Table III), in terms
of averaged PSNR. This demonstrates the proposed spherical
mapping is more suitable for 360◦ unbounded scenes.

2) Qualitative Results: Figure 5 shows the visual results
on the Light-Field dataset and the Tanks-and-Temples dataset.
We can observe that Mip-NeRF 360 fails to render the
structure near the camera, leading to “missing” (as shown
in the ship and basket scenes) or blurring (e.g., missing
words as shown in the train scene) artifacts. In contrast,
our method can model the scene from a more complicated
camera trajectory, and produce a better rendering result for
the thin object near the camera. This is because, more capac-
ity is contributed to the central area under our spherical
mapping.
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Fig. 5. Qualitative comparison on the Light-Field dataset and the
Tanks-and-Temples dataset. (1st row: the ship scene, 2nd row: the basket
scene, 3rd row: the train scene).

Figure 6 compares the visual results produced by different
methods on the Mip-NeRF-360 dataset. It can be observed
that Mip-NeRF 360 fails to render the thin structure, as the
missing spoke in the bicyle scene (first row in Fig. 6), while
NGP suffers “floaters” artifacts and produces blurring artifacts
and noise in the distant background. In contrast, our method
produces results with finer details both on the central object
and distant background even with less than 30 minutes of
training. This further demonstrates the superiority of our
spherical radiance field.

C. Results on Bounded Scenes

Although our method aims at synthesizing novel views
for 360◦ unbounded scenes, it can be seamlessly adapted
to the bounded dataset. We conduct experiments on the
NeRF-Synthetic dataset, and compare our method with four
implicit NeRF-based methods (i.e., NeRF, NSVF, Mip-NeRF,
and RefNeRF), two generalizable NeRF-based methods (i.e.,
IBRNet, and Point-NeRF), and five accelerated NeRF-based
methods (i.e., TensoRF, DVGO, Plenoxels, ReLUField, and
NGP). Quantitative results are presented in Table IV and visual
results are provided in Fig. 7.

As shown in Table IV, our SRF achieves better performance
in terms of PSNR as compared to implicit representation
based NeRF methods with training time being shorter than
10 minutes. Specifically, our method produces competitive
results to the state-of-the-art method (i.e., RefNeRF) with
much higher efficiency. RefNeRF requires more than one day
to train on a modern GPU while our method achieves over 70×

speedup. As compared to generalizable NeRF-based meth-
ods, our SRF outperforms them without using any additional
datasets. With 7 minutes of training, our method outperforms
the state-of-the-art accelerated NeRF-based method (i.e., NGP)
in terms of PSNR (33.21 vs 33.18). This clearly demonstrates
the effectiveness of our spherical radiance field.

Figure 7 compares the visual results produced our method
and other approaches. It can be observed that NGP and

TABLE IV
COMPARISON ON THE NERF-SYNTHETIC DATASET.
(PT. DENOTES WHETHER THE MODEL NEEDS TO

BE PRETRAINED ON A LARGE DATASET)

TABLE V
RESULTS ACHIEVED ON THE MIP-NERF-360 DATASET

RefNeRF suffer blurring artifacts and produce images that
lack fine details. In contrast, our method produces results
with clearer details (e.g., the ball in materials scene, and the
structure of ship) and much higher perceptual quality even
with only 20-minute training. This further demonstrates the
superiority of our method.

D. Ablation Study

In this section, we conduct ablative experiments to evaluate
the design choices in our method. Specifically, we evaluate the
SRF on the following aspects:

1) Space Warping Methods: We conduct experiments to
compare our ERP mapping with another three space warp-
ing methods and two spherical projections: linear warping
(NGP [22]), radial distortion (DONeRF [63]), space contrac-
tion (Mip-NeRF 360 [64]), sinusoidal projection, and Mercator
projection.

In Table V, the superior performance of our ERP mapping
demonstrates it is more suitable for 360◦ unbounded scenes.
That is because, our method not only contracts the distant
space as radial distortion in DONeRF, but also increases the
adjacent ERP voxel distance along with the radius in spherical
mapping.

2) ERP Volume Visualization: We investigate our spherical
radiance field by visualizing the learned ERPs in Fig. 8. It can
be observed that our spherical radiance field can disentangle
the whole scene into layered ones and encode them into
spheres with different radii.
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Fig. 6. Qualitative comparison on the Mip-NeRF-360 benchmark.

Fig. 7. Qualitative comparison on the Synthetic-NeRF test set.

3) Multi-Scale Strategy & Hashing Encoding: We con-
ducted experiments to study the effectiveness of our multi-
scale strategy and hashing encoding in constructing ERP

volumes. Specifically, we first constructed a baseline model
by removing hashing encoding and employing a single-scale
ERP volume. Then, we introduced model 2 by increasing the
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Fig. 8. Visualization of learned ERPs for spheres with different radii.

TABLE VI
RESULTS ACHIEVED ON THE Bicylce SCENE OF

THE MIP-NERF-360 DATASET

Fig. 9. Visual results produced by models with different ERP volume
representations.

Fig. 10. Depth estimation results achieved on the Mip-NeRF-360 test set.

number of scales for ERP volumes to 4. Next, model 3 is
developed by adopting hashing encoding. These models are
compared to our SRF with full settings on the Mip-NeRF-360
dataset in Table VI.

As we can see, with only a single-scale ERP volume, the
baseline model produces limited performance. By increas-
ing the number of scales to 4, model 1 outperforms the

Fig. 11. Visualization of outward views produced by our method.

baseline with significant improvements. Meanwhile, the num-
ber of parameters is also increased from 0.5M to 277M.
This demonstrates the effectiveness of multi-scale strategy in
reconstructing finer details. By adopting hashing encoding,
model 2 reduces over 93% parameters while maintaining
comparable performance. With the help of hashing encoding,
we increase the number of scales to 16 with an affordable
number of parameters (i.e., 95M), which improves model
2 with notable margins.

Figure 9 further compares the visual results produced by
models 1-3. As we can see, model 1 and model 2 produce
inferior results with blurry artifacts. With more scales to model
finer-grained details, our method produces results with higher
perceptual quality, such as bicycle steel wire (as shown in
Fig. 9(c)).

4) Depth Estimation: Our SRF inherits the capability of
NeRF to capture 3D geometric information of the scene.
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Fig. 12. Qualitative comparison on various ERP origins.

TABLE VII
RESULTS ACHIEVED ON VARIOUS ERP ORIGINS

To demonstrate this, we visualize the depth maps estimated
from our spherical radiance field in Fig. 10. Note that, we train
the proposed method without any depth supervision. It can be
observed that our spherical radiance field produces promising
depth estimation. This clearly demonstrates that our spherical
radiance field can achieve a good 3D perception of the scene
both foreground objects and backgrounds.

5) Results on Outward View Synthesis: Figure 11 shows the
outward views produced by our method. Note that, only inward
views capturing central objects are provided during training.
As we can see, our method is capable of synthesizing high-
quality outward background images from only inward views.
This demonstrates the effectiveness of our method in modeling
backgrounds in an unbounded scene.

6) Results on Various ERP Origins: We analyze the sensi-
tivity to the choice of ERP origin on the flowers scene. The
image poses are preprocessed such that the averaged position
of cameras is (0, 0, 0), all cameras are in a unit cube, and
the +z axis denotes the upward of the scene. We set the ERP
origin as (0, 0, z). Table VII shows the quantitative results with
different z values. The best performance in terms of PSNR
and SSIM is achieved when z = −0.25. The performance
drops significantly when the ERP origin is far from the scene
origin, e.g., a PSNR of 21.11 and 20.99 for z = −1.50 and
z = 1.50, respectively. This is because, the ERP trainable
features are sparse in the scene origin when it is far from
ERP origin, resulting in blurred rendering. Figure 12 visualizes
the rendering results achieved on various ERP origins. Some
distortion artifacts occur near the ERP origin within small radii
(see red arrow in case of z = 0.00). To remedy these artifacts,
we can translate the ERP origins to an empty region (z ≥ 0.25)
or to be inside an object (z ≤ −0.25).

V. CONCLUSION

In this paper, we propose a spherical radiance field (SRF)
for efficient 360◦ unbounded novel view synthesis. Our SRF
uses multiple concentric spheres with different radii to encode
layered scenes into implicit representations. The spherical
structure of our SRF facilitates our method to naturally fit
360◦ unbounded backgrounds, and the implicit representation
enables our model to simultaneously model the central objects.
Extensive experiments demonstrate the effectiveness of our
SRF on both unbounded and bounded benchmark datasets in
terms of both accuracy and efficiency.
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