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Abstract

Al-generated imagery is on the rise to be outplac-
ing our human ability to spot manipulations. Pre-
vailing deepfake detectors cast as opaque binary
classifiers offer little to no insights into their de-
cisions. We introduce TruthLens, a training-free
framework that reframes deepfake detection as
a VQA task. We leverage large vision-language
models (LVLMs) to reveal artifacts and GPT-4
to reason over the evidence to reach a coherent
verdict by fusing visual and semantic cues. The
framework explains which artifacts triggered its
judgement, providing a deeper and newer mode of
transparency. Evaluations demonstrate that Truth-
Lens outperforms conventional methods while
maintaining a strong emphasis on explainability
and delivering instance-level data verification for
large-scale generative models.

1. Introduction

Every photograph is a fiction with
pretensions to truth.

Joan Fontcuberta

The proliferation of manipulated and synthetic images,
driven by advancements in generative models such as mod-
ern Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014) such as StyleGAN (Karras et al., 2019) and
diffusion models (Ho et al., 2020), has created significant
challenges in distinguishing real from fake images. This
has enabled the creation of highly photorealistic images,
which are increasingly used in contexts ranging from en-
tertainment to malicious disinformation campaigns. This
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surge has raised critical concerns in domains such as media
integrity, cybersecurity, and ethical Al

Traditional methods for detecting fake images rely heav-
ily on binary classifiers, such as CNNDetection (Frankle
et al., 2020), which uses pre-trained Convolutional Neural
Networks (CNNs) like ResNet-50 to identify specific arti-
facts in GAN-generated images. While effective for early
GAN models, these methods struggle with newer architec-
tures that exhibit fewer detectable flaws. More recently, ap-
proaches like Diffusion Reconstruction Error (DIRE) (Zhou
et al., 2023) have shown promise by leveraging the recon-
struction inconsistencies of diffusion models to detect syn-
thetic content. However, these methods focus solely on
classification, offering little interpretability or insight into
why an image is labeled as fake. Recent studies suggest that
incorporating reasoning into classification tasks can enhance
transparency and user trust (Ribeiro et al., 2016; Selvaraju
et al., 2017). For instance, the LIME framework(Ribeiro
et al., 2016) provides local explanations for machine learn-
ing predictions. Similarly, methods like Grad-CAM (Sel-
varaju et al., 2017) visualize important regions in images for
CNN-based classifiers, but they are not inherently designed
to address the complexities of synthetic image detection.

Inspired by advances in Large Vision-Language Models
(LVLMs), such as LLaVA (Liu et al., 2023) and BLIP-2
(Jiang et al., 2023), we rethink the task of fake image de-
tection as a multimodal Visual Question Answering (VQA)
problem. We introduce TruthLens, an LVLM + LLM frame-
work that bridges the gap between detection accuracy and
interpretability for this task. By combining the detection ca-
pabilities of traditional models with the reasoning power of
multimodal systems, TruthLens not only classifies images
as real or fake but also provides detailed justifications for its
decisions by leveraging both visual and textual features. The
framework incorporates a structured pipeline that integrates
multimodal querying, textual aggregation, and reasoning to
deliver transparent and robust results’.

Model-centric safety audits often treat training data as an af-

"For improved readability, we refer extensively to the following
terms by their abbreviations: Visual Question Answering (VQA),
Large Vision-Language Model (LVLM), and Large Language
Model (LLM).
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terthought (Papernot et al., 2018); we posit that trustworthy
Al begins with data-centric safety and verification. By re-
framing deep-fake detection as a post-hoc data-verification
task, TruthLens shows how LVLMs can audit each synthetic
output without retraining.

The contributions of TruthLens are twofold:

We reframe fake image detection as a VQA task using
LVLMs to find key visual artifacts and generate natural
language explanations for classification decisions.

TruthLens introduces a novel pipeline that combines
multimodal prompting, response aggregation, and ver-
dict synthesis through an external LLM. Unlike prior
detection systems, our approach requires no additional
fine-tuning and delivers fully explainable outputs via
modular, interpretable stages.

2. TruthLens

TruthLens leverages multimodal reasoning to classify im-
ages and provide detailed justifications for its decisions. The
pipeline consists of four main steps: (1) Question Genera-
tion, (2) Multimodal Reasoning, (3) Textual Aggregation,
and (4) Final Decision Making.

2.1. Step 1: Question Generation

The first step in the pipeline involves generating a set of
predefined prompts or questions that address specific visual
and textual cues in an image. These prompts are carefully
designed to probe various aspects of image authenticity,
such as artifacts, inconsistencies, or visual features com-
monly associated with synthetic images. The set of prompts,
denoted as P = {p1,p2,...,pn}, consists of N individual
prompts, each corresponding to a specific artifact or visual
clue. Prompts are crafted based on known patterns in syn-
thetic images, such as lighting inconsistencies, unnatural
textures, or boundary artifacts. By systematically querying
the input image I with these prompts, the framework aims
to extract detailed responses that highlight evidence support-
ing the classification task. The detailed prompt categories
are highlighted in Appendix B.

These prompts are designed to capture flaws and artifacts
typical to most deepfakes as best as possible. Unlike GAN-
generated images, most fake images nowadays do not share
the underlying artifacts that make them easy to spot (Frankle
et al., 2020), and so we must prompt the model to consider
more global visual features. Modern day deepfakes are
much more sophisticated than they once were, but still have
several common visual abnormalities that give them away:
errors in texture, lighting, and anatomy are still common-
place in many current day deepfakes (Kamali et al., 2024).

Prompting the model to focus on these visual abnormalities
will give it the best chance of detecting fake images. Each
prompt p; acts as an instance-level verification probe that
tests the input against known natural-image priors rather
than against a closed classifier.

2.2. Step 2: Multimodal Reasoning

In the second step, a multimodal model, denoted as fy,
processes the input image I alongside each prompt p; € P
to generate answers. The model combines visual and textual
modalities to produce meaningful explanations. Formally,
the multimodal model can be represented as fym(Z,p) :
Z x P — A, where Z is the space of input images, P is
the space of textual prompts, and A is the space of textual
answers. For each prompt p;, the model generates an answer
a; = fum(I,p;), resulting in a complete set of answers
A={a1,as,...,an}.

The multimodal model extracts visual features such as tex-
tures, edges, and artifacts using vision encoders and con-
textualizes these features with respect to the prompt using
text encoders. It then generates natural language answers
combining visual and textual evidence. By leveraging state-
of-the-art models like LLaVA and BLIP-2, this step ensures
that the extracted answers are both precise and interpretable.

2.3. Step 3: Textual Aggregation

Once the answers are generated, the next step involves
aggregating these responses into a structured summary S
that encapsulates the key observations from all prompts.
This structured summary organizes the raw outputs into
a coherent explanation. The aggregation process is rep-
resented as g : AV — S, where S is the space of
structured summaries. The summary S is computed as

S =g(A) = g(fmm(L,p1), fum (I, p2), - .-, fum(Z, pN))-

The goal of this step is to consolidate the multimodal rea-
soning into a concise, human-readable format that provides
the foundation for the final classification and reasoning.

2.4. Step 4: Final Decision Making

In the final step, the structured summary S is passed to a
language model fiy; for classification and reasoning. The
language model determines whether the image is real or
fake and generates a natural language explanation for its
decision. This process can be formulated as fim(S) : S —
Y x R, where ) = {Real, Fake} represents the space of
classification labels, and R represents the space of textual
justifications. The final output is (y,r) = fum(S), where
y is the classification result (Real or Fake) and r is the
explanation for the decision.
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Figure 1. Overview of the detection pipeline used in the TRUTH-
LENS framework.

3. Experiments and Discussion

We evaluate the performance of TruthLens on various
datasets and compare it against existing state-of-the-art
methods, including CNNDetection and DIRE. Our experi-
ments are designed to measure detection accuracy, reasoning
quality, and robustness across different types of fake images.

3.1. Datasets

LDM Consists of 1000 fake images generated by Latent
Diffusion Models (LDM) alongside corresponding 1000
real images from FFHQ (Karras et al., 2018b). This dataset
challenges models with high-quality synthetic images that
closely mimic real-world distributions.

ProGAN Includes 1000 fake images generated by Pro-
GAN derived from ForgeryNet dataset (He et al., 2021) .
ProGAN’s images exhibit traditional GAN artifacts, mak-
ing this dataset suitable for evaluating the performance of
models on GAN-based generation techniques.

Real Images

Figure 2. Overview of the evaluation dataset on the left hand side
we have Real images from FFHQ dataset (Karras et al., 2018b) and
on the right we have ProGAN generated images from ForgeryNet
dataset (He et al., 2021) and Latent Diffusion Model(LDM) (Rom-
bach et al., 2021) generated images.

3.2. Metrics

We report results using several key metrics. Accuracy mea-
sures the percentage of correct classifications, whether the
data is real or fake. AUC (Area Under the ROC Curve)
indicates the model’s ability to distinguish between classes.
Additionally, we evaluate Precision, Recall, and F1-Score,
which offer a comprehensive understanding of the balance
between true positives and false negatives. Qualitative Anal-
ysis includes visualizations and reasoning quality to assess
the interpretability of the results.

3.3. Verification Results

Comparison of AUC Scores. The AUC scores of various
methods across LDM and ProGAN datasets are shown in
Table 1. Our framework achieves superior performance
compared to CNNDetection and DIRE, demonstrating its
robustness across diverse generation techniques.

Table 1. Comparison of AUC scores across datasets generated by
LDM and ProGAN.

Method LDM (%) ProGAN (%)
DIRE 46.47 58.12
CNNDetection 86.50 40.44
TruthLens (Ours) 95 97.5

Impact of Prompt + LLM in classification. Table 2 com-
pares the classification accuracy of different models on real
and fake images (LDM and ProGAN), with and without the
use of prompts and the language model (LLM). The inclu-
sion of prompts and LLM significantly enhances detection
performance, especially for challenging LDM datasets.

Table 2. Classification results for real and fake data (LDM and
ProGAN) using different models, with and without Prompt + LLM.

Fake (%)
LDM ProGAN

BLIP2 52 20 50
CogVLM 62 25 52
LLAVA1S5 50 22 48
ChatUniVi 54 24 52

BLIP2 74 68 72
CogVLM 85 82 90
LLAVA15 76 70 74
ChatUniVi 98 92 97

Method Model Real (%)

Yes or No Question

Prompts + LLM

Performance Breakdown by Metric. Table 3 provides a
detailed breakdown of model performance, including preci-
sion, recall, and F1-score for LDM and ProGAN datasets.
These metrics highlight the strengths of our framework in
accurately identifying fake images across different genera-
tion techniques. We explore ablation insights and feature-
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Figure 3. Visualization of the yes/no prompts supplied to LVLMs
and their responses.

specific performance in Appendix C.

Table 3. Performance breakdown of different methods on LDM
and ProGAN datasets. TruthLens demonstrates superior precision,
recall, and F1-score across both datasets.

Precision (%) Recall (%) F1-Score (%)

Method LDM ProGAN LDM ProGAN LDM ProGAN
DIRE 4997 4967 98.90 97.70 66.40 65.86
CNNDetection  97.59 60.00 8.10 030 1496 0.60

TruthLens (Ours) 90.99 90.16 90.57 96.28 95.55 95.91

Qualitative Analysis. In addition to quantitative results,
we conducted qualitative analyses to assess the interpretabil-
ity of our model’s decisions. Figure 3 illustrates verdicts
generated by TruthLens, highlighting interpretibility that
contributed to the classification. A detailed outlook into
model outputs and justifications into deepfake detection
verdicts is shown in 4 of Appendix. These demonstrate
the framework’s ability to identify subtle artifacts in fake
images.

3.4. Discussion

The success of ChatUniVi and Large Language Models
(LLMs) within the TruthLens framework lies in their ability
to integrate and reason across visual and textual modali-
ties effectively. ChatUniVi excels by unifying image and
video tokens into a shared representation, enabling a holistic
understanding of visual artifacts and their contextual sig-
nificance. This unified processing enhances the detection
of subtle patterns, such as lighting inconsistencies and un-
natural textures, which are often overlooked by traditional
models. When paired with the reasoning capabilities of
LLMs, ChatUniVi elevates detection accuracy and provides
interpretable justifications for its decisions. The natural
language explanations foster transparency and user trust,

addressing critical challenges in high-stakes domains like
media integrity and ethical AL

Advantages. By eliminating the dependency on task-
specific training, this approach ensures adaptability to
emerging generative techniques without requiring large an-
notated datasets. This paradigm accelerates deployment and
reduces computational overhead, making it highly scalable
for various applications. Moreover, the reliance on pre-
trained state-of-the-art models, like ChatUniVi and LLaVA,
leverages their extensive training on diverse data, enabling
the framework to detect artifacts in novel scenarios with
minimal resource usage. Crucially, this paradigm shifts the
focus to interpretable outputs by reframing detection as a
Visual Question Answering (VQA) task, offering detailed
natural language justifications that enhance trust and ac-
countability. These attributes position TruthLens as a trans-
formative solution for combating synthetic media, combin-
ing cutting-edge detection performance with transparency
and user-centric design.

Limitations & Outlook. Our current study benchmarks
TruthLens on two face-centric datasets (ProGAN and LDM),
leaving other high-value domains like scene-level images
and video deepfakes unexplored. Extending the probe set
and evaluation suite to these modalities is a natural next step
and will let us quantify domain transfer more rigorously. In
addition, the framework issues several LVLM queries and
one LLM aggregation per image. While still training-free,
this design introduces non-trivial inference latency and API
cost. Ongoing work on prompt batching, answer caching,
and lightweight distillation aims to cut runtime and make
real-time deployment feasible.

4. Conclusion

TruthLens delivers state-of-the-art fake-image detection and
transparent rationales, directly addressing a central man-
date of technical Al governance: balancing accuracy with
accountability. By pairing vision-language models with
interpretable reasoning, the framework equips regulators,
platforms, and civic auditors to verify claims, audit deci-
sion paths, and meet disclosure obligations envisioned in
policies such as the EU AI Act and C2PA provenance guide-
lines. Its modular, training-free design eases deployment
across domains and datasets, while human-readable expla-
nations foster public trust. Future work includes extending
the framework to handle emerging synthetic media types
and exploring more advanced interpretability techniques to
enhance user understanding.
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Impact Statement

TruthLens advances technical Al governance by turning
deep-fake detection from an opaque, accuracy-only exer-
cise into an auditable, reasoning-centred process. Since
the framework is training-free and built on publicly avail-
able LVLMs/LLMs, hence regulators, newsrooms, and
civil-society auditors can reproduce our results, inspect
the natural-language rationales, and contest misclassifica-
tions—directly supporting transparency mandates in emerg-
ing policies such as the EU AI Act (European Union, 2024)
and C2PA provenance standards 2 . TruthLens stores no bio-
metric embeddings beyond transient inference, preserving
user privacy, and its explanations are designed to inform,
not reveal, sensitive identity attributes. We recommend that
platforms adopting our system pair it with provenance wa-
termarks and public reporting dashboards so that technical
safeguards are reinforced by clear governance mechanisms
and independent oversight.
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A. Related Work

The task of detecting synthetic images has evolved significantly with advancements in generative models. Early methods
focused on binary classification using handcrafted features, while modern approaches leverage deep learning models, which
excel at uncovering subtle artifacts in fake images. Additionally, advancements in multimodal systems, large language
models, and vision-language models have opened new avenues for interpretable fake image detection.

A.l. Large Language Models

Large Language Models (LLMs) are characterized by their massive number of parameters and large-scale training corpora.
Models such as GPT (Brown et al., 2020) and LLaMA (Touvron et al., 2023) exemplify this class of models and are
renowned for their versatility and power. Using transformer architectures, LLMs process language in a manner that surpasses
traditional methods, achieving human-like or near-human performance in natural language tasks.

Many LLMs, like GPT (Brown et al., 2020), are so large, that they can almost be considered a distillation of nearly all human
knowledge. This size needs the support of a large training corpus, which is typically sourced from all across the internet.
With such large models and training corpus, LLMs are considered to operate at a near-human level in ideal conditions.
Additionally, the number of tasks they can be generalized to is quite high. Nowadays, many vision models make use of
pre-trained LLMs in order to expand their own capabilities, as there is a great amount of overlap between many vision and
language tasks.

A.2. Large Vision-Language Models

LLMs are not limited to language tasks; they have also been adapted to handle computer vision tasks. Vision-Language
Models (VLMs) combine visual and textual encoders within a unified architecture, allowing them to perform both categories
of tasks simultaneously. Notable examples include OpenAl’s GPT-for-vision (GPT4V), which processes both images and
text for multi-modal reasoning, and LLaVA (Liu et al., 2023), which integrates several powerful vision and language models
to enhance understanding of complex instruction-following tasks. These models are well-known for their generalization
capabilities and broad applicability, proving particularly effective for reasoning over multi-modal inputs.

Some notable models include Chat-UniVi (Jin et al., 2024), which merges image and video tokens into a single unified
representation. This merging provides Chat-UniVi with the ability to understand both forms of media, and enhances its LLM
capabilities (Jin et al., 2024). Other models, like BLIP-2 (Jiang et al., 2023) take a different approach to improving model
capabilities, and focus on different pre-training strategies in order to teach the model better multi-modal representations
of data. BLIP-2 specifically learns in two stages: a representation learning stage, using a frozen image encoder, and a
generative learning stage, using a frozen LLM (Jiang et al., 2023). This "bootstrapping” of pre-trained models allows BLIP-2
to take advantage of powerful vision and language models, and combine their capabilities into one. Finally, CogVLM (Wang
et al., 2024) modifies the typical frozen language and vision encoders, by adding an extra “expert layer” (Wang et al., 2024)
inside the transformers. This extra layer is meant to connect the two normally separate encoders, integrating both visual and
linguistic features into one.

A.3. Deepfakes and Deepfake Detection

The artificial generation and manipulation of human faces—commonly referred to as ”deepfakes”—gained prominence with
the release of StyleGAN (Karras et al., 2019). These deepfakes have grown increasingly realistic over time, making their
detection a critical research area.

Early detection methods, such as CNNDetection (Frankle et al., 2020), employed pre-trained CNNs like ResNet-50 to
classify real and fake images based on pixel-level inconsistencies. While effective for earlier GANSs, the flaws exploited by
these methods are less prevalent in modern GANs and diffusion-based image generation.

Diffusion Reconstruction Error (DIRE) (Zhou et al., 2023) was introduced as an alternative to binary classifiers. This
method reconstructs input images using pre-trained diffusion models and calculates the difference between the input and
reconstructed image. DIRE assumes that diffusion-generated images share a similar probability distribution, allowing it to
effectively detect diffusion-based fakes. However, it struggles with images generated by models outside this distribution.
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A 4. Datasets for Deepfake Detection

Several benchmark datasets have been developed to support the training and evaluation of deepfake detection models.
CIFAKE (Smith et al., 2022) combines real and synthetic images derived from the CIFAR-10 dataset, providing a compact
yet challenging benchmark. CelebA-HQ Resized (Karras et al., 2018a) features high-resolution images of celebrity faces,
making it particularly useful for evaluating generative models. Furthermore, benchmarks like FakeBench (Ekko et al., 2023)
include datasets such as FakeClass and FakeClue, designed to assess both detection accuracy and reasoning capabilities.
Another notable dataset, FakeQA, offers over 40,000 question-answer pairs, enabling open-ended evaluation of multi-modal
models in reasoning and detection tasks. Lastly, ForgeryNet (He et al., 2021) provides a large-scale dataset with over
2.9 million images and videos, encompassing diverse manipulation techniques to facilitate robust and comprehensive
evaluations.

A.5. Interpretability in Machine Learning

Interpretability has become a crucial aspect in fostering trust in Al systems, particularly in the domain of deepfake detection.
While general-purpose frameworks like LIME (Ribeiro et al., 2016) and Grad-CAM (Selvaraju et al., 2017) have proven
effective in explaining model predictions across various tasks, there is a growing need for specialized interpretability
methods tailored to the nuances of deepfake analysis.

Recent research has explored the potential of Large Language Models (LLMs) in detecting deepfakes. For instance, studies
have investigated whether LLMs can distinguish between real and Al-generated content, leveraging their broad knowledge
and contextual understanding (Zellers et al., 2023). These approaches aim to complement traditional image-based detection
methods by analyzing textual and semantic inconsistencies that may be present in deepfake content.

In parallel, initiatives like FAKEBENCH have emerged to provide comprehensive evaluation frameworks for deepfake
detection algorithms (Wang et al., 2023). FAKEBENCH offers a standardized platform for assessing the performance of
various detection methods, including those that incorporate interpretability components. This benchmark not only evaluates
detection accuracy but also considers the explainability of the models, addressing the critical need for transparent and
trustworthy Al systems in combating digital misinformation.

The development of interpretable deepfake detection models presents unique challenges due to the sophisticated nature of
modern forgery techniques (Li & Lyu, 2023). Researchers are working on adapting existing explainability methods and
developing new ones that can effectively highlight the subtle artifacts and inconsistencies that characterize deepfakes (Chen
et al., 2022). These specialized approaches aim to provide more precise and relevant explanations for deepfake detection
decisions, potentially improving both the accuracy and trustworthiness of detection systems.

A.6. Large Vision-Language Models for Deepfake Detection

Recent advancements in vision-language models have demonstrated their potential for combining detection and reasoning.
Models like BLIP-2 (Jiang et al., 2023) and LLaVA (Liu et al., 2023) excel at joint visual and textual understanding.
FakeBench (Ekko et al., 2023) explores their applicability to deepfake detection, evaluating not only detection accuracy
but also reasoning capabilities. However, these works primarily focus on benchmarking rather than developing end-to-end
systems for detection and reasoning.

Building on these advancements, our proposed framework, TruthLens, integrates detection and interpretability by re-framing
deepfake detection as a Visual Question Answering (VQA) task. By leveraging state-of-the-art vision-language models,
TruthLens provides both accurate classification and detailed reasoning for image authenticity, addressing limitations in
existing methods.

B. A detailed look into prompts for TruthLens

The prompts used are listed as follows:

 Lighting and Shadows: ”Describe the lighting in the image. Does it appear natural or does it show any inconsistencies,
such as unrealistic shadows or lighting direction?”

e Texture and Skin Details: "Analyze the texture of the skin in this image. Does the skin appear to have natural
imperfections like pores, wrinkles, or blemishes, or is it unnaturally smooth?”
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e Symmetry and Proportions: ”Describe the facial symmetry in the image. Are there any noticeable asymmetries in the
eyes, nose, mouth, or face shape?”

¢ Reflections and Highlights: ”Examine the reflections in the eyes or any shiny areas on the skin. Do they appear to be
consistent with the environment, or do they seem artificial or inconsistent?”

» Facial Features and Expression: ”Describe the facial expression in the image. Does it appear natural, or are there
any signs of a forced or unnatural expression?”

» Facial Hair (if applicable): "If there is facial hair in the image, describe its appearance. Does it seem realistic in
terms of texture, growth pattern, and interaction with the lighting?”

* Eyes and Pupils: "Describe the appearance of the eyes in the image. Do the pupils appear natural in size, shape, and
positioning, or are there any abnormalities?”

¢ Background and Depth Perception: ”Describe the background of the image. Does it seem well-integrated with the
face in terms of depth, focus, and lighting, or does it appear artificially blurred or detached?”

¢ Overall Realism of the Face: "Tuking into account the lighting, texture, symmetry, and other features, describe the
overall realism of the face. Does it show any signs of being digitally manipulated or generated?”

C. Ablation Studies

In this section, we analyze the impact of specific image features on the detection accuracy of synthetic images through
targeted ablation studies. Table 4 presents the accuracy achieved when prompts are designed to focus on distinct categories
of visual cues. Each category probes a specific aspect of the image, helping to identify patterns or inconsistencies that
contribute to the model’s overall performance.

The results indicate that certain features, such as ”Eyes and Pupils” (82.5% accuracy) and “Facial Hair” (74.5% accuracy),
provide the most reliable cues for distinguishing real and fake images. These features are likely less prone to generative
model artifacts, making them critical for accurate classification. On the other hand, categories like ”Texture and Skin Details”
(54.5% accuracy) and ”Overall Realism of the Face” (55.6% accuracy) exhibit lower accuracy, suggesting these aspects are
either less distinctive or more challenging for models to evaluate effectively.

The study highlights the importance of leveraging feature-specific prompts to enhance the detection process. By identifying
high-impact categories, future improvements can prioritize these areas, leading to more focused and efficient detection
strategies. This analysis also underscores the need for diverse and comprehensive prompts to cover a wide range of potential
artifacts in synthetic images.

Table 4. Accuracy of Image Features across Categories.

Prompt Category Accuracy (%)
Lighting and Shadows 62.0
Texture and Skin Details 54.5
Symmetry and Proportions 67.8
Reflections and Highlights 66.6
Facial Features and Expression 67.0
Facial Hair 74.5
Eyes and Pupils 82.5
Background and Depth Perception 60.0
Overall Realism of the Face 55.6
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Figure 4. A visualization of the output of the model for each of the prompts, and the LVLM’s final verdict on whether each sample is real

or fake.
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