
In Search for Architectures and Loss Functions in
Multi-Objective Reinforcement Learning

Mikhail Terekhov
CLAIRE, EPFL

mikhail.terekhov@epfl.ch

Caglar Gulcehre
CLAIRE, EPFL

caglar.gulcehre@epfl.ch

Abstract

Multi-objective reinforcement learning (MORL) is essential for addressing the
intricacies of real-world RL problems, which often require trade-offs between
multiple utility functions. However, MORL is challenging due to unstable learning
dynamics with deep learning-based function approximators. The research path
most taken has been to explore different value-based loss functions for MORL to
overcome this issue. Our work empirically explores model-free policy learning loss
functions and the impact of different architectural choices. We introduce two dif-
ferent approaches: Multi-objective Proximal Policy Optimization (MOPPO), which
extends PPO to MORL, and Multi-objective Advantage Actor Critic (MOA2C),
which acts as a simple baseline in our ablations. Our proposed approach is straight-
forward to implement, requiring only small modifications at the level of function
approximator. We conduct comprehensive evaluations on the MORL Deep Sea
Treasure, Minecart, and Reacher environments and show that MOPPO effectively
captures the Pareto front. Our extensive ablation studies and empirical analyses
reveal the impact of different architectural choices, underscoring the robustness
and versatility of MOPPO compared to popular MORL approaches like Pareto
Conditioned Networks (PCN) and Envelope Q-learning in terms of MORL metrics,
including hypervolume and expected utility.

1 Introduction

Many optimization problems in the real world require consideration of multiple conflicting objectives.
Liu and Vicente [2022] provide examples of accuracy versus fairness trade-offs in credit scoring and
criminal justice, and Vamplew et al. [2021] show how to trade performance for safety in intelligent
agents. Multi-objective optimization is the field that studies these problems formally. It is known as
multi-objective reinforcement learning (MORL) in the sequential decision-making setting. In MORL,
we seek policies that maximize the respective objectives. A single policy mapping states to actions is
insufficient to satisfy all possible trade-offs between objectives; hence, in MORL, we usually discuss
sets of policies covering these trade-offs.

The performance of modern MORL approaches is often measured on toy grid-world or 2D locomotion
problems, such as those in MO-Gym by Alegre et al. [2022]. At the same time, single-objective RL
is already used in many practical applications, such as language modeling [Ouyang et al., 2022],
real-world robot locomotion [Fu et al., 2023], and control of scientific equipment [Degrave et al.,
2022]. One plausible explanation of this gap is that MORL approaches often explicitly store Pareto-
optimal policies or rely on Q-learning. For toy problems, this provides optimal coverage, but this is
not scalable, and we noticed that the training can suffer from unstable learning dynamics, especially
when different rewards interfere with each other.

Rather than maintaining a set of weights for each trade-off, we implicitly model the optimal set of
policies by conditioning the learned policy on each objective’s vector of relative weights. We call this

38th Workshop on Aligning Reinforcement Learning Experimentalists and Theorists (ARLET 2024).

0 5 10 15 20
Treasure

40

35

30

25

20

15

10

5

0

Fu
el

MOA2C, Shared Multi-body
MOPPO, Non-shared Multi-body
MOPPO, Shared Multi-body
True Pareto front

(a) Multi-body architectures

0 5 10 15 20
Treasure

MOPPO, Shared Merge net
MOPPO, Non-shared Merge net
True Pareto front

(b) Merge net architectures

0 5 10 15 20
Treasure

MOPPO, Non-shared Hypernet
MOPPO, Shared Hypernet w/obs
MOPPO, Shared Hypernet
True Pareto front

(c) Hypernet architectures

Figure 1: Pareto fronts on Deep Sea Treasure: Performance of a selection of our methods on the
Deep Sea Treasure environment, split by the actor-critic architecture and the learning algorithm. The
details of the architectures and algorithms are described in Sections 4 and 5, respectively. In this
simple gridworld, the agent’s task is to find the biggest treasure, but big treasures require it to spend
more fuel. The tension between the two objectives is formalized as a Pareto front of the problem.
Our proposed approaches effectively cover the true Pareto front. Some of the methods produce a few
outliers because the policy struggles to learn near the boundary of the simplex ∆K of reward weights,
where one of the rewards (in this case, fuel) is completely discarded.

approach Dynamic MORL (DMORL). This allows us to learn a single model that encompasses all
possible solutions on the Pareto front. Our approach relies on linear scalarization to model trade-offs.
Thus, the policy learns to optimize a convex combination of the objectives and is conditioned on
the coefficients of this combination. Despite the theoretical limitations of linear scalarization in
MORL [Vamplew et al., 2008], we find that DMORL when paired with a sufficiently expressive
neural network, can generate a continuous parameterization of the entire Pareto front. In this paper,
we investigate two components needed to scale MORL for modern reinforcement learning tasks: the
learning algorithm and the architecture. For the DMORL framework in this paper, we mainly focus on
PPO [Schulman et al., 2017] and generalize it to the multi-objective case. As a baseline, we introduce
a multi-objective version of A2C [Mnih et al., 2016]. We investigate multiple actor-critic architectures,
including a multi-body network, merge networks for relative weights, and hypernetworks. We also
normalize the rewards using the PopArt scheme [Hessel et al., 2019] and propose a novel method to
control the entropy during training. An example Pareto front produced by our methods on a simple
test environment is shown in Figure 1. To summarize, our main contributions are:

• We propose a scalable family of algorithms for multi-objective on-policy RL.
• We propose and evaluate different actor-critic architectures for multi-objective RL.
• We describe a method to control the policy’s entropy during training for MORL dynamically

and show that it improves learning stability.
• We demonstrate the effectiveness of our proposed approaches to DMORL on both determin-

istic and stochastic MORL benchmark environments.

2 Related work

Multi-objective RL has been primarily studied from an off-policy perspective. Multiple MORL
approaches have been developed as extensions of Q-learning [Abels et al., 2019, Lu et al., 2022],
some of which condition the Q-network on the scalarization weights as we do with policies. Among
these methods, we use Envelope Q-learning [Yang et al., 2019] as a baseline, since its implementation
is publicly available and includes the case of discrete actions, which is the focus of our work. Another
notable example is the recent work by Hung et al. [2022], which also proposes a way to perform
policy updates for policies conditioned on relative weights along with learning a Q-function, but the
implementation only considers continuous control. Although Q-learning thrives in toy problems and
is efficient in some more complex domains [Mnih et al., 2013], it has many failure modes, including
the so-called “deadly triad” [Van Hasselt et al., 2018]. Off-policy methods also struggle with capacity
loss [Lyle et al., 2022] and, more generally, with generalizable feature learning [Lan et al., 2022].
Our work instead focuses on on-policy methods.

2

Alegre et al. [2023] also propose a sample-efficient method for MORL, but they employ model-based
learning while we focus on the model-free setup. Roijers et al. [2018], Reymond et al. [2023] directly
optimize the policy in the model-free setting (the latter work also includes a critic), but target a single
non-linear utility function. Xu et al. [2020], similarly to us, apply PPO to the multi-objective case,
but they do not condition the policies on the utility function, instead maintaining a set of policies
explicitly. MOMPO by Abdolmaleki et al. [2020] is an approach to MORL using techniques from
distributional RL [Levine, 2018]. In contrast to our method, MOMPO requires multiple training runs
to cover the Pareto front. One of the most relevant approaches to ours is called Pareto Conditioned
Networks (PCN) by Reymond et al. [2022]. It operates in the DMORL setup and learns a policy
conditioned on the desired value for all objectives. This allows for PCN to generalize to non-convex
PF. This work draws from reward-conditioned policies (RCP) by Kumar et al. [2019], a recent
supervised learning algorithm for RL. However, due to the nature of its replay buffer, PCN is not
adapted to stochastic environments.

3 Dynamic multi-objective reinforcement learning

Multi-objective reinforcement learning is the search for optimal policies for multi-objective Markov
decision processes (MOMDP). A MOMDP is a tuple (S,A, r, P, κ, γ), where sets S and A are state
and action spaces respectively, r : S×A → RK is aK-dimensional reward function, and P (s′ | s, a)
is the transition probability. Finally, κ is the distribution of initial states, and γ ∈ [0, 1) is the discount
factor. The only difference between MOMDP and MDP is the range of the reward — RK instead of
R. In this work, we optimize so-called linear scalarizations with relative weights given by α ∈ ∆K

from the (K − 1)-dimensional simplex

∆K =

{
α ∈ RK |

K∑
i=1

αi = 1, αi ≥ 0 ∀i

}
. (1)

For α ∈ ∆K , a scalarized reward is r(s, a,α) = α⊤r(s, a). Since we would like to cover all
scalarizations with a single model, we have to generalize our policy definition so that it is also
conditioned on α. Hence, our parameterized policies are of the form π(a | s,α). For a policy π, the
vector-value function also has to depend on α:

Vπ(s,α) = Eτ∼pπ(τ |α)

[∞∑
t=0

γtr(st, at)

∣∣∣∣∣ s0 = s

]
∈ RK . (2)

Here, τ = (s0, a0, s1, . . .) is a trajectory sampled from the transition dynamics P and the policy
π(a | s,α). We can also define the Q-function and the advantage in the usual way:

Qπ(s, a,α) = r(s, a) + γEs′∼P (s′|s,a) [V
π(s′,α)] , (3)

Aπ(s, a,α) = Qπ(s, a,α)−Vπ(s,α). (4)

The vector-objective associated with π is then given by

J(π,α) = Es∼κ [Vπ(s,α)] ∈ RK . (5)

In practice, our policies will be represented by a neural architecture with parameters θ ∈ RDa . In
this case, we write the policy, a.k.a. the actor, as πθ(a|s,α) and use shortcuts Vθ = Vπθ and
J(θ,α) = J(πθ,α). MOPPO and MOA2C will also require a critic, i.e., a neural approximation
to the value function. It is parameterized by ψ ∈ RDc , and we denote it as Ṽψ(s,α). Some of
the parameters might be shared between the actor and the critic. Our architecture’s overall set of
parameters will be called ν.

Pareto Front To define a Pareto Front, we need the notion of strict dominance. We say that a vector
p ∈ RK strictly dominates q ∈ RK (denoted as p ≻ q) iff pi > qi for all i ∈ {1, . . . ,K}. Next,
individual parameters α give rise to partially specified policies π(· | ·,α). We say that a policy
π(· | ·,α) strictly dominates π(· | ·,α′) iff Es∼κ

[
Vπ(s,α)

]
≻ Es∼κ

[
Vπ(s,α′)

]
. A partially

specified policy π(· | ·,α) is said to be weakly Pareto-optimal if no other policy dominates it. The
set of all such policies is called a weak Pareto set, and the image of the Pareto set in the objective
space is called a weak Pareto front (PF).

3

(a) Multi-body. State st is passed
through individual embeddings, out-
puts are interpolated using α . Then,
the interpolated outputs are passed to
the actor and critic heads.

(b) Merge net. State st and
α are passed through embed-

dings and multiplied. This is
then passed to the actor and
critic.

(c) Hypernetwork. State st
is embedded, and α is passed
through a hypernetwork produc-
ing the actor and critic heads.

Figure 2: Actor-critic architectures with shared trunks: Non-shared versions are organized simi-
larly. The dashed line in the hypernetwork chart is optional: st can be passed into the hypernetwork,
where we get the architecture’s “hypernet w/obs” variant.

In a nutshell, to identify the points on the PF, we are optimizing the expected utility metric, introduced
by Zintgraf et al. [2015] as

J(θ) = Eα∼D(α)

[
α⊤J(θ,α)

]
(6)

for some distribution D over ∆K with full support. Currently, we always set D to be uniform, but
other distributions can also be relevant. For a convex PF, if the neural architecture is expressive
enough so that the entire PF is covered by a set of weights θ∗, it is easy to see that θ∗ will also be a
maximizer of (6) for any distribution D. The theoretical situation is more involved in the misspecified
case (when the optimal policies are not represented by any θ) since the maximizer depends on the
exact distribution D. Still, we will not study our approach from the theoretical perspective.

We evaluate our models with two of the most common metrics in the MORL literature: expected
utility (6) and hypervolume.

Hypervolume Given a Pareto front P and a reference point p0, the hypervolume HV (P) indicates
the volume of the polytope in the region of the objective space dominated by P and bounded from
below by the reference point. Formally, in K-dimensional objective space, it can be defined as:

HV (P) =
∫
RK

IH(P)(z)dz (7)

where H(P) = {z ∈ Z | ∃p ∈ P : p0 ⪯ z ⪯ p}. Here, ⪯ is the relation operator that indicates the
Pareto-dominance, and IH(P) is the indicator function that is 1 if z ∈ H(P), and 0 otherwise.

4 Architectures

This work focuses on continuous states and discrete actions, such that S ⊂ Rds , A = {1, . . . , A} .
Generalization to small discrete state spaces is straightforward with one-hot encoding, and general-
ization to continuous actions can be performed analogously to scalar PPO and A2C variants through
parameterized action distributions. We consider three architectures for the actor-critic network,
presented in Figure 2.

When both actor and critic are learned, an often-used practice is to share weights between them. A
popular approach is to share the trunk fζ : S → RF of a neural network that takes the state s in and
produces intermediate features fζ(s). The trunk is parameterized by ζ ∈ RDb . We hope the features
are general enough to convey information about both the optimal action and the value of the current
state. In this case, we can use a shared trunk architecture with two separate linear layers to extract
both the action distribution and the predicted value:

πθ(· | s,α) = softmax(Wafζ(s,α) + ba), (8)

Ṽψ(s,α) = Wcfζ(s,α) + bc. (9)

The learnable parameters of the actor are therefore θ = (ζ,Wa,ba). For the critic, the parameters
are ψ = (ζ,Wc,bc). We refer to (Wa,ba) as the actor head and to (Wc,bc) as the critic head. An

4

alternative that we consider is that the critic and the actor do not share the trunk’s parameters, even
though its architecture is the same for both. We will refer to this as a non-shared trunk architecture.

When the policy is conditioned on states s ∈ S and relative weights α ∈ ∆K , it is a priori unclear
what would be the best architecture that combines these inputs in fζ . Deep learning architectures
provide a useful inductive bias to guide learning and cover the Pareto front efficiently. This can
be especially helpful when the rewards interfere with each other, for example, when they compete,
i.e., maximizing one reward minimizes the other1. As a result, the signs of each objective gradient
maximizing each reward may differ, resulting in canceling each other in the shared trunk’s parameters.
This can disrupt the learning dynamics and representations. An effective way to address this in the
continual multi-task learning has been to modify the architectures (see Rusu et al. [2016].) Here, we
consider three architectures to understand their impact on learning policies for DMORL: a multi-body
network, a merge network, and a hypernetwork.

Multi-body network. This architecture follows the intuition that the policies using different weights
are, in some sense, interpolated. However, our preliminary experiments have shown that if we use
multiple heads for actors corresponding to different objectives, the interpolation between logits or
logprobs is not expressive enough. Instead, we need to interpolate in the higher-dimensional feature
space. We thus settled on the formulation

fζ(s,w) = MLP

(
K∑
i=1

αiφ (Wis+ bi)

)
. (10)

Here, φ is the ReLU activation [Nair and Hinton, 2010], α = (α1, . . . , αK)⊺, and MLP is a multi-
layer perceptron. This architecture has a “body” (Wi,bi) for each objective, which independently
processes the input state, and their outputs after activation are linearly interpolated by the weights α
assigned for each objective.

Merge network. Here, similarly to Reymond et al. [2022], we pass α through a separate embedding
before merging it with the state:

fζ(s,w) = MLP (φ̃(W1s+ b1)⊙ φ̃(W′
1α+ b′

1)) , (11)
where φ̃ is the sigmoid activation, and ⊙ stands for element-wise multiplication.

Hypernetwork. Finally, we consider a slightly more involved architecture similar to the one described
in Navon et al. [2020]. Below, we detail the shared trunk case. The body of the policy fζ(s) here only
takes the state as input, i.e. fζ(s) = MLP(s). The last layer parameters Wa,ba,Wc,bc are now
produced by a hypernetwork with the structure

h(α) = φ(Whα+ bh), Wa,ba = W2h+ b2, Wc,bc = W′
2h+ b′

2. (12)
Above, we slightly abuse the notation in the sense that W2h+b2 is a vector of dimension (F+1)|A|,
which gets split and reshaped into the corresponding layer parameters Wa and ba. Note how the actor
and the critic share the network’s trunk and the first layer of the hypernetwork. With a non-shared
trunk, the critic gets its copy of all parameter groups instead. We also experimented with a version of
the shared trunk architecture where the observation gets fed into the hypernetwork along with the
weights, i.e., h(α, s) = φ(Wh[α; s] + bh), abbreviated as “Hypernetwork w/obs” in the paper.

5 Algorithms

We chose to focus on two instantiations of our framework for DMORL. However, our actor-critic
architectures are more general and could be applied to other policy iteration or policy gradient
methods.

5.1 Actor and critic losses

Multi-objective policy gradient Scalar A2C relies on the Policy Gradient theorem to update the
actor. This theorem can be generalized to the vector-valued reward case:

∇θ(α⊤J(θ,α)) = Eτ∼pπ(τ |α)

[∞∑
t=0

γtα⊤Aθ(st, at,α)∇θ log πθ(at | st,α)

]
. (13)

1In Minecart environment, rewards for fuel and ores can have competing dynamics.

5

To maximize the expected utility, we approximate the above expression by first sampling random
relative weight vectors α ∼ D(∆K), and then performing a rollout of the current policy πθ using α.
In practice, we maintain B trajectories and corresponding α-s simultaneously, but in this section we
set B = 1 for clarity. Let the discounted reward-to-go for the trajectory at timestep t be Q̂t. If the
trajectory was truncated before the terminal state, reward-to-go is bootstrapped. The estimator of the
gradient of expected utility that we use in multi-objective A2C is given by

∇θJ(θ) ≈ ∇̂θJ(θ) =
T∑
t=0

γtα⊺(Q̂t − Ṽψ(st))∇θ log πθ(at | st,α). (14)

Require: Multi-objective MDPM = (S,A, r, P, µ, γ)
Require: Actor πθ, critic Ṽψ with parameters ν = θ ∪ ψ
while not terminated do

Sample reward weights α ∼ U(∆K)

Sample a truncated trajectory {(st, at, rt)}Tt=0
from P and πθ(· | ·,α)

for e← 1 to E do // iterate over epochs
Update PopArt µ and σ and the critic head
Get the reward-to-go Q̂t from bootstrapped TD(1)
Compute vector- and scalarized advantage:

Ât ← Q̂t − Ṽψ(st,α), Ât ← α⊺(Ât/σ)
for b← 1 to B do

Sample a minibatch {(sk, ak, Q̂k, Âk)}k
Update g and λ using (19) for entropy control
Compute la(ψ) and its gradient ∇θla from (17)
Compute lc(ψ) and its gradient ∇ψlc from (15)
Update βc so that ∥g +∇θla∥ ≈ Cβc∥∇ψlc∥
Feed g +∇θla + βc∇ψlc into Adam, update ν

end
end

end
Algorithm 1: A schematic description of multi-objective
PPO for an actor and a critic with a shared trunk. Our PopArt
update scheme follows Hessel et al. [2019]. Actor-to-critic
gradient ratio C is one of the hyperparameters we tune.

Critic loss To optimize the critic
over a minibatch of {(sk, Q̂k)}k,
we use the least-squares loss:

lc(ψ) =
∑
k

∥∥∥Q̂k − Ṽψ(sk,α)
∥∥∥2.

(15)

The algorithm dynamically adjusts
the weight βc of the critic loss.
Depending on whether the critic
shares parameters with the actor, it
makes sense to use different strate-
gies for setting βc. For the gen-
erality of our methods, we set βc
dynamically to ensure an approxi-
mately constant ratio of norms of
the actor and critic gradients. This
technique was not as important in
our environments, so we defer a
discussion to Appendix A.2.

PopArt is an approach to learning
value functions across different or-
ders of magnitude, especially in sit-
uations where the value scales are
not known in advance or change de-
pending on the performance of the
policy. Hessel et al. [2019] success-
fully adapted it to the multi-task
RL setup, similar to MORL. In MORL, the differences in scale between rewards also pose a problem.
If we have to design trade-offs between objectives of varying magnitude, then the optimization tar-
get (6) will unfairly favor the objectives of larger scales. Multi-task PopArt maintains an approximate
mean µi and variance σ2

i of the target values for each task. We chose to use α combine the normalized
advantages. This means that for the gradient estimate (14) instead of α⊺(Q̂t,j − Ṽψ(st,j)) we use a
scalarization of the form

α⊺
(
(Q̂t,j − Ṽψ(st,j))/σ

)
, (16)

where σ = (σ1, . . . , σK) and / denotes component-wise division.

Multi-objective PPO The original PPO is formulated by Schulman et al. [2017] using a surrogate
objective for policy iteration. This objective is optimized for multiple epochs over the same sampled
trajectories to achieve higher sample efficiency. The actor loss for MOPPO differs from the standard
PPO formulation only by using the scalarized advantage Â, defined in Algorithm 1. Given a minibatch
of {(sk, ak, Âk)}k, we employ the following loss of the actor:

la(θ) =
∑
k

min
(
rk(θ)Âk, clip (rk(θ), 1− ε, 1 + ε) Âk

)
, rk(θ) =

πθ(ak|sk,α)

πref (ak|sk,α)
, (17)

where πref is the policy directly after sampling the trajectory.

6

0 20000 40000 60000 80000 100000
Step

0.5

1.0

1.5

En
tro

py

Entropy
Target entropy

0 20000 40000 60000 80000 100000
Step

0.5

1.0

1.5

En
tro

py

Entropy
Target entropy

0 20000 40000 60000 80000 100000
Step

0.0

0.5

1.0

1.5

En
tro

py

Entropy
Target entropy

Figure 3: Entropy control schedules: Example entropy behaviors on Minecart when using the
entropy control method described in Section 5.2. From left to right: custom schedule, cosine schedule
and linear schedule of entropy. The custom schedule is designed to have a flat start for exploration
and an extended flat end for fine-tuning the behavior. The schedules are discussed in detail in
Appendix A.4.

5.2 Entropy control during training

Our experiments show that entropy regularization is necessary to avoid collapse in more challenging
environments. The entropy of the current policy embodies the exploration-exploitation trade-off: if
the entropy is low, the agent fails to explore, but if it is too high, the agent cannot operate efficiently.
Intuitively, a good training run keeps entropy high initially to explore sufficiently and then “anneals”
the entropy to lower values as training progresses. This behavior is hard to achieve in practice since
training is sensitive to the entropy regularization coefficient. At this point, we can employ a key
insight that we do not need to maximize the entropy. Rather, we would like to keep it at a pre-defined
level. Hence, the framework of constrained optimization is applicable.

We use an algorithm by Platt and Barr [1987] called the Modified Differential Method of Multipliers
(MDMM), which allows us to maximize a function subject to approximate equality constraints. Let
the expected entropy of the policy and its empirical estimate be

H(θ) = Eα∼D(∆K),s∼pπθ (s|α) [H(πθ(· | s,α))] , Ĥ(θ) =
1

T + 1

T∑
t=0

H(πθ(· | st,α)), (18)

where pπθ is the state visitation distribution. Assume that we would like to satisfy the constraint
H(θ) ≈ Htarget, where Htarget is a desired entropy value that can also depend on our progress in
training. To this end, MDMM introduces the Lagrange multiplier λi ∈ R, which is dynamically
updated at each step i. Vanilla MDMM dictates that we use an update of the form:

g = (λi+c(Htarget−Ĥ))∇θĤ, θi+1 = θi+η(g+∇θla), λi+1 = λi+η̃(Htarget−Ĥ). (19)
Here, η is the learning rate, and η̃, c are new hyperparameters. In practice, we don’t directly use the
update vector g+∇θla and instead provide it to Adam. Note that the conventional method of entropy
regularization keeps λ constant and positive, while here it can also become negative, thus forcing
the entropy to decrease to reach Htarget. Figure 3 demonstrates how entropy oscillates around the
target value during training in the Minecart environment. We discuss the entropy schedules we used
in more detail in Appendix A.4. In our experiments, entropy control did not perform well with A2C,
so we only enabled it for PPO, which provides benefits as our ablation study demonstrates.

6 Experiments

We implement all architectures described above using the TorchRL library [Bou et al., 2023]. As a
source of MOMDP environments, we use MO-Gymnasium [Alegre et al., 2022], the standard testbed
in MORL. We run an ablation study to compare various architectures and algorithm details against
each other and perform a comparison against two baselines, Pareto Conditioned Networks [Reymond
et al., 2022] and Envelope Q-learning [Yang et al., 2019]. We chose these two approaches to MORL
because, to the best of our knowledge, these are the most recent model-free MORL methods that
condition a single policy (or value function) to generate the entire Pareto front and that have a public
implementation supporting the case of continuous observations and discrete actions. We use the
implementation provided in MORL-baselines [Felten et al., 2023] for both methods.

6.1 Preliminary results on deep-sea-treasure

All our methods can solve the standard grid-world environment called “Deep Sea Treasure”. In this
environment, the agent controls a submarine on a 2D grid. The two objectives are the cost of fuel (−1

7

0

25

50

75

100

125

150

Be
st

 h
yp

er
vo

lu
m

e

28.3
±25.7

41.5
±37.5

76.7
±22.3 38.0

±43.0

107.7
±18.9 100.1

±15.5
87.1
±2.9

134.7
±11.3 118.1

±16.7

MOA2C
MOPPO
Shared trunk
Non-shared trunk

Multi-body network
Merge network
Hypernetwork w/ obs
Hypernetwork

Desi
gn

ed
Cosi

ne
Lin

ea
r

Fix
ed

 = 10
1

Fix
ed

 = 10
2

Fix
ed

 = 10
3

0

25

50

75

100

125

150

Be
st

 h
yp

er
vo

lu
m

e

76.7
±22.3 74.1

±14.2

81.1
±44.2

41.2
±4.5

84.4
±33.1

0.3
±0.6

Figure 4: Architecture ablations on Minecart: Left: comparison of the algorithms and policy
architectures on Minecart. Right: comparison of entropy control from Section 5.2 using three entropy
schedules described in Appendix A.4 with standard entropy regularization using a fixed weight λ.

for every step) and the reward of a treasure that the agent can discover in pre-defined locations. When
the agent is willing to spend more fuel, it can find a bigger reward. Precise control over the placement
of treasures and the rewards from each one allows us to shape the 2D PF. We use the version of Deep
Sea Treasure with a convex PF. We discovered that the results in this simple environment are not
sensitive to hyperparameter tuning. All runs used ≈ 105 environment steps and converged to Pareto
fronts presented in Figure 1.

6.2 Ablation studies on Minecart

“Minecart” is a harder environment than deep-sea-treasure, also included in MO-Gym. This environ-
ment has an agent that operates a cart in a 2D continuous space. There are three rewards: two for
bringing different types of ores and one for the consumed fuel. Depending on the agent’s location,
the probabilities for getting one or the other change, thus leading to a nontrivial multi-objective
problem. This environment also has a deterministic version, where each mining action near a mine is
guaranteed to produce a fixed amount of ore. We use the stochastic version for ablations on different
architectural choices discussed here. For each architecture, we run a hyperparameter search detailed
in Appendix B.1. Then, we run training for each method with five seeds to estimate the average and
standard deviation. The resulting hypervolume for selecting methods is presented in Figure 4. We
want to focus the attention of the reader on multiple conclusions that we can draw if we focus on
parts of it:

• PPO significantly outperforms A2C, likely because of its sample-efficient data reuse across
multiple epochs. This effect mirrors the corresponding knowledge from the scalar RL
community.

• Non-shared trunk architectures consistently perform slightly worse than their shared coun-
terparts.

• Architecture choice seems to influence the performance. Multi-body networks perform the
best, followed by hypernetworks and merge networks. This ordering also depends on the
environment since it comes out differently for another environment in the following section.

Figure 4 also shows that training is sensitive to the entropy control coefficient λ when using standard
entropy regularization. All 12 considered hyperparameter configurations lead to collapse if we fix
λ = 10−3, while λ = 10−2 seems to lead to optimal performance among methods with constant
λ. On the other hand, all entropy control schedules lead to essentially the same performance. We
additionally note here that we did not have to perform tuning of the entropy control learning rate η̃
for any of our experiments, we just fixed η̃ = η/10 from the start. We also provide the results in
expected utility for all of the methods from Figure 4 in Table 3 in the Appendix C.1 and demonstrate
all hyperparameter grids in Figures 5 and 6 there.

6.3 Comparison with the baseline methods

We use three environments for comparison: two versions of Minecart (deterministic and non-
deterministic) and MO-reacher. The non-deterministic version of Minecart checks that our methods
can handle stochasticity, but it cannot be used to compare with PCN, which requires deterministic
transitions. MO-reacher is a MuJoCo-based [Todorov et al., 2012] environment where an agent

8

Table 1: A comprehensive comparison of a selection of our methods to baselines. We do not evaluate
PCN on the nondeterministic minecart because the authors of the method claim that its handling
of the replay buffer would lead to incorrect behaviors in stochastic environments. The best in the
column is marked in bold, and so are all methods whose intervals intersect the interval of the best.

Method Minecart Minecart det. Reacher

Arch Shared Entropy HV EU HV EU HV (/107) EU

Multi-body No Custom 115.8± 15.5 0.19± 0.06 119.6± 17.0 0.21± 0.05 3.21± 0.64 21.06± 3.23
Multi-body Yes Custom 132.7± 11.3 0.27± 0.02 136.2± 10.1 0.27± 0.02 2.64± 0.87 19.09± 3.48
Multi-body Yes Linear 118.5± 24.7 0.15± 0.09 134.6± 8.8 0.27± 0.02 2.53± 0.72 18.26± 3.64
Hypernet Yes Custom 97.9± 16.5 0.18± 0.03 93.8± 6.0 0.19± 0.04 2.45± 0.91 17.34± 4.99
Merge net Yes Custom 84.2± 14.1 0.03± 0.05 50.4± 42.1 −0.22± 0.26 3.33± 0.17 21.73± 0.72

PCN — — 106.7± 10.0 0.30± 0.06 1.91± 0.23 15.41± 1.72
Envelope 104.7± 9.5 0.34± 0.03 77.4± 4.7 0.38± 0.07 2.73± 0.60 19.78± 2.65

controls a two-jointed robot arm. There are four rewards, each corresponding to the l2-distance of the
tip of the arm from one of four targets on the 2D-space. The action space consists of nine actions
corresponding to one of three torques (positive, negative, and zero) in each joint.

We tune the hyperparameters of each method on each environment separately; the details are presented
in Appendix B. Results from all grids for this experiment are also presented in Figures 7-10 in the
Appendix. The best hyperparameters are used to run the method again with 5 different seeds. We
found that in some cases, envelope Q-learning showed good results early but collapsed later in training,
likely due to catastrophic forgetting. Because of this, we demonstrate the results corresponding
to the best hypervolume for envelope Q-learning. Our methods or PCN did not suffer from this
issue, so we reported the metrics after the training was finished. We present the evaluation results
in Table 1. Overall, our methods can outperform the baselines in terms of hypervolume. This is
partly because we use non-deterministic policies for evaluation, while PCN and Envelope Q-learning
rely on deterministic ones. Learning non-deterministic policies allows us to cover the Pareto front
more densely. As one can see, on Minecart, whether our methods outperform Envelope Q-learning is
ambiguous. Mirroring the situation in the scalar RL literature, however, our methods perform better
on the robotic control task. Note that the authors of PCN also provide hypervolume measurements
on deterministic Minecart in [Reymond et al., 2022, Table 1], but they do not mention the reference
point p0 they use, nor the discount factor γ. Based on the true Pareto front that they provide and their
measurements, they most likely use γ = 1, while we use γ = 0.99. Therefore, the results from their
paper are not directly comparable with the ones provided in our Table 1.

7 Conclusion

We proposed several actor-critic architectures and two algorithms for dynamic multi-objective
reinforcement learning. All of our approaches can solve a simple MORL environment and provide a
continuous parametrization of the space of policies covering the Pareto front. We then performed an
extensive comparison study on two more complicated environments, demonstrating the usefulness of
the proposed improvements over the naive implementation. We showed that our implementation of
multi-objective PPO can outperform the baselines on a robotic control task and perform competitively
when delayed rewards and/or stochasticity are present in the environment.

Our contributions are empirical in nature. We compare architectures and technical details of the
implementation, but we do not perform a theoretical analysis of our algorithms. Such analysis could
also be beneficial for the community: for example, under which conditions does policy gradient or
policy iteration converge to a policy that approximately covers the Pareto front, and what would the
notion of “misspecification” be? Another important limitation of this work is that we only consider
linear scalarizations of the vector return J(π,α). This does not allow us to recover concave regions
on the Pareto front. It should also be possible to extend our methods to nonlinear utilities, so that they
optimize the expected scalarized return E [u (α,

∑
t γ

trt)] for a utility u with a free parameter α.
Finally, scalar PPO works especially well in continuous control environments, and a good extension
of our work would be to see whether our methods preserve this strength in the multi-objective setup.

9

References

A. Abdolmaleki, S. Huang, L. Hasenclever, M. Neunert, F. Song, M. Zambelli, M. Martins, N. Heess,
R. Hadsell, and M. Riedmiller. A distributional view on multi-objective policy optimization. In
International conference on machine learning, pages 11–22. PMLR, 2020.

A. Abels, D. Roijers, T. Lenaerts, A. Nowé, and D. Steckelmacher. Dynamic weights in multi-
objective deep reinforcement learning. In International conference on machine learning, pages
11–20. PMLR, 2019.

L. N. Alegre, F. Felten, E.-G. Talbi, G. Danoy, A. Nowé, A. L. C. Bazzan, and B. C. da Silva.
MO-Gym: A library of multi-objective reinforcement learning environments. In Proceedings of
the 34th Benelux Conference on Artificial Intelligence BNAIC/Benelearn 2022, 2022.

L. N. Alegre, A. L. Bazzan, D. M. Roijers, A. Nowé, and B. C. da Silva. Sample-efficient
multi-objective learning via generalized policy improvement prioritization. arXiv preprint
arXiv:2301.07784, 2023.

A. Bou, M. Bettini, S. Dittert, V. Kumar, S. Sodhani, X. Yang, G. De Fabritiis, and V. Moens. Torchrl:
A data-driven decision-making library for pytorch. arXiv preprint arXiv:2306.00577, 2023.

J. Degrave, F. Felici, J. Buchli, M. Neunert, B. Tracey, F. Carpanese, T. Ewalds, R. Hafner, A. Abdol-
maleki, D. de Las Casas, et al. Magnetic control of tokamak plasmas through deep reinforcement
learning. Nature, 602(7897):414–419, 2022.

F. Felten, L. N. Alegre, A. Nowé, A. L. C. Bazzan, E. G. Talbi, G. Danoy, and B. C. d. Silva. A toolkit
for reliable benchmarking and research in multi-objective reinforcement learning. In Proceedings
of the 37th Conference on Neural Information Processing Systems (NeurIPS 2023), 2023.

Z. Fu, X. Cheng, and D. Pathak. Deep whole-body control: learning a unified policy for manipulation
and locomotion. In Conference on Robot Learning, pages 138–149. PMLR, 2023.

M. Hessel, H. Soyer, L. Espeholt, W. Czarnecki, S. Schmitt, and H. Van Hasselt. Multi-task
deep reinforcement learning with popart. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 3796–3803, 2019.

W. Hung, B.-K. Huang, P.-C. Hsieh, and X. Liu. Q-pensieve: Boosting sample efficiency of multi-
objective rl through memory sharing of q-snapshots. arXiv preprint arXiv:2212.03117, 2022.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

A. Kumar, X. B. Peng, and S. Levine. Reward-conditioned policies. arXiv preprint arXiv:1912.13465,
2019.

C. L. Lan, S. Tu, A. Oberman, R. Agarwal, and M. G. Bellemare. On the generalization of represen-
tations in reinforcement learning. arXiv preprint arXiv:2203.00543, 2022.

S. Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review. arXiv
preprint arXiv:1805.00909, 2018.

S. Liu and L. N. Vicente. Accuracy and fairness trade-offs in machine learning: A stochastic
multi-objective approach. Computational Management Science, 19(3):513–537, 2022.

I. Loshchilov and F. Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

H. Lu, D. Herman, and Y. Yu. Multi-objective reinforcement learning: Convexity, stationarity and
pareto optimality. In The Eleventh International Conference on Learning Representations, 2022.

C. Lyle, M. Rowland, and W. Dabney. Understanding and preventing capacity loss in reinforcement
learning. arXiv preprint arXiv:2204.09560, 2022.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

10

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. In International conference on machine
learning, pages 1928–1937. PMLR, 2016.

V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In Pro-
ceedings of the 27th international conference on machine learning (ICML-10), pages 807–814,
2010.

A. Navon, A. Shamsian, G. Chechik, and E. Fetaya. Learning the pareto front with hypernetworks.
arXiv preprint arXiv:2010.04104, 2020.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama,
A. Ray, et al. Training language models to follow instructions with human feedback. Advances in
Neural Information Processing Systems, 35:27730–27744, 2022.

J. Platt and A. Barr. Constrained differential optimization. In Neural Information Processing Systems,
1987.

M. Reymond, E. Bargiacchi, and A. Nowé. Pareto conditioned networks. arXiv preprint
arXiv:2204.05036, 2022.

M. Reymond, C. F. Hayes, D. Steckelmacher, D. M. Roijers, and A. Nowé. Actor-critic multi-objective
reinforcement learning for non-linear utility functions. Autonomous Agents and Multi-Agent
Systems, 37(2):23, 2023.

D. M. Roijers, D. Steckelmacher, and A. Nowé. Multi-objective reinforcement learning for the
expected utility of the return. In Proceedings of the Adaptive and Learning Agents workshop at
FAIM, volume 2018, 2018.

A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu, R. Pascanu,
and R. Hadsell. Progressive neural networks. arXiv preprint arXiv:1606.04671, 2016.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033. IEEE,
2012. doi: 10.1109/IROS.2012.6386109.

P. Vamplew, J. Yearwood, R. Dazeley, and A. Berry. On the limitations of scalarisation for multi-
objective reinforcement learning of pareto fronts. In AI 2008: Advances in Artificial Intelligence:
21st Australasian Joint Conference on Artificial Intelligence Auckland, New Zealand, December
1-5, 2008. Proceedings 21, pages 372–378. Springer, 2008.

P. Vamplew, C. Foale, R. Dazeley, and A. Bignold. Potential-based multiobjective reinforcement
learning approaches to low-impact agents for ai safety. Engineering Applications of Artificial
Intelligence, 100:104186, 2021.

H. Van Hasselt, Y. Doron, F. Strub, M. Hessel, N. Sonnerat, and J. Modayil. Deep reinforcement
learning and the deadly triad. arXiv preprint arXiv:1812.02648, 2018.

J. Xu, Y. Tian, P. Ma, D. Rus, S. Sueda, and W. Matusik. Prediction-guided multi-objective
reinforcement learning for continuous robot control. In International conference on machine
learning, pages 10607–10616. PMLR, 2020.

R. Yang, X. Sun, and K. Narasimhan. A generalized algorithm for multi-objective reinforcement
learning and policy adaptation. Advances in neural information processing systems, 32, 2019.

L. M. Zintgraf, T. V. Kanters, D. M. Roijers, F. Oliehoek, and P. Beau. Quality assessment of morl
algorithms: A utility-based approach. In Benelearn 2015: proceedings of the 24th annual machine
learning conference of Belgium and the Netherlands, 2015.

11

Require: Multi-objective MDPM = (S,A, r, P, µ, γ)
Require: Actor πθ, critic Ṽψ with disjoint sets of parameters
while not terminated do

Sample reward weights α ∼ U(∆K)

Sample a truncated trajectory {(st, at, rt)}Tt=0
from P and πθ(· | ·,α)

for e← 1 to E do // iterate over epochs
Update PopArt µ and σ and the critic head
Get the reward-to-go Q̂t from bootstrapped TD(1)
Compute vector- and scalarized advantage:
Ât ← Q̂t − Ṽψ(st,α), Ât ← α⊺(Ât/σ)

for i← 1 to F do // We run more updates for the critic
for b← 1 to B do

Sample a minibatch {(sk, ak, Q̂k)}k
Compute lc(ψ) and its gradient∇ψlc from (15)
Feed ∇ψlc into critic’s Adam, update ψ

end
end
for b← 1 to B do

Sample a minibatch {(sk, ak, Âk)}k
Update g and λ using (19) for entropy control
Compute la(ψ) and its gradient ∇θla from (17)
Feed g +∇θla into actor’s Adam, update θ

end
end

end
Algorithm 2: A schematic description of multi-objective PPO for an actor and a critic with
separate trunks. In this case, the actor-to-critic ratio C that we tune stands for the ratio ηa/ηc,
where ηa and ηc are the learning rates of the actor and the critic optimizers, respectively. Since
we tend to set C > 1, we compensate here by running F times more updates on the critic. In all
our experiments we set F = 2.

A Implementation details

A.1 Other variants of our learning algorithms

Here we describe our versions of non-shared trunk PPO (Algorithm 2) and of A2C (shared trunk
version in Algorithm 3, and non-shared — in Algorithm 4). We note that non-shared versions can
perform multiple updates on the critic per single actor update, but this would be harder to justify
conceptually for a shared trunk architecture.

Since MOA2C diverges when used together with our entropy regularization scheme, for it we have to
rely on the standard entropy regularizer loss. Given a trajectory {(st, at, rt)}t sampled with reward
weights α, it is given by

ga2c =
1

T + 1

T∑
t=0

∇θH(πθ(· | st,α). (20)

A.2 Gradients for shared and non-shared trunk architectures

Suppose the actor and critic do not share parameters. In that case, updating them in PPO or A2C is
straightforward: the gradient of the value loss is separated from the gradient of the policy with entropy
regularization. We can even perform multiple “inner” optimization steps on the critic. Since the critic
is aiming at a moving target (the value function depends on the policy, which keeps changing), there
should be a clear sweet spot between overfitting the critic to the current policy and making it unable
to catch up. Although more extensive experiments would be helpful, for now, we just set the number

12

Require: Multi-objective MDPM = (S,A, r, P, µ, γ)
Require: Actor πθ, critic Ṽψ with disjoint sets of parameters
while not terminated do

Sample reward weights α ∼ U(∆K)

Sample a truncated trajectory {(st, at, rt)}Tt=0
from P and πθ(· | ·,α)

for e← 1 to E do // iterate over epochs
Update PopArt µ and σ and the critic head
Get the reward-to-go Q̂t from bootstrapped TD(1)
Compute vector- and scalarized advantage:
Ât ← Q̂t − Ṽψ(st,α), Ât ← α⊺(Ât/σ)

Compute lc(ψ) and its gradient∇ψlc from (15) on the entire trajectory
Compute the entropy regularizing gradient ga2c from (20)
Compute the policy gradient estimator ∇̂θJ(θ) from (14)
Update βc so that ∥ga2c + ∇̂θJ(θ)∥ ≈ Cβc∥∇ψlc∥
Feed ga2c + ∇̂θJ(θ) + βc∇ψlc into Adam, update ν

end
end
Algorithm 3: A schematic description of multi-objective A2C for an actor and a critic with shared
trunks. We discovered that entropy control leads to divergence of MOA2C on our environments,
so we disabled it in our experiments.

of inner updates to 2 (relative to one update of the actor) and only studied the relative learning rate
we can give to the critic for optimal performance.

When the architectures of the actor and critic are joined, training becomes trickier. Now, multiple
updates from the critic do not make much sense because this would unpredictably influence the actor.
We want all updates of the actor parameters to be at least partially influenced by the relevant learning
signal. Otherwise, we are in danger of a “catastrophic misstep.”. Let now ga be the actor gradient
from the policy loss and the entropy regularization. Let gc = ∇ψl(ψ) be the gradient from the critic.
Our intuition is that we need to make the norms of these gradients approximately proportional, i.e.,
∥gc∥ ≈ C∥ga∥, where C > 0 is a hyperparameter. The most straightforward way to ensure this is
to set βc = C∥gc∥/∥ga∥. Setting βc to this value directly at each iteration would lead to a rather
unstable learning rate for the critic, so instead, we compute a running average using a recurrent
formula

βc =
δC∥gc∥
∥ga∥

+ (1− δ)βc, (21)

where δ is another hyperparameter regulating the smoothness of the critic’s learning rate, which we
set to 0.001 in all experiments. The hope is that the learning procedure is not as sensitive to δ, while
C is the analogue of the relative learning rate that we could compute in the separated actor and critic
case.

We use Adam [Kingma and Ba, 2014] for optimization after computing the above gradients. If the
critic is separated, we naturally have a separate instance of Adam optimizer. Otherwise, the gradient
estimates are fed into it after the adaptive relative weight update (21).

A.3 Step discarding heuristics

During the preliminary experiments, we identified multiple scenarios that occur rather rarely but
lead to the collapse of the learning process. Unstable training on toy environments was especially
observed with the hypernetwork architecture. In part, it can be remedied by clipping the gradient
norms (which we do) or even just by setting a lower learning rate, but this comes at the cost of
lower sample efficiency. The collapse of learning that we observed mostly happened rapidly and
led to trivial policies and zero entropy. To prevent the missteps that lead to collapse, we employ the
following heuristics:

13

Require: Multi-objective MDPM = (S,A, r, P, µ, γ)
Require: Actor πθ, critic Ṽψ with parameters ν = θ ∪ ψ
Initialize ν
while not terminated do

Sample reward weights α ∼ U(∆K)

Sample a truncated trajectory {(st, at, rt)}Tt=0
from P and πθ(· | ·,α)

for e← 1 to E do // iterate over epochs
Update PopArt µ and σ and the critic head
Get the reward-to-go Q̂t from bootstrapped TD(1)
Compute vector- and scalarized advantage:
Ât ← Q̂t − Ṽψ(st,α), Ât ← α⊺(Ât/σ)

for i← 1 to F do
Compute lc(ψ) and its gradient ∇ψlc from (15) on the entire trajectory
Feed ∇ψlc into critic’s Adam, update ψ

end
Compute the entropy regularizing gradient ga2c from (20)
Compute the policy gradient estimator ∇̂θJ(θ) from (14)
Feed ga2c + ∇̂θJ(θ) into actor’s Adam, update θ

end
end
Algorithm 4: A schematic description of multi-objective A2C for an actor and a critic with
non-shared trunks. We discovered that entropy control leads to divergence of MOA2C on our
environments, so we disabled it in our experiments. As in Algorithm 2, the actor-to-critic ratio C
that we tune stands for the ratio ηa/ηc, where ηa and ηc are the learning rates of the actor and the
critic optimizers, respectively.

1. If the entropy dropped significantly (the change in entropy is negative, and its absolute value
is three standard deviations above the average absolute changes in entropy) and the average
reward did not increase from the previous step, we discard the step.

2. If the entropy or actor gradient has been nearly zero for the past 200 steps, reset learning
from the last checkpoint where nonzero statistics were still observed.

To prevent discarding too many steps, we set an upper limit of 5% of the last 100 iterations that can
be discarded.

A.4 Entropy control

The method described in Section 5.2 to control entropy during training allows us to shape the entropy
according to any schedule. An investigation into principled ways of selecting such schedules would
be quite interesting, but it is out of the scope of this paper. We have selected three schedules based on
our intuition about exploration-exploitation trade-offs. All of these schedules start from the maximal
possible entropy Htarget(0) = Hmax = log |A| and progress to Htarget(1) = Hmin. For Minecart
and resource gathering experiments, we set Hmin = 0.4; for deep sea treasure, we set it to 0.1.
The schedules are defined as Htarget(u), where u ∈ [0, 1] denotes the proportion of environment
interactions that were used so far from the total budget allocated for training.

The first schedule is a simple linear function going from the maximal entropy Hmax = log |A| to a
desired minimal value Hmin:

Htarget,lin(u) = Hmax − (Hmax −Hmin)u. (22)

The second schedule is normalized cosine, used to provide extra high-entropy exploration time in the
beginning:

Htarget,cos(u) = (Hmax −Hmin) cos(πu/2) +Hmin. (23)

Finally, we also designed a “custom” schedule with a flat start to provide exploration time and,
unlike the previous schedule, has an extended flat end around the lower entropy to provide time for

14

exploitation. We used the expression

Htarget,custom(u) = (Hmax −Hmin)(0.5− cos
(
π(1− u)1.3

)
/2 +Hmin. (24)

The target entropy curves resulting from all of these methods are shown in Figure 3 in the main paper.
We also briefly experimented with “resetting” entropy to a high value a few times during training,
similar to cosine learning rate annealing [Loshchilov and Hutter, 2016], but did not get promising
results.

B Hyperparameter tuning

B.1 Our methods

Here we describe the details of the hyperparameter search that we performed for each architecture
when comparing them to produce Figure 4 in Section 6.2. We run a hyperparameter search for
all shared trunk architectures and pick the best final hypervolume. We search over the learning
rates η ∈{3e-4, 1e-3, 3e-3} and over the ratio C ∈ {1, 3, 10, 30} as defined in Algorithm 1. For
architectures with non-shared trunks, we instead search over the learning rate of the critic among
ηc ∈ {η, η/3, η/10, η/30}. All hyperparameter grids for this experiment are shown in Figures 5
and 6. Final results on more architectures with extra metrics for the Pareto front are shown in Table 3.

For experiments in Section 6.3, we also run a hyperparameter grid search for each pair of methods
and environments. For the reacher environment, we search over η ∈{3e-4, 1e-3, 3e-3} and C ∈
{0.33, 1, 3}. We picked smaller values of C for this environment because the trajectories sampled
from it are always infinite; hence, bootstrapping and the critic are more relevant to the algorithm’s
performance.

B.2 PCN and Envelope Q-learning

We aim to compare our methods fairly to PCN by performing additional hyperparameter sweeps for
PCN. We sweep through the same learning rates η ∈ {0.0001, 0.0003, 0.001, 0.003} and perform an
architecture search. The PCN network consists of embedding layers for the target rewards and for the
state, followed by an MLP that combines these into the final action. We experiment with three sizes
of the hidden layer of the MLP: d ∈ {64, 128, 256}. In addition, we try to add an extra hidden layer.
This makes the total number of checked configurations 4× 3× 2 = 24.

The default implementation of Envelope Q-learning already relies on a rather deep MLP (4 hidden
layers with width 256 each). We expected less sensitivity to the architecture of the MLP than to ways
in which one provides the state and α to it (our reference implmentation simply concatenates them),
so we instead focused on the ε for exploration and the learning rate. The reference implementation
linearly anneals the exploration ε from 1 to some value εmin in the first half of the training, and
then keeps it constant. For Envelope Q-learning, we sweeped through the learning rates η ∈
{0.0003, 0.001, 0.003} and through εmin ∈ {0.01, 0.05, 0.1}. Other parameters of the baselines
were kept at the default values from MORL-Baselines.

C Additional Results

In Table 2, we show the hyperparameters of our algorithms that were not tuned via a grid search.

C.1 Ablations on normalization heuristics

Table 3, apart from the methods discussed in Section 6.2, shows three ablations on parts of our
approach. The results include:

• The dynamic gradient reweighting approach for shared trunk architectures described in Ap-
pendix A.2 does not provide benefits compared to using a constant relative weight. Although
we believe this approach might stabilize learning dynamics in some other environments, we
chose not to describe it in the main paper because of this result.

15

Table 2: Hyperparameter choices for our experiments. Notice that we did not tune any hyperparame-
ters other than the number of samples for individual environments, apart from the learning rate η and
the learning rate ratio C as discussed in the main paper.

Deep-sea-treasure Minecart Reacher
Hidden dim. for merge networks 256

Hidden dim. for multi-body networks 256
Hidden dim. for hypernetworks 64

γ 0.99
Initial λ for dynamic entropy 0.01
Hmin for entropy control 0.4

Dampening c for entropy control 0.01
Total number of environment interactions 1e5 4e6 1e6

Number of trajectories B in a batch 8
Number of PPO epochs 4

Number of PPO minibatches 8
PPO clip ε 0.2

PopArt learning rate 0.001
Critic weight decay 0.01

Max gradient norm for the actor 0.5
Max gradient norm for the critic 0.5

Hypervolume reference — (0,0,-200) (-50,-50,-50,-50)

Table 3: Detailed results of ablation studies on a stochastic Minecart and resource gathering. “No
renorm.” means that PopArt was used for value learning, but normalized scalarization (16) was not
used when computing the policy loss. “No dyn. beta” means that the relative gradient weighting
scheme from Appendix A.2. HV is hypervolume (larger is better), EU is expected utility (larger
is better), and MUL is maximum utility loss (smaller is better). Negative MUL can occur due to a
stochastic environment, which allows the sampled reward to be higher than the expected optimal
reward.

Method Metrics on Minecart

Algo Arch Shared trunk Entropy Notes HV EU MUL
A2C Merge net. Yes Fixed λ = 10−2 — 28.3± 25.7 −0.34± 0.21 0.99± 0.21
A2C Merge net. No Fixed λ = 10−2 — 41.5± 37.5 −0.24± 0.25 0.81± 0.25
PPO Merge net. Yes Custom — 76.7± 22.3 −0.03± 0.18 0.59± 0.18
PPO Merge net. No Custom — 38.0± 43.0 −0.11± 0.10 0.82± 0.10
PPO Hypernet w/ obs. Yes Custom No PopArt 107.7± 18.9 0.22± 0.05 0.25± 0.05
PPO Hypernet Yes Custom No PopArt 100.1± 15.5 0.19± 0.03 0.31± 0.03
PPO Hypernet No Custom No PopArt 87.1± 2.9 0.14± 0.01 0.33± 0.01
PPO Multi-body Yes Custom — 134.7± 11.3 0.27± 0.01 0.16± 0.01
PPO Multi-body No Custom — 118.1± 16.7 0.18± 0.05 0.34± 0.05
PPO Merge net. Yes Cos — 74.1± 14.2 −0.03± 0.07 0.56± 0.07
PPO Merge net. Yes Linear — 81.1± 44.2 −0.06± 0.31 0.64± 0.31
PPO Merge net. Yes Fixed λ = 10−1 — 41.2± 4.5 −0.42± 0.08 1.05± 0.08
PPO Merge net. Yes Fixed λ = 10−2 — 84.4± 33.1 −0.00± 0.10 0.61± 0.10
PPO Merge net. Yes Fixed λ = 10−3 — 0.3± 0.6 −0.65± 0.09 1.30± 0.09
PPO Merge net. Yes Custom No dyn. beta 82.2± 20.9 0.04± 0.05 0.56± 0.05
PPO Merge net. Yes Custom No renorm. 92.4± 21.4 0.16± 0.05 0.37± 0.05
PPO Merge net. Yes Custom No PopArt 59.5± 33.9 0.08± 0.09 0.50± 0.09

• If we do not use the normailzed scalarization (16), the performance slightly improves.
Note, however, that this scalarization makes the approach scale-invariant, so the minor
performance loss is probably justified.

D Compute requirements

We used a cluster with Nvidia V100 GPU nodes. An average run on MO-reacher took around 3 hours,
and we ran 3 of them in parallel. Hence, reproducing the results on MO-reacher would take around
75 GPU hours. A run on minecart took around 5 hours, and we also ran 3 in parallel. In total this

16

0.0003 0.001 0.003
Learning Rate

1
3

10
30

Ra
tio

3.9 17.7 43.9

3.4 9.4 44.9

2.0 21.3 26.6

2.5 12.5 19.3
0

25

50

75

100

125

150

(a) A2C, Shared Mult. embed.,
Fixed λ = 10−2 entropy

0.0003 0.001 0.003
Learning Rate

1
3

10
30

Ra
tio

2.0 4.6 32.8

2.0 5.4 10.2

1.5 7.7 18.6

2.6 8.6 28.4
0

25

50

75

100

125

150

(b) A2C, Non-shared Mult.
embed., Fixed λ = 10−2 entropy

0.0003 0.001 0.003
Learning Rate

1
3

10
30

Ra
tio

0.0 79.7 0.0

0.0 110.0 0.0

53.8 107.6 92.1

0.0 78.4 80.6
0

25

50

75

100

125

150

(c) PPO, Shared Mult. embed.,
Custom entropy

0.0003 0.001 0.003
Learning Rate

1
3

10
30

Ra
tio

0.0 92.5 70.7

0.0 66.5 50.2

0.0 64.1 0.0

0.0 0.0 0.0
0

25

50

75

100

125

150

(d) PPO, Non-shared Mult.
embed., Custom entropy

0.0003 0.001 0.003
Learning Rate

1
3

10
30

Ra
tio

11.1 0.0 0.0

63.4 63.8 0.0

128.3 80.2 45.9

91.4 118.0 0.0
0

25

50

75

100

125

150

(e) PPO, Shared Hypernet,
Custom entropy, No PopArt

0.0003 0.001 0.003
Learning Rate

1
3

10
30

Ra
tio

62.6 0.0 0.0

105.5 88.0 0.0

90.7 87.2 0.0

117.9 78.9 43.9
0

25

50

75

100

125

150

(f) PPO, Shared Hypernet+o.,
Custom entropy, No PopArt

0.0003 0.001 0.003
Learning Rate

1
3

10
30

Ra
tio

77.6 86.5 34.0

77.8 74.6 15.3

87.2 70.6 13.3

85.5 76.4 54.9
0

25

50

75

100

125

150

(g) PPO, Non-shared Hypernet,
Custom entropy, No PopArt

0.0003 0.001 0.003
Learning Rate

1
3

10
30

Ra
tio

138.6 95.5

127.4 2.7 0.0

148.2 136.7 1.0

136.0 133.5 96.2
0

25

50

75

100

125

150

(h) PPO, Shared Multi-body,
Custom entropy

0.0003 0.001 0.003
Learning Rate

1
3

10
30

Ra
tio

118.8 129.4

118.7 132.8 102.1

118.5 114.2 91.7

121.9 125.5 87.4
0

25

50

75

100

125

150

(i) PPO, Non-shared Multi-body,
Custom entropy

Figure 5: Hypervolume of all hyperparameter configurations for the ablations demonstrated in
Figure 4 and Table 3 run on the non-deterministic Minecart environment. Part 1. “Hypernet+o.” is
the architecture where the observation is provided to the hypernetwork along with α.

amounds to 490 GPU hours for minecart. Hence, to reproduce the results from the main paper, it
takes roughly 565 hours on a V100 GPU.

17

0.0003 0.001 0.003
Learning Rate

1
3

10
30

Ra
tio

0.0 78.3 0.0

76.4 82.9 88.5

92.5 85.5 89.4

59.2 89.1 80.1
0

25

50

75

100

125

150

(a) PPO, Shared Mult. embed.,
Cosine entropy

0.0003 0.001 0.003
Learning Rate

1
3

10
30

Ra
tio

0.0 78.7 0.0

69.1 85.2 65.1

2.9 74.2 90.9

0.0 70.5 137.9
0

25

50

75

100

125

150

(b) PPO, Shared Mult. embed.,
Linear entropy

0.0003 0.001 0.003
Learning Rate

1
3

10
30

Ra
tio

18.6 31.0 19.2

33.2 31.0 31.1

39.5 27.3 37.4

28.0 23.9 43.0
0

25

50

75

100

125

150

(c) PPO, Shared Mult. embed.,
Fixed λ = 10−1 entropy

0.0003 0.001 0.003
Learning Rate

1
3

10
30

Ra
tio

61.9 57.5 0.0

72.6 79.3 0.0

99.7 76.9 49.3

67.5 114.5 94.5
0

25

50

75

100

125

150

(d) PPO, Shared Mult. embed.,
Fixed λ = 10−2 entropy

0.0003 0.001 0.003
Learning Rate

1
3

10
30

Ra
tio

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0
0

25

50

75

100

125

150

(e) PPO, Shared Mult. embed.,
Fixed λ = 10−3 entropy

0.0003 0.001 0.003
Learning Rate

1
3

10
30

Ra
tio

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 115.1

0.0 0.0 113.0
0

25

50

75

100

125

150

(f) PPO, Shared Mult. embed.,
Custom entropy, No renorm.

0.0003 0.001 0.003
Learning Rate

1
3

10
30

Ra
tio

0.0 0.0 0.0

0.0 31.2 86.9

0.0 82.7 66.3

0.0 0.0 82.6
0

25

50

75

100

125

150

(g) PPO, Shared Mult. embed.,
Custom entropy, No PopArt

0.0003 0.001 0.003
Learning Rate

1
3

10
30

Ra
tio

0.0 0.0 0.0

0.0 97.9 0.0

0.0 110.9 93.8

0.0 88.7 89.5
0

25

50

75

100

125

150

(h) PPO, Shared Mult. embed.,
Custom entropy, No dyn. beta

Figure 6: Hypervolume of all hyperparameter configurations for the ablations demonstrated in
Figure 4 and Table 3 run on the non-deterministic Minecart environment. Part 2.

18

0.0003 0.001 0.003
Learning Rate

1
3

10
30

Ra
tio

0.0 76.8 0.0

0.0 78.6 3.0

102.5 74.5 74.7

0.0 100.6 65.4
0

25

50

75

100

125

150

(a) PPO, Shared Mult. embed.,
Custom entropy

0.0003 0.001 0.003
Learning Rate

1
3

10
30

Ra
tio

16.9 0.0 0.0

34.6 0.4 0.0

100.3 78.3 0.0

79.6 77.0 15.5
0

25

50

75

100

125

150

(b) PPO, Shared Hypernet,
Custom entropy, No PopArt

0.0003 0.001 0.003
Learning Rate

1
3

10
30

Ra
tio

83.2 0.0 0.0

115.1 86.8 0.0

104.5 105.4 81.3

141.7 111.9 96.4
0

25

50

75

100

125

150

(c) PPO, Shared Multi-body,
Custom entropy

0.0003 0.001 0.003
Learning Rate

1
3

10
30

Ra
tio

99.5 0.0 0.0

100.3 92.5 0.0

116.7 109.6 114.9

128.9 108.8 107.1
0

25

50

75

100

125

150

(d) PPO, Shared Multi-body,
Linear entropy

0.0003 0.001 0.003
Learning Rate

1
3

10
30

Ra
tio

128.5 120.1 40.4

80.4 131.5 75.6

101.6 111.3 115.3

84.3 115.7 80.3
0

25

50

75

100

125

150

(e) PPO, Non-shared Multi-body,
Custom entropy

Figure 7: Hypervolume of our hyperparameter configurations for the ablations demonstrated in
Table 1 run on the deterministic Minecart environment.

0.0001 0.0003 0.001 0.003
Learning Rate

64
12

8
25

6Hi
dd

en
 D

im
en

sio
n 129.8 181.0 163.0 188.3

163.7 181.3 178.1 166.1

173.8 175.9 184.3 110.9

0

50

100

150

(a) PCN, deep net, minecart det

0.0001 0.0003 0.001 0.003
Learning Rate

64
12

8
25

6Hi
dd

en
 D

im
en

sio
n 145.7 161.1 148.7 177.8

145.7 145.5 166.4 177.7

129.8 178.1 162.5 187.8

0

50

100

150

(b) PCN, shallow net, minecart
det

0.0003 0.001 0.003
Learning Rate

64
12

8
25

6
Hi

dd
en

 D
im

en
sio

n

1.86E+07 1.79E+07 1.88E+07

1.75E+07 1.79E+07 1.91E+07

1.88E+07 1.86E+07 1.60E+07

PCN use_extra_layer=True, eval/hypervolume

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.51e7

(c) PCN, deep net, Reacher

0.0003 0.001 0.003
Learning Rate

64
12

8
25

6
Hi

dd
en

 D
im

en
sio

n

2.00E+07 1.83E+07 1.91E+07

1.80E+07 2.05E+07 2.05E+07

1.81E+07 1.56E+07 2.15E+07

PCN use_extra_layer=False, eval/hypervolume

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.51e7

(d) PCN, shallow net, Reacher

Figure 8: Hypervolume of all hyperparameter configurations for the PCN networks on minecart-
deterministic and on Reacher.

19

0.0003 0.001 0.003
Learning Rate

0.
01

0.
05

0.
1

M
in

 e
ps

ilo
n

1.04e+02 1.01e+02 0.00e+00

9.46e+01 9.00e+01 0.00e+00

1.09e+02 1.12e+02 1.18e+00

0

25

50

75

100

125

150

(a) Minecart

0.0003 0.001 0.003
Learning Rate

0.
01

0.
05

0.
1

M
in

 e
ps

ilo
n

7.06e+01 0.00e+00 0.00e+00

7.06e+01 6.51e+01 0.00e+00

6.78e+01 0.00e+00 0.00e+00

0

25

50

75

100

125

150

(b) Minecart det.

0.0003 0.001 0.003
Learning Rate

0.
01

0.
05

0.
1

M
in

 e
ps

ilo
n

2.26e+07 3.54e+07 3.46e+07

2.21e+07 2.32e+07 3.37e+07

2.34e+07 2.32e+07 2.92e+07

0

1

2

3

1e7

(c) Reacher

Figure 9: Hypervolume of all hyperparameter configurations for Envelope Q-learning evaluation.

0.0003 0.001 0.003
Learning Rate

0.
33

1.
0

3.
0

Ra
tio

3.34e+07 3.59e+07 3.32e+07

2.22e+07 2.01e+07 3.35e+07

1.82e+07 2.55e+07

0

1

2

3

1e7

(a) PPO, Non-shared Multi-body,
Custom entropy

0.0003 0.001 0.003
Learning Rate

0.
33

1.
0

3.
0

Ra
tio

1.75e+07 1.97e+07 2.13e+07

2.04e+07 3.61e+07 1.97e+07

1.98e+07 1.71e+07

0

1

2

3

1e7

(b) PPO, Shared Multi-body,
Custom entropy

0.0003 0.001 0.003
Learning Rate

0.
33

1.
0

3.
0

Ra
tio

1.97e+07 2.02e+07 1.97e+07

2.23e+07 2.12e+07 2.08e+07

2.12e+07 2.23e+07 3.32e+07

0

1

2

3

1e7

(c) PPO, Shared Multi-body,
Linear entropy

0.0003 0.001 0.003
Learning Rate

0.
33

1.
0

3.
0

Ra
tio

1.97e+07 1.98e+07 3.37e+07

1.98e+07 2.80e+07 3.56e+07

1.97e+07 3.14e+07 2.09e+07

0

1

2

3

1e7

(d) PPO, Shared Hypernet,
Custom entropy, No PopArt

0.0003 0.001 0.003
Learning Rate

0.
33

1.
0

3.
0

Ra
tio

2.02e+07 2.92e+07 3.01e+07

2.22e+07 2.98e+07 3.20e+07

2.29e+07 3.00e+07 3.45e+07

0

1

2

3

1e7

(e) PPO, Shared Mult. embed.,
Custom entropy

Figure 10: Hypervolume of all hyperparameter configurations for our methods on Reacher.

20

	Introduction
	Related work
	Dynamic multi-objective reinforcement learning
	Architectures
	Algorithms
	Actor and critic losses
	Entropy control during training

	Experiments
	Preliminary results on deep-sea-treasure
	Ablation studies on Minecart
	Comparison with the baseline methods

	Conclusion
	Implementation details
	Other variants of our learning algorithms
	Gradients for shared and non-shared trunk architectures
	Step discarding heuristics
	Entropy control

	Hyperparameter tuning
	Our methods
	PCN and Envelope Q-learning

	Additional Results
	Ablations on normalization heuristics

	Compute requirements

