
On Recovering from Modeling Errors Using Testing Bayesian Networks

Haiying Huang 1 Adnan Darwiche 1

Abstract

We consider the problem of supervised learn-
ing with Bayesian Networks when the used de-
pendency structure is incomplete due to missing
edges or missing variable states. These model-
ing errors induce independence constraints on
the learned model that may not hold in the true,
data-generating distribution. We provide a unified
treatment of these modeling errors as instances
of state-space abstractions. We then identify a
class of Bayesian Networks and queries which
allow one to fully recover from such modeling
errors if one can choose Conditional Probability
Tables (CPTs) dynamically based on evidence.
We show theoretically that the recently proposed
Testing Bayesian Networks (TBNs), which can be
trained by compiling them into Testing Arithmetic
Circuits (TACs), provide a promising construct
for emulating this CPT selection mechanism. Fi-
nally, we present empirical results that illustrate
the promise of TBNs as a tool for recovering from
certain modeling errors in the context of super-
vised learning.

1. Introduction
Supervised learning has become very influential recently
and stands behind most real-world applications of AI today.
In supervised learning, one learns a function from labeled
data, a practice that is now dominated by neural networks;
see (Goodfellow et al., 2016; Hinton et al., 2006; Bengio
et al., 2006; Ranzato et al., 2006). This particular use of neu-
ral networks is an example of model-free supervised learning
to be contrasted with model-based supervised learning; see,
e.g., (Bishop, 2013; Gao et al., 2018; Chen et al., 2020).
The latter type feeds more information and assumptions into
the learning process so should perform better in principle,
let alone being more interpretable and also well-positioned

1Computer Science Department, University of California,
Los Angeles, USA. Correspondence to: Haiying Huang <hhaiy-
ing@ucla.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

to provide guarantees on the learned functions. Yet, model-
based supervised learning has been outperformed by the
model-free approach in many applications which has some-
what created a dilemma for AI (Darwiche, 2018).1

A major challenge for model-based supervised learning
is the availability of accurate models. Consider Bayesian
networks (Pearl, 1989), for example, which can be used
for supervised learning as follows. Given a Bayesian net-
work structure, one can learn its parameters to optimize a
distribution for some query variable as a function of the
values for some evidence variables. The used structure de-
fines the space of functions that can be learned so if the
structure is incorrect the space may fail to include the data-
generating function. Hence, while the use of correct models
can be very advantageous, the use of incorrect ones can be
quite problematic. Moreover, it may be very difficult in
some cases to build even approximate models as we may
have very little understanding of the underlying phenomena.
One can of course aim to learn the structure of a Bayesian
network in addition to its parameters. This direction has
received significant attention but poses substantial computa-
tional difficulties; see (Darwiche, 2009; Koller & Friedman,
2009; Murphy, 2012) for some comprehensive treatments on
learning Bayesian networks and (Elidan et al., 2001; Kim &
Leskovec, 2011; Elidan & Friedman, 2001) for some works
that try to infer modeling errors from data.

We address the challenge of model-based supervised learn-
ing in this paper under the assumption that we have an incor-
rect Bayesian network structure. That is, the goal is to learn
a function from labeled data using an incorrect structure
while trying to recover from modeling errors that may have
manifested. Our approach is based on two main insights, the
first of which is motivated by earlier work on state-space ab-
stractions (Wellman & Liu, 1994; Chang & Fung, 1990). In
particular, we show that one can cast certain modeling errors
(missing states and edges) as instances of such abstractions,
which allows us to cast the recovery from modeling errors
as a process of recovering from state-space abstractions.
Our central contribution is a result which shows that, under
certain conditions, one can fully recover from state-space
abstractions if one is able to learn dynamic parameters for

1Some use the term “model” more broadly, referring to a neural
network as a (non-parametric) model.

On Recovering from Modeling Errors Using Testing Bayesian Networks

the Bayesian network structure; that is, if one is able to
learn a collection of parameters from which a set is selected
during inference time based on evidence (function input).
In other words, one has to learn multiple Bayesian networks
which share the same (incomplete) structure and vary only
across their parameters.2

While this may sound like a theoretical exercise, another
main contribution in this paper shows how to realize it prac-
tically. This is where the second insight comes in, which is
based on the recently introduced Testing Bayesian Networks
(TBNs) (Choi & Darwiche, 2018; Choi et al., 2019). These
models were introduced to address the expressiveness gap
between functions induced by Bayesian networks (BNs) and
those induced by neural networks. The first class of func-
tions are multilinear (or their quotients) while the second
class are universal function approximators (e.g., piecewise
multilinear for neural networks with ReLU activation func-
tions). A TBN is like a BN except that some of its nodes can
select their CPTs dynamically based on evidence, which al-
lows TBNs to induce universal function approximators like
neural networks. What we show is that the evidence-based
CPT selection process in TBNs can be used to implement
the recovery approach that we develop theoretically. Be-
yond showing how our recovery proposal can be realized
practically, this also provides a theoretical basis for the uti-
lization of TBNs in recovering from modeling errors which
has so far been only shown empirically (Shen et al., 2019).

This paper is organized as follows. We review Testing
Bayesian Networks in Section 2 and discuss the casting
of certain modeling errors as state-space abstractions in Sec-
tion 3. We then present our approach for recovering from
modeling errors in Section 4 and show how this approach
can be implemented using Testing Bayesian Networks in
Section 5. We present empirical results in Section 6 and
close with some concluding remarks in Section 7. Proofs of
theorems can be found in the supplementary material.

2. Testing Bayesian Networks
We use uppercase letters (e.g., X) to denote variables and
lowercase letters (e.g., x) to denote their states. We use bold
uppercase letters (e.g., X) to denote sets of variables and
bold lowercase letters (e.g., x) to denote their instantiations.

A Bayesian Network (BN) over variables X is a pair (G,Θ)
where G is a directed acyclic graph (DAG) over variables
X and Θ is a set of Conditional Probability Tables (CPTs).
Each node X ∈ X with parents U has one CPT ΘX|U
which specifies a conditional distribution θ(X|u) for each
instantiation u of parents U. A BN represents a joint distri-
bution over variables X (Pearl, 1989).

2Our approach can be viewed as reducing bias at the expense
of increasing the variance.

Testing Bayesian Networks (TBNs) were introduced re-
cently as a generalization of BNs by allowing CPTs to be
chosen dynamically based on the evidence available at in-
ference time (Choi & Darwiche, 2018; Choi et al., 2019).
TBN nodes can be regular or testing. Consider a node X
with parents U. If X is regular, then it has a regular CPT
ΘX|U as in a BN (root nodes of a TBN must be regular).
If X is testing, it has a testing CPT Θt

X|U which specifies
multiple conditional distributions {θk(X|u)}Nk=1 for each
parent instantiation u. These distributions are associated
with intervals {Iku}Nk=1 that partition the interval [0, 1].3

At inference time, one distribution from {θk(X|u)}Nk=1 is
selected based on the available evidence e. In particular,
distribution θk(X|u) is selected if the posterior Pr i(u|ei)
(explained next) belongs to the interval Iku. This process is
repeated for every parent instantiation u and the selected
distributions are then assembled into a regular CPT for node
X . When the CPT selection process concludes, the TBN
is turned into a BN that is then used for inference under
evidence e. If the evidence changes, a new BN is selected
and used for inference under the new evidence.

The BN selected under evidence e is constructed incre-
mentally by selecting CPTs according to a topological order
π = X1, X2, . . . , Xn of TBN nodes. Order π defines DAGs
G1, . . . , Gn+1 where G1 is empty and Gi+1 is obtained by
adding node Xi to Gi (so Gn+1 is the original DAG G).

We start with the empty DAGG1 and add root nodeX1 with
its regular CPT to yield BN (G2,Θ2) that induces distribu-
tion Pr2. When adding node Xi for i > 1, we already have
a BN (Gi,Θi) which induces distribution Pr i(.) and con-
tains parents Ui of Xi. If node Xi is testing, we select its
CPT based on the posterior Pr i(ui|ei) computed using BN
(Gi,Θi). Otherwise, we use the regular CPT of node Xi.4

To completely define the semantics of TBNs, we now turn
to the definition of ei which we call the selection evidence.
There are three definitions of this evidence, all of which
ensure that evidence variables Ei are in DAG Gi (Choi &
Darwiche, 2018; Choi et al., 2019) defined ei as the subset
of evidence e pertaining to ancestors of node Xi in DAG G.
This was sufficient to show that TBNs are universal function
approximators like neural networks. (Shen et al., 2019) de-
fined ei as the subset of evidence e that excludes evidence at
or below testing nodes that are not ancestors ofXi. It further
required order π to place non-testing nodes before testing
nodes if possible,5 which maximized the selection evidence

3The original definition of TBNs used N = 2 (Choi & Dar-
wiche, 2018) but we generalize this definition to arbitrary N .

4If Pr(.) is the distribution induced by the selected BN, then
Pr i(ui|ei) = Pr(ui|ei) for all i; see the discussion on pruning
Bayesian networks in Chapter 5 of (Darwiche, 2009).

5That is, if a regular node Xj is not a descendant of testing
node Xi, then Xj must come before Xi in order π.

On Recovering from Modeling Errors Using Testing Bayesian Networks

A

B C

(a) BN/TBN

* ** *

P ?(b̄) P ?(b)

+ +

λā

θb|aθb|ā

θā θa

θc̄|aθc̄|ā θc|ā θc|aλc̄ λc

θb̄|ā θb̄|a

λa

* *

* *

* * * *

+ +

(b) AC

*

� ? :

+

*

� ? :

*

� ? : � ? :

* *

�ā

P ?(b̄)

✓�
b̄|a✓�b|ā✓+

b|ā

*

✓ā ✓a

✓+
b̄|ā ✓�

b̄|ā

+

✓c̄|a✓c̄|ā

✓�b|a

+

✓c|ā ✓c|a

✓+
b|a

P ?(b)

TB|aTB|ā

�c̄ �c

✓+
b̄|a

�a

* *

* *

* ** *

+ +

(c) TAC

Figure 1. A BN/TBN with a compiled AC and a compiled TAC for computing query Pr(B|A,C) (after normalizing the AC/TAC outputs).
Node B is testing so the TAC selects the parameters of node B based on the evidence on A and C (TAC input).

while keeping the selected BN invariant to the used topolog-
ical order π. This increased the expressiveness of TBNs as
it made CPT selection more dependent on evidence e. In
this work, we also require order π to satisfy this property but
define ei as the subset of evidence e pertaining to DAG Gi.
Our definition increases the selection evidence and TBN
expressiveness even further, but it makes the selected BN
sensitive to the used order π. This additional expressiveness
of TBNs is needed for recovering form a certain class of
modeling errors as we show in Section 5.

As mentioned earlier, we are interested in a supervised learn-
ing setting where the goal is to learn a function that com-
putes query Pr(Q|e) based on a BN (G,Θ) (this function
can be used, for example, to classify Q based on evidence
e). This can be realized by compiling the BN into an Arith-
metic Circuit (AC) (Darwiche, 2003), whose parameters Θ
are then learned using gradient descent as shown in (Dar-
wiche, 2020); see Figure 1b. However, since DAG G may
be incomplete due to missing edges or states, we will instead
compile a TBN (G,Θt) into a Testing Arithmetic Circuit
(TAC) (Choi & Darwiche, 2018; Choi et al., 2019) and learn
its parameters Θt using gradient descent; see Figure 1c.
This effectively learns a set of BNs, one of which is selected
based on evidence e when computing the query Pr(Q|e).
As we show theoretically in Section 5 and empirically in
Section 6, this can help in recovering from some of the
modeling errors introduced when building DAG G.

3. Modeling Errors as State-Space
Abstractions

We now show that missing certain edges or states when
building a Bayesian network structure can be cast and an-
alyzed in terms of state-space abstraction. This will aid us
later when discussing recovery from such modeling errors.

To abstract the state-space of node X in a BN is to
merge some states of X . This technique was explored

in (Chang & Fung, 1990; Wellman & Liu, 1994) and can
be used, for example, to speed up inference. Follow-
ing these works, we call such a node X an abstracted
node. We also refer to the original states of X as ele-
mentary and the new states as superstates. A state-space
abstraction can be specified by a pair a = (sup, elm)
where sup(x) is the superstate of elementary state x and
elm(x′) are the elementary states of superstate x′. We
define these functions for all nodes so if node X is not
abstracted, we have sup(x) = x and elm(x) = {x}. We
also extend state-space abstractions to sets of variables as
follows: sup(x1, . . . , xn) = sup(x1), . . . , sup(xn) and
elm(x′, . . . , x′n) = elm(x′) × . . . × elm(x′n). We often
write x ∈ x′ as a shorthand for x ∈ elm(x′).

We will attach a state-space abstraction a = (sup, elm) as
a superscript to various objects as needed. For example,
xa is an abstracted state (instantiation) of variables X, Ga

is a DAG G with some abstracted nodes, and Pra(.) is a
distribution over the abstracted space of distribution Pr(.).

One ideally wants to preserve consistency across distribu-
tions when abstracting nodes of a BN.

Definition 1. Distributions Pr(.) and Pra(.) over variables
X are said to be ‘consistent’ iff Pra(xa) =

∑
x∈xa Pr(x).

Consistency ensures that we can use the abstracted distribu-
tion Pra to answer any query about Pr as long as the query
does not reference abstracted nodes. The key question is
whether this is possible when abstracting some nodes of a
BN (G,Θ). That is, can we revise CPTs Θ into some new
CPTs Θa of the abstracted DAG Ga so that the two BNs are
consistent? This would be significant if possible as it im-
plies that we can recover from state-space abstractions (and
some modeling errors) by potentially learning the proper
CPTs Θa. This is generally not possible though. To see
this, consider the BN in Figure 2 and suppose node X has
three states x1, x2 and x3. Any distribution induced by this
BN must find Y independent of U given X and V . If we

On Recovering from Modeling Errors Using Testing Bayesian Networks

Figure 2. A Bayesian network structure.

abstract node X so it has superstates x1 and {x2, x3}, then
any distribution induced by the abstracted BN must also
satisfy this independence, including when X = {x2, x3}.
Yet this independence may not hold in the BN distribution:
knowing the state of V and knowing only that the state of
X is in {x2, x3} may not make Y independent of U .

The following local but strong condition does, however,
guarantee the sought consistency.

Definition 2. A state-abstraction a = (sup, elm) is ‘harm-
less’ for a BN (G,Θ) if for every node X with parents U
we have θ(X|u) = θ(X|u?) when sup(u) = sup(u?).

This condition says that once we know a superstate of par-
ents U, then X becomes independent of the elementary
states of U. This somewhat generalizes the classical notion
of context-specific independence (Boutilier et al., 1996).

Theorem 1. If a is a harmless state-abstraction for BN
(G,Θ), then there is a BN (Ga,Θa) which induces a distri-
bution Pra(.) that is consistent with Pr(.).

The condition of Definition 2 is quite strong but the notion of
consistency is also quite strong as it allows one to correctly
compute any query using the abstracted BN as long as the
query does not reference abstracted nodes. As we show in
Section 4, one can significantly weaken this condition if one
is only interested in recovering specific queries, which is all
that that one needs in a supervised learning context.

A modeling error that misses some states of variables can
be naturally cast as a state-abstraction of these variables.
We now show that missing certain edges can also be cast in
these terms. Our formulation uses the following definition.

Definition 3. Let G be a DAG which results from adding
some edges to DAG G′ and abstracting some of its nodes.
ThenG is ‘reducible’ toG′ iff for every BN (G,Θ) there is a
BN (G′,Θ′) where distributions Pr and Pr ′ are consistent.

Recall that our interest is to learn distributions through learn-
ing the parameters of a Bayesian network structure. This
definition says that any distribution (of interest) which can
learned using DAG G can also be learned using DAG G′.

(a) True G1 (b) Incomplete G2

(c) Constructed G3

Figure 3. DAGG1 results from adding edges and abstracting nodes
in DAG G3. DAGs G2 and G3 have the same topology.

Suppose now that we have a true structure G1 (data-
generating model) and a structure G2 (used for learning
from data) that misses some edges from G1. We will next
show how to construct a third structure G3 that has the same
topology as G2 but more states than G2 while guaranteeing
that G1 is reducible to G3; that is, using G3 does not pre-
clude one from learning the data-generating model G1. This
will then show that if one can recover from having used G2

instead of G3 (state-space abstraction) then one can recover
from having used G2 instead of G1 (missing edges).

For a concrete example, consider Figure 3 which depicts a
true structureG1 and a structureG2 that misses two edges in
G1. We also have structureG3 which has the same topology
as G2 except that we added more states to variables B and
C: the state-space of B was multiplied by the state-space of
A and the state-space of C was multiplied by the state-space
of B. The true structure G1 is reducible to structure G3.
Moreover, structure G2 is the result of abstracting some
nodes of G3. Hence, if one can recover from the state-space
abstraction that led to G2 (from G3) then one can recover
from the missing edges that led to G2 (from G1).

For missing edges, we only treat what we call high-order
edges U → X for which there exists some directed path
from U to X other than edge U → X .6 We next show how
the auxiliary DAG G3 is constructed as in Figure 3.

Definition 4. To ‘harmlessly delete’ high-order edge U →
X from DAG G: remove edge U → X from G; choose a
directed path U → Z1 → · · · → Zn → X; and finally
expand the state-space of each node Zi to the Cartesian
product of its original state-space and the state-space of U .

Theorem 2. If DAG G2 is the result of harmlessly deleting
high-order edges from DAG G1, then G1 is reducible to G2.

The reduction of high-order HMMs to first-order ones (He,
1988) is a special case of this theorem as one can obtain
the latter by harmlessly deleting high-order edges from the
former. Hence, one implication of our upcoming treatment
is that TBNs can be used to recover from a modeling error

6Our treatment can be extended to other types of edges but this
requires a discussion that is beyond the scope of this paper.

On Recovering from Modeling Errors Using Testing Bayesian Networks

that uses a first-order HMM instead of a high-order one.
(Shen et al., 2019) provided some preliminary empirical
results to this effect but our upcoming results are analytic.

4. Recovering from State-Space Abstractions
We now address the question of revising the CPTs of a
BN after abstracting some of its nodes, where the goal is
to maintain the ability to compute some queries using the
abstracted BN. We start with the proposal of (Wellman &
Liu, 1994) which we call the soft policy. For a node X with
parents U this policy defines the revised CPTs as follows:

θa(xa|ua) = Pr(xa|ua)

, Pr(x ∈ xa|u ∈ ua)

=

∑
x∈xa,u∈ua

θ(x|u)Pr(u)∑
u∈ua

Pr(u)
(1)

If node X and its parents are not abstracted, we get
θa(xa|ua) = θ(x|u) so the CPT of X is not revised. Con-
sider Figure 2 and suppose that nodeX is the only abstracted
node. Then only the CPTs of X and its child Y are revised.
(Wellman & Liu, 1994) proposed another, less expensive
CPT revision policy, which we call the average policy:

θa(xa|ua) ,
∑
x∈xa

Average
u∈ua

θ(x|u) (2)

While these policies may appear natural, the abstracted
distributions Pra they produce are generally not consistent
with Pr . This should not be surprising for the reasons
we discussed earlier: aggregating states induces additional
independencies that may not hold in the original BN. We
will address this challenge based on two main insights. First,
we will aim to only preserve Pr(Q|e) for some query node
Q and evidence variables E; as mandated by supervised
learning. Second, we will revise CPTs dynamically based on
the available evidence e (recall how TBNs select CPTs). We
will next identify a particular class of modeling errors and
queries for which these insights will lead to full recovery.

Our treatment assumes that we are recovering from hav-
ing abstracted a polytree BN; that is, a BN in which two
nodes can be connected through at most one (undirected)
path (Pearl, 1989). While a polytree has a restricted struc-
ture, recall that it may be the result of having missed edges
so the data-generating BN does not have to be a poly-
tree. That is, we are treating modeling errors that lead
to a polytree structure not ones in which the true BN is a
polytree. This includes, for example, learning using a first-
order HMM (polytree) when the data-generating model is
a high-order HMM (not a polytree). The queries Pr(Q|e)
we shall preserve are ones for which evidence variables E

(a) Polytree BN

Node eπX

8 1,2
9 1,2,12

10 1,2,3,4,12,13,15
11 3,4

(b) Evidence for children of ab-
stracted nodes.

Figure 4. Abstracted nodes are double-circled. Evidence nodes
are shaded. The query node is 14. The Q-ordering is π =
1, 2, 3, 5, 6, 7, 4, 8, 12, 9, 13, 11, 15, 10, 14.

are not abstracted and the query node Q is a descendant of
abstracted nodes (hence, node Q is not abstracted either).

Our approach amounts to the following. For each node X
with parents U, we identify some evidence eπX (explained
later) and set the CPT of X to Pr(xa|ua, eπX). The ab-
stracted polytree with these revised CPTs will then preserve
the query Pr(Q|e). Hence, the CPTs of an abstracted poly-
tree are evidence-specific: if we change evidence e we have
to reassign these CPTs accordingly. In Section 5, we show
how this can be realized using TBNs.

To fully specify our approach, all we need now is to define
evidence eπX which requires an ordering π of the polytree
nodes that depends on query node Q. There may be more
than one ordering π that satisfies the properties we shall
state, each leading to a different evidence eπY . Yet, our main
result in this section will show that any such ordering is
guaranteed to preserve the query Pr(Q|e).
Definition 5. Let G be a polytree, Q be a node in G and
U be some ancestor of Q. A child X of U will be called a

‘Q-child’ of U iff X = Q or X is an ancestor of Q.

If a node has a Q-child then it must be unique. This follows
from G being a polytree. Figure 4a depicts a polytree where
node 10 is the unique Q-child of abstracted nodes 6 and 7.
Definition 6. Let G be a polytree and Q be a node in G. A

‘Q-ordering’ π of G is a total ordering of the nodes in G
that places each Q-child after its siblings.

A Q-ordering always exists. This follows because if a node
X is the Q-child of two of its parents, then X must be the
only common child of these parents so the children of these
parents can be ordered independently. Consider the polytree
in Figure 4a where node 14 is the query node. The following
are two Q-orderings for this polytree.

π1 = 1, 2, 3, 5, 6, 7, 4, 8, 12, 9, 13, 11, 15, 10, 14

π2 = 1, 2, 3, 5, 6, 7, 4, 9, 13, 11, 15, 8, 12, 10, 14

On Recovering from Modeling Errors Using Testing Bayesian Networks

We are now ready to define the evidence eπX which utilizes
the following standard notation for partitioning evidence e
across a polytree edge U → X (Pearl, 1989).

e+UX : evidence on the U -side of edge U → X

e−UX : evidence on the X-side of edge U → X

e−X : evidence on the descendants of node X
e+X : evidence on the non-descendants of node X

Definition 7. Let G be a polytree with query node Q, evi-
dence e and Q-ordering π. If node X has a parent U that
is an ancestor of Q, we define

eπX , e+X \ {e−UY | Y is a child of U and π(Y) > π(X)}.

If node X has multiple parents U that are ancestors of Q,
then X must be the Q-child of both parents and hence
ordered last among its siblings. This leads to eπX = e+X
regardless of which parent U we pick in the above definition.

The definition of evidence eπX depends on the Q-ordering
π though. Consider the polytree in Figure 4a and the two
Q-orderings π1 and π2 shown earlier. For node X = 8
in Figure 4a, we have eπ1

X = {1, 2} and eπ2

X = {1, 2, 13}.
However, if two Q-orderings π1 and π2 agree on how they
order the siblings of Q-children, then eπ1

X = eπ2

X .

We are now ready to define our evidence-based policy for
assigning CPTs after abstracting nodes.
Definition 8. Consider a polytree BN with distribution
Pr . For query Pr(Q|e), Q-ordering π and state-space
abstraction a, assign CPTs for each node X with par-
ents U as follows. If U contains abstracted nodes, then
θa(xa|ua) = Pr(xa|ua, eπX) else θa(xa|ua) = Pr(xa|ua).

The following is our main result showing that the above
CPT assignment policy will preserve the query of interest.
Theorem 3. Consider a polytree BN with distribution Pr ,
a query Pr(Q|e) and a state-space abstraction a where
abstracted nodes are ancestors of Q and do not overlap
with E. If Pra is the distribution of the BN abstracted
according to Definition 8, then Pra(Q|e) = Pr(Q|e).

For a concrete example, consider the polytree BN E ←
R → Q with the following CPTs (variables E and Q are
binary, variable R has three states):

R ΘR
r1 0.2
r2 0.3
r3 0.5

R E ΘE|R
r1 e 0.2
r1 ē 0.8
r2 e 0.5
r2 ē 0.5
r3 e 0.7
r3 ē 0.3

R Q ΘQ|R
r1 q 0.6
r1 q̄ 0.4
r2 q 0.1
r2 q̄ 0.9
r3 q 0.9
r3 q̄ 0.1

This BN induces the following query, which maps values of
evidence variable E to distributions on query variable Q:

E Q Pr(Q|E)
e q 0.656
e q̄ 0.344
ē q 0.535
ē q̄ 0.465

Suppose that we abstract node R by merging its states r2
and r3 so it now has two superstates r1 and r23. Using
Q-ordering π = R,E,Q we get EπE = {} and EπQ = {E}
so the selection evidence for node E is empty. According to
Definition 8, the abstracted BN will have one CPT for each
of variables R and E:

Ra ΘRa

r1 0.2
r23 0.8

Ra E ΘE|Ra

r1 e 0.2
r1 ē 0.8
r23 e 0.625
r23 ē 0.375

However, variable Q will have two CPTs, one of which is
chosen depending on the available evidence on variable E:

Ra Q Θ1
Q|Ra

r1 q 0.6
r1 q̄ 0.4
r23 q 0.5
r23 q̄ 0.5

Ra Q Θ2
Q|Ra

r1 q 0.6
r1 q̄ 0.4
r23 q 0.66
r23 q̄ 0.34

CPT Θ1
Q|Ra = Pr(Q|Ra, e) is used under evidence e and

CPT Θ2
Q|Ra = Pr(Q|Ra, ē) is used under evidence ē. One

can verify that this abstracted BN will induce the same query
as the original BN, Pra(Q|E) = Pr(Q|E).

5. Evidence-Based Recovery Using TBNs
As discussed in Section 3, state-space abstraction encapsu-
lates modeling errors in the form of missing states and edges.
Theorem 3 tells us that we can recover queries Pr(Q|e)
from state-space abstractions and hence from these mod-
eling errors by choosing the CPTs of a Bayesian network
based on evidence e (under the stated conditions). Focus-
ing on a particular query is not that restrictive as it is the
mark of supervised learning where the goal is to learn func-
tions, such as the mapping from evidence e into a posterior
Pr(Q|e). On the other hand, the selection of CPTs based on
evidence may seem like a theoretical exercise except that it
is not. The recently introduced TBN does exactly this (Choi
& Darwiche, 2018; Choi et al., 2019). As discussed in Sec-
tion 2, a TBN is a collection of BNs that share the same
structure but differ only in their CPTs. One of these BNs is
selected based on evidence and then used to answer queries
where the selection process amounts to choosing the BN
CPTs. This raises the following question: Can a TBN em-
ulate the CPT selection policy discussed in Definition 8
which guarantees full recovery from state-space abstraction
under some conditions? The multiple CPTs associated with
a node in a TBN are meant to be learned from labeled data
using methods such as gradient descent. This raises an-
other question: Can the learned CPTs of a TBN reach the
promise of Theorem 3? We tackle the first question next
while leaving the second question to the next section.

Recall from Section 2 that a TBN has two types of nodes:
regular and testing. A testing node X with parents U has
a set distributions θ1(X|u), . . . , θN (X|u) for each parent

On Recovering from Modeling Errors Using Testing Bayesian Networks

instantiation u, in addition to a partition I1u, . . . , I
N
u of the

interval [0, 1]. Before answering a query under evidence
e, the TBN computes a posterior p on parent instantiation
u and then chooses distribution θi(X|u) if p ∈ Iiu. We
next discuss how this selection mechanism can be used to
emulate the CPT selection process of Definition 8. The main
insight is to make each child of an abstracted node a testing
node, which allows its CPT to be chosen based on evidence.

One subtlety with TBNs is that parent posteriors cannot
be computed before certain CPTs have been selected. In
particular, before computing the parents posterior for node
X one needs to at least select the CPTs for testing nodes
that are ancestors of X . As discussed in Section 2, this is
accomplished by using a topological ordering X1, . . . , Xn

of TBN nodes to create a sequence of DAGs G1, . . . , Gn+1,
where DAG Gi+1 results from adding node Xi to DAG Gi.
The CPT of a testing node Xi is selected when adding node
Xi to DAG Gi since at that point the CPTs of all nodes
in Gi have been selected. Moreover, parents Ui of Xi are
already in Gi so we can compute Pr i(Ui | ei) using the
distribution Pr i(.) of BN Gi. By the time variable Xn is
added, we get BN Gn+1 which is used to answer queries
under evidence e.

Two observations are relevant to the quest of this sec-
tion. First, the evidence ei used to compute the posterior
Pr i(Ui | ei) is the subset of evidence e pertaining to BN
Gi so selecting the CPT of node Xi cannot use all available
evidence e. Second, the selection of this CPT is based only
on the value of posterior Pr i(Ui | ei). Do these restrictions
limit the ability to emulate the CPT selection process of
Definition 8? As we show next, the first restriction does not
but the second restriction may, yet we identify a condition
under which it does not.

If the topological ordering π = X1, . . . , Xn used to select
the CPTs of a TBN satisfies the condition of Definition 6,
then evidence ei will be a superset of evidence eπXi needed
by Definition 8. Moreover, one can always construct such a
topological ordering π.7 This settles the first question.

As to the second question, to fully emulate Definition 8,
one may need as many intervals I1ui , . . . , I

N
ui as the number

of instantiations for evidence variables EπXi which is not
possible practically. Moreover, two distinct instantiations of
variables EπXi may lead to the same posterior Pr i(Ui | ei)
so a TBN cannot fully emulate Definition 8. Even if it
can, this would not be realized if we bound the number of
intervals N and, hence, the number of CPTs associated with
a testing node. However, we present experiments in the
next section which show that a TBN can recover queries
accurately even with a relatively small N .

7We visit TBN nodes parents before children. When there is a
tie, we visit non-testing nodes before testing nodes. When there is
a tie among testing nodes, we visit them according to Definition 6.

BN TBN

Size AVG SOFT N=2 N=10 N=20 N=50

10 0.143 0.0352 0.0271 0.0196 0.0106 0.0027
20 0.181 0.0327 0.0289 0.0215 0.0094 0.0075
30 0.285 0.0419 0.0346 0.0249 0.0211 0.0154
40 0.251 0.0306 0.0262 0.0228 0.0210 0.0154
50 0.264 0.0521 0.0446 0.0254 0.0229 0.0195

Table 1. Conditional KL-divergance between handcrafted
BN/TBN and true BN. Each data point is an average over 50 trials.

For the first set of experiments, we calculate the TBN CPTs
using the same procedure for selecting TBN CPTs except
that we now construct the space of CPTs instead of selecting
CPTs from a given space. We first fix a number of intervals
N . When adding node Xi to BN Gi, we create buckets
E1ui = ∅, . . . , ENui = ∅ for every instantiation ui of Xi’s
parents. We then enumerate every possible instantiation
eπXi of evidence variables EπXi . We compute the posterior
p = Pr i(ui | ei) and add instantiation eπXi to bucket Ekui if
p ∈ Ikui . After processing all evidence instantiations eπXi ,
we associate the following distribution with interval Ikui :

Pr(Xi | ui, eπXi ∈ Ekui) (3)

= η
∑

eπXi
∈Ekui

Pr(Xi | ui, eπXi)Pr(ui | eπXi)Pr(eπXi),

where η is a normalizing constant. This method, which
we call the TBN policy, divides the evidence space into N
buckets E1ui , . . . , ENui based on which interval the parents
posterior falls into. It then computes a weighted average
of the distributions in each bucket. If some bucket Ekui has
more than one distribution, we say we have a CPT collision.
In the absence of CPT collisions, the TBN policy fully
emulates the CPT selection process of Definition 8. We
can view the number of intervals N as a tradeoff between
recovery quality and memory cost. When N = 1, the TBN
policy degenerates to the soft policy (Equation 1). As N
approaches the size of the evidence space, the TBN will fully
recover the query Pr(Q|e) if no CPT collision happens.

6. Experiments
We now empirically evaluate the techniques we proposed in
Sections 4 and 5. We consider two tasks: model compres-
sion and supervised learning. Both tasks try to recover a
function Pr(Q|E) generated by a true BN (G,Θ) but using
an incomplete BN structure G′ that may be the result of
a modeling error. The recovery is accomplished using a
TBN with structure G′. In the first task, we handcraft TBN
parameters (CPTs and intervals) based on the true BN and
the policy of Section 5 (see Equation 3). The goal is to as-
sess how well can a TBN reach the promise of full recovery
from modeling errors using a finite number of intervals. In

On Recovering from Modeling Errors Using Testing Bayesian Networks

Figure 5. Recovery using handcrafted TBNs as a function of the
number of equally-spaced intervals N . Each data point is an
average over 50 trials for polytrees with 50 nodes.

the second task, we assess whether learning TBN parame-
ters, instead of handcrafting them, can potentially reach the
promise of full recovery by comparing the learned function
with the handcrafted and true ones. This experiment is some-
what limited in scope since learning TBN parameters is still
in its infancy and we do not yet have learning algorithms
that are robust enough. This task is quite challenging as we
are trying to recover from modeling errors based on data
and without knowing the nature of these modeling errors.

We use the conditional KL-divergence to measure the simi-
larity between the true function Pr(Q|E) and the learned
or handcrafted one Pr ′(Q|E):

KL(Pr ||Pr ′) =
∑
e

Pr(e)
∑
q

Pr(q|e) log
Pr(q|e)

Pr ′(q|e)
.

6.1. Model Compression

For this experiment, we randomly generate polytree BNs
and queries Pr(Q|E). We simulate a modeling error by
abstracting some nodes of the polytree to yield an incom-
plete structure G′. We then parameterize G′ according to
the soft policy (Equation 1) and average policy (Equation 2)
to yield two BNs that we call BN SOFT and BN AVG. We
also parameterize structure G′ according to the TBN policy
(Equation 3) to yield a TBN. We finally compare the three
functions Pr ′(Q|E) induced by the two BNs and TBN. We
do this by measuring their proximity to the ground-truth
function Pr(Q|E) induced by the true BN model.

We use the method of (Ide & Cozman, 2002) to generate
random polytree structures. We randomly choose a leaf node
to be query Q and 20% of the nodes to be evidence nodes E.
We assign 5 states to all ancestors of Q and 2 states to other
nodes. CPTs are generated by randomly assigning one state
a probability ≥ .8 and assigning the remaining probabilities
uniformly. To generate the incomplete structure G, we
abstract all ancestor of query node Q by reducing their
cardinality to 2. When parameterizing this structure to yield

Size Handcrafted TBN Learned TBN

10 0.0080 0.0383
15 0.0135 0.0248
20 0.0071 0.0172
25 0.0213 0.0117
30 0.0223 0.0220
35 0.0227 0.0107
40 0.0209 0.0091
45 0.0134 0.0018
50 0.0043 0.0039

Table 2. Conditional KL-divergence between handcrafted/learned
TBNs and true BNs. Data points are averages over 50 trials.

Size BN/AC TBN/TAC Best N Gain (%)

10 0.0228 0.0141 4 38
20 0.0104 0.0068 8 35
30 0.0155 0.0078 8 50
40 0.0044 0.0034 2 23
50 0.0020 0.0013 4 35

Table 3. Conditional KL-divergence between learned BNs/TBNs
and true BNs. Each data point is an average over 50 random trials.

a TBN, we make every child of an abstracted node a testing
node and use N evenly-spaced intervals for selecting a CPT.

Table 1 reports the conditional KL-divergence against the
true BN. As we can see, the TBN yields much better re-
covery compared to both BN baselines and is close to the
ground-truth BN when the number of intervals N is large
enough. For N = 2, the TBN improves the KL-divergence
by 10-20% compared to BN SOFT. For N = 50, the TBN
significantly improves the recovery quality by 50-90%. Fig-
ure 5 shows the quality of TBN recovery for up to N = 100.

6.2. Supervised Learning with Missing States

The setting for this task is similar to the previous task except
that we now learn BN/TBN parameters from data using
an incomplete structure G′ (with abstracted nodes). First,
we randomly generate polytree BNs and queries Pr(Q|E)
as discussed earlier. Next, we generate labeled datasets
〈E, Q〉 from the BNs (true models), each including 100×n
examples where n is the number of distinct evidence instan-
tiations. Finally, we compile the incomplete structure G′

and query into an AC (Arithmetic Circuit) and into a TAC
(Testing Arithmetic Circuit) using the PYTAC system (Dar-
wiche, 2020).8 These circuits are computation graphs, in
the form of tensor graphs, which compute the query based
on a BN (AC) or a TBN (TAC), therefore facilitating the
learning of their parameters using gradient descent.9

8The largest circuits we compiled had on the order of 10K
nodes and their training took on the order of few minutes.

9To facilitate backpropagation, we use a sigmoid function in-
stead of thresholds for placing the parent posterior into an interval.

On Recovering from Modeling Errors Using Testing Bayesian Networks

True Model Card BN/AC TBN/TAC Best N Gain(%)

2nd-HMM 2 0.1103 0.0406 4 63
3 0.3028 0.1391 4 54
4 0.5499 0.2502 8 54

3rd-HMM 2 0.2195 0.0490 8 77
3 0.3676 0.1477 4 60
4 0.6320 0.2005 8 68

Table 4. Conditional KL-divergence for learning a function using a
first-order HMM when the data is generated by a high-order HMM.
Each data point is an average over 30 random trials.

We conduct two experiments for this task. In the first, we
compare learned TBNs with handcrafted ones. In the sec-
ond, we compare learned TBNs with learned BNs. When
learning TBN parameters, we also learn the interval bound-
aries instead of using equally-spaced intervals.

Table 2 reports the results of the first experiment for N = 8.
When the network size is small, the learned TBN does not
recover the query as well as the handcrafted one, but the
learned TBN improves with increasing network size and
dominates the handcrafted TBN with 25 or more nodes.
Recall that for the handcrafted TBN, only children of ab-
stracted nodes are testing so only these children have dy-
namic CPTs; all other nodes have fixed CPTs copied from
the true BN. For the learned TBN, we make every node
testing except for root nodes as we assume that we do not
know the nature of modeling errors. As a result, the learned
TBN has more degrees of freedom than the handcrafted one.

Table 3 depicts the results of the second experiment, where
we use a number of intervals N ∈ {2, 4, 6, 8} and report
the best function Pr ′(Q|E) learned by a TBN. Our learning
algorithm is not optimal or robust enough so the quality
of learned functions was sometimes better for a smaller N .
Yet, as shown by Table 3, a TBN with learned parameters
holds the promise of recovering from modeling errors as in
this case it did lead to 20-50% reduction in the conditional
KL-divergence from the true function. That is, learning a set
of distributions based on an incomplete structure (and then
using one of them based on evidence) can allow one to learn
better functions compared to learning a single distribution
which is the case when learning a BN.

6.3. Supervised Learning with Missing Edges

We finally consider recovery from modeling errors in the
form of missing edges. The true BN in this experiment is
not a polytree, but becomes a polytree due to missing edges.

We assume the data is generated by an n-th order HMM (true
model) but learn using a 1st-order HMM. We use HMMs
with ten hidden variables H1, . . . ,H10 and ten sensors
E1, . . . , E10 and learn the function Pr(H10|E1, . . . , E9).

We experiment with 2nd-order and 3rd-order HMMs as the
true model, each with variables of cardinality 2-4 (six com-
binations). The dataset size was 512 for cardinality 2 and
20, 000 for cardinalities 3 and 4. We use a uniform initial
distribution. For the emission distribution Pr(Et|ht), we
use a random p ≥ 0.95 for et = ht and uniformly dis-
tribute 1 − p over et 6= ht. For the transition distribution
Pr(Ht|ht−1, . . . , ht−n+1), we pick a state ht randomly and
assign it a probability p ≥ 0.8. We repeat this to assign a
probability ≥ .8 ∗ (1− p) for a second state and so on.

Table 4 reports the quality of learned functions using a BN
(static CPTs) and a TBN (dynamic CPTs). Again, we see
that the TBN can help in recovering from this modeling
error, as it did lead to gains up to 77% in the conditional
KL-divergence in this case. (Shen et al., 2019) reported
related experiments but using more restricted transition dis-
tributions. We obtain broader results as we use more than
two CPTs per testing node. We now also have a theoretical
basis for justifying the ability of TBNs to recover from such
modeling errors.

7. Conclusion
We investigated the recovery from some modeling errors
when learning probabilistic queries based on Bayesian net-
work structures. These modeling errors induce indepen-
dence assumptions that may not hold in the data-generating
function, which contributes to bias. We cast these model-
ing errors in terms of state-space abstractions and provided
conditions under which one can fully recover from these
errors, assuming one can choose the CPTs of a Bayesian
network dynamically based on evidence. We then showed
how Testing Bayesian Networks can be used to realize the
recovery proposal which revealed their promise as a tool for
recovering from modeling errors. In future work, we plan
to weaken the conditions under which full recovery can be
attained, cast more modeling errors in terms of state-space
abstractions and improve the learning of TBNs to further
approach the promise of theoretical recovery results.

Acknowledgements
This work has been partially supported by grants from
NSF IIS-1910317, ONR N00014-18-1-2561, and DARPA
N66001-17-2-4032.

References
Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H.

Greedy layer-wise training of deep networks. In Advances
in Neural Information Processing Systems 19 (NIPS), pp.
153–160, 2006.

Bishop, C. M. Model-based machine learning. Philosophi-

On Recovering from Modeling Errors Using Testing Bayesian Networks

cal Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 371(1984):20120222,
2013.

Boutilier, C., Friedman, N., Goldszmidt, M., and Koller, D.
Context-specific independence in bayesian networks. In
UAI, pp. 115–123. Morgan Kaufmann, 1996.

Chang, K. and Fung, R. M. Refinement and coarsening
of bayesian networks. In Bonissone, P. P., Henrion, M.,
Kanal, L. N., and Lemmer, J. F. (eds.), UAI ’90: Proceed-
ings of the Sixth Annual Conference on Uncertainty in
Artificial Intelligence, MIT, Cambridge, MA, USA, July
27-29, 1990, pp. 435–446. Elsevier, 1990.

Chen, Y., Choi, A., and Darwiche, A. Supervised learning
with background knowledge. In International Conference
on Probabilistic Graphical Models, pp. 89–100. PMLR,
2020.

Choi, A. and Darwiche, A. On the relative expressiveness
of bayesian and neural networks. In PGM, volume 72 of
Proceedings of Machine Learning Research, pp. 157–168.
PMLR, 2018.

Choi, A., Wang, R., and Darwiche, A. On the relative expres-
siveness of bayesian and neural networks. International
Journal of Approximate Reasoning, 113:303–323, 2019.

Darwiche, A. A differential approach to inference in
bayesian networks. J. ACM, 50(3):280–305, 2003.

Darwiche, A. Modeling and Reasoning with Bayesian Net-
works. Cambridge University Press, 2009.

Darwiche, A. Human-level intelligence or animal-like abili-
ties? Communications of the ACM, 61(10):56–67, 2018.

Darwiche, A. An advance on variable elimination with ap-
plications to tensor-based computation. In ECAI, volume
325 of Frontiers in Artificial Intelligence and Applica-
tions, pp. 2559–2568. IOS Press, 2020.

Elidan, G. and Friedman, N. Learning the dimensionality
of hidden variables. In Breese, J. S. and Koller, D. (eds.),
UAI ’01: Proceedings of the 17th Conference in Uncer-
tainty in Artificial Intelligence, University of Washington,
Seattle, Washington, USA, August 2-5, 2001, pp. 144–151.
Morgan Kaufmann, 2001.

Elidan, G., Lotner, N., Friedman, N., and Koller, D. Discov-
ering hidden variables: A structure-based approach. In
Advances in Neural Information Processing Systems, pp.
479–485, 2001.

Gao, C., Sun, H., Wang, T., Tang, M., Bohnen, N. I., Müller,
M. L., Herman, T., Giladi, N., Kalinin, A., Spino, C.,
et al. Model-based and model-free machine learning

techniques for diagnostic prediction and classification
of clinical outcomes in parkinson’s disease. Scientific
reports, 8(1):1–21, 2018.

Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning.
MIT Press, 2016.

He, Y. Extended viterbi algorithm for second order hidden
markov process. In 9th International conference on pat-
tern recognition, pp. 718–719. IEEE Computer Society,
1988.

Hinton, G. E., Osindero, S., and Teh, Y. W. A fast learning
algorithm for deep belief nets. Neural Computation, 18
(7):1527–1554, 2006.

Ide, J. S. and Cozman, F. G. Random generation of bayesian
networks. In Brazilian symposium on artificial intelli-
gence, pp. 366–376. Springer, 2002.

Kim, M. and Leskovec, J. The network completion prob-
lem: Inferring missing nodes and edges in networks. In
Proceedings of the 2011 SIAM International Conference
on Data Mining, pp. 47–58. SIAM, 2011.

Koller, D. and Friedman, N. Probabilistic Graphical Models
- Principles and Techniques. MIT Press, 2009.

Murphy, K. P. Machine learning - a probabilistic perspec-
tive. MIT Press, 2012.

Pearl, J. Probabilistic reasoning in intelligent systems - net-
works of plausible inference. Morgan Kaufmann, 1989.

Ranzato, M., Poultney, C. S., Chopra, S., and LeCun, Y. Ef-
ficient learning of sparse representations with an energy-
based model. In Advances in Neural Information Pro-
cessing Systems 19 (NIPS), pp. 1137–1144, 2006.

Shen, Y., Huang, H., Choi, A., and Darwiche, A. Con-
ditional independence in testing bayesian networks. In
International Conference on Machine Learning, pp. 5701–
5709, 2019.

Wellman, M. P. and Liu, C.-L. State-space abstraction for
anytime evaluation of probabilistic networks. In Uncer-
tainty Proceedings 1994, pp. 567–574. Elsevier, 1994.

