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Abstract

Attention mechanisms are used to describe hu-001
man reading processes and natural language002
processing by transformer neural networks.003
On the surface, attention appears to be very dif-004
ferent under these two contexts. However, this005
paper presents evidence that there are links be-006
tween the two during reading tasks. During007
reading, the dwell times of human eye move-008
ments were strongly correlated with the atten-009
tion patterns occurring in the early layers of010
pre-trained transformers such as BERT. Fur-011
thermore, we explored what factors lead to012
variations in these correlations and observed013
that data were more correlated when humans014
read for comprehension than when they were015
searching for specific information. Addition-016
ally, the strength of a correlation was not re-017
lated to number of parameters within a trans-018
former.019

1 Introduction020

Attention is highly associated with reading in hu-021

mans and with Natural Language Processing (NLP)022

by state-of-the-art Deep Neural Networks (DNN)023

(Bahdanau et al., 2014). In both cases, it is the024

words within a sentence that are attended during025

processing. For humans, this attention process is026

strongly linked to eye gaze (Rayner, 2009), with027

words at the center of an eye fixation being the028

words that are attended. In DNNs, this attention029

process is the result of mechanisms built into the030

network. In the case of the current state-of-the-art031

method Transformers (Vaswani et al., 2017), this032

attention process is the result of the dot product of033

two vectors of that represent individual words in034

the text.035

While attention in human reading processes and036

transformers appear to be completely different, this037

paper will present experimental evidence of a link038

showing the relationship between the two. Specif-039

ically, the attention in well-known transformers040

such as BERT (Devlin et al., 2019), and its deriva- 041

tives are closely related to humans’ eye movements 042

during reading. We observed strong to moderate 043

strength correlations between the dwell times of 044

eyes over words and the self-attention in transform- 045

ers such as BERT. We have explored some reasons 046

for these different correlation levels but note a gen- 047

eral strong link between the original BERT model 048

and the movements of the human eye. 049

1.1 Transformers 050

Since their introduction, Transformers (Vaswani 051

et al., 2017) have dominated the leader boards for 052

NLP tasks. They have also impacted computer 053

vision (Dosovitskiy et al., 2020), including genera- 054

tive networks (Jiang et al., 2021). The transformers 055

primary feature is the attention mechanism, 056

Attention(Q,K,V) = softmax

(
QK>
√
n

)
V

(1) 057

Word vectors representations from the sequence 058

Q are compared to those from sequence K. This 059

is used to determine how much information word 060

representations from the former should incorporate 061

from the latter. If the query and key sequence are 062

the same, as in a transformers encoder, it is called 063

self-attention. The results of the attention process 064

are then multiplied by sequence V to get the fi- 065

nal outputs from the attention layer. V contains 066

different representations for the words in K. 067

The more important K words are to those in Q, 068

the more attention Q words allocate to that word. 069

The Q x K part of the attention mechanism has 070

been examined to understand how transformers 071

process information. Vaswani et al. (2017) showed 072

that words in Q could learn anaphora resolution by 073

appropriately attending the word "its" in the K. 074

The proliferation of pre-trained models quickly 075

followed the introduction of transformers. Ar- 076

guably, the most famous of these models is BERT, 077

a.k.a. the Bidirectional Encoder Representations 078
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from Transformers model (Devlin et al., 2019).079

BERT is used to encode information from whole080

passages of text into a single vector. Its bidirec-081

tional structure means that each token is placed in082

the context of the entire sequence instead of just the083

words appearing before it. This structure provided084

an increase in performance on the GLUE bench-085

marks (Wang et al.) over mono-directional models086

such as the original GPT (Radford et al., 2018).087

To ensure that the model learned to attend to088

the sequence as the whole, BERT was trained us-089

ing Masked Language Modeling (MLM), a task090

inspired by Cloze procedure (Taylor, 1953) from091

human reading comprehension studies. In MLM,092

random words from a sequence were hidden dur-093

ing input. The model then has to predict what094

word was hidden based on the context of the sur-095

rounding words. Additionally, BERT was trained096

to perform Next Sentence Prediction (NSP), forc-097

ing words from one sentence to attend to words in098

other sentences. BERT achieved state-of-the-art099

performance in multiple NLP benchmarks follow-100

ing this training regime, which led to its fame.101

BERT’s impact on the field can be seen in the102

number of subsequent models that are its direct103

descendants. Examples include models such as104

RoBERTa (Liu et al., 2019), which uses BERT’s105

architecture but was trained via different methods.106

Other models, such as ALBERT (Lan et al., 2019),107

were created to condense BERT for faster perfor-108

mance with minimal accuracy loss. Even models109

such as XLNet (Yang et al., 2019) extend BERT’s110

architecture to include recurrence mechanisms in-111

troduced in other models (Dai et al., 2019). In turn,112

some of these descendant models have been used113

to create other models. For example, BIGBIRD114

(Zaheer et al., 2020) was built using RoBERTa as115

its base model.116

1.2 Combining Transformers and Eye Gaze117

There is a growing field of research that combines118

pre-trained transformers with eye-tracking data.119

Researchers have used BERT outputs as features120

for machine learning models to predict eye fixa-121

tions. In some instances, these outputs are com-122

bined with other features (Choudhary et al., 2021),123

whereas in other instances, BERT itself is fine-124

tuned to perform the task. For example Hollenstein125

et al. (2021a) have shown that BERT can be effec-126

tive at predicting eye movements for texts written127

in multiple languages, including English, Dutch,128

German, and Russian. 129

Given the strong relationship between eye gaze 130

and attention, it is unsurprising that there have been 131

recent attempts to compare eye gaze to the attention 132

generated in transformers. Sood et al. (2020a) com- 133

pared eye movements in reading comprehension 134

task to three different neural networks, including 135

XLNet. After fine-tuning XLNet, they compared 136

the attention from the last encoder layer to eye gaze 137

and reported a non-significant correlation. With 138

that said, their comparison only reported the corre- 139

lation for the final attention layer of the network, 140

and other studies comparing transformer attention 141

to human metrics have indicated that the strength 142

of an association can differ by layer (Toneva and 143

Wehbe, 2019). Therefore, the present study look at 144

all of the layers of the transformers. 145

Following the work of Sood et al. (2020a), the 146

present study is a large-scale analysis of the rela- 147

tionship between attention in pre-trained transform- 148

ers and human attention derived from eye gaze. We 149

compared the self-attention values of 31 variants 150

from 11 different transformers, including BERT, its 151

descendants, and a few other state-of-the-art mod- 152

els (Table 1). Using BERT-based models allowed 153

us to investigate what effect the training regime has 154

on how closely the attention is related to eye-based 155

attention. Using non-BERT models allowed us to 156

examine what effect model architecture has on this 157

relationship. Finally, the different datasets enabled 158

an investigation into how the humans’ task also 159

affects this relationship. Results showed a surpris- 160

ingly strong correlation between attention in the 161

first layer of the transformers and total dwell time. 162

These correlations were unrelated to the size of the 163

model. 164

2 Related Work 165

There have been attempts to combine DNNs with 166

eye data to perform various tasks. Some basic tasks 167

include predicting how an eye will move across 168

presented stimuli, whether text-based (Sood et al., 169

2020b) or images in general (Ghariba et al., 2020; 170

Li and Yu, 2016; Harel et al., 2007; Huang et al., 171

2015; Tavakoli et al., 2017). These predictions can 172

be used to create saliency maps that show what 173

areas of a visual display are attractive to the eye. 174

In turn, the saliency maps can be used to either 175

understand biological visual processes or be incor- 176

porated as meta-data into machine learning models. 177

The later process has led to some improvements 178
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Figure 1: The relative position of the layer with the highest correlation. 0 is the first layer, 1 is the last layer. Each
dot represents the highest correlation from one dataset.

in task performance. In a recent example, Sood179

et al. (2020b) achieved state-of-the-art results in180

a text compression task by creating Text Saliency181

Model (TSM) using a BiLSTM network that out-182

put embeddings into transformer self-attention lay-183

ers. The TSM was pre-trained on synthetic data184

simulated by the E-Z reader model (Reichle et al.,185

1998) and fine-tuned on human eye-tracking data.186

The model’s output was used to neuromodulate187

(Vecoven et al., 2020) a task-specific model via188

multiplicative attention.189

Alternatively, eye data itself can be used to in-190

spire new ways for neural networks to perform191

NLP tasks (Zheng et al., 2019). For example, it192

is well known that the human eye does not fixate193

on every word during reading (Duggan and Payne,194

2011). Nevertheless, humans, until recently, per-195

formed well above machines in many NLP tasks196

(Fitzsimmons et al., 2014; He et al., 2020). These197

observations imply that the word skipping process198

is not detrimental to reading-based tasks. Some199

researchers have exploited this process by explic-200

itly training their models to ignore words (Yu et al.,201

2017; Seo et al., 2018; Hahn and Keller, 2016).202

For example, Yu et al. (2017) trained LSTM mod-203

els to predict the number of words to skip while204

performing sentiment analysis and found that the205

model could skip several words at a time and still206

be as accurate, if not more accurate, than the non-207

skipping models. Additionally, Hahn and Keller208

(2018) showed that you could model the skipping 209

processes using actual eye movements and achieve 210

the same result. 211

Another type of exploration between DNNs and 212

human data is to examine how closely the metrics 213

used to measure eye movement are related to met- 214

rics used for machine language models. Studies of 215

this type require identifying comparable processes 216

between the two different systems and a suitable 217

dataset. For example, Ettinger (2020) has tested 218

model performance with human concepts such as 219

commonsense knowledge or negation, while Hao 220

et al. (2020) has compared model perplexity to 221

psycholinguistic features. 222

There have even been comparisons of DNN at- 223

tention to what humans attend to during reading 224

tasks. Sen et al. (2020) compared the attention of 225

humans during a sentiment analysis task to RNN 226

models. Crowdsourced workers were asked to rate 227

sentiments of YELP reviews and then highlight 228

the important words for their decision-making pro- 229

cess. They found correlations between the RNN 230

outputs and human behavior. The strength of these 231

correlations diminished as the length of the text 232

increased. 233

Closely related to this is Sood et al. (2020a) 234

who attempted to compare eye gaze to the atten- 235

tion mechanisms of three different neural network 236

architectures. One of the models was the BERT- 237

based transformer, XLNet (Yang et al., 2019). The 238
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Table 1: List of models used in this paper

Model Pretrained models in Huggingface repository
ALBERT (Lan et al., 2019) albert-base-v1, albert-base-v2, albert-large-v2, albert-xlarge-v2, albert-xxlarge-

v2
BART (Lewis et al., 2019) facebook-bart-base, facebook-bart-large
BERT (Devlin et al., 2019) bert-base-uncased, bert-large-uncased, bert-base-cased, bert-large-cased, bert-

base-multilingual-cased
BIGBIRD (Zaheer et al., 2020) google-bigbird-roberta-base, google-bigbird-roberta-large
DeBERTa (He et al., 2020) microsoft-deberta-base, microsoft-deberta-large, microsoft-deberta-xlarge,

microsoft-deberta-v2-xlarge, microsoft-deberta-v2-xxlarge
DistilBERT (Sanh et al., 2019) distilbert-base-uncased, distilbert-base-cased, distilbert-base-multilingual-cased
Muppet (Aghajanyan et al., 2021) facebook-muppet-roberta-base, facebook-muppet-roberta-large
RoBERTa (Liu et al., 2019) roberta-base, roberta-large
SqueezeBERT (Iandola et al., 2020) squeezebert-squeezebert-uncased
XLM (Conneau et al., 2020) xlm-roberta-base, xlm-roberta-large
XLNet (Yang et al., 2019) xlnet-base-cased, xlnet-large-cased

other two networks were bespoke CNN and LSTM239

models. All models were trained on the MovieQA240

dataset (Tapaswi et al., 2016), and attention values241

were taken from the later levels of the networks.242

Several questions for the original dataset were se-243

lected for human testing, where the participants’244

eye gazes were tracked while they read and an-245

swered the questions. Sood et al. (2020a) observed246

that the attention scores from both the CNN and247

LSTM networks had strong negative correlations248

with the eye data. However, there was no signifi-249

cant correlation between eye gaze and XLNet.250

Finally, there has been recent work using trans-251

former representations to predict brain activity. For252

example, Toneva and Wehbe (2019) used layer rep-253

resentations of different transformers, including254

BERT and Transformer-XL, to predict activation255

in areas of the brain. They found that the middle256

layers best predict the activation as the context (se-257

quence length) grew. Toneva and Wehbe (2019)258

tentatively suggested that this means there is a rela-259

tionship between the layer and the type of process-260

ing occurring. To their surprise, they also found261

that changing lower levels of BERT to produce uni-262

form attention improved prediction performance.263

Schrimpf et al. (2020) performed a similar anal-264

ysis using many of the models included in the265

present study. They found that the output of some266

transformers could be used to predict their partic-267

ipants brain behavior to almost perfect accuracy.268

Prediction performance differed by model size and269

training regime, with GPT-2 performing best (Rad-270

ford et al., 2019). Surprisingly, Schrimpf et al.271

(2020) found that untrained models also produced272

above chance prediction, leading them to suggest273

that the architecture of transformers captures im- 274

port features of language before training occurs. 275

3 Analysis of Self-Attention Against Eye 276

Gaze 277

All analyses used HuggingFace’s (Wolf et al., 2020) 278

version of the transformer and associated tokenizer. 279

No training was conducted on any of the mod- 280

els. Data were created by inputting tokenized se- 281

quences into the transformer and extracting the 282

attention matrices produced for each attention head. 283

In terms of Equation 1, we are taking the output 284

of the softmax function before it is multiplied by 285

V as that provides a normalised value indicating 286

what proportion of attention each token pays to 287

all others. The attention value for each token was 288

calculated by averaging across attention heads and 289

matrix rows. This calculation produced a single 290

vector representing the amount of attention allo- 291

cated to each token by all others in the sequence. 292

Finally, if a word was tokenized into sub-words, 293

those sub-words were also averaged to produce a 294

single value for the entire word. The special to- 295

kens [CLS] and [SEP] were used for the attention 296

calculations but dropped from the final word level 297

attention vector. 298

Our procedure differs from Sood et al. (2020a) 299

who used the maximum attention from each word 300

instead of the mean. Our experiments showed that 301

the mean attention values provided more stable 302

results across datasets. For comparison purposes, 303

the results using the maximum values have been 304

provided in the supplemental data. 305
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Figure 2: The correlations between the first layer attention patterns and eye-tracking data from all datasets.

3.1 Datasets and Models306

Six different datasets were used in this analysis.307

In all cases, eye-tracking data were captured from308

human participants performing reading based tasks309

in English. Full descriptions these dataset can be310

found in Appendix A.311

Our experiments used 31 variants from 11 differ-312

ent transformers models. We have grouped these313

variants into three types: 1) Basic models use the314

same architecture as BERT. 2) Compact models are315

those designed to be smaller versions of basic mod-316

els. 3) Alternative models are those that greatly317

differ from the basic models. A full list of models318

and variants can be seen in Table 1, further details319

can be found in Appendix B.320

3.2 Results and Discussion321

All analyses reported here refer to the average dwell322

time for each word. Dwell time is a measurement323

of the total time that a participant’s eye fixated on324

a word. Both the eye gaze data and transformer at-325

tention outputs were normalized by sentence. Final326

values refer to the proportion of either dwell time or327

attention output during the processed sentence. All328

analyses report Spearman correlations (Coefficient,329

2008) to avoid data normality issues and provide a330

direct comparison to previously reported work.331

There were significant positive correlations be-332

tween the total dwell time and the attention from333

all layers of the different models. This finding was334

an apparent departure from the results of Sood et al.335

(2020a) who reported a non-significant correlation336

of -.16 between the last layer of XLNet and their337

dataset. For comparison, we obtained a .428 cor- 338

relation for their Study 1 data and .327 for their 339

Study 2 data from XLNet’s last layer. Although 340

they did not directly specify the normalization they 341

used, we suspect that the difference in results is due 342

to us using sentence level normalization and Sood 343

et al. (2020a) using paragraph normalization. For 344

comparison, we ran the same procedure using para- 345

graph normalization and obtained non-significant 346

correlations just as they did. Many of the correla- 347

tions obtained in sentence-level comparisons be- 348

come much weaker at the paragraph level. This 349

finding corresponds well with Sen et al. (2020) 350

finding that attention for non-transformer neural 351

networks becomes less correlated with eye move- 352

ments as the length of the text increases. Due to 353

this, all analyses presented here refer to sentence- 354

level correlations. 355

Our first analysis investigated which attention 356

layer was most closely correlated with the human 357

data. Figure 1 shows the relative position of the 358

layer with the highest correlation by model. In 359

many cases, the highest correlation was produced 360

by the earlier layers of each model, usually the 361

first layer (position 0). Notable exceptions to this 362

rule are the multilingual versions of BERT and 363

RoBERTa (i.e., XLM) and many compact models. 364

The finding that multilingual variants of models do 365

not behave like monolingual variants is in line with 366

previously reported studies (Conneau et al., 2020; 367

Hollenstein et al., 2021b; Vulić et al., 2020), where 368

some studies report benefits and others not. 369

Further investigations found that when the first 370
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Table 2: First layer correlations By dataset. Strongest correlations have been bolded.

Model GECO Mishra Provo Sood S1 Sood S2 ZuCo S1 ZuCo S2 ZuCo S3 Frank et al
albert-v1 0.744 0.754 0.497 0.450 0.326 0.501 0.580 0.325 0.652
albert-v2 0.748 0.739 0.492 0.460 0.329 0.503 0.585 0.326 0.637
bart 0.729 0.758 0.526 0.451 0.323 0.511 0.550 0.313 0.638
bert-cased 0.802 0.783 0.668 0.584 0.410 0.643 0.679 0.328 0.744
bert-multilingual-cased 0.753 0.727 0.525 0.459 0.338 0.489 0.622 0.324 0.603
bert-uncased 0.816 0.791 0.710 0.626 0.434 0.693 0.722 0.324 0.746
birdbird-roberta 0.775 0.774 0.600 0.511 0.363 0.582 0.565 0.319 0.693
deberta-v1 0.731 0.735 0.511 0.432 0.310 0.502 0.533 0.289 0.549
deberta-v2 0.824 0.770 0.708 0.601 0.423 0.688 0.712 0.306 0.660
distilbert-cased 0.786 0.772 0.623 0.523 0.378 0.629 0.632 0.341 0.670
distilbert-multilingual-cased 0.742 0.740 0.513 0.452 0.337 0.487 0.620 0.333 0.602
distilbert-uncased 0.796 0.780 0.649 0.576 0.396 0.649 0.678 0.319 0.725
roberta 0.709 0.755 0.523 0.453 0.329 0.504 0.537 0.291 0.632
roberta-muppet 0.712 0.763 0.527 0.460 0.329 0.501 0.542 0.297 0.665
squeezebert 0.730 0.769 0.505 0.458 0.320 0.499 0.549 0.348 0.650
xlm 0.690 0.715 0.391 0.358 0.271 0.379 0.476 0.313 0.532
xlnet 0.678 0.736 0.436 0.369 0.287 0.408 0.470 0.297 0.584

layer did not produce the highest correlation, the371

first layer value was close to the best value to rep-372

resent the performance of the model. An extreme373

example of this were the ALBERT variants, which,374

likely due to weight sharing during training, have375

virtually identical correlations from attention val-376

ues from each of its levels (Figure 3). Due to its377

general best performance, the first layer results378

have been used at the best performance for all mod-379

els. Analyses using the actual best performance380

can be observed in the supplemental files, although381

those results are highly similar to those reported382

here.383

Our next analysis compared performance across384

models based on the 1st layer correlations. Figure385

2 shows that, in general, the size of the model does386

not determine the correlation between the human387

eye and transformer attention. Evidence for this388

can be seen in minor differences between different389

sized variants of the same model. For example,390

the cased and uncased versions of BERT-base and391

BERT-large are very similar, despite the large vari-392

ants’ containing 340 million parameters compared393

to the base variants’ 110 million. Similar observa-394

tions can be observed across the other models, es-395

pecially DeBERTa, where the largest variants have396

1.5 billion parameters, and the smaller ones contain397

less than 1/3 of that number. Due to this similarity,398

results in Table 2 reports a single value per model399

type that is an average for each size variant. Ta-400

ble 3 shows the highest correlation by dataset. In401

most cases, this model was either BERT-uncased402

or DeBERTa-V2.403

While the number of parameters is not what de-404

termines the correlations, comparing across models 405

in Figure 2 suggests that training is essential for 406

determining those relationships. For example, the 407

BERT models have identical architectures to vari- 408

ous RoBERTa models, yet Table 2 shows that the 409

BERT correlations were consistently higher than 410

the RoBERTa based models. The other clear ex- 411

amples of training effects can be seen in the dif- 412

ferences between DeBERTa V1 and V2, where V2 413

models use the Scale-invariant-Fine-Tuning (SiFT) 414

algorithm introduced in the original paper. Interest- 415

ingly, the addition of the SiFT algorithm allowed 416

DeBERTa V2 to surpass human performance on 417

the SuperGLUE benchmarks (Wang et al., 2019), 418

and Table 3 shows that this model was often the 419

second-highest correlated model. While it would 420

be great to find a direct relationship between how 421

humanlike a model’s performance is and how cor- 422

related its attention patterns are to eye movements, 423

that is not the case. Excluding the compact models, 424

the BERT descents outperform it on many of the 425

benchmarks, yet only DeBERTA comes close to 426

having stronger correlations to human eye move- 427

ments. In most cases, attention patterns less related 428

to human attention produce better overall perfor- 429

mance on NLP tasks. 430

Tables 3 and 2 show the rankings by correlation 431

are similar between datasets, with BERT-uncased 432

producing the highest correlation in all but two 433

cases. In one of the exceptions, the GECO dataset, 434

BERT-uncased, was ranked second. In the other ex- 435

ception, ZuC0 Task 3, the ranking was much lower. 436

In general, the correlations from ZuCo Task 3 differ 437

greatly from the other datasets. The correlations 438
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Table 3: The three models with strongest correlation to eye-tracking data for each dataset. The uncased version of
BERT produced the strongest correlation in 7 out of 9 cases.

GECO Mishra Provo Sood S1 Sood S2 ZuCo S1 ZuCo S2 ZuCo S3 Frank-et-al
1 deberta-v2 bert-uncased bert-uncased bert-uncased bert-uncased bert-uncased bert-uncased squeezebert bert-uncased
2 bert-uncased bert-cased deberta-v2 deberta-v2 deberta-v2 deberta-v2 deberta-v2 distilbert-cased bert-cased
3 bert-cased distilbert-uncased bert-cased bert-cased bert-cased distilbert-uncased bert-cased distilbert-multilingual distilbert-uncased

are lower for all models, and the model rankings439

are very different, with two of the compart models,440

SqueezeBERT and DistillBERT, ranking highest,441

and BERT-uncased, ninth. Task 3’s participants442

were the same as Tasks 1 and 2. Those first two443

tasks produced results closer to the other datasets,444

meaning Task 3’s lower correlations are likely due445

to the task itself.446

Interestingly, in Task 3, the participants were447

presented with the question on the screen, allowing448

them to direct their eye gaze to find the information449

they required. This allowance contrasts with most450

of the other datasets where the questions about the451

data were presented after reading. The only excep-452

tions to this were some tasks by Sood et al. (2020a)453

where the question appeared on screen in Study 2454

and in 2/3’s of the tests in Study 1. Furthermore,455

the correlations from Sood et al. (2020a) Studies456

2 and 1 were also the second and third lowest of457

the datasets, respectively (Table 2). While further458

study is needed, the lower correlations from SOOD459

et al. and ZuCo Task 3 may indicate that while460

transformer attention patterns produce strong cor-461

relations when reading typically, the relationship462

drops when the reader actively searches for infor-463

mation.464

Figure 3: The average correlations between the atten-
tion patterns of across layers.

Our final analysis looks at correlations across465

levels of BERT (Figure 3). The results of Toneva466

and Wehbe (2019) suggest that the middle layers467

of BERT provided the best features for predict-468

ing brain activity in humans. They speculated that 469

these relationships could mean that the middle lay- 470

ers of BERT could be related to the kinds of pro- 471

cessing that occurs in those brain levels. Our re- 472

sults show that the attention patterns from BERTs 473

first layer were closely related to eye gaze data. 474

Again, while speculative, our results combined 475

with Toneva and Wehbe (2019) would suggest that 476

for BERT at least, the lower levels correspond best 477

to text information entering the eyes. In contrast, 478

the middle layers correspond to specific processing. 479

With that said, not all transformers produced the 480

strongest correlations from their first layer. 481

4 Investigating the Effect of Injecting 482

Eye-Gazing Bias During Training 483

In this section, we investigated the effect of inject- 484

ing human eye-gazing bias during training on test 485

accuracy. We used the BERT model (Devlin et al., 486

2019) and the sarcasm-detection dataset published 487

in Mishra et al. (2016) as a case study in our exper- 488

iments. 489

4.1 Method 490

The Mishra et al. (2016) dataset was originally 491

proposed to predict non-native English speakers’ 492

understanding of sarcasm by using eye-tracking in- 493

formation. The dataset contains information on the 494

fixation duration of each word for each participant. 495

We injected the eye-gazing bias during training by 496

optimising the following loss function 497

L = H(y, ŷ) + αH(p, p̂) (2) 498

where H(y, ŷ) is the cross-entropy loss of the 499

binary classification task of sarcasm detection, and 500

H(p, p̂) computes the divergence of the first-layer 501

attention values from the distribution of the nor- 502

malised fixation duration values given a sentence. 503

The hyperparameter α controls the weight of the 504

second term in the loss function. 505

In our experiments, we only used the fixation 506

duration values from participant 6 in the dataset be- 507

cause participant 6 had the highest overall accuracy 508
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Figure 4: Comparison of the BERT models trained with eye-gazing bias against the models trained without in
terms of test accuracy. Models in plots (a) and (b) were trained on 693 examples, and the results were obtained
after 20 runs. Models in plots (c) and (d) were trained on only 70 examples, and the experiments were repeated 50
times. The same test set (300 examples) was used for all the experiments.

on sarcasm detection (90.29%). All the hyperpa-509

rameters were tuned on a validation set extracted510

from the training set before they were applied on511

the full training set.512

4.2 Results513

The results of the experiments are plotted in Fig-514

ure 4. As expected, the models fine-tuned from515

pretrained BERT models had significantly better516

test accuracy for both small training set and large517

training set than models trained from scratch on the518

Mishra et al. (2016) dataset.519

When the models were trained on the large train-520

ing set without pretraining, the injection of human521

eye-gazing bias during training actually hurt the522

performance (statistically significant using t-test un-523

der 0.05 confidence level). With pretraining, both524

models in Figure 4(b) performed better than the525

best participant in the Mishra et al. (2016) dataset.526

The injection of human bias still lowered the mean527

accuracy, although the difference was not statisti-528

cally significant anymore. When the small training529

set was used to train the models, we found no sig-530

nificant difference after the injection of eye-gazing531

bias.532

Comparing our results to Sood et al. (2020b)533

suggests that training a model to predict eye gaze534

improves text compression performance, whereas 535

using eye gaze data to regulate sarcasm detection 536

decreased performance. It is unknown whether the 537

difference in results is due to our task choice or to 538

our method of using human data. 539

5 Conclusion 540

This paper analyzed the correlations between atten- 541

tion in pre-trained transformers and human atten- 542

tion derived from eye gaze. We found correlations 543

between the two that were generally stronger in 544

the earlier layers of the model, and in most cases, 545

strongest in the first layer. These correlations were 546

unaffected by the model’s size, as different sized 547

variants of models produced similar correlations. 548

The training the models received did appear to 549

matter, although the present study cannot deter- 550

mine the full extent of that relationship. We found 551

that correlations were weaker from eye-tracking 552

studies where the participants could actively guide 553

their reading towards seeking the information they 554

needed than when they were presented with ques- 555

tions after reading. Finally, we showed that forcing 556

the model’s first-layer attention values to match the 557

human attentions using eye-gazing duration data 558

during training did not improve the model’s perfor- 559

mance on a sarcasm detection dataset. 560
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Cristian Buciluǎ, Rich Caruana, and Alexandru572
Niculescu-Mizil. 2006. Model compression. In Pro-573
ceedings of the 12th ACM SIGKDD international574
conference on Knowledge discovery and data min-575
ing, pages 535–541.576

Shivani Choudhary, Kushagri Tandon, Raksha Agar-577
wal, and Niladri Chatterjee. 2021. Mtl782_iitd at578
cmcl 2021 shared task: Prediction of eye-tracking579
features using bert embeddings and linguistic fea-580
tures. In Proceedings of the Workshop on Cogni-581
tive Modeling and Computational Linguistics, pages582
114–119.583

Spearman Rank Correlation Coefficient. 2008. The584
concise encyclopedia of statistics.585

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,586
Vishrav Chaudhary, Guillaume Wenzek, Francisco587
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-588
moyer, and Veselin Stoyanov. 2020. Unsupervised589
cross-lingual representation learning at scale. In590
ACL.591

Uschi Cop, Nicolas Dirix, Denis Drieghe, and Wouter592
Duyck. 2017. Presenting geco: An eyetracking cor-593
pus of monolingual and bilingual sentence reading.594
Behavior research methods, 49(2):602–615.595

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Car-596
bonell, Quoc Viet Le, and Ruslan Salakhutdinov.597
2019. Transformer-xl: Attentive language models598
beyond a fixed-length context. In ACL (1).599

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and600
Kristina Toutanova. 2019. Bert: Pre-training of deep601
bidirectional transformers for language understand-602
ing. In NAACL-HLT (1).603

Alexey Dosovitskiy, Lucas Beyer, Alexander604
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,605
Thomas Unterthiner, Mostafa Dehghani, Matthias606
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.607
An image is worth 16x16 words: Transformers608
for image recognition at scale. arXiv preprint609
arXiv:2010.11929.610

Geoffrey B Duggan and Stephen J Payne. 2011. Skim611
reading by satisficing: evidence from eye tracking.612
In Proceedings of the SIGCHI conference on human613
factors in computing systems, pages 1141–1150.614

Allyson Ettinger. 2020. What BERT is not: Lessons 615
from a new suite of psycholinguistic diagnostics for 616
language models. Transactions of the Association 617
for Computational Linguistics, 8:34–48. 618

Gemma Fitzsimmons, Mark Weal, and Denis Drieghe. 619
2014. Skim reading: an adaptive strategy for read- 620
ing on the web. 621

Stefan L Frank, Irene Fernandez Monsalve, Robin L 622
Thompson, and Gabriella Vigliocco. 2013. Read- 623
ing time data for evaluating broad-coverage models 624
of english sentence processing. Behavior research 625
methods, 45(4):1182–1190. 626

Bashir Muftah Ghariba, Mohamed S Shehata, and Pe- 627
ter McGuire. 2020. A novel fully convolutional net- 628
work for visual saliency prediction. PeerJ computer 629
science, 6:e280. 630

Michael Hahn and Frank Keller. 2016. Modeling hu- 631
man reading with neural attention. In Proceedings 632
of the 2016 Conference on Empirical Methods in 633
Natural Language Processing, pages 85–95. 634

Michael Hahn and Frank Keller. 2018. Modeling 635
task effects in human reading with neural attention. 636
arXiv preprint arXiv:1808.00054. 637

Yiding Hao, Simon Mendelsohn, Rachel Sterneck, 638
Randi Martinez, and Robert Frank. 2020. Probabilis- 639
tic predictions of people perusing: Evaluating met- 640
rics of language model performance for psycholin- 641
guistic modeling. arXiv preprint arXiv:2009.03954. 642

Jonathan Harel, Christof Koch, and Pietro Perona. 643
2007. Graph-based visual saliency. 644

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and 645
Weizhu Chen. 2020. Deberta: Decoding-enhanced 646
bert with disentangled attention. arXiv preprint 647
arXiv:2006.03654. 648

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. 649
Distilling the knowledge in a neural network. arXiv 650
preprint arXiv:1503.02531. 651

Nora Hollenstein, Federico Pirovano, Ce Zhang, Lena 652
Jäger, and Lisa Beinborn. 2021a. Multilingual lan- 653
guage models predict human reading behavior. In 654
Proceedings of the 2021 Conference of the North 655
American Chapter of the Association for Computa- 656
tional Linguistics: Human Language Technologies, 657
pages 106–123, Online. Association for Computa- 658
tional Linguistics. 659

Nora Hollenstein, Federico Pirovano, Ce Zhang, Lena 660
Jäger, and Lisa Beinborn. 2021b. Multilingual lan- 661
guage models predict human reading behavior. In 662
Proceedings of the 2021 Conference of the North 663
American Chapter of the Association for Computa- 664
tional Linguistics: Human Language Technologies, 665
pages 106–123. 666

9

https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.18653/v1/2021.naacl-main.10
https://doi.org/10.18653/v1/2021.naacl-main.10
https://doi.org/10.18653/v1/2021.naacl-main.10


Nora Hollenstein, Jonathan Rotsztejn, Marius Troen-667
dle, Andreas Pedroni, Ce Zhang, and Nicolas Langer.668
2018. Zuco, a simultaneous eeg and eye-tracking re-669
source for natural sentence reading. Scientific data,670
5(1):1–13.671

Xun Huang, Chengyao Shen, Xavier Boix, and672
Qi Zhao. 2015. Salicon: Reducing the semantic673
gap in saliency prediction by adapting deep neural674
networks. In Proceedings of the IEEE international675
conference on computer vision, pages 262–270.676

Forrest Iandola, Albert Shaw, Ravi Krishna, and Kurt677
Keutzer. 2020. SqueezeBERT: What can computer678
vision teach NLP about efficient neural networks?679
In Proceedings of SustaiNLP: Workshop on Simple680
and Efficient Natural Language Processing, pages681
124–135, Online. Association for Computational682
Linguistics.683

Yifan Jiang, S Chang, and Z Wang. 2021. Transgan:684
Two pure transformers can make one strong gan, and685
that can scale up. CVPR.686

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,687
Kevin Gimpel, Piyush Sharma, and Radu Soricut.688
2019. Albert: A lite bert for self-supervised learn-689
ing of language representations. arXiv preprint690
arXiv:1909.11942.691

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-692
jan Ghazvininejad, Abdelrahman Mohamed, Omer693
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.694
Bart: Denoising sequence-to-sequence pre-training695
for natural language generation, translation, and696
comprehension. arXiv preprint arXiv:1910.13461.697

Guanbin Li and Yizhou Yu. 2016. Visual saliency de-698
tection based on multiscale deep cnn features. IEEE699
transactions on image processing, 25(11):5012–700
5024.701

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-702
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,703
Luke Zettlemoyer, and Veselin Stoyanov. 2019.704
Roberta: A robustly optimized bert pretraining ap-705
proach. arXiv preprint arXiv:1907.11692.706

Steven G Luke and Kiel Christianson. 2018. The provo707
corpus: A large eye-tracking corpus with predictabil-708
ity norms. Behavior research methods, 50(2):826–709
833.710

Abhijit Mishra, Diptesh Kanojia, and Pushpak Bhat-711
tacharyya. 2016. Predicting readers’ sarcasm un-712
derstandability by modeling gaze behavior. In Pro-713
ceedings of the AAAI Conference on Artificial Intel-714
ligence, volume 30.715

Alec Radford, Karthik Narasimhan, Tim Salimans, and716
Ilya Sutskever. 2018. Improving language under-717
standing with unsupervised learning.718

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,719
Dario Amodei, Ilya Sutskever, et al. 2019. Lan-720
guage models are unsupervised multitask learners.721
OpenAI blog, 1(8):9.722

Keith Rayner. 2009. The 35th sir frederick bartlett lec- 723
ture: Eye movements and attention in reading, scene 724
perception, and visual search. Quarterly journal of 725
experimental psychology, 62(8):1457–1506. 726

Erik D Reichle, Alexander Pollatsek, Donald L Fisher, 727
and Keith Rayner. 1998. Toward a model of eye 728
movement control in reading. Psychological review, 729
105(1):125. 730

Victor Sanh, Lysandre Debut, Julien Chaumond, and 731
Thomas Wolf. 2019. Distilbert, a distilled version 732
of bert: smaller, faster, cheaper and lighter. arXiv 733
preprint arXiv:1910.01108. 734

Martin Schrimpf, Idan A Blank, Greta Tuckute, Ca- 735
rina Kauf, Eghbal A Hosseini, NANCY G KAN- 736
WISHER, Joshua B Tenenbaum, and Evelina Fe- 737
dorenko. 2020. The neural architecture of lan- 738
guage: Integrative reverse-engineering converges on 739
a model for predictive processing. bioRxiv. 740

Cansu Sen, Thomas Hartvigsen, Biao Yin, Xiangnan 741
Kong, and Elke Rundensteiner. 2020. Human at- 742
tention maps for text classification: Do humans and 743
neural networks focus on the same words? In Pro- 744
ceedings of the 58th Annual Meeting of the Asso- 745
ciation for Computational Linguistics, pages 4596– 746
4608. 747

Minjoon Seo, Sewon Min, Ali Farhadi, and Hannaneh 748
Hajishirzi. 2018. Neural speed reading via skim-rnn. 749
In International Conference on Learning Represen- 750
tations. 751

Ekta Sood, Simon Tannert, Diego Frassinelli, Andreas 752
Bulling, and Ngoc Thang Vu. 2020a. Interpreting 753
attention models with human visual attention in ma- 754
chine reading comprehension. In Proceedings of 755
the 24th Conference on Computational Natural Lan- 756
guage Learning, pages 12–25, Online. Association 757
for Computational Linguistics. 758

Ekta Sood, Simon Tannert, Philipp Müller, and An- 759
dreas Bulling. 2020b. Improving natural language 760
processing tasks with human gaze-guided neural at- 761
tention. arXiv preprint arXiv:2010.07891. 762

Makarand Tapaswi, Yukun Zhu, Rainer Stiefelhagen, 763
Antonio Torralba, Raquel Urtasun, and Sanja Fidler. 764
2016. Movieqa: Understanding stories in movies 765
through question-answering. In Proceedings of the 766
IEEE conference on computer vision and pattern 767
recognition, pages 4631–4640. 768

Hamed R Tavakoli, Ali Borji, Jorma Laaksonen, and 769
Esa Rahtu. 2017. Exploiting inter-image similarity 770
and ensemble of extreme learners for fixation predic- 771
tion using deep features. Neurocomputing, 244:10– 772
18. 773

Wilson L Taylor. 1953. “cloze procedure”: A new 774
tool for measuring readability. Journalism quarterly, 775
30(4):415–433. 776

10

https://doi.org/10.18653/v1/2020.sustainlp-1.17
https://doi.org/10.18653/v1/2020.sustainlp-1.17
https://doi.org/10.18653/v1/2020.sustainlp-1.17
https://doi.org/10.18653/v1/2020.conll-1.2
https://doi.org/10.18653/v1/2020.conll-1.2
https://doi.org/10.18653/v1/2020.conll-1.2
https://doi.org/10.18653/v1/2020.conll-1.2
https://doi.org/10.18653/v1/2020.conll-1.2


Mariya Toneva and Leila Wehbe. 2019. Interpret-777
ing and improving natural-language processing (in778
machines) with natural language-processing (in the779
brain). Advances in Neural Information Processing780
Systems, 32:14954–14964.781

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob782
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz783
Kaiser, and Illia Polosukhin. 2017. Attention is all784
you need. In Advances in neural information pro-785
cessing systems, pages 5998–6008.786

Nicolas Vecoven, Damien Ernst, Antoine Wehenkel,787
and Guillaume Drion. 2020. Introducing neuromod-788
ulation in deep neural networks to learn adaptive be-789
haviours. PloS one, 15(1):e0227922.790

Ivan Vulić, Simon Baker, Edoardo Maria Ponti, Ulla791
Petti, Ira Leviant, Kelly Wing, Olga Majewska, Eden792
Bar, Matt Malone, Thierry Poibeau, et al. 2020.793
Multi-simlex: A large-scale evaluation of multi-794
lingual and crosslingual lexical semantic similarity.795
Computational Linguistics, 46(4):847–897.796

Alex Wang, Yada Pruksachatkun, Nikita Nangia,797
Amanpreet Singh, Julian Michael, Felix Hill, Omer798
Levy, and Samuel R Bowman. 2019. Superglue: a799
stickier benchmark for general-purpose language un-800
derstanding systems. In Proceedings of the 33rd In-801
ternational Conference on Neural Information Pro-802
cessing Systems, pages 3266–3280.803

Alex Wang, Amanpreet Singh, Julian Michael, Felix804
Hill, Omer Levy, and Samuel R Bowman. Glue: A805
multi-task benchmark and analysis platform for nat-806
ural language understanding.807

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien808
Chaumond, Clement Delangue, Anthony Moi, Pier-809
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-810
icz, Joe Davison, Sam Shleifer, Patrick von Platen,811
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,812
Teven Le Scao, Sylvain Gugger, Mariama Drame,813
Quentin Lhoest, and Alexander Rush. 2020. Trans-814
formers: State-of-the-art natural language process-815
ing. In Proceedings of the 2020 Conference on Em-816
pirical Methods in Natural Language Processing:817
System Demonstrations, pages 38–45, Online. Asso-818
ciation for Computational Linguistics.819

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-820
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.821
Xlnet: Generalized autoregressive pretraining for822
language understanding. Advances in neural infor-823
mation processing systems, 32.824

Adams Wei Yu, Hongrae Lee, and Quoc Le. 2017.825
Learning to skim text. In Proceedings of the 55th An-826
nual Meeting of the Association for Computational827
Linguistics (Volume 1: Long Papers), pages 1880–828
1890.829

Manzil Zaheer, Guru Guruganesh, Kumar Avinava830
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-831
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,832

Li Yang, et al. 2020. Big bird: Transformers for 833
longer sequences. In NeurIPS. 834

Yukun Zheng, Jiaxin Mao, Yiqun Liu, Zixin Ye, Min 835
Zhang, and Shaoping Ma. 2019. Human behavior in- 836
spired machine reading comprehension. In Proceed- 837
ings of the 42nd International ACM SIGIR Confer- 838
ence on Research and Development in Information 839
Retrieval, pages 425–434. 840

A Datasets 841

The GECO Corpus (Cop et al., 2017) contains data 842

from 19 Dutch bilingual and 14 English readers 843

who read "The Mysterious Affair at Styles" by 844

Agatha Christie across four sessions, with com- 845

prehension tests occurring between sessions. The 846

bilingual participants completed two sessions in En- 847

glish, two in Dutch. For our analysis, we selected 848

all English sessions, regardless of the participant’s 849

bilingual status. 850

The PROVO Corpus (Luke and Christianson, 851

2018) contains 55 passages that contain an average 852

of 2.5 sentences. Passages were taken from online 853

news articles, magazines, and works of fiction. Eye- 854

tracking data was captured from 84 native English 855

speakers who were instructed to read for compre- 856

hension. 857

The ZuCo Corpus (Hollenstein et al., 2018) is a 858

combined reading, eye-tracking, and EEG dataset. 859

Data was captured from 12 native English speakers 860

who could read at their own pace with sentences 861

presented one at a time. The participants com- 862

pleted three different tasks. Task 1 was a sentiment 863

analysis task. Task 2 was a standard reading com- 864

prehension task where participants were presented 865

with questions after reading the text. Task 3 was 866

also a reading comprehension task; however, the 867

question appeared onscreen while the participant 868

was reading. 869

We also used data from Sood et al. (2020a). 870

They collected data from 32 passages taken from 871

the MovieQA (Tapaswi et al., 2016) dataset. In 872

Study 1, 18 participants answered questions from 873

16 passages under varying conditions such as multi- 874

choice, free answer with text present, and free an- 875

swer from memory. In Study 2, 4 participants an- 876

swered multi-choice questions from the remaining 877

16 passages. 878

Additionally, we used data from Frank et al. 879

(2013). In this set, 48 participants read 205 sen- 880

tences from unpublished novels for comprehension. 881

The dataset contains eye movements from a mix 882

of native and non-native English speakers. Partici- 883
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pants were occasionally required to answer yes/no884

questions following a sentence.885

The final dataset comes from Mishra et al. (2016)886

who conducted a sarcasm detection task. The887

dataset was taken from a wide variety of sources, all888

short passages containing a maximum of 40 words.889

The eye gaze of non-native English speakers who890

were highly proficient in English was tracked while891

completing the task.892

B Models893

B.0.1 Basic Models894

BERT (Devlin et al., 2019): On release, BERT895

was the state-of-the-art. It was trained using MLM,896

in which 15% of tokens were masked. Training897

also incorporated NSP by forcing the model to pre-898

dict whether two sentences were contiguous or not.899

Our analysis includes both cased and uncased ver-900

sions of the English BERT as well as a multilingual901

model.902

RoBERTa (Liu et al., 2019): A Robustly903

Optimized BERT Pretraining Approach. The904

model’s architecture is identical to BERT. How-905

ever, RoBERTa was trained for longer, with larger906

batch sizes and more data. Unlike BERT, the MLM907

examples were dynamically generated during a908

batch, which used the same mask patterns every909

time a sample was used. Finally, the NSP task was910

dropped as it did not affect performance.911

We have also included the MUPPET version of912

RoBERTa (Aghajanyan et al., 2021), trained using913

multitask learning with tasks from four domains:914

classification, commonsense reasoning, reading915

comprehension, and summarization. Finally, we916

have included XLM-RoBERTa (Conneau et al.,917

2020), a multilingual version of RoBERTa.918

B.0.2 Compact Models919

ALBERT (Lan et al., 2019): A Lite BERT is a920

BERT-based model that uses two tricks to reduce921

the number of parameters and time taken required922

to create the model. The first was factorized em-923

bedding parameterization. By decomposing the924

large vocabulary embedding matrix into two small925

matrices, the hidden size of embedding space can926

be different from the hidden size and much smaller.927

The second trick was cross-layer sharing. The pa-928

rameters for all layers are shared, leading to faster929

training times.930

DistilBERT (Sanh et al., 2019): This model used931

a Teacher – Student method for the distillation932

of knowledge (Buciluǎ et al., 2006; Hinton et al., 933

2015). Sanh et al. (2019) started with a full model 934

and kept every second layer to create the student. 935

The student was then trained on original training 936

data. This procedure resulted in a model that was 937

almost as powerful but half the size. 938

SqueezeBERT (Iandola et al., 2020): Squeeze- 939

BERT is Bert but with grouped convolutional lay- 940

ers instead of feed-forward layers. The model was 941

trained using the same methods as ALBERT. 942

B.0.3 Alternative Attention Mechanisms 943

DeBERTa (He et al., 2020): Decoding-Enhanced 944

BERT with Disentangled Attention differs from 945

others on this list in that it decouples attention by 946

word semantics from attention by word location. 947

Version 2 of the model used a form of adversarial 948

training to improve model generalization and sur- 949

passed human performance on Super GLUE bench- 950

marks. We have used the RoBERTa base version 951

of the model variants. 952

One problem with transformers is the quadratic 953

memory, and computational growth as sequence 954

length increases due to every token attending to all 955

other tokens. Some have dealt with this problem 956

by modifying the attention patterns to approximate 957

this full attention pattern without requiring all of 958

the attention comparisons. BIGBIRD (Zaheer et al., 959

2020) is an example that uses this attention approx- 960

imation. The model uses a combination of global, 961

sparse, and random attention. Again, we have used 962

the RoBERTa version of the model. 963

B.0.4 Alternative Architectures 964

XLNet (Yang et al., 2019): This model is a BERT 965

extension using random permutations of word or- 966

der during training. The model also incorporates 967

the recurrence mechanism used in Transformer-XL 968

(Dai et al., 2019). 969

BART (Lewis et al., 2019): Bidirectional 970

and Auto-Regressive Transformer is an encoder- 971

decoder model that is to recover data from cor- 972

rupted text input. BART has approximately 10% 973

more parameters than comparable BERT models 974

and no final feed-forward layer. Pre-training was 975

based on corrupting the inputs using token masking, 976

token deletion, token infilling, sentence permuta- 977

tion, and document rotation. 978
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